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2 2 THE MINIMUM VECTORS OF LATTICES

1 Introduction

My dissertation is concerned with applications of root-lattices in different fields of geometry. I
do not discuss the historical preliminaries at length. Results of past research are included in
the single chapters. Chapter 1 is a short summary of my results and it also shows the relevance
of my findings to root-lattices. Chapter 2 deals with the role of lattice E6 when examining the
minimal vectors of 6-dimensional lattices. Chapter 3 investigates lattices Zn, An and Dn for the
orthogonal projections of the DV cells of lattices and also examines the DV cell of lattice E8,
which is in connection with the Voronoi-conjecture. Finally, in chapter 4 lattices An, Dn , E7

and E8 give the maximal thickness of certain 〈p, q〉 point-systems. In the following we define
these special root-lattices. The n-dimensional cube-lattice is

Zn = {(x1, x2, . . . , xn) : xi ∈ Z},
where Z is the set of integer numbers. We can get lattice An from the (n + 1)-dimensional
cube-lattice:

An = {(x0, x1, . . . , xn) ∈ Zn+1 : x0 + x1 + · · ·+ xn = 0}.
Lattice Dn, which is also referred to as checkerboard lattice is defined as

Dn = {(x1, x2, . . . , xn) ∈ Zn : x1 + x2 + · · ·+ xn even}.
And finally, see the definition of lattice E8, which will have a prominent role in the forthcoming
discussion. Lattices E7 and E6, based on the definition of E8, are also given below.

E8 = {(x1, x2, . . . , x8) : xi ∈ Z or xi ∈ Z+
1

2
for every xi,

∑
xi ≡ 0 (mod 2),

E7 = {(x1, x2, . . . , x8) ∈ E8 : x1 + x2 + · · ·+ x8 = 0},
E6 = {(x1, x2, . . . , x8) ∈ E8 : x1 + x8 = x2 + · · ·+ x7 = 0}.

2 The minimum vectors of lattices

Let En (0, Vn (R, 〈 , 〉)) be the Euclidean n-space with a distinguished origin 0, with the n-
vector space Vn, over the set of real numbers R and with a positive definite symmetric scalar
product 〈 , 〉 : Vn × Vn → R, (x,y) → 〈x,y〉. Let A = {a1, . . . , an} = {ai} be a basis of Vn

with the Gramian G := (aij) := (〈ai, aj〉). A Z-lattice to the basis A is defined as

Λ(A,Z) = [a1, . . . , an] =

{
n∑

i=1

xiai : xi ∈ Z
}

.

The minimum m(Λ) of the lattice Λ is defined by

m(Λ) ∈ R+ : m(Λ) = |m| ≤ |v| for an m ∈ Λ \ {0} =: Λ̇ and for any v ∈ Λ̇.

We may assume (by similarity in En) that m(Λ) = 1. The set of minimum vectors is called the
minima of Λ and is denoted by M(Λ). That is

M(Λ) := {m ∈ Λ : |m| = m(Λ) = 1}.
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The maximal A-coordinate of the minima of Λ is defined by

L (A) := max

{
xi ∈ Z :

n∑
i=1

xiai = m,m ∈ M(Λ)

}
∈ N.

Consider the minimum of these maximal A-coordinates of the minima of Λ when changing the
basis A in Λ, i.e. define

L(Λ) := min{L(A) ∈ N : A is any basis of Λ}.

Finally, vary the lattices Λ in En. Then

Ln := L(En) := max {L(Λ) ∈ N : Λ is any lattice of Λ ∈ En} .

In general, the problem is the determination of Ln. In other words in any lattice of En find
a basis, in which the maximal coordinate of the minima of the lattice is the possible smallest.
Á. G. Horváth in [30] proved that Ln = 1 for n ≤ 5 and in [31] that for root-lattices
L(Zn) = L(An) = L(Dn) = L(E6) = L(E7) = 1 and L(E8) = 2 hold.

Lattice Λ is the extension of lattice Λ̄ if Λ̄ ⊂ Λ. This extension is admissible if m(Λ) =
m(Λ̄), i.e. the minimum does not decrease under the extension. The index of the admissible
extension is defined by the number ind

(
Λ/Λ̄

)
= v

(
Λ̄

)
/v (Λ), where v (Λ) is the volume of a basic

parallelepiped in lattice Λ (see [30], [31], [29]). S.S. Ryshkov [50] and N.V. Zaharova-N.V.
Novikova [70] determined all admissible extensions up to n ≤ 8 in En.

By Ryshkov’s observation [50] we may assume that any lattice Λ ⊂ En considered has n
linearly independent minima of Λ. These minima {a1, . . . , an} span a sublattice Λ̄ ⊂ Λ such
that m(Λ) = m(Λ̄), i.e. Λ is an admissible extension of Λ̄.

2.1 The 6-dimensional lattices

By applying the above result to n = 6 we get that the lattice Λ ⊂ E6 contains 6 independent
minimal vectors. Let {a1, . . . , a6} be a basis of the sublattice Λ̄ ⊂ Λ , where ai are minimum
vectors of length 1. Lattice Λ is an admissible extension of lattice Λ̄. Consider lattice Λ̄ for
which ind

(
Λ/Λ̄

)
is maximal. The Gramian of lattice Λ̄ is denoted by G.

It follows from the foregoing and [50] that there are three admissible extensions with index
2, one with index 3 and one with index 4 in 6-dimension. The proof of the theorem is divided
into three statements according to these indices. In Statement 2.6 we shall investigate the case
in which the index of the admissible extension is four. Up to similarity only one lattice has an
admissible extension with index four. This follows easily from [50], but we shall give a new proof
by estimating the sum of the elements of the Gram matrix. Such estimations will be useful in
other cases, too. In this lattice the characteristic matrix, i.e the system of all different minima
of the lattice, can be written easily. This matrix will be denoted by [m1, . . . ,mσ] (See [50], [32],
[33]) where ±m1, . . . ,±mσ are all different minima of the lattice. Finally, changing the basis of
the lattice all elements of the characteristic matrix will be 0,−1, +1, respectively.

In Statement 2.8 we study lattice extensions with index three and, by estimating the sum
of the elements of the Gramian, we get very interesting conditions. In accordance with these
conditions, we classify the lattices into two types. In the first case, writing all possible minima
of each lattice of this class, we can change the basis of these lattices such that the coordinates
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of all possible minima of these lattices be 0,−1, +1. In the second case, we prove that for any
lattice Λ of this class M (Λ) ⊆ M (E6) holds, where M (Λ) denotes all the minima of Λ. Using
theorem 2.3 and the properties of lattice E6 (see [8],[31]), this case will also be solved. We also
remark that in the proof we give a new construction for E6, namely, as a special extension of a
lattice Λ̄.

In Statement 2.13 we examine admissible extensions with index two. The proof is divided
into three parts, according to the three admissible extensions of index two. The basic idea of
the proof is similar to that of [33]. In all three cases we write all possible minima of every lattice
in E6 and we prove that, with respect to a suitable basis of Λ, the coordinates of the minima
of are ±1, 0. Summing up, we prove the following theorem:

Theorem 2.5. ([64]) L6 is equal to one, i.e., speaking in the above sense, for every Euclidean
6-lattice Λ there is a basis in which the maximal coordinate of all the minimum vectors of Λ is
equal to at most 1.

2.2 The 7-dimensional lattices

Consider a basis a1, a2, . . . , an of lattice Λ in an arbitrary orthonormal basis. Compose a matrix
A from the coordinates of the basis vectors. Using matrix A we can define positive definite
quadratic forms of lattice Λ:

Q(x) = 〈Ax, Ax〉 = xT AT Ax = xT Gx,x ∈ Zn,

where we use the Gramian G = AT A like above. Since results needed for the proof follow this
terminology, we change to positive definite quadratic forms. Out of results concerning quadratic
forms I only discuss those which are essential for my theorem. There are further definitions and
results in [29], [8], [45]. According to the minima of lattice Λ we can define the homogeneous
minimum of the positive definite quadratic form Q:

m(Q) := min{Q(z) : where z ∈ Zn \ {0}}.

Let M(Q) the set of the points z ∈ Zn\{0} where Q(z) is minimal. A positive definite quadratic
form Q is called perfect if it is determined uniquely by minimal vectors. That is, the solutions
of the equation Q(z) = m(Q), z ∈ Zn are exactly minimal vectors zi ∈ M(Q).

Perfect forms are known for n ≤ 7 dimensions. In the euclidean plane J.L. Lagrange [43]
dealt with this question and he found one perfect form. In the space there is also one perfect
form found by C.F. Gauss [26]. A. Korkine and G. Zolotareff [41], [42] discovered 2
and 3 perfect forms in 4 and 5 dimensions, respectively. E.S. Barnes [3] found 7 different
perfect forms in 6 dimension. K.C. Stacey [54] investigated 7-dimensional perfect forms, but
he omitted one from 33, which J.H. Conway- N.J.A Sloane [9] completed, finally D.O.
Jaquet-Chiffelle [40] proved completeness of these. There is a list of the Gramian of these
perfect forms in the appendix A. J. Martinet found more than 10916 perfect forms in 8
dimension. You can find the perfect forms for example in J.H. Conway- N.J.A Sloane’s
paper [9], and in C. Batut and J. Martinet’s works [45], [4].

G.F. Voronoi’s theorem in [68] has a fundamental role in determining L7. According to
G.F. Voronoi’s statement, for every positive definite quadratic form Q(x) there is a perfect
form Q∗(x) such that

M(Q) ⊆ M(Q∗).
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Thus it is sufficient to investigate the Gramian of perfect quadratic forms listed in appendix
A. The relationship between the Gram matrix and the coordinates of the minimal vectors is
the following: if m is the length of the minimal vector m, its coordinates for some basis of
the lattice are x1, x2, . . . , xn, D = det(G) and Di is sub-determinant of the element aii of the

Gramian in the basis of the lattice, then |xi| ≤ m
√

Di

D
. Further, it is well-known from linear

algebra that the following transformation: add the c-fold of the ith row of the Gramian G to
the jth row and in the new matrix add the c-fold of the ith column to the jth column is a basis
transformation of lattice Λ. Using suitable basis transformations, I proved that the coordinates
of minimal vectors of the lattice are smaller than 2 in every case. Thus the following theorem
holds:

Theorem 2.18. L7 is equal to one, i.e. to every Euclidean 7-lattice Λ there is a basis in which
the maximal coordinate of all the minimum vectors of Λ is equal to 1 at most.

3 Dirichlet-Voronoi cells of lattices

The concept of the Dirichlet-Voronoi cell was introduced by Dirichlet [15] and Voronoi
[68]. Voronoi polytope and Voronoi cells are also used instead of Dirichlet-Voronoi cell in higher
dimensions. We use shortly DV cell in the following. Let us give a discrete point set L in the
n-dimensional Euclidean space En. The DV cell of a point Pi of the set L is the set of points
which are at least as close to point Pi as to any other point Pj of the set L, i.e.

DV(Pi) = {x ∈ En : dist(x, Pi) ≤ dist(x, Pj) for every j}.

The DV cell is a special kind of a parallelotope where the parallelotope P is a convex polytope
which fills the space face to face by its translation copies without intersecting by inner points.
The centers of the parallelotopes form an n-dimensional lattice. Classical problems of DV cells
can be seen for example in [8], [29], [32], [33]. B.A. Venkov [66] and later P. McMullen [47]
proved the following important theorems for parallelotopes. A polytope P is a parallelotope if
and only if
(i) P is centrally symmetric
(ii) each facet of P is centrally symmetric
(iii) 2-dimensional orthogonal projection along any (n − 2)-face of P is either a parallelogram
or a centrally symmetric hexagon.
A.D. Aleksandrov in [1] simplified B.A. Venkov’s proof. The edges of the parallelogram
and the centrally symmetric hexagon of the above property (iii) are the projections of facets
of P . These facets form a 2- and 3-belt, respectively. A zone of (n − 2)-faces is a set of all
mutually parallel (n − 2)-faces of parallelotope P . A zone of (n − 2)-faces is a closed zone if
each (n− 1)-face of P has either two or none (n− 2)-faces of this zone.

B.A. Venkov introduced the concept of a parallelotope of non-zero width in direction of a
k-subspace Xk. A parallelotope P has non-zero width along Xk if the intersection P ∩ (Xk +a)
is either k-dimensional or empty for every translation vector a. For k = 1 the k-subspace Xk is
a line. The direction of this line is given by a vector z so the z width of a parallelotope P along
z is the minimal length of the intersections with P of lines parallel to z. If this minimal length is
equal to zero then a parallelotope P is of zero width in direction z. Denote by S(z) the segment
of the direction z and of the length z. V. Grishukhin in [28] proved that P has non-zero
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width in direction z if and only if P has a closed edge zone parallel to z and P is the Minkowski
sum of a segment S(z) and a parallelotope P ′ of zero width in direction z, i.e. P = P ′ ⊕ S(z).
A d-dimensional zonotope in Ed is the Minkowski sum of n line segments, in other words it is
the image of a regular n-cube under some orthogonal projection to the d-dimensional subspace.
Thus for any parallelotope exactly one of the following statements holds:
(i) it is a zonotope or
(ii) it is a parallelotope of zero width in any direction or
(iii) it is the Minkowski sum of a zonotope with a parallelotope of zero width in any direction.

The Minkowski sum P ⊕ S(z) is not necessarily a parallelotope. V. Grishukhin [27] gives
necessary and sufficient conditions for this sum to be a parallelotope. The following assertions
are equivalent for a parallelotope P :
(i) the Minkowski sum P ⊕ S(z) is a parallelotope
(ii) vector z is orthogonal to at least one facet vector of each 3-belt of P .

3.1 The orthogonal projections of DV cells of lattices

Consider the n-dimensional lattice Λn. Intersect lattice Λn with a (n−1)-dimensional hyperplane
H which contains the point P . Denote the resulting set of intersection points Λn ∩H by Λn−1,
if it is a (n− 1)-dimensional lattice.

Definition 3.4. If an (n − 1)-dimensional sublattice Λn−1 of the lattice Λn of the filling
parallelotope P has the following property: Rn \⋃{P+λi λi ∈ Λn−1} has two path connected
components, then the set

⋃{P + λi λi ∈ Λn−1} := [Λn−1(P)] is called a parallelotope lamina.
The lattice Λn−1 is called a laminar lattice.

Definition 3.7. If P is a DV cell, we can associate to all facet F a lattice vector showing to
the center of a DV cell Pi, where F = P ∩ Pi. Thus this vector is a relevant vector of the facet
F . Further, this vector is orthogonal to the facet F speaking about DV cells, thus this vector−−→
PPi is the normal vector of the facet F . We shall call this special facet vector the generalized
facet vector of F . Let now G be a (n − 2)-dimensional face and assume that G = P ∩ Pi for
another DV cell Pi, but P and Pi do not have common facet. Such a face determines a 2-belt
on the boundary of P . We can also associate to it a lattice vector of Λn, which is the sum of
the relevant (speaking about DV cells generalized facet) vectors of the facet containing this face

(i.e.
−−→
PPi =

−−→
PPj +

−−→
PPk). We call this vector the generalized facet vector of G.

In the following theorem we give a necessary and sufficient condition that the orthogonal
projection of an n-dimensional DV cell of a lattice is an (n − 1)-dimensional DV cell of the
lattice Λn−1, i.e.

Theorem 3.5. ([65]) The following statements are equivalent for DV cell DVn(P ) and vector z:

(i) The orthogonal projection of the cell DVn(P ) to the (n−1)-dimensional hyperplane H along
z is an (n− 1)-dimensional DV cell DVn−1(P ) of lattice Λn−1, where Λn−1 = Λn ∩H.

(ii) The vector z is orthogonal to at least one generalized facet vector of each 2 and 3-belt.

(iii) The Rn \ [Λn−1(DVn(P ))] has two path connected components. (By the definition of the
parallelotope lamina [Λn−1(DVn(P ))] =

⋃{DVn(P ) + λi λi ∈ Λn−1})

In the dissertation we apply the above theorem for root-lattices Zn and Dn, thus:
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Theorem 3.6. ([65]) The orthogonal projection of a DV cell of the n-dimensional cube-lattice
Zn in direction (±e1 ± · · · ± en) is the DV cell of the root-lattice An−1.

Theorem 3.8. ([65]) The orthogonal projection of the DV cell DVn(Dn) in direction ±ei is the
DV cell DVn−1(Dn−1) and in direction (±e1,± · · · ,±en) the DV cell DVn−1(An−1).

3.2 The DV cell of the lattice E8

Consider the parallelotopes P and Q and further the relation <. P < Q holds if and only if
there exists a direction v for which P ⊕ λv = Q, where ⊕ denotes Minkowski sum. In this
case P is called the contraction of Q and Q is the extraction of P . It is easily seen that the set
{parallelotope, <} is partially ordered with maximal and minimal elements.

If the parallelotope P is of non-zero width in some direction z then the shadow boundary
contains only (n − 1)-facets which are called facets parallel to z by B.A. Venkov. As a
generalization of this consider the following definitions. The generalized relevant vector can be
defined similarly to the generalized facet vector.

Definition 3.8. The (n− 2)-faces of the shadow boundary which do not belong to any (n− 1)-
face of the shadow boundary can determine a 2- or a 3-belt. If such an (n− 2)-face belongs to
a 2-belt then it is centrally symmetrical and the centre of it is the middle of a lattice vector.
This lattice vector with starting point O in Λn is called a generalized relevant vector. This is
the sum or the difference of two relevant vectors of the 2-belt. There is no generalized relevant
vector of the (n− 2)-face in 3-belt.

Definition 3.9. The lattice generated by the real and generalized relevant vectors of the shadow
boundary in direction z is called Venkov-lattice of direction z and is denoted by Λz.

We remark that Á. G. Horváth in [36] proved a theorem similar to the one above con-
cerning the orthogonal projection of DV cells for the orthogonal projection of the parallelotope:
According to Á. G. Horváth the following statements are equivalent for a parallelotope P :
(i) P ⊕ S(z) is a parallelotope
(ii) the Venkov-lattice Λz of direction z is an (n− 1)-dimensional lattice and the projection P|z
is a parallelotope of the hyperplane [Λz] with lattice Λz.

In the following we investigate the connection between the extraction of parallelotopes and
the coordinates of relevant vectors and prove that if a parallelotope P can be extracted in a di-
rection z, then there exist a basis {e1, e2, · · · , en} of the lattice such that [Λz] = [e1, e2, · · · , en−1]
holds and the nth coordinates of the relevant vectors which do not belong to the Venkov-lattice
Λz, are ±1. Namely, if a parallelotope P can be extracted in a direction z then the Venkov-
lattice is a primitive (n− 1)-dimensional sublattice of Λ and all other relevant vectors have ±1
nth coordinates in case of a suitable vector en completing a basis. Further, we prove if there
exists a basis in which the coordinates of the relevant vectors of a parallelotope P are 0,±1
and the parallelotope P is an affine image of a DV cell, then there exists a direction z such
that P ⊕ S(z) is a parallelotope, too. Remark that by the theorem 3.13 and in case the above
conditions hold the projection of the parallelotope P in the direction z is a parallelotope of the
Venkov-lattice Λz. By investigating DV cells instead of parallelotopes it can be shown that the
projection is a DV cell, i.e. if there exists a basis in which the relevant vectors of the DV cell D
have coordinates 0,±1, then there exists a direction z such that the projection of the cell D in
direction z is the DV cell of the lattice Λz.

In what follows we investigate the DV cells of root-lattices. According to J.H.Conway,
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N.J.A.Sloane’s theorem[8] for any root-lattice Λ the DV cell around the origin is the union of
the images of the fundamental simplex under finite reflection group or Weyl group W (Λ). The
facets of the DV cell are the images of the facets not belonging to the origin of the fundamental
simplex under Weyl group W (Λ). Consequently, the relevant vectors in a root-lattice are pre-
cisely the minimal vectors [8]. So we proved the following theorem:

Theorem 3.15. For the DV cells D (and for their affine images P) of root-lattices except
lattice E8 there exists a direction z such that D ⊕ S(z) (D ⊕ S(z′)) is a parallelotope.

We remark that the significance of the theorem is that for the DV cell of lattice E8 there
is no direction in which it can be extracted. An analogue to the above theorem can be easily
verify for projection:

Theorem 3.16. For the DV cells D of root-lattices except lattice E8 there exists a direction z
such that the projection of a cell D in the direction of z is a DV cell of lattice Λz.

In following we discuss briefly how my foregoing results are related to the classification of
parallelotopes. Two parallelotopes in the plane were well-known already in the antiquity: the
centrally symmetric hexagon (primitive) and the parallelogram (not primitive). E.S. Fedorov
in [20] described the 5 combinatorically different parallelotopes in 3-dimension among which the
truncated octahedron is primitive and the others, namely the elongated octahedron, the rhombic
dodecahedron, the hexagonal prism and the cube are not primitive. B.N. Delone [14] found
51 different types of the 4-dimensional parallelotopes. M.I. Shtogrin gave the missing 52nd in
[53]. 17 of these are zonotope and the 35 others are the regular 24-cell and the Minkowski sum
of this with some zonotope. Three out of these types are primitive. S.S. Ryshkov and E.P.
Baranowskii [52] found 221 primitive 5-dimensional parallelotopes. One more was given by
P. Engel and V. Grishukhin [18]. P. Engel in [16] and [17] gave 179372 combinatorically
different types of 5-dimensional parallelotopes.

We can introduce a partial ordering on the combinatorical types of parallelotopes with
the contractions of the closed edge-zones. An element is maximal if it cannot be extracted
but trivially, i.e. there is no parallelotope from which it would be contracted. An element
is minimal if it cannot be contracted. In 3-dimension the maximal element is the primitive
truncated octahedron from which using contractions you can get all other parallelotopes. The
minimal element is the cube (see [10] or [39]). In 4-dimension there are 4 maximal elements out
of which only 3 are primitive. By contracting these we get 2 minimal elements, which, when
extracted can result all other parallelotopes ([7], [60], [28]). It is clear that from the 3 primitive
elements you can not get the all parallelotopes only with contractions.

P. Engel obtained the 5-dimensional parallelotopes from primitive parallelotopes first with
contractions and then with the extractions of the obtained minimal elements. Unfortunately,
in general not all parallelotopes can be obtained this way as according to theorem 3.15 the DV
cell of lattice E8 cannot be extracted in any direction. Further, as it is a parallelotope of zero
width in each direction, it cannot be contracted either. So there exists a non-primitive maximal
element, which is also minimal and it cannot be obtained from primitive element.

We remark that the above statement is closely connected to Voronoi’s conjecture. G.F.
Voronoi inquires whether each parallelotope is the affine image of a DV cell. He in [68] and
[69] proved the conjecture for the case when the parallelotope is primitive. O.K. Zhitomirskii
[71] extended the G.F. Voronoi’s proof for (n − 2)-primitive parallelotopes, i.e. when each
belt of the parallelotope is a 3-belt. P. McMullen [46] proved the conjecture for zonotopes.
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R.M. Erdahl gave another proof in [19].
We state the two theorems below without proof in the dissertation on the one hand because

of lack of space on the other hand because the theme is not closed convincingly and other
investigations are needed.

Theorem 3.17. If the parallelotope P ⊕ S(z) is the affine image of a DV cell D ⊕ S(z′) then
the parallelotope P is the affine image of a DV cell D, too.

I was able to prove only the reverse of the theorem under certain conditions, so the definition
below is needed.

Definition 3.10. Two extractions of parallelotope P in directions z′ and z′′ into parallelotopes
P⊕S(z′), P⊕S(z′′) are equivalent if the shadow boundaries in directions z′ and z′′ are equivalent
so Λz′ = Λz′′ . The degree of liberty kz of the extraction in direction z is the dimension of the
subspace determined by the directions of the extractions equivalent to z. If the parallelotope
cannot be extracted in any direction z then let kz = 0.

Theorem 3.18. If an affine transformation L takes parallelotope P to a DV cell D and the
parallelotope P ⊕ S(z) exists where kz = 1 then the parallelotope P ⊕ S(z) is the affine image
of a DV cell D ⊕ S(z′).

Summing up, parallelotopes, which can be obtained with contraction because of the theorem
3.17 from primitive and (n− 2)-primitive parallelotopes (by O.K. Zhitomirskii’s [71] result)
then from these with extraction where kz = 1, because of the theorem 3.18, satisfy Voronoi’s
conjecture, i.e. they are affine images of DV cells. By the foregoing and V. Grishukhin’s
theorem 3.3 it is sufficient to prove Voronoi’s conjecture only for parallelotopes which cannot
be obtained from (n− 2)-primitive parallelotopes and which are of zero width in each direction
and cannot be obtained from these with the sequence of the extractions where kz = 1.

4 〈p, q〉 point systems

J.H. Conway and N.J.A. Sloane [8] discuss in detail the role of root-lattices in case of
packings and coverings in higher dimensions. It is well-known that in a lot of cases these and
their dual lattices give the best results at present for the densest sphere packing and the thinnest
sphere covering, respectively. Of course proof is given for the non lattice case only in the plane.
We do not discuss the far-reaching results for packings and coverings. We investigate only
the 〈p, q〉 point systems introduced in [37], which are analogous with the above problems. Let
p, q ≥ 1 be integers. The point set Σ is a 〈p, q〉 point system in a space of constant curvature,
if ∃ r, R > 0 such that each arbitrary open ball of radius r contains at most p points of Σ and
at least q points of Σ belong to each arbitrary closed ball of radius R.

Definition 4.1. Let us denote by rp the supremum of r and by Rq the infimum of R of the
given 〈p, q〉 point system, respectively. Quotient rp

Rq
is called the thickness of the 〈p, q〉 point

system.

The problem is to find sup rp

Rq
if the 〈p, q〉 point system is changed and determine the point

set or sets where the maximal thickness is attained. Sup rp

Rq
is denoted by κ(n, p, q) where n is

the dimension of the space. In other words, we consider point systems which have the maximal
thickness and have the following properties: the open balls of radius r whose centres are points
of the point system give a p-fold packing and the closed balls of radius R give a q-fold covering.
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B.N. Delone [13] introduced the basic problem for (r, R) point systems which is the case
of p = 1, q = 1 according to the above terminology. J. Horváth [37] investigated first this
problem for p, q > 1. We discuss briefly the results in this field. The problem was solved for
the case of p = 1, q = 1 in the plane by S.S. Ryshkov [51] and L. Fejes Tóth [23] and in
the space by K. Böröczky [5]. The maximal thickness of the 〈1, 1〉 point system is equal
to 0, 866... in the plane and 0, 775... in the space. The lattice case was solved by J. Horváth
[38] in 4 and 5 dimensions . The maximal thickness of the 〈2, 1〉 point system in the plane in
the non-necessarily lattice case and of the 〈2, 2〉 point system in the plane in the lattice case
is known [37]. Further, the problem is solved only for the lattice case and in the plane for all
p, q ≤ 5 and the 〈1, 6〉, 〈3, 6〉, 〈4, 6〉 and 〈6, 6〉 point systems [37], [56], [58], [72]. The lattice
generated by the regular triangle, namely lattice A2 gives the maximal thickness of the 〈p, q〉
point systems in many cases according to the results of J. Horváth [37], Á.H. Temesvári
[56] and Á.H. Temesvári, A. Végh [58]. These results gave the starting point for further
investigations. In the following at first we examine the problem for p = 1 and q > 1 in the non-
necessarily lattice case and in higher dimensions. The results of these problems are connected
to lattices investigated in previous chapters. Then we deal with the problem in the lattice case
in the plane.

4.1 The lattice An

For a given integer q > 1 one would like to know the smallest radius R and find the optimal
way to arrange n-dimensional unit spheres so that a) they form a packing and b) if each sphere
is replaced with a sphere of radius R then they form a q-fold covering. In order to cover the
centres of the original spheres at least twice, the radius R must be ≥ 2. Thus the following
lemma holds:

Lemma 4.1. If q > 1 and n is an arbitrary positive integer then κ(n, 1, q) ≤ 1
2
.

In the following we investigate lattices for which this simple bound is a sharp bound. Let
B (O, r) be the open ball and B̄ (O, r) the closed one of radius r with centre O. The par-
allelepiped P n is generated by the n-dimensional regular simplex. Let us suppose that the
length of the edge of P n is equal to 1. Consider an n-dimensional oblique-angled coordinate
system, let (0, . . . , 0)T be a vertex of the n-dimensional regular simplex and let (1, 0, . . . , 0)T ,
(0, 1, . . . , 0)T ,. . . , (0, 0, . . . , 1)T be the other ones. So we gave a basis of lattice An. Then the
Euclidean length of the vector x is |x|2 = xT Gx, where G is the Gram matrix of lattice An. The
points (x1, x2, . . . , xn)T xi ∈ {0, 1} are the vertices of P n. The (n− 1)-dimensional facets of P n

are (n−1)-dimensional parallelepipeds. Denote by P n−1
k,l those faces of P n whose vertices satisfy

the condition xk = l, where l ∈ {0, 1} and k ∈ {1, . . . , n}. Hn−1
i denotes the hyperplane with

normal vector (1, 1, . . . , 1)T containing those vertices of P n which have i non-zero coordinates i.e.
x1+x2+ · · ·+xn = i. Let Rn

i,i+1 be the convex hull: conv
((

vertP n ∩Hn−1
i

) ∪ (
vertP n ∩Hn−1

i+1

))
and Rn−1

j,j+1 = Rn
i,i+1∩Pn−1

k,l where j depends on i, k, l. Solids Rn−1
j,j+1 are those faces of solid Rn

i,i+1

which do not lie in any of the hyperplanes Hn−1
i . So we proved that if n ≤ 7 and the facets

Rn−1
j,j+1 of the solid Rn

i,i+1 are q-fold covered by sphere B̄(X, 1), where X ∈ vert(Rn−1
j,j+1), then

solid Rn
i,i+1 is also q-fold covered by unit spheres around its vertices. So the following statement

holds:

Theorem 4.3. ([63]) κ(n, 1, q) = 1
2
, if n = 2, 3, 4 and q ≤ n + 1 or n = 5, 6, 7 and q ≤ 5 and

in these cases lattice An gives a maximal thickness.
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4.2 The lattices Dn, E7, E8 and other lattices

According to H.S.M. Coxeter’ notations [11], denote by αn the n-dimensional regular simplex,
by βn the n-dimensional cross polytope, by hγn the solid which is defined as follows: let hγn =
conv ({x ∈ {0, 1}n|∑ xi ≡ 0 (2)}), i.e. we omit and keep alternately the vertices of the n-
dimensional cube and then we take the convex hull of the derived point set. This solid is called
a half-cube by H.S.M. Coxeter. The L-partition of lattice Dn has two different types of solids
by [8]: hγn and βn. We prove that first, in case of n ≥ 3 the cross polytope βn is (n + 1)-fold
covered by spheres of radius equal to the edges of the cross polytope around the vertices, second,
the solid hγ5 is 6-fold covered by spheres of radius equal to its edges around the vertices. So

Theorem 4.6. κ(n, 1, q) = 1
2
, if n = 3, 4, 5 and q ≤ n + 1 or n = 6, 7, 8 and q ≤ 6 and in these

cases lattice Dn gives a maximal thickness.

We remark that this result surpasses the result which was given for lattice An, but it is not
needless for two reasons. On the one hand, it is a new point system in general when the thickness
is maximal. Of course, I cannot give each point system with maximal thickness (see also the
case of the plane). On the other hand, the theorem below is a very important consequence of
the application of lattices A7 and D8.

Theorem 4.7. κ(7, 1, q) = 1
2

if q ≤ 10 and κ(8, 1, q) = 1
2

if q ≤ 12 and in these cases lattices
E7 and E8 give a maximal thickness.

I should like to mention that in the case of the above lattices it is not proved whether
coverings more than the above manifold coverings are impossible. So it can happen that the
investigated lattices give a maximal thickness for other 〈p, q〉 point systems, too. This holds for
the result of the following theorem to an even greater extent.

According to J.H. Conway-N.J.A. Sloane [8] we introduce the concept of laminated
lattice and we expand a few of its properties.

Definition 4.3. Let Λ0 be the one-point lattice. For n ≥ 1 we take all n-dimensional lattices
with minimum 2 that have at least one sublattice Λn−1. Any such lattice is a laminated lattice
Λn if it has a minimal determinant.

Let Λ
(i)
n−1 = Λn−1+ien be the ith layer (or laminae) where i ∈ Z. Then Λn =

⋃{Λ(i)
n−1 | i ∈ Z}.

By [8] in n ≤ 48 dimensions the laminated lattices are constructed from lattices Λ
(i)
n−1 as layers

in a way that the orthogonal projection of a lattice point of layer Λ
(i+1)
n−1 is the farthest point

from the lattice points of lattice Λ
(i)
n−1. On the basis of this we prove the following theorem:

Theorem 4.8. κ(n, 1, 2) = 1
2

if n ≤ 48 and in these cases the laminated lattice Λn gives a
maximal thickness.

4.3 Point systems in the plane

In the following we discuss a few results in the plane on the one hand as this was the starting
point of higher dimensional cases on the other hand, we intend to show that the determination
of the maximal thickness of further lattices and general point systems with maximal thickness
is a difficult problem in the plane, too. So we introduce a few new concepts.

A lattice Λ is reduced by Minkowski if basis vectors a and b satisfy the following inequalities:

|a| ≤ |b| ≤ |b− a|, (AOB)∠ ≤ π

2
.
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Introducing the notations x = |a|
|b| , α = (AOB)∠, y = cos α the following equivalent inequalities

hold:

0 < x ≤ 1, 0 ≤ y ≤ x

2
.

We can choose the basis vectors of any lattice so that they satisfy the above conditions. So
an ordered pair of the numbers (x, y) corresponds to all lattices reduced by Minkowski and a
lattice reduced by Minkowski corresponds to all ordered pair of the numbers (x, y) 6= (0, 0)
(up to similarity). Thus there is a one-to-one correspondence up to similarity between lattices
reduced by Minkowski and the points different from O of the triangle OPQ where O(0, 0),
P (1, 0), Q(1, 1

2
).

Using the methods worked out for the determination of the densest p-fold lattice circlepacking
( by Á. H.Temesvári, J. Horváth, N.N. Yakovlev [57]), and for the thinnest q-fold lattice
circlecovering (by Á.H.Temesvári [55] ) further the theorems on the possible latticecircles in
[61], [62] we determined the thickness of the 〈p, q〉 point systems in the following cases [58]: for
p = 5 and q = 1, 2, 3, 4 by Á. H.Temesvári, for p = 1, 2, 3, 4 and q = 5 by A. Végh. In the
following, using the possibilities of the above general methods, we limit the set of the lattices
where the thickness can be maximal for the 〈1, q〉 and 〈3, q〉 point systems where q ∈ Z+. We
introduce the concept of the level-line. The lattice-line of the direction of the basis vector a
containing the point O is called O-level-line. j-level-line is a lattice-line parallel to a containing
the endpoint of the vector jb. Let t1 be a lattice transformation which does not move the O-level-
line and move the point B orthogonally to the O-level-line. If the radius of the circumscribed
circle of an arbitrary acute-angle lattice triangle ∆i is Ri then, using the transformation t1, |a|
is constant and Ri decreases, so we proved the following theorem:

Theorem 4.12. ([58]) Consider the point lattice 〈p, q〉 where p = 1 and q ∈ Z+. The supremum
of the thicknesses of the point lattices may hold only for lattices for which |a| = |b|, i.e. x = 1.

In what follows denote by C the endpoint of the vector
−→
OA +

−−→
OB. Like above, let t2 be a

transformation for which line f = OC is fixed and which moves point B orthogonally to line
f . If the radius of the circumscribed circle of an arbitrary acute-angle lattice triangle ∆i is Ri

then, using the transformation t2, |OC| is a constant and Ri decreases. Under transformation
t2 y increases while x decreases or x = 1 so:

Theorem 4.15. ([58]) Consider the point lattice 〈p, q〉 where p = 3 and q ∈ Z+. The supremum
of the thicknesses of the point lattices may hold only for lattices for which y = x

2
, where x ∈[√

1
7
, 1

]
or y = 8x2−1

2x
, where x ∈

[√
1
8
,
√

1
7

]
.

We remark that by [37] the result of the point lattice 〈1, q〉 cannot be generally improved as
in case of the point lattice 〈1, 2〉 the thickness is maximal if x = 1. In case of a non-necessarily
lattice the thickness of other point systems is maximal, too. So it is a difficult problem to give
all point systems 〈1, 2〉 and 〈1, q〉 even in the plane, to say nothing of higher dimensional cases.
In these cases it seems to be impossible to give each point system with maximal thickness.
In the dissertation we investigated this field only for special root-lattices. We added a short
investigation in the plane to show where difficulties arise.

All Theorems in this paper are my own results. The following list contains my own papers
in the dissertation: [58], [59], [61], [62], [63], [64], [65]. * denotes the papers referred to the
thesis of the dissertation, i.e. [58], [63], [64], [65].



REFERENCES 13

References

[1] A.D. Aleksandrov, On filling of space by polytopes, Vestnik Leningradskogo Univ., Ser.
math, phys. and chem. 9 (1954) 33-43. (in Russian)

[2] E.P. Baranovskii, S.S. Ryshkov, Derivation of perfect lattices from admissible centerings,
Russian Math. Survey 40,4 (1985), 155-156.

[3] E.S. Barnes, The complete enumeration of extreme senary forms, Philos. Trans. Roy. Soc.
London Ser. A 249 (1957), 461-506.

[4] C. Batut, J. Martinet, A Catalogue of Perfect Lattices, http://www.math.u-
bordeaux.fr/ martinet
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[66] B.A. Venkov, On a class of Euclidean polytopes, Vestnik Leningradskogo Univ. 9,(1954),
11-31. (in Russian)

[67] B.A. Venkov, On projecting of parallelohedra, Mat. Sbornik 49,(1959), 207-224. (in Rus-
sian)

[68] G.F. Voronoi, Nouvelles applications des parametres continus a la theorie des formes
quadratiques, J. Reine und Angew. Math. Vol. 134, (1908), 198-287.

[69] G.F. Voronoi, Nouvelles applications des parametres continus a la theorie des formes
quadratiques II., J. Reine und Angew. Math. Vol. 136, (1909), 67-181.

[70] N.V. Zaharova, Centerings of eight-dimensional lattices that preserve a frame of successive
minima, Geometry of positive quadratic forms, Trudy Mat. Inst. Steklov 152(1980),97-
123, 237(in Russian) Correction: N.V. Novikova, Three admissible centerings of eight-
dimensional lattices, Deposited in VINITI, No. 4842-81 Dep., 1981, I. 8 (in Russian)

[71] O.K.Zhitomirskii, Verschärfung eines Satzes von Voronoi, Zhurnal Leningradskogo Math.
Obschtchestva 2 (1929) 131-151.
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