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Varjú Tamás



Contents

1 Introduction 1

1.1 Introducing the model and the questions . . . . . . . . . . . . . . . . . . . 1

1.1.1 History preceding Sinai-billiard . . . . . . . . . . . . . . . . . . . . 1
1.1.2 The Sinai-billiard, and the Lorentz-process . . . . . . . . . . . . . . 2

1.1.3 The question of recurrence, and local limit theorems . . . . . . . . . 3

1.1.4 The case of infinite horizon . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Limit theorems for finite horizon . . . . . . . . . . . . . . . . . . . 5

1.2.2 Limit theorems for infinite horizon . . . . . . . . . . . . . . . . . . 6

1.2.3 Recurrence and ergodicity . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Geometry of infinite horizon 11

2.1 Corridors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 The singularity structure . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 New coordinates, and the joint distribution of κ, κ ◦ T−1 . . . . . . 14

2.2 Probabilistic background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Young towers 19

3.1 Construction and basic properties . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Function spaces and the transfer operator . . . . . . . . . . . . . . . . . . 25

3.2.1 The Doeblin-Fortet inequality and spectral properties . . . . . . . . 25
3.2.2 Associated functions on the tower . . . . . . . . . . . . . . . . . . . 26

4 Analysis of the Fourier-transform operator 29

4.1 Quasicompactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Minimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Minimality of the free flight function . . . . . . . . . . . . . . . . . 32
4.3 Nagaev type theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1 Finite horizon case . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.2 Infinite horizon case, proof of theorem 5 . . . . . . . . . . . . . . . 36

4.3.3 Proof of the integral condition (4.2) . . . . . . . . . . . . . . . . . . 37

5 Proof of the results 39

5.1 Local limit theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Recurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

I



II CONTENTS

Acknowledgements 43

Bibliography 45



Chapter 1

Introduction

1.1 Introducing the model and the questions

1.1.1 History preceding Sinai-billiard

The investigation of chaotic, long term behaviour arose in several ways inside mathemat-
ics. In the theory of differential-equations, stability is one of the main concepts, and, of
course, it is one of the most frequently applied notions in engineering applications. A
well understood part of dynamical systems can be described by stable and unstable fixed
points, stable and unstable periodic and preperiodic points, saddles and limit cycles. Ap-
proaching dynamical systems from this direction, Stephen Smale had the idea in 1960 that
the most important systems (the structurally stable ones) could be described as above,
in terms of finite graphs. The source of this idea was a particularly fruitful application
of gradient flows in the study of manifold-topology by Morse [Morse 34]. Smale extended
the results of Morse to non-gradient flows and created the idea of the Morse-Smale flow
[Smale 60].

Three years later Smale himself could construct his famous example of the horseshoe
([Smale 63] and [Smale 65]), where periodic points are dense, and both are of saddle type.
In this system the vast majority of phase points follows unpredictable trajectories, a huge
contrast with Morse-Smale flows where limit cycles rule the phase-space. This example
did not fit the idea of describing a flow with a Morse-Smale graph. Moreover, it could
not be neglected since the structure of the example is stable under perturbations proving
the robustness of such a behaviour (structural stability). The idea of chaotic behaviour
has widely spread, and the structure of such systems has been studied with huge efforts.

One other source of chaotic and unpredictable behaviour in dynamical systems came
from statistical physics. The idea that a large system forgets any special information about
its state in the long run was expressed in the notion of ergodicity, and this information
loss was quantified in the entropy production formulae. Statistical physics considers
such a system from a probabilistic viewpoint, and mathematical efforts of understanding
the fundamentals of this physical discipline focused on how this randomness appears in
physical systems. The physical intuition behind this effect is that in a large system
every interaction spreads through the whole, and balances between the large number of
components of the system. This case turned out to be technically the most challenging.
Each study which has considered large systems either had some additional randomisation
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2 CHAPTER 1. INTRODUCTION

in the time evolution of the model itself, or made the components forgetting information
in some other artificially forced way.

Approaching dynamical systems from the physical side, Yakov Sinai observed that even
low-dimensional systems such as the gradient flows on a surface with constant negative
curvature shows “stochastic” behaviour. For establishing a physical approach Kolmogorov
([Kol 58] and [Kol 59]) and Sinai [Sinai 59] formulated the notion of entropy suitable for
dynamical systems, and calculated the (positive) entropy for the above example [Sinai 60]
in the same year 1960, when Smale formulated his false conjecture about the “simplicity”
of most dynamical systems.

Sinai was interested in a more “physical” system with positive entropy. He had shown
that two circular discs on a flat torus bouncing with elastic collisions (a mechanical model)
has positive entropy [Sinai 63]. This example led to the famous model-class of the Sinai-
billiards [Sinai 70]. In this system there is a single moving particle which collides elastically
with the completely passive other particles, and –in order to create a system with compact
phase-space– periodic boundary conditions are applied.

Before introducing the models in mathematical formalism, we note here that in all of
these dynamical systems the engine of entropy production is not the balancing effect of
the large number of components, but rather hyperbolicity: a phenomenon which made
Smale’s horseshoe work.

1.1.2 The Sinai-billiard, and the Lorentz-process

Consider finitely many scatterers Oi (also called obstacles) on the 2-torus, T2 ⊃ O = ∪Oi

such that each of the scatterers is strictly convex with a C3-smooth boundary. Let n(q)
denote the unit normal vector of the boundary ∂O at the point q, directed outwards O.
The phase space of the system is:

X = {(q ∈ ∂O, v ∈ R
2) | |v| = 1, 〈v, n(q)〉 ≥ 0}.

The dynamics T : X → X is uniform motion with v velocity vector followed by an
elastic collision (v is mirrored to the tangent line at the point of impact). This system
has a natural invariant measure: if we denote by l the total length of ∂O, then dµ =
1
2l
〈v, n(q)〉 dqdv, is an invariant probability measure, since

∫

X
〈v, n(q)〉 dqdv = 2l. The

normalising constant 1
2l

will be denoted by cµ.
This phase space will be identified with a finite number of cylinders ∂O×

[

−π
2
; π

2

]

. So
throughout this thesis if v denotes a velocity of a phase point it is meant as v ∈

[

−π
2
; π

2

]

.
The boundary of this phase space consists of tangential collisions denoted by S0. The

dynamics resp. the inverse dynamics is non-continuous in backward resp. forward images
of this set. We will denote Si = T iS0, i ∈ Z.

The planar Lorentz process is the natural Z2 cover of the above-described toric billiard.
More precisely: consider Π : R2 → T2 the factorisation by Z2. Its fundamental domain
D is a square (semi-open, semi-closed) in R2, so R2 = ∪z∈Z2(D + z), where D + z is the
translated fundamental domain.

We lift the obstacles to the plane (i. e. we take Õ = Π−1O), and define the phase
space X̃, and the dynamics T̃ exactly the same way as above. The free flight function
ψ̃ : X̃ → R2 is defined as follows: ψ̃(x̃) = q̃(T̃ x̃)− q̃(x̃). The discrete free flight function
κ̃ : X̃ → Z2 is defined as follows: κ̃(x̃) = ι(T̃ x̃)−ι(x̃), where ι(x̃) = z if x̃ ∈ D+z. Observe



1.1. INTRODUCING THE MODEL AND THE QUESTIONS 3

Figure 1.1: 100 collisions Lorentz trajectory segment with circular scatterers and finite
horizon

finally that ψ̃ and κ̃ are invariant under the Z2 action, so there are ψ and κ functions
defined on X, such that ψ̃ = Π∗ψ and κ̃ = Π∗κ. Actually for our purposes it will be more
convenient to choose the fundamental domain in such a way that ∂Õ ∩ ∂D = ∅. In this
way κ will be continuous.

One can also consider the Lorentz process, as a skew product over the toric billiard
T̃ : (x, a) 7→ (Tx, a + κ(x)) where x ∈ X is the phase-point inside the cell, and a ∈ Z2 is
the cell-index.

Definition 1. The system is said to have finite horizon if the free flight function is
bounded. Otherwise the system is said to have infinite horizon.

Despite of the (physical) simplicity of the model the number of interpretations is large.
Originally this system was considered to model an electron moving in a crystal [Lor 05],
but one can also say that this is a model of a gas, where we follow the motion of a single
particle, and are not interested in the interaction between the others. This latter approach
can not justify periodicity, which is considered only as a technical assumption.

When [BS 81] (see also [BChS 91]) proved weak convergence of the trajectory to the
Brownian motion the gas model became justified. The Brownian motion [Brown] was
basically known as the trajectory of a single particle inside a positive temperature medium,
where the dynamics of the motion is driven by small tosses from the particles of the
medium. The result proved that the type of the medium is not an important matter it
can be even a frozen crystal as long as the density of the medium does not allow arbitrary
long free flights.

1.1.3 The question of recurrence, and local limit theorems

The basic mathematical microscopic model of the Brownian motion is the simple sym-
metric random walk. A famous result of the field is Pólya’s theorem stating recurrence of
the moving particle. Here recurrence means that the process almost surely returns to any
fixed bounded domain of the configuration space. Once it had been established that the
diffusion limit of the planar Lorentz process is, indeed, the Wiener process, the question
of its recurrence was immediately raised by Ya. G. Sinai in 1979.

The first positive result was obtained in [KSz 85], where a slightly weaker form of
recurrence was demonstrated: the process almost surely returns infinitely often to a mod-
erately (actually logarithmically) increasing sequence of domains. The authors used a
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probabilistic method combined with the dynamical tools of Markov approximations. The
weaker form of the recurrence was the consequence of the weaker form of their local limit
theorem: they could only control the probabilities that the Lorentz process Sn in the
moment of nth collision falls into a sequence of moderately increasing domain rather than
into a domain of fixed size. These results, moreover, were restricted to the finite horizon
case, i. e. to the case when there is no orbit without any collision.

A novel –and surprising– approach appeared in 1998-1999, when independently Schmidt
[Sch 98] and Conze [Conze 99] were, indeed, able to deduce the recurrence from the global
central limit theorem (CLT) of [BS 81] by adding (abstract) ergodic theoretic ideas. Their
approach seems to be essentially restricted to the finite horizon case and to d = 2. Our
main aim is to return to the probabilistic-dynamical approach and we can first prove a
true local central limit theorem (LCLT) for the planar Lorentz process Sn.

LCLT’s for functions of a Markov chain were first obtained by Kolmogorov in 1949
[Kol 49] using probabilistic ideas. Then, in 1957, Nagaev, [Nag 57] –by using operator
valued Fourier transforms and perturbation theory– could find a general form of LCLT’s
for functions of a Markov chain. Independently, variants of this method got later redis-
covered and/or applied A) by Krámli and Szász [KSz 83] to prove a LCLT for random
walks with internal states, B) by Guivarch and Hardy [GH 88] in the setting of Anosov
diffeomorphisms C) by Roussean-Egele, [R-E 83], Morita [Mor 94] and Broise [Bro 96] for
expanding maps of the interval and finally D) by Aaronson and Denker, [AD 01] in the
setting of Gibbs-Markov maps.

The recurrence itself also has an additional interesting conclusion. Let us note first
that for the Lorentz process strong stochastic properties, like correlation decay, limit laws,
etc. could only be obtained in the case of a periodic configuration of scatterers for then its
factor is a Sinai billiard. For this same case, however, it is an interesting question whether
the Lorentz dynamics is ergodic without this factorisation as well (N. B. in this case the
invariant measure is infinite!). An old result of Simányi, [Sim 89] states equivalence of
recurrence and ergodicity of the infinite measure in the case of the Lorentz-process.

1.1.4 The case of infinite horizon

Figure 1.2: 100 collisions Lorentz trajectory-segment with circular scatterers and infinite
horizon
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Turning to the infinite horizon case it had been observed in the physical literature (cf.
[FM 84], [BD 85], [Bun 85] and [ZGNR 86]) that, an anomalous diffusive behaviour can
appear. The possibility that the moving particle can flight freely arbitrarily long, causes
these free flights to dominate the displacement: the sum of long free-flights grow slightly
faster then the sum of bounded ones causing a superdiffusive effect. Quantitatively this
is related to its tail behaviour, that is to the behaviour of the free flight vector in the
neighbourhood of collision-free orbits.

Bleher in 1992 showed in his partially rigorous, partially heuristic paper [Bleher] that
the asymptotic behaviour of the displacement Sn, taken in the moment of the nth reflection
from a scatterer, is slightly superdiffusive and Sn√

n log n
was expected to possess a limiting

Gaussian distribution. It also worth mentioning that the discrete-time behaviour is now
not obviously connected to the physical time, since the ratio (the length of the free flight
vector) is unbounded. Bleher also showed (relying on the global limit theorem for the
discretised system) that in physical time the same scaling

√
t log t has to be applied in

order to get a Gaussian limit.
In this case not even the global limit theorem was established rigorously. Our first aim

is this global limit theorem, and then –as in the finite horizon case, but with a different
scaling– to deduce a local limit theorem and establish recurrence.

1.2 Results

1.2.1 Limit theorems for finite horizon

In the case of the finite-horizon Lorentz process for the discretised displacement Sn =
∑n−1

i=0 κ ◦ T i the following holds:

Theorem 1. Let kn ∈ Z2 be such that kn√
n
→ k ∈ R2. If the horizon is finite then the

following holds:

lim
n→∞

n · µ{Sn = kn} =
e−

1
2
kΣ−1kT

2π det Σ

for a nondegenerate covariance-matrix Σ.

For the non-discretised displacement the following statement holds. Let νn denote the
distribution of the Birkhoff-sum

∑n−1
i=0 ψ ◦ T i.

Theorem 2. Let vn ∈ R2 be such that vn√
n
→ v ∈ R2. If the horizon is finite then the

following holds:

lim
n→∞

n · νn =
e−

1
2
vΣ−1vT

2π det Σ
c2µ · ♯ ⋆ m+ ⋆ m−

where ♯ is the counting measure on Z2, m+ is arclength measure on the boundary of the
scatterers inside the fundamental domain ∂O ∩D, m− is the distribution of the opposite
of an m+ distributed vector. The convergence is meant in the weak topology of measures,
and ⋆ stands for convolution.

These two theorems are deduced from a version of the local limit theorem stating even
more than that:
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Theorem 3. Let kn ∈ Z2 be such that kn√
n
→ k ∈ R2. Let Υn denote the joint distribution

of the triple (Sn(x)− kn, x, T
nx). If the horizon is finite then the following holds:

lim
n→∞

n ·Υn =
e−

1
2
kΣ−1kT

2π det Σ
♯ · µ · µ

where ♯ is counting measure on Z2, and the convergence is meant in the weak topology of
measures.

For to prove the recurrence we had to prove also an asymptotic independence state-
ment, which was given in the form of a joint limit theorem.

Theorem 4. Let jn ∈ Z2 be such that jn√
n
→ j ∈ R2, and kn ∈ Z2 be such that kn√

n
→ k ∈

R2. If the horizon is finite, then

lim
m,n−m→∞

m · (n−m) · µ{Sm = jm, Sn = jm + kn−m} =
e−

1
2(jΣ−1jT +kΣ−1kT )

4π2 det2 Σ

This last theorem also has the form involving the independence of the phase points
x, Tmx, T nx but stating that would be superfluous.

1.2.2 Limit theorems for infinite horizon

As mentioned before the free flights in the neighbourhood of collision-free orbits dominate
the Birkhoff-sum, so we can describe the covariance matrix of the limiting Gaussian law
in terms of geometric constants. For this purpose let us define the set of corridor points
as those periodic points, whose trajectory is always tangent.

C = {x ∈ ∂X | ∃i T ix = x ∀j T jx ∈ ∂X}

Let us define the matrix Σ as

∑

x∈C

cµd
2
x

2|ψ(x)|

(

ψ2
1(x) ψ1(x)ψ2(x)

ψ1(x)ψ2(x) ψ2
2(x)

)

(1.1)

where ψ = (ψ1, ψ2) is the notation for the component functions, and dx is the width of
the corridor described in section 2.1 (cf. figure 2.1).

For both the discretised and the non-discretised free flight vector the Birkhoff-sum
i. e. the displacement Sn satisfies the global limit theorem with

√
n logn scaling.

Theorem 5. Suppose that the corridor free flights {ψ(x) | x ∈ C} span the plane. Then

µ

{

Sn√
n log n

∈ A
}

→
∫

A

ϕ(k)

where ϕ is a nondegenerate normal density function with zero expectation and covariance
matrix Σ

If the corridor free flights does not span the plane, but the horizon is infinite one
should apply anisotropic scaling in order to get a nondegenerate Gaussian limit. Here we
do not know the exact form of the limiting covariance matrix.
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Theorem 6. Suppose that all the corridor free flight vectors are falling in the same

direction ψ(x) ‖ ~v (∀x ∈ C). Define the matrix Bn =
(√

n 0

0
√

n log n

)

in the orthogonal basis

(~v⊥, ~v). Then

µ {SnBn ∈ A} →
∫

A

ϕ(k)

where ϕ is a nondegenerate normal density function with zero expectation.

Turning to the local limit theorems:

Theorem 7. Suppose that the corridor free flights {ψ(x) | x ∈ C} span the plane. Let
kn ∈ Z2 be such that kn√

n log n
→ k ∈ R2. Then

n log n µ{Sn = kn} → ϕ(k)

where ϕ is a nondegenerate normal density function with zero expectation and covariance
matrix Σ.

As in the finite horizon case we also need an asymptotic independence statement.

Theorem 8. Suppose that the corridor free flights {ψ(x) | x ∈ C} span the plane. Let
jn ∈ Z2 be such that jn√

n log n
→ j ∈ R2, and kn ∈ Z2 be such that kn√

n log n
→ k ∈ R2. If the

corridor free flights span the plane, then

lim
m,n−m→∞

m logm (n−m) log(n−m) µ{Sm = jm, Sn = jm + kn−m} = ϕ(j)ϕ(k)

where φ is a Gaussian density with zero expectation and covariance matrix Σ.

We have all the other forms of the local limit theorem i. e. for the joint distribution
of (Sn(x), x, T nx), for the non-discretised free-flight and so on.

1.2.3 Recurrence and ergodicity

For any planar Lorentz-process (both finite and infinite horizon) for the discretised dis-
placement Sn the following holds:

Theorem 9 (Recurrence).

µ(∃nk →∞ Snk
= 0) = 1

As a corollary of this theorem and [Sim 89]:

Theorem 10. The invariant (infinite) measure of the Lorentz process dµ̃ = cos vdqdv
(where dq is the arclength measure on the boundary of infinitely many scatterers) is ergodic
i. e. for any invariant set A either µ̃(A) = 0 or µ̃(X̃ \ A) = 0.
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1.2.4 Structure of the thesis

Here we give a concise summary or strategy of the proofs. In the infinite horizon case one
has to understand the behaviour of the free-flight function in that part of the phase-space
where it becomes unbounded. Chapter 2 is devoted to this geometrical study.

The general aim in both cases is to handle the Fourier transform of the Birkhoff-sum.
For that purpose we will need a symbolic dynamics with a spectral gap in the transfer-
operator. This was done by Young, who introduced her famous tower construction. In the
tower construction there is the definition of function spaces, which contain all functions
associated with Hölder observables on the original phase-space, and the transfer operator
has a gap on this function-space. These techniques are described in chapter 3.

In chapter 4 we define the Fourier-transform operator Pt, which has the property that
acting on the invariant density ρ the integral

∫

P n
t (ρ) is the Fourier transform of the

Birkhoff-sum at t. For small values of t, Pt can be considered as a perturbation of P ,
since P0 = P . Then one, in general, proves that Pt possesses a gap between the leading
simple eigenvalue λt and the rest of the spectrum and the gap is uniformly bounded away
from zero.

For large values of t one needs to know exactly for which t values will the unit circle
intersect the spectrum. In our case for the continuous free flight function this occurs when
t ∈ 2πZ2. For that reason we switched to the discretised function κ, since the latter one
is an integer valued vector function, and thus Pt = P when t ∈ 2πZ2, so we can factorise,
and consider t ∈ 2πT2. This is the question of minimality which is completely described
in section 4.2.

Moreover after proving the spectral gap for small values of t, we have a simple asymp-
totics P n

t = λn
t +O(ϑn), for a suitable ϑ < 1. Consequently, the characteristic function of

the dependent sum can be approximated with a power. Thus it is only the asymptotics
of λt that has remained to be investigated. In the finite horizon case this is done via the
second order (operator coefficient) Taylor-polynomial of Pt in section 4.3.1.

The second order Taylor-expansion of Pt does not exist in the infinite horizon case, one
needs a completely different approach. A mostly geometric approach of the problem was
sketched in [SzV 04b]. However, before we had completed our work with the technical
proof of limit theorems in the infinite horizon case, there appeared a much interesting
work of Bálint and Gouëzel, [BG 06]: for the stadium billiard they gave a quite analytic
proof of a global limit theorem which also uses the

√
n logn scaling. The coincidence of

scalings is explained by the analogous behaviour of long free flights in our model (i. e. in
corridors of the Lorentz process) and that of the quasi integrable trajectories between the
linear sides of the stadium billiard. The arguments of [BG 06] also helped us to simplify
our approach substantially at essentially three points:

1. once one has a tower construction à la Young, their Lemma 3.5 (cf. our Theorem
29) provides a general, concise condition for the validity of a non-standard Gaussian
limit law;

2. they reduce the ”tower-sums” to a more tractable, still dominant part;

3. for describing excursions from the tail they use a delicate result of Chernov, [Ch 99]
(see in our Lemma 32).
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It is a question, though, whether Chernov’s result, a beautiful but quite strong tool, is
indeed, necessary in this proof. We formulate the main theorem of [BG 06], and check the
conditions in section 4.3.2. These results prove theorem 5, and give also the expansion of
λt, a key ingredient for the local limit theorems.

Finally we give the proofs of our local limit theorems and recurrence in chapter 5.
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Chapter 2

Geometrical study of infinite horizon

We are going to describe that part of the phase space, where the free-flight vector becomes
unbounded.

2.1 The corridors, their geometry and the tail of the

free flight

q̃1 − q̃0d

Figure 2.1: Free-flight crossing a corridor, and some geometric constants

In the infinite horizon case the only reason for the unboundedness of the free flight is
the presence of corridors. These are bi-infinite strips in the billiard-table R2 \ Õ. The
strips are tangent to the obstacles, and their slope is necessarily rational, and, moreover,
- up to Z2 translations - there are finitely many of them. We will suppose the - geomet-
rically generic - condition: for each corridor, and each side of the corridor the tangent
obstacles are the images of a single scatterer under Z2 translations. On figure 2.2(a) is
a counterexample. Our results are also valid in the excluded cases, but the geometric
constants, which we will calculate would have a more complicated form.

For such a corridor there are four corresponding points in the phase-space, as shown
on figure 2.2(b). These points are on the boundary of X, and are fixed by the dynamics.
(Without the previous condition these would be only periodic points.) Outside of the
neighbourhood of these points the free-flight is bounded.

Let us fix such a fixed point on the boundary as x0 = (q0; v0), where v0 is either π/2
or −π/2. Let us denote by O0 the obstacle on which q0 is placed. The free flight ψ(x0) is
a lattice vector ψ(x0) = κ(x0), since Tx0 = x0. Denote κ(x0) = w0, and the curvature of
O0 at q0 by ξ0. Denote the considered (small enough) neighbourhood of x0 by U0.

In U0 (means close enough to x0) two types of nonsingular collisions can happen. First
when the moving particle is “crossing” the corridor (see figure 2.1). In this case the free-
flight is long (actually this is the only case), the closer the phase point lies to x0 the longer
the free-flight can be. The next collision happens on the “other side” of the corridor. To

11
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(a) A corridor failing the fixed-point condition.
Both side consists of corridor points of period
two.

(b) A corridor, and the corresponding four phase
points.

make it precise let us denote by x1 = (q1; v1) the phase point which corresponds to the

same corridor as x0, but v1 = −v0 and q1 6= q0 (see figure 2.2(b)). Denote by ~Q0 the planar
lattice vector ι(q̃1)− ι(q̃0), where the lifting is such that q̃1− q̃0 “crosses” the corridor (see
figure 2.1). We also need to define the “width” of the corridor d which is the length of
that component of q̃1 − q̃0 which is perpendicular to w0.

T−1x x

Figure 2.2: If phase point T−1x is such that κ(x) = w0, then if x ∈ U0 the free flight
starting in q(x) “crosses” the corridor.

The other type of nonsingular trajectory in U0 is when the next collision is on the
“same side” of the corridor i. e. κ = w0. The phase point Tx is then again close to x0,
but this time it is of the first type, so consecutive “same side” collisions cannot happen.
This can be seen on figure 2.2.

Proposition 11. Let U0 ⊂ X be a sufficiently small neighbourhood of x0 then

µ{x ∈ U0 | κ(x) = Nw0 + ~Q0} ∼ cµd
2|w0|−1N−3

The range of κ in U0 is ~Q0 + w0Z
+ with possibly finitely many exceptions.

We postpone the sketchy proof for the first fact to section 2.1.2. The second statement
was essentially proved in the above text.
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Figure 2.3: Singularity structure and singular trajectories near x0

2.1.1 The singularity structure

We are going to describe the singularity structure, and the type of singular trajectories in
U0. The importance of this is that singularities bound the sets for which we want to derive
measure estimates. On figure 2.3 we also plot some trajectory-segments, the configuration
component of the corresponding phase point is denoted by a small tick perpendicular to
the trajectory.

There is a singularity curve from S−1 which is a preimage of tangential collisions,
denoted by thick line in figure 2.3, starting from x0. This consists of phase points where
the next collision will be tangential on O0 + w0. This is called the “main” singularity.

There are singularity curves printed on the left of this one, starting on the boundary
of the phase space and ending on the main singularity. These consist of phase points
where the free flight “crosses” the corridor, and the next collision is tangential. Therefore
this is also a part of S−1. A level-set of the discretised free-flight function κ consists of
a curvilinear rectangle bounded by two neighbouring curves from this singularity family,
the edge of the phase space and the main singularity.

On the right of the main curve there are some curves from S−2. These also start on
the boundary and end on the main curve, but unlike the previous ones, these curves have
zero angle with the main line. These consist of phase points, for which the first collision
is on O0 + w0, and the next one is tangential after crossing the corridor. On the right of
the main singularity the next collision for any phase point occurs on O0 +w0, therefore κ
is constant w0 in this half of U0.

These two families of singularity curves have an infinite number of pieces accumulating
in x0. The closer the curve is to x0 the further the tangential collision occurs, after the
moving particle has crossed the corridor. All these singularity curves (including the main
one) have −ξ0 as slope on the boundary of the phase space.
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α

x

zw0

trajectory of x0

O0

Figure 2.4: The new coordinates z, α.

The last singularity curve we want to describe is from S1. It consists of phase points,
where the previous collision was tangential on O0 − w0. This is the image of the half of
∂X ∩U0, namely that half where κ = w0 (on the right of x0 on figure 2.3). Consequently
(since x0 is fixed) this curve starts at x0. This is drawn with a dotted line on figure 2.3.
This curve has slope 2 on the boundary. The sign of the second derivatives of all the
singularity curves can be read from the picture.

2.1.2 New coordinates, and the joint distribution of κ, κ ◦ T−1

In this subsection some proofs will be omitted, some will be sketchy or require further
estimates. However, since the missing parts rely on simple but tedious geometrical calcu-
lations and the application of these results in later sections does not need sharp estimates,
we intended to keep this section not too long.

Instead of using the original (q0, v0) coordinates we are going to introduce new (α, z)
coordinates in U0. The new coordinates z and α are shown on figure 2.4 (these coordinates
are also different from those of [Bleher]). During the free-flight, bouncing off the scatterer
O0, the trajectory of x crosses the trajectory of x0. This crossing point is therefore q0+zw0

for some z ∈ R. The reader should convince himself that the coordinate z is, in fact, a
periodic one with period 1. The other coordinate α is the angle ∡(w0, ψ(x)).

The reason for this change is that these coordinates are more suitable for computations
in relation with the free-flight since they are more intrinsically related to the geometry of
the model, especially asymptotically (when the free flight goes to infinity). For example,
the free flight has the asymptotic form |κ| ∼ d

α
where d is the ’width’ of the corridor (cf.

fig. 2.1). Also, the invariant measure is asymptotically equal to cµ|α||w0|dzdα.
We note that the crossing point (which was the base of this coordinatisation) does not

exist when the next collision occurs on O0 + w0. So these new coordinates map only the
half of U0 to the (z, α) plane. Namely that half which is drawn on the left of the main
singularity on figure 2.3. We will denote this part by U ′

0 (remember that x0 and U0 are
fixed). However, this restriction does not influence the study of asymptotics, since we
miss only the w0-level set of κ inside U0.

Proof of Proposition 11. The level-set of κ is a curvilinear rectangle in the (z, α) plane
(cf. figure 2.5). We are going to multiply the height, the width and the density to get the
measure. The width is simply 1. The height can be obtained from the formula α ∼ d

|κ| .

Writing α′ ∼ d
|κ|+|w0| we get α − α′ ∼ d|w0|

|κ|2 . The density is cµ|α||w0| and by substituting

α we get cµd
|w0|
|κ| . So the measure is ∼ cµd2|w0|2

|κ|3 .

Let us explain how this (z, α) image on figure 2.5 is related to the phase portrait on
figure 2.3 explained before. The largest curvilinear rectangle on figure 2.5 is the image



2.1. CORRIDORS 15

S0

S1

S−1
S−1

S−1

Figure 2.5: Level set of κ inside U0, and its intersection with a level set of κ ◦ T−1 (in the
(z, α) coordinate plane)

of a level-set of κ under the (z, α) coordinate-mapping. This level set is bounded by the
boundary of the phase-space on the left, two singularity curves from the first family on
the top, and on the bottom, and the main singularity on the right. There is also the
dashed line, which is the singularity line from S1, already explained before, too.

This latter line plays an important role in the joint distribution. On the left of this line
κ◦T−1 = w0. On the right of this line the mapping T−1 takes values in the neighbourhood
of another corridor-phase-point x1 (see subsection 2.1). We are going to use w1, ξ1, U1, U

′
1

for the point x1 in the same sense as w0, ξ0, U0, U
′
0 have been used for the point x0. Using

this notation, on the right of the line we are describing now, there lies TU ′
1.

Talking about the joint distribution in terms of our new coordinate functions, note
that the α coordinate function is defined in U ′

0. Therefore α◦T−1 in the domain U ′
0∩TU ′

1

has to be meant as applying the same coordinatisation rule in U1. Since w1 = w0, the α
coordinate functions in U0 and U1 are comparable also as absolute angles: the observer
only has to change signs.

By definition the sign of α is positive, and z is mostly positive. More precisely remem-
ber that the asymptotic form of the invariant measure does not depend on z meaning
that in the |κ| → ∞ limit the distribution of z is uniform. Now consider the range of z

in the domain κ = ~N :

zmin
def
= min{z(x) | x ∈ U0, κ(x) = ~N}

and respectively

zmax
def
= max{z(x) | x ∈ U0, κ(x) = ~N}

Proposition 12. The asymptotics of the range of z in the domain κ = ~N when ~N is in
the range of κ (see proposition 11) and | ~N | → ∞ is

zmin ∼ 1− zmax ∼
d

2|w0|ξ0| ~N |
Easy geometrical calculations yield the collision equation:

Proposition 13. On U ′
0 ∩ TU ′

1:

α ◦ T−1 ∼ −α + 2
√

α2 + 2αz|w0|ξ0 (α→ 0)
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Proposition 14. In U0 the following holds:

min |κ| ◦ T−1 ∼
√

d|κ|
8ξ0|w0|

and max |κ| ◦ T−1 ∼ 8ξ0|w0||κ|2
d

|κ| → ∞

Proof. Substituting the asymptotic maximum of z (max z → 1 as α→ 0) to the collision
equation and omitting non-dominant terms we get maxα ◦ T−1 ∼ 2

√

2α|w0|ξ0. Since
α ∼ d

|κ| and α ◦ T−1 ∼ d
|κ◦T−1| , substituting α and α ◦ T−1 and then rearranging yields the

first statement of the proposition. Using the time-reversion symmetry for this formula we
get the second one.

We can also compute the joint distribution of (κ, κ ◦ T−1).

Proposition 15.

µ({κ = ~N} ∩ {κ ◦ T−1 = ~M} ∩ U0) .
cµd

3|w0|2
4ξ0

| ~N |+ | ~M |
| ~N |3| ~M |3

Proof. For a nonempty intersection we are going to multiply the height the width and the
density to get the measure. The density and the height are the same as in the proof of
proposition 11. For the width consider the derivative of the collision equation

∂α ◦ T−1

∂z
∼ 2α|w0|ξ0
√

α2 + 2αz|w0|ξ0

To express the square root in terms of κ and κ ◦ T−1 we can rearrange the collision
equation, and substitute α and α ◦ T−1:

d

|κ ◦ T−1| +
d

|κ| ∼ 2
√

α2 + 2αz|w0|ξ0

We can express the increment of z as the inverse of the derivative multiplied by the
increment of α ◦ T−1. That is

d
|κ◦T−1| + d

|κ|

4 d
κ
|w0|ξ0

d|w0|
(κ ◦ T−1)2

∼ d
κ+ κ ◦ T−1

4ξ0(κ ◦ T−1)3

Hence the proposition.

The measure of the set {κ = ~N}∩{κ◦T−1 = ~M}∩U0 can be zero when ~N or ~M is not
in the range of κ inside U0 (see proposition 11) or they fail the range inequality (we only

gave the asymptotics of this in proposition 14 roughly c3

√

| ~N | < | ~M | < c4| ~N |2). It can

be also smaller than the expression given in proposition 15 when the pair ( ~N, ~M) is close
to the boundary of the range inequality, but we do not want to formulate the validity
precisely, we just mention that in most part of the domain the inequality is sharp. It can
also be checked by summing the right hand side, and getting 1 in the limit.

What this essentially means is that the previous free-flight |κ ◦ T−1| is mostly in the
range of

√

|κ|. The measure of being in any other range can be estimated from above
with |κ| powers. To formulate precisely what we will use later in subsection 4.3.3:



2.2. PROBABILISTIC BACKGROUND 17

Proposition 16.

µ({κ = ~N} ∩ {κ ◦ T−1 > |κ| 34} ∩ U0) = O(| ~N |−3.5)

Proof.
∑

M=N
3
4

N+M
N3M3 = O(N−3.5)

The other level set of κ ◦ T−1 which intersects U0 is the κ ◦ T−1 = w0 set.

Proposition 17.

µ({κ = ~N} ∩ {κ ◦ T−1 = w0} ∩ U0) = O(| ~N |−4)

Proof. As before the measure will be estimated with the product of the height, density
and the width. It remained to estimate only the width. The domain is the left-hand side of
the dashed line on figure 2.5. Going from right to left inside the level set in figure 2.5, the
dashed line is reached exactly when α◦T−1 reaches its minimum. According to proposition
14 we have to estimate what is the value of z for which α ◦ T−1 reaches const · α2. Exact
calculations based on the derivative of the mapping would give O(| ~N |−5) in the right hand
side of the proposition, but here it is sufficient to observe that this singularity line denoted
by the dashed curve is on the left of the z = 0 line, where α = α ◦ T−1. So the width can
be estimated by zmin which was given in proposition 12.

2.2 Non-normal domain of attraction of the normal

law

It is well known (cf. [F 66]) that a random variable R with distribution function PR

belongs to the domain of attraction of a normal distribution if its characteristic function
satisfies

log

∫

eitudPR(u) = itν − 1

2
t2L(1/|t|)

for some constant ν ∈ R and a slowly varying function L : R+ → R+ which is bounded
below.

The normal (or classical) domain of attraction consists of the class L2, and is char-
acterised by the boundedness of the slowly varying function L. In the “non-normal”
domain of attraction the function L is unbounded and is determined (up to asymptotic
equivalence) by the tails of the distribution:

1− PR(x) ∼ c1x
−2l(x)

PR(x) ∼ c2x
−2l(x) x→∞

for some constants c1, c2 > 0, c1 + c2 = 1 and some slowly varying function l, which in
turn determines L by

L(x) =

∫ x

−x

u2 dPRu.

and it follows that l(x) = o(L(x)).
For a random variable R in the non-normal domain of attraction of the normal law,

the independent sum of PR-distributed random variables S∗
n satisfies the limit theorem:
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S∗
n−nν
Bn

d→ N (0, 1) as n→∞ in distribution, where Bn is the normalising sequence defined

by the asymptotics nL(Bn)
B2

n
→ 1.

The random variable κ is a vector. It was shown in proposition 11 that its compo-
nent function belongs to the non-normal domain of attraction of the normal law, if that
component is not perpendicular to all of the corridor-free-flights wi. In this case l(x) is a
constant function l(x) ≡ c. Since the free-flight is symmetric, we have c1 = c2 = 1

2
, and

ν = 0. Consequently L(x) ∼ 2c log x, and Bn =
√

cn logn is a normalising sequence. The
constant c depends on which component we are looking at. If we choose ~v ∈ R2 a unit
vector, then the constant of the ~v component has the following expression in the terms of
the geometric constants:

c =
∑

x∈∂X|Tx=x

cµd
2
x

〈ψ(x), ~v〉2
2|ψ(x)| . (2.1)

Remember that for such points ψ(x) = κ(x), and we used the notation ψ(x0) = w0 for
the fixed corridor we were investigating. Also note, that every term in the above sum
appears exactly four times (cf. figure 2.2(b) in section 2.1)!

Since the configuration is planar, the following is true: if the corridor free-flight vectors
span the plane, then every component of κ, hence the vector itself is in the non-normal
domain. If this is not the case, then one has to apply anisotropic scaling to get a nonde-

generate limit distribution. Namely it should be
(√

n 0

0
√

n log n

)

in a basis, where the first

element is perpendicular to the corridor free-flights.
The goal of the forthcoming arguments is to establish Bleher’s hypothesis: though

the (stationary) process of the free flights of our model is not an independent process,
nevertheless in many respects the partial sums behave asymptotically the same way as if
the variables were independent.



Chapter 3

Young towers

3.1 Construction and basic properties

According to our recent understanding the most efficient way for constructing Markov
partitions for billiards is to use Young towers, cf. [You 98]. We are going to give a detailed
description about the properties of the tower. Also we are going to give some explanation
about the construction. Further details can be found in [You 98] and [Ch 99]. In the
latter one, towers for the infinite horizon case are constructed also.

The presence of singularities prevent stable and unstable curves to possess a lower
bound for their size in any part of the phase-space. Therefore the product structure - the
key ingredient of several hyperbolic argument - can only be introduced in a complicated
set.

Let T be a C1+ǫ diffeomorphism with singularities of a compact Riemannian manifold
X with boundary. More precisely, there exists a finite or countably infinite number of
pairwise disjoint open regions {Xi} whose boundaries are C1 submanifolds of codimension
1, and finite volume such that ∪Xi = X, T

∣

∣

∪Xi
is 1 − 1 and T

∣

∣

Xi
can be extended to a

C1+ǫ-diffeomorphism of X̄i onto its image. Then S−1 = X \ ∪Xi is the singularity set.
The Riemannian measure will be denoted by m, and if W ⊂ X is a submanifold, then
mW will denote the induced measure. The invariant Borel probability measure will be
denoted by µ.

Definition 2. An embedded disk γ ⊂ X is called an unstable manifold or an unstable
disk if ∀x, y ∈ γ, d(T−nx, T−ny) → 0 exponentially fast as n → ∞; it is called a stable
manifold or a stable disk if ∀x, y ∈ γ, d(T nx, T ny) → 0 exponentially fast as n → ∞.
We say that Γu = {γu} is a continuous family of C1 unstable disks if the following hold:

• Ks is an arbitrary compact set; Du is the unit disk of some Rn;

• Φu : Ks ×Du → X is a map with the property that

– Φu maps Ks ×Du homeomorphically onto its image,

– x → Φu | ({x} × Du) is a continuous map from Ks into the space of C1

embeddings of Du into X,

– γu, the image of each {x} ×Du, is an unstable disk.

19
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Continuous families of C1 stable disks are defined similarly.

Definition 3. We say that Λ ⊂ X has a hyperbolic product structure if there exist a
continuous family of unstable disks Γu = {γu} and a continuous family of stable disks
Γs = {γs} such that

(i) dim γu + dim γs = dimX

(ii) the γu-disks are transversal to the γs-disks with the angles between them bounded
away from 0;

(iii) each γu-disk meets each γs-disk in exactly one point;

(iv) Λ = (∪γu) ∩ (∪γs).

The construction of such a hyperbolic set in the billiard phase space is roughly the
following. First of all we have to mention that the singularity set S−1 contains not only
the preimage of the boundary, but also, the so called secondary singularities. These are
introduced around T−1∂X to cut the phase space into infinitely many domains. Inside
these domains the distortion bounds will hold, which would not be the case without them.

First choose an unstable curve W , which is short enough to ensure: a high amount
of the points possesses unstable curve of this length. Then define a subset of this curve
consisting of points, which remain a certain (exponentially shrinking) distance apart from
S−1.

Ω∞ := {y ∈W | d(T ny, S−1) > δ1λ
−n ∀n ≥ 0}

where λ is the hyperbolicity constant. If δ1 is chosen small enough this set has positive
measure. By construction each point in Ω∞ possesses a stable curve of length δ1.

So far we have one unstable curve W , and a family of stable curves {γs}. Let us
consider all the nearby unstable curves, which are long enough, and intersect all the
stable curves in the previous family. These two families of curves {γs} and {γu} define
the hyperbolic product-set Λ = (∪γu) ∩ (∪γs).

This set is going to be the base of the hyperbolic Young-tower. To continue the
construction of the tower we are going to focus on recurring subsets of Λ. On figure 3.1
we can see that some parts of Λ are mapped to Λ. However we are only interested in
those returns, which respect the product structure.

Definition 4. Suppose Λ has a hyperbolic product structure. Let Γu and Γs be the defining
families for Λ. A subset Λ0 ⊂ Λ is called an s-subset if Λ0 also has a hyperbolic product
structure and its defining families can be chosen to be Γu and Γs

0 with Γs
0 ⊂ Γs; u-subsets

are defined analogously. For x ∈ Λ, let γu(x) denote the element of Γu containing x.

We can see three intersections on the figure, the lower and upper ones are u-subsets.
Talking about these intersections black covers grey in the unstable direction (when the
reader sees black in these intersections, then on that unstable curve black covers grey). On
the contrary grey covers black in the stable direction (on each stable line black can appear
only where grey is already there). The inverse image of each of these two intersections is
an s-subset.

A Markov-return is an event when some T nΛ∩Λ is a u-subset, and it’s inverse image
under T−n is an s-subset. The possible non-Markov returns are when the intersection is
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not a u-subset (this is printed as the middle intersection), or when the inverse image is
not an s-subset. This latter event occurs when a recurring part goes over the edge of Λ
in the stable direction.

The inverse image of the Markov-recurring part is not necessarily a solid rectangle
intersected with Λ. It can have infinitely many “holes” in it, as demonstrated on figure
3.1.

Now we are going to enumerate the properties which are needed to build the (expo-
nentially shrinking, hyperbolic) Young-tower. First a notation: in general a measurable
bijection M : (X1, m1) → (X2, m2) between two finite measure spaces is called nonsin-
gular if it maps sets of m1-measure 0 to sets of m2-measure 0. If M is nonsingular, we
define the Jacobian of M wrt m1 and m2, written Jm1,m2(M) or simply J(M), to be the

Radon-Nikodym derivative d(M−1
∗ m2)

dm1
. To denote J(T ) wrt mγu we will use detDT u.

Definition 5. We call (X, T, µ) a Young system, if the following Properties (P1)-(P8)
are true:

(P1) There exists a Λ ⊂ X with a hyperbolic product structure and with mγ{γ ∩Λ} > 0
for every γ ∈ Γu.

(P2) There is a countable number of disjoint s-subsets Λ1,Λ2, · · · ⊂ Λ such that

• on each γu-disk mγu{(Λ \ ∪Λi) ∩ γu} = 0;

• for each i, ∃Ri ∈ Z+ such that TRiΛi is a u-subset of Λ;

• for each n there are at most finitely many i’s with Ri = n;

• minRi ≥ some R0 depending only on T

(P3) For every pair x, y ∈ Λ, we have a notion of separation time denoted by s0(x, y). If
s0(x, y) = n, then the orbits of x and y are thought of as being “indistinguishable”
or “together” through their nth iterates, while T n+1x and T n+1y are thought of as
having been “separated.” (This could mean that the points have moved a certain
distance apart, or have landed on opposite sides of a discontinuity manifold, or that
their derivatives have ceased to be comparable.) We assume:

(i) s0 ≥ 0 and depends only on the γs-disks containing the two points;

(ii) the number of “distinguishable” n-orbits starting from Λ is finite for each n;

(iii) for x, y ∈ Λi, s0(x, y) ≥ Ri + s0(T
Rix, TRiy);

(P4) Contraction along γs disks. There exist C > 0 and α < 1 such that for y ∈
γs(x), d(T nx, T ny) ≤ Cαn ∀n ≥ 0.

(P5) Backward contraction and distortion along γu. For y ∈ γu(x) and 0 ≤ k ≤ n <
s0(x, y), we have

(a) d(T nx, T ny) ≤ Cαs0(x,y)−n;

(b)

log

n
∏

i=k

detDT u(T ix)

detDT u(T iy)
≤ Cαs0(x,y)−n.
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(P6) Convergence of D(T i|γu) and absolute continuity of Γs.

(a) for y ∈ γs(x),

log

∞
∏

i=n

detT u(T ix)

detT u(T iy)
≤ Cαn ∀n ≥ 0.

(b) for γ, γ′ ∈ Γu, if Θ: γ ∩ Λ→ γ′ ∩ Λ is defined by Θ(x) = γs(x) ∩ γ′, then Θ is
absolutely continuous and

d(Θ−1
∗ mγ′)

dmγ
(x) =

∞
∏

i=0

detDT u(T ix)

detDT u(T iΘx)
.

(P7) ∃C0 > 0 and θ0 < 1 such that for some γ ∈ Γu,

mγ{x ∈ γ ∩ Λ : R(x) > n} ≤ C0θ
n
0 ∀n ≥ 0;

(P8) (T n, µ) is ergodic ∀n ≥ 1.

Now we will define the Markov extension, also known as the hyperbolic Young-tower.
Let R : Λ→ Z+ be the function which is Ri on Λi, and let

∆
def
= {(x, ω) : x ∈ Λ; ω = 0, 1, . . . , R(x)− 1}

and the dynamics on the tower is

F (x, ω) =

{

(x, ω + 1) if ω + 1 < R(x)
(TRx, 0) if ω + 1 = R(x)

We will refer to ∆ω as the ωth level of the tower ∆. Young also has a construction for µ∆,
the SRB-measure of the extension, for which the pushforward is µ, and J(F ) ≡ 1 except
on F−1(∆0).

On the tower a Markov partition D can be defined, with the following properties:

(a) D is a refinement of the partition ∆ω. (Dω denotes D|∆ω.)

(b) Dω has only a finite number of elements and each one is the union of a collection of
Λi’s;

(c) Dω is a refinement of FDω−1;

(d) if x and y belong to the same element of Dω, then s0(F
−ωx, F−ωy) ≥ ω;

(e) if Ri = Rj for some i 6= j, then Λi and Λj belong to different elements of DRi−1.

Let ∆∗
ω,j = ∆ω,j ∩ F−1(∆0). We think of ∆ω,j \∆∗

ω,j as “moving upward” under F , while
∆∗

ω,j returns to the base.

It is natural to redefine the separation time to be s(x, y)
def
= the largest n such that

for all i ≤ n, F ix and F iy lie in the same element of {∆ω,j}. We claim that (P5) is
valid for x, y ∈ γu ∩∆ω,j with s in the place of s0. To verify this, first consider x, y ∈ Λ.
We claim that s(x, y) ≤ s0(x, y). If x, y do not belong to the same Λi, then this follows



3.1. CONSTRUCTION AND BASIC PROPERTIES 23

from rule (d) in the construction of Dω; if x, y ∈ Λi, but TRx, TRy are not contained in
the same Λj, then s(x, y) = Ri + s(TRx, TRy), which is ≤ s0(x, y) by property (P3),(iii)
of s0, and so on. In general, for x, y ∈ ∆ω,j, let x0 = F−ωx, y0 = F−ωy be the unique
inverse images of x and y in ∆0. Then by definition s(x, y) = s(x0, y0)− ω, and what is
said earlier on about x0 and y0 is equally valid for x and y.

From here on s0 is replaced by s and (P5) is modified accordingly.
This tower is only hyperbolic, and as a usual tool in this field Young has also introduced

a factorised version of it ∆̄. Simply collapse the stable direction! This is also demonstrated
on figure 3.1. For to be more detailed let us recall an important distortion property of
the so called sliding map!

Fix an arbitrary γ̂ ∈ Γu. For x ∈ Λ, let x̂ denote the point in γs(x) ∩ γ̂, and define

un(x) =
n−1
∑

i=0

(ϕ(T ix)− ϕ(T ix̂))

where ϕ = log |detDT u|. From (P6)(a) it follows that un converges uniformly to some
function u. On each γ ∈ Γu, we let m̃γ be the measure, whose density wrt mγ is eu · 1γ∩Λ.
Clearly, TRi|(Λi ∩ γ) is nonsingular wrt these reference measures. If TRi(Λi ∩ γ) ⊂ γ′,
then for x ∈ Λi ∩ γ we write J(TR)(x) = Jm̃γ ,m̃γ′ (T

Ri|(Λ ∩ γ))(x).

Lemma 18. (1) Let Θγ,γ′ : γ ∩ Λ→ γ′ ∩ Λ be the sliding map along Γs. Then Θ∗m̃γ =
m̃γ′.

(2) J(TR)(x) = J(TR)(y) ∀y ∈ γs(x).

(3) ∃C1 > 0 such that ∀i and ∀x, y ∈ Λi ∩ γ,
∣

∣

∣

∣

J(TR)(x)

J(TR)(y)
− 1

∣

∣

∣

∣

≤ C1α
1
2
s(T Rx,T Ry).

Now we are ready to introduce the factorised dynamics with a factorisation along
stable manifolds of ∆. The advantage is that this dynamics will behave as an expanding
map, a simpler object to study. Let ∆̄ := ∆/ ∼ where x ∼ y iff y ∈ γs(x). Since F takes
γs-leaves to γs-leaves, the quotient dynamical system F̄ : ∆̄→ ∆̄ is clearly well defined.

Let us define m̄ in the following way: let m̄|∆̄ω be the measure induced from the
natural identification of ∆̄ω with a subset of ∆̄0, so that J(F̄ ) ≡ 1 except on F̄−1(∆̄0),
where J(F̄ ) = J(TR ◦ F̄−(R−1)).

We now define m̄ on Λ̄ following the ideas that have been used for Axiom A. Lemma
18 (1) allows us to define m̄ on Λ̄ to be the measure whose representative on each γ ∈ Γu

is m̃γ . Statement (2) says that J(TR) is well defined wrt m̄, and (3) says that log J(TR)

has a dynamically defined Hölder type property, in the sense that αs(T Rx,T Ry) could be
viewed as a notion of distance between TRx and TRy (see (P5)). By using this lemma
Young obtains a distortion property of the factorised map with a weaker constant β. Let
β be such that α

1
2 ≤ β < 1, and let C1 be as in Lemma 18 (3).

(I) Height of tower.

(i) R ≥ N for some N satisfying C1e
C1βN ≤ 1

100
;



24 CHAPTER 3. YOUNG TOWERS

Figure 3.1: Young-towers, and Markov-return

(ii) m̄{R ≥ n} ≤ C ′
0θ

n
0 ∀n ≥ 0 for some C ′

0 > 0 and θ0 < 1.

(II) Regularity of the Jacobian.

(i) JF̄ ≡ 1 on ∆̄− F̄−1(∆̄0),

(ii)
∣

∣

∣

∣

JF̄ (x̄)

JF̄ (ȳ)
− 1

∣

∣

∣

∣

≤ C1β
s(F̄ x̄,F̄ ȳ) ∀x̄, ȳ ∈ ∆̄∗

ω,j .

Young proves [You 98], that there exists an invariant probability measure µ̄∆, absolutely
continuous wrt m̄, such that ρ = dµ̄∆

dm̄
is bounded away from zero and infinity, and is

Lipschitz-continuous wrt the distance βs.

As a brief summary of this section we have the following commutative diagram of
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measure preserving transformations:

(∆̄, µ̄∆)
π∆̄←−−− (∆, µ∆)

πX−−−→ (X,µ)

F̄

x




F

x




T

x





(∆̄, µ̄∆)
π∆̄←−−− (∆, µ∆)

πX−−−→ (X,µ)

(3.1)

The projection to the original phase-space is not 1-1. On figure 3.1 the intersection
in the middle has at least two inverse images. One of them is in the ground floor, and
the other is on the first floor. Since the return is not Markovian these point are to be
considered as different points on the tower.

3.2 Function spaces and the transfer operator

3.2.1 The Doeblin-Fortet inequality and spectral properties

Definition 6. Let (C,L) be a pair of Banach spaces, such that L ≤ C is a linear subspace,
‖ . ‖L ≥ ‖ . ‖C. We call this pair adapted if each L-bounded set is precompact in C.

Definition 7. Let (C,L) be an adapted pair. We call an A : C → C bounded linear operator
a Doeblin-Fortet operator, if ∃τ < 1, ∃K > 0, ∃n ∈ N ∀ϕ ∈ L,

‖Anϕ‖L ≤ τ ‖ϕ‖L +K ‖ϕ‖C .

This latter is called the Doeblin-Fortet inequality.

Theorem 19. [I-TM 50] If A is a Doeblin-Fortet operator on the adapted pair (C,L),
then ∃ϑ < 1, N ≥ 1, projections E1, . . . , EN onto finite dimensional subspaces of L, and
λ1, . . . , λN ∈ {z ∈ C : |z| = 1} such that ∀ϕ ∈ L, n ∈ N

∥

∥

∥

∥

∥

Anϕ−
N
∑

k=1

λn
kEkϕ

∥

∥

∥

∥

∥

L

≤ Kϑn ‖ϕ‖L .

Now we will define the function spaces on the factorised Young tower ∆̄. Let ǫ > 0 be
such that

(ǫi) e2ǫθ0 < 1,

(ǫii) m̄(∆̄0)
−1
∑

ω,j m̄(∆̄∗
ω,j)e

ωǫ ≤ 2.

Now we are ready to define the function spaces. The elements will be functions ϕ̄ : ∆̄→ C

and the C norm is
‖ϕ̄‖C

def
= sup

ω,j

∥

∥ϕ̄|∆̄ω,j

∥

∥

∞ e−ωǫ

where ‖ . ‖∞ is the essential supremum wrt m̄. By (ǫi) it is clear that constant multiple
of this norm dominates the L1-norm wrt m̄. Let us introduce

‖ϕ̄‖h
def
= sup

ω,j

(

sup
x̄,ȳ∈∆̄ω,j

|ϕ̄(x̄)− ϕ̄(ȳ)|
βs(x̄,ȳ)

)

e−ωǫ;
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where the inner sup is again essential supremum wrt m̄× m̄ and L-norm is

‖ϕ̄‖L
def
= ‖ϕ̄‖C + ‖ϕ̄‖h .

C resp. L consist of functions for which the C-norm resp. L-norm is finite. The adapted-
ness is an easy consequence of the Arzela-Ascoli theorem. The Perron-Frobenius operator
acting on these spaces is defined as follows:

P (ϕ̄)(x̄) =
∑

x̄−1:F̄ x̄−1=x̄

ϕ̄(x̄−1)

JF̄ (x̄−1)
.

This is the adjungate operator of ϕ̄ 7→ ϕ̄ ◦ F̄ on L2(m̄). By (ǫi) both C and L is contained
in L2(m̄). The fact, that P is a bounded operator on C follows from (ǫii). The similar
statement for L is proved in [You 98], where Young deduces that

(i) P is a contraction in L.

(ii) it satisfies the D-F inequality,

(iii) by Theorem 19 it has a spectral gap,

(iv) and by (P8) its only eigenvalue on the unit circle is 1 and it is simple. (The
eigenfunction is the invariant density ρ.)

Later we will need the adjungate of ϕ̄ 7→ ϕ̄ ◦ F̄ on L2(µ̄), this is P ρ(ϕ̄)
def
= 1

ρ
P (ρϕ̄). Note

that the spectrum of P and P ρ is the same, just the eigenfunctions are divided by ρ.

3.2.2 Associated functions on the tower

In this section we are working with Young systems throughout. Let f : X → Rd be a
bounded, piecewise η-Hölder function i. e. f(x) − f(y) ≤ Cfd(x, y)

η whenever x, y ∈ Xi.
We are going to associate a function f̄ : ∆̄ → Rd of the symbolic space. First we pull
back f along the projection map πX : ∆ → ∪T nΛ to a function f̃ : ∆ → Rd. This is
clearly bounded and by (P5) f̃(x) − f̃(y) ≤ Cf

(

Cαs(x,y)
)η

meaning f̃ is η-Hölder wrt
the metric αs. Next we use a standard method described for example in [PP 90]. We
choose an unstable manifold in each Markov-rectangle ∆ω,j, and consider the projection
Ξ which sends each point along its stable manifold to our preferred unstable manifold.

Consider the function h
def
=
∑∞

n=0

(

f̃ ◦ F n − f̃ ◦ F n ◦ Ξ
)

! The defining series converges

since f̃F nx− f̃F nΞx ≤ Cfd(T
nπx, T nπΞx)η and by (P4) ≤ Cf(Cα

n)η.

h− h ◦ F =
∞
∑

n=0

(

f̃ ◦ F n − f̃ ◦ F n ◦ Ξ
)

−
∞
∑

n=0

(

f̃ ◦ F n + 1− f̃ ◦ F n ◦ Ξ ◦ F
)

= f̃ −
[

f̃ ◦ Ξ +
∞
∑

n=0

f̃ ◦ F n+1 ◦ Ξ− f̃ ◦ F n ◦ Ξ ◦ F
]

.

This can be rewritten as h−h◦F = f̃ − f̄ , where f̄ is defined by the expression in square
brackets. Evidently f̄ is constant when restricted to any stable manifold, so it can be
regarded as a function defined on ∆̄.
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Lemma 20. If f : X → Rd is piecewise η-Hölder, and β satisfies 1 > β ≥ αη/2, then the
associated function f̄ : ∆̄→ Rd is bounded and Lipschitz-continuous wrt the metric βs:

∣

∣f̄(x̄)− f̄(ȳ)
∣

∣ ≤ Cβs(x̄,ȳ).

Proof. Let x̄, ȳ ∈ ∆̄ such that s(x, y) ≥ 2n then (P5) ensures

∣

∣

∣
f̃F kx− f̃F ky

∣

∣

∣
,
∣

∣

∣
f̃F kΞx− f̃F kΞy

∣

∣

∣
≤ Cf(Cα

2n−k)η, 0 ≤ k ≤ n.

For all k > 0 (P4) gives

∣

∣

∣
f̃F nx− f̃F nΞx

∣

∣

∣
,
∣

∣

∣
f̃F ny − f̃F nΞy

∣

∣

∣
≤ Cf(Cα

n)η.

Hence |h(x) − h(y)| ≤ 2Cf

∑n
k=0(Cα

2n−k)η + 2Cf

∑∞
k=n+1(Cα

n)η ≤ constCfα
nη given

1 > β ≥ αη/2 the latter estimate ≤ C̄fβ
s.

Actually our function κ is locally constant on the phase space, hence it is Hölder
continuous. Moreover since it is constant on local stable manifolds the above cohomology
is not needed to consider its pullback κ̃ as a function on ∆̄. For that reason we will use
the same notation κ for the function on ∆̄ as well.

The other free flight function ψ is only Hölder when the horizon is finite. Even in that
case only the presence of secondary singularities make ψ to be 3

5
-Hölder. In the infinite

horizon case ψ is only Hölder when we exclude certain part of the phase-space. Actually
later we will exclude this part, but the reason for that is completely different. However
in the proofs we do not need any assumption on ψ, only on κ.
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Chapter 4

Analysis of the Fourier-transform
operator

In our case the Birkhoff sum Sn =
∑

k κ ◦ T k is not an independent sum. Since Nagaev’s
1957 work, [Nag 57], for concluding a limit theorem, one traditionally uses the Fourier-
transform of the transfer operator.

Pt(h)
def
= P (ei〈t,κ〉h) (h ∈ L, t ∈ R

2)

It has the following simple connection with the characteristic function of the Birkhoff-sum:
∫

exp(i 〈t, Sn〉)dµ =

∫

P n
t (ρ)dm̄.

4.1 Quasicompactness

The purpose of this section is to prove the Doeblin-Fortet inequality for the Fourier
transform of the Perron-Frobenius operator: Simplifying the notations for a fixed t denote

ζ = ei〈t,f̄〉, so Pt(ϕ̄) = P (ζϕ̄). For to prove the inequality we need the assumption of
Hölder continuity for the measurable f .

Lemma 21. If f and β satisfies the conditions of lemma 20, then the operator Pt satisfies
the Doeblin-Fortet inequality ∀t ∈ Rd.

Proof.
‖P n

t ϕ̄‖L = ‖P n
t ϕ̄‖C + ‖P n

t ϕ̄‖h ≤ ‖P n
t ‖C‖ϕ̄‖C + ‖P n

t ϕ̄‖h.
By (ǫii) ‖P n

t ‖C ≤ 2, so we only have to bound the continuity modulus.

P n
t (ϕ̄) = P n(ζnϕ̄) where ζn(x̄) :=

n−1
∏

k=0

ζ(F̄ kx̄).

It follows that

P n
t (ϕ̄)(x̄) =

∑

x̄−n:T nx̄−n=x̄

ζn(x̄
−n)ϕ̄(x̄−n)

JF̄ n(x̄−n)

29
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If x̄ and ȳ lie in the same element ∆̄ω,j , then the inverse images can be coupled: x̄−n
i and

ȳ−n
j form a pair if ∀k, 0 ≤ k ≤ n F̄ k(x̄−n

i ) and F̄ k(ȳ−n
j ) belong to the same element of the

Markov partition {∆̄ω,j}. That this is really a coupling is ensured by (e) in the definition
of D. For notational simplicity suppose that the inverse images are numbered according
to the coupling. We have then the following expression for the continuity modulus:

|P n
t (ϕ̄)(x̄)− P n

t (ϕ̄)(ȳ)| =

∣

∣

∣

∣

∣

∣

∑

x̄−n
i

:F̄ nx̄−n
i

=x̄

ζn(x̄
−n
i )ϕ̄(x̄−n

i )

JF̄ n(x̄−n
i )

− ζn(ȳ−n
i )ϕ̄(ȳ−n

i )

JF̄ n(ȳ−n
i )

∣

∣

∣

∣

∣

∣

.

The right hand side can be written as |I + II| where

I =
∑

x̄−n
i :F̄ nx̄−n

i =x̄

ζn(x̄
−n
i )

(

ϕ̄(x̄−n
i )

JF̄ n(x̄−n
i )
− ϕ̄(ȳ−n

i )

JF̄ n(ȳ−n
i )

)

,

and

II =
∑

x̄−n
i :F̄ nx̄−n

i =x̄

ϕ̄(ȳ−n
i )

JF̄ n(ȳ−n
i )

(

ζn(x̄
−n
i )− ζn(ȳ−n

i )
)

.

The first quantity can be estimated as follows:

|I| ≤
∑

x̄−n
i :F̄ nx̄−n

i =x̄

∣

∣

∣

∣

ϕ̄(x̄−n
i )

JF̄ n(x̄−n
i )
− ϕ̄(ȳ−n

i )

JF̄ n(ȳ−n
i )

∣

∣

∣

∣

Young [You 98] gets her D-F inequality by estimating the same quantity in the case where
n = N . For the estimate of the second term we have to say something about the continuity
modulus of ζ :

|ζ(a)− ζ(b)| =
∣

∣

∣
ei〈t,f̄(a)〉 − ei〈t,f̄(b)〉

∣

∣

∣
≤ |t|

∣

∣f̄(a)− f̄(b)
∣

∣ .

By lemma 20 this latter is

≤ |t|Cβs(a,b).

Then the continuity modulus of ζN :

∣

∣ζN(x̄−N
i )− ζN(ȳ−N

i )
∣

∣ =
N−1
∑

k=0

∣

∣ζ(F̄ k(x̄−N
i ))− ζ(F̄ k(ȳ−N

i ))
∣

∣

≤
N−1
∑

k=0

|t|Cβs(F̄ k(x̄−N
i ),F̄ k(ȳ−N

i ))

=
N−1
∑

k=0

|t|Cβs(x̄,ȳ)+N−k

≤ β |t|Cβs(x̄,ȳ)

1− β
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II can be estimated by taking absolute value term by term. Then the continuity modulus
is multiplied by PN |ϕ|y ≤ eǫl

∥

∥PN |ϕ|
∥

∥

C ≤ elǫ2N ‖ϕ‖C. From these it is easy to see, that

in the D-F inequality this estimate of II contributes to the coefficient of ‖ϕ‖C by 2N βC|t|
1−β

,
so it doesn’t bother Young’s estimate of I.

Later we will use this statement for f = κ, where the inequality is much stronger.
Since κ is locally constant the terms in II vanish. Therefore we have a uniform inequality
for all the t values.

4.2 Minimality

Next we have to investigate the t values, for which Pt has an eigenvalue on the unit
circle. Otherwise Pt is strictly contracting by quasicompactness. As we will see, this is
the question of minimality. Unfortunately this question has to be investigated on Young’s
symbolic system (∆̄, F̄ , µ̄∆), since the operators are defined on that space. Nevertheless
we are able to prove the minimality of κ on the symbolic system as well.

Definition 8. We say that f is cohomologous to g (notation: f ∼ g) if ∃h measurable
such that f − g = h − h ◦ T . Under the minimal support of a function f (notation:
S(f)) we mean the minimal translated closed subgroup of Rd, which supports its values.
We call a translated closed subgroup the minimal lattice of f if it is the intersection of
minimal supports in the cohomology class of f (M(f) = ∩g:g∼fS(g)). We call f minimal
if S(f) = M(f). We call f degenerate if M(f) is contained in a smaller dimensional
affine subspace of Rd.

Lemma 22. Fix the function f . Then P ρ
t ḡ = λḡ with |λ| = 1 ⇐⇒ eitf̄ ḡ = λḡ ◦ F̄ .

Moreover ḡ can be supposed to take values on the unit circle.

Proof. =⇒ If P ρ
t ḡ = λḡ then by (ǫi) ḡ ∈ L =⇒ ḡ ∈ L2(m̄), and also ḡ ∈ L2(µ̄∆) we can

take:
〈

eitf̄ ḡ, ḡ ◦ F̄
〉

µ̄∆

=
〈

P
(

eitf̄ ḡ
)

, ḡ
〉

µ̄∆

= 〈λḡ, ḡ〉µ̄∆
= λ ‖ḡ‖2L2(µ̄∆) .

From Cauchy-Schwartz inequality it follows that eitf̄ ḡ = λḡ ◦ F̄ . By ergodicity we
can suppose |ḡ| ≡ 1.

⇐= If eitf̄ ḡ = λḡ ◦ F̄ then P ρ
t (ḡ) = 1

ρ
P (ρeitf̄ ḡ) = λ

ρ
P (ḡ ◦ F̄ ρ) = λḡP (ρ)

ρ
= λḡ. Since

|ḡ| = 1 =⇒ ḡ ∈ C, then it follows that ḡ ∈ L [I-TM 50].

This lemma shows that the t values for which the above-mentioned property holds
form a closed subgroup of Rd, moreover the eigenvalues and -functions preserve the group
structure. If P ρ

t1 ḡ1 = λ1ḡ1◦F̄ and P ρ
t2 ḡ2 = λ2ḡ2◦F̄ , then P ρ

t1+t2 ḡ1ḡ2 = λ1λ2(ḡ1ḡ2)◦F̄ . Also,
for t ∈ G, t 7→ ḡt and t 7→ λt are uniquely determined by ergodicity. (Here G denotes the
subgroup of Rd formed by these t values.) This uniqueness can be easily derived from the
multiplicative structure, and the already known spectral picture for P = P0. Since λt is a
multiplicative functional of t, so the logarithm is a linear one, and therefore −i log λt = tr
for some r real vector. (Taking the adequate branch of the logarithm.)
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Theorem 23. M(f̄) = R̂d/G + r. There exist minimal functions in each cohomology
class. The minimal function is unique iff it is constant.

Proof. ⊂ We are going to prove that ∀t ∈ G, ∀x ∈ M(f̄) one has eitx = eitr. Since
t ∈ G we have eitf̄ ḡ = λḡ ◦ F̄ . Taking the logarithm

tf̄ ≡ −i log λ+ i log ḡ − i log ḡ ◦ F̄ (mod 2π). (4.1)

Remember that the first term on the right hand side is tr. By denoting h = i log ḡ
we get that tf̄ − (Z + tr) = h−h ◦ F̄ for some Z, which takes values in 2πZ. To lift

it to vector valued equation let us denote ~h = th
|t|2 ,

~Z = tZ
|t|2 + f̄ t⊥ − rt⊥ , we get that

f̄ ∼ ~Z + r, and the right hand side takes values in H = t⊥⊕ 2πt
|t|2 Z + r. By definition

H ⊃M(f), and since ∀x ∈ H eitx = eitr this is true for ∀x ∈M(f̄).

⊃ We are going to prove that if for t ∈ Rd and ∀x ∈M(f̄ ) we have eitx = eitr, then
t ∈ G. The condition means that ∃Z, Z ∼ f̄ , S(Z) ⊂ t⊥⊕ 2πt

|t|2 Z+r. Combining the

condition with the cohomological equation we get eitZ = eitr = eit(f̄−h+h◦F̄ ). After
rearranging one obtains eitf̄e−ith = eitre−ith◦F̄ , and by the previous lemma t ∈ G.

∃ Let us revisit the congruence (4.1). Observe that i log ḡ is also a linear functional of
t, so i log ḡ = ts for some s : ∆̄→ Rd. The function Z derived from this congruence
is also linear in t, so Z = tz. Denote by H the orthocomplement of the linear
subspace generated by G. Recalling the definition of r, s and z we can see, that
rH , sH and zH can be arbitrary, so let the latter one agree with f̄H , and the others
be 0. We get f̄−(z+r) = s−s◦F̄ . Consider now S(z+r). In the definition of Z we
said that it takes values in 2πZ, but Z = tz gives ∀t ∈ G eit(z+r) = eitr, so from the
already proven part of the theorem it follows that S(z + r) = M(f̄). Uniqueness is
obvious: if M(f̄ ) is not a single point, then taking any h : X →M(f̄ ) nonconstant
f̄ − h+ h ◦ F̄ is also a minimal function, and by ergodicity is not equal to f̄ .

Let us remark, that M(Sn) = M(f̄) + (n − 1)r. One of the inclusions (⊂) is trivial,
the other (⊃) follows from ergodicity of iterates.

4.2.1 Minimality of the free flight function

Start with a simple observation

Lemma 24.
κ ∼ ψ

Proof. Fix an arbitrary point w ∈ D. For x = (q, v) ∈ X define h(x) = w − q. if
ψ(x) ∈ D + z for some z ∈ Z2, then κ(x) = z, and, of course,

ψ(x) = κ(x) + h(x)− h(Tx)

Theorem 25. κ is minimal in the class of ψ.
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Proof. Suppose the contrary and denote the minimal function by κ′! Apply the factori-
sation by the minimal lattice: κf : X → Z2/M(κ)! Then κf ∼ κ′f , and κ′f is the constant

function. Denote by n the cardinality of this Abelian group Zd/M(κ)! (We can suppose
n < ∞.) In this case ∀x periodic, such that n|per(x) = p the Birkhoff sum Sp(κf )x = 0.
The proof of the theorem is based on our forthcoming lemma 26. It is a variant of a
statement which was originally applied in [BChS 91] to establish the non-singularity of
the limiting covariance in the CLT. To contradict the non-minimality we are going to find
a periodic point for each sublattice of finite index, not satisfying the above equation.

Lemma 26. For any finite index sublattice Z ⊂ Z2 there exists a periodic point x such
that the period p is a multiple of |Z2 : Z| and

∑p−1
i=0 κ(T

ix) 6≡ 0 (mod Z)

Proof of lemma. The idea is a suitably adapted, simplified and generalised version of an
argument of [BChS 91]. The original idea is well explained in [B 00]. Fix the lattice Z,
denote the index by i, and fix Λ ⊂ Td

0, the basic product set of the Young system of our
billiard (µ(Λ) > 0). Take a billiard in the elongated torus T(Z) = Rd/Z, which is an
appropriate projection of our Lorentz process. Consider the images of Λ on the elongated
torus. Take two of them Λ0 and Λ1. By using the ergodicity of powers of the billiard in
T(Z) we see that there exists an n ∈ Z+ such that Λ0 ∩ T (Z)−niΛ1 contains a Markov
intersection Λ∗ of positive measure where T (Z) denotes the Poincaré section map of the
billiard on T(Z). The fact that Λ0 ∪ T (Z)−niΛ1 contains a Markov intersection Λ∗ of
positive measure requires a proof. This is the only part in our paper where we have to
go beyond properties (P1-8) of Young systems formulated in section 3.1 and to use some
more detailed arguments from her construction.

Lemma 27 (Sublemma). For the billiard on T(Z) there exists an n ∈ Z+ such that
Λ0 ∩ T (Z)−niΛ1 contains a Markov intersection Λ∗ of positive measure.

By identifying Λ with Λ0, ∩∞l=−∞T
lniΛ∗ consists of exactly one point x∗. Clearly

T nix∗ = x∗ and, moreover, the claim of the lemma is also evident.

To conclude the proof it is sufficient to observe that the relation κ ∼ κ′ and the
periodicity of x also imply that

∑p−1
i=0 κ(T

ix) 6≡ 0 (mod Z). Hence the theorem.

Proof of sublemma. In order that our ideas be clear with a minimal knowledge of sections
7 and 8 of [You 98] we summarise some facts from this reference. First, let us note that
often it is convenient to use the semi-metric p determined by the density cos φdr. We will
write p(.) for the p-length of a curve, while l(.) denotes its Euclidean length. Finally, as
before, d(., .) denotes Euclidean distance. In particular, γu

δ (x) will denote that piece of a
γu

loc-curve whose endpoints have p-distance δ from its ‘centre’ x.

Facts:

(i) δ1 > 0 is a suitably small number, δ = δ4
1 and α1 = α

1
4 .

(ii) The product set Λ has a sort of centre x0 ∈ Aδ0 = {x ∈ X| γu
3δ0

(x)exists} 6= ∅. De-
note Ω = γu

3δ0
(x0). Moreover, let us fix a small, rectangular shaped neighbourhood

U of x0 such that Λ ∩ U itself is a product set with µ(Λ ∩ U) > 0.
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(iii) For the product set Λ one has a simply connected, rectangular-shaped region Q(x0)
such that ∂Q(x0) is made up of two u-curves and two s-curves. The two u-curves
are roughly 2δ0 in length and they are either from Γu(x0) or do not meet any
element of Γu(x0). The two s-curves are approximately 2δ long and have the same
properties wrt Γs(x0). Q̂(x0) is a proper u-subrectangle of Q(x0), i. e. it shares the
s-boundaries of Q(x0) and its u-boundaries, which must have the same properties
as those of Q(x0), are strictly inside Q(x0).

(iv) Denote Ω∞ = {y ∈ Ω| for ∀ n ≥ 0 d(T ny, S) > δ1α
n}. There are unions of a

finite number of closed connected curves ω such that Ωn ⊃ Ωn+1 and Ω = ∩nΩn.
In addition, if ω is a component of Ωn, then T nω is a connected smooth curve with
d(T nω, S) ≥ 1

2
δ1α

n, and, in particular, T n+1ω is also a connected smooth curve.

(v) If for a point x one has R(x) = n, then x belongs to an s-subrectangle Qω of Q(x0)
(where ω is some component figuring in (iv) ) such that T jQω ∩ S = ∅ for every
0 ≤ j ≤ n. Also, 10δ0 ≤ p(T nω) ≤ 20δ0 and T nω u-crosses Q̂(x0) with segments 2δ0
in length sticking out on both sides.

(vi) Finally, for some R1 ≥ R0 large enough it is true that if, for some n ≥ R1, a
component ω of Ωn u-crosses the middle half of Q under T n , then the entire s-
subrectangle of Q associated with ω u-crosses Q under T n.

When now turning to the billiard on T(Z) we will extend our previous usage of no-

tations: for instance, x
(0)
0 , . . . , x

(Z)
0 will denote the different copies of x0, and similarly

U (0), . . . , U (Z) the different copies of U . µ(Z, .) will denote the invariant probability mea-
sure for our ‘elongated’ billiard system. We note that Young’s construction uses powers
of T which are multiple of some given natural number. Here, for simplicity, we take
this number to be equal to one and use the ergodicity of T . However, for our billiard
it is known that any power of T is also ergodic so our simplification is by no means a
restriction.

In fact, claim (vi) is the main fact necessary for our purposes. Introduce the function

w(x) = χ{p(γu(x))≥10δ0}(x)χ{x∈Λ(Z)∩U (Z)}(x).

By ergodicity,

1

n

n−1
∑

k=0

∫

χ{x∈Λ(0)∩U (0)}(x)w(T kx)dµ1(Z, x)→ µ(Λ(0) ∩ U (0))w̄

where w̄ =
∫

w(x)dµ1(Z, x) > 0. Therefore, for some x ∈ Λ(0)∩U (0) there exist arbitrarily

large indices k such that T kx ∈ Λ(Z)∩U (Z) and p(γu(T kx)) ≥ 10δ0. Since x ∈ Ω
(0)
∞ ⊂ Ω

(0)
k ,

by property (vi) we are done.

We note here, after the proof, that the minimality is proven, indeed, on the tower ∆̄.
The periodic point which led to the contradiction in the indirect proof was constructed
inside a Markov-intersection of the basic hyperbolic set. Hence the period of this point
on X is also the period of this point on the tower ∆̄.
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4.3 Nagaev type theorems

4.3.1 Finite horizon case

Though we are interested in the Birkhoff-sum of κ we are going to use a general f during
the proof emphasising that the only requirements for these results to hold are Hölder
continuity and boundedness.

Expand now Pt in a Taylor series around t = 0! Pt(ϕ̄) = P (ei〈t,f̄〉ϕ̄) = P (ϕ̄) +
itP

(

f̄ ϕ̄
)

− t2

2
P
(

f̄ 2ϕ̄
)

+ o(t2)
∥

∥f̄ 2ϕ̄
∥

∥

L. From lemma 20 it follows that the norm exists,
so the second order Taylor-expansion at zero makes sense. Let us denote the operator
ϕ̄ 7→ P (f̄ ϕ̄) by M (mean) and ϕ̄ 7→ P (f̄ 2ϕ̄) by Σ (covariance).

Denote by λt the leading -also simple- eigenvalue of Pt, (we know that λ0 = 1) and
by τt the projection operator corresponding to λt. The invariant density ρ is known to be
bounded away from zero and infinity, and is Hölder. We know that τ0 = ρm̄, since ρ is
the invariant density. Consider the second order Taylor polynomial of these two objects:

λt = 1 + iat− bt
2

2
+ o(t2)

τt = ρm̄+ ηt+ χt2 + o(t2)

By definition τtPt = λtτt. Expressing the terms by the above equations and considering
the coefficients of t and t2 we get the following:

iρm̄M + ηP = η + iaρm̄

−1

2
ρm̄Σ + iηM + χP = χ+ iaη − bρm̄

2

evaluating these on ρ we get from the first that a = m̄M(ρ). We are allowed to suppose
that M(ρ) is a constant. This is because if we change f̄ to a cohomologous f̄ ′ the maximal
eigenvalue does not change. Just like in the case of P ρ

t we will study a conjugated operator
with the same spectrum. Let us solve the equation: P (f̄ρ) −

∫

fdν = Pu − u. This is

solvable since the left hand side ∈ ker m̄. Let us consider f̄ ′ = f̄ − u
ρ
+ u◦F̄

ρ◦F̄ ! This is clearly

cohomologous to f̄ . Let us consider M ′(ρ) = P (f̄ ′ρ) = P (f̄ρ) − Pu + P (u◦F̄
ρ◦F̄ ρ). This

latter term is u
ρ
Pρ = u. So by the definition of u M ′(ρ) =

∫

fdν constant. Evaluating the

second equation on ρ we get b = m̄Σ′(ρ) =
∫

f̄ ′2dν̄, remember, that a was the average of
the function, now b is some second moment, and we can define covariance by σ2 = b− a2.
It is also remarkable, that σ is the second central moment of a function cohomologous to
f̄ . If f is nondegenerate, each such quadratic form (and consequently σ) is nondegenerate
also. We have proved the following theorem:

Theorem 28. There are constants ǫ > 0, K > 0 and θ < 1 and a function ρ : (−ǫ, ǫ)d →
L such that

∥

∥

∥

∥

P n
t h− λn

t ρt

∫

∆̄

hdm̄

∥

∥

∥

∥

L
≤ Kθn ‖h‖L ∀ |t| < ǫ, n ≥ 1, h ∈ L,

and ‖ρt − ρ‖L = O(t), λt = 1 + ait− (σ2 + a2) t2

2
+ o(t2) .
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4.3.2 Infinite horizon case, proof of theorem 5

In the forthcoming section we are going to establish the global limit law in the infinite
horizon case of Theorem 5 via an asymptotic expression at t → 0 of λt, the leading
eigenvalue of the Fourier-transform of the Perron-Frobenius operator. We will rely upon
ideas of [BG 06] and of our study in chapter 2.

For the latter we expect the same behaviour what we have seen in the single term
characteristic function. This will mean that the effect of dependence is negligible: both
the independent and the dependent sums have the same asymptotic expansion for the
Fourier transform, namely 1 + cn|t|2 log |t|. (In this formula c describes the direction-
dependence, and |t| the length, remember the definition of c) in 2.1!

The following theorem of [BG 06] provides a condition for a limit law in the non-
standard domain of attraction of the Gaussian law for models possessing a Young tower
with an exponential tail bound for the height function, in general.

Theorem 29. ([BG 06], Theorem 3.5) Assume that the distribution of g : ∆̄ → R is in
the nonstandard domain of attraction of the normal law. Remember that ω was the level
function of the tower. Denote the “tower-sum” by G =

∑ω
k=1 g ◦ F̄−k. Let L, l be as in

subsection 2.2. Assume, moreover, that l(x log x)/l(x) → 1, L(x log x)/L(x) → 1 when
x→∞. Finally, assume that there exists a real number a 6= −1/2 such that

∫

g(eitG − 1) = (a+ o(1))itL(1/|t|). (4.2)

Write L1(x) = (2a + 1)L(x), and choose a sequence Bn → ∞ such that n
B2

n
L1(Bn) → 1.

Then for λt the leading eigenvalue of the Pt(h) = P (eitgh) Fourier-transform-operator:

λt = 1− t2

2
L1(1/|t|)(1 + o(1))

and consequently for the Sn =
∑n−1

k=0 g ◦ F̄ k Birkhoff-sum:

Sn − n
∫

g

Bn

d→ N (0, 1).

We will indeed show that in our case the integral condition (4.2) of the above theorem
holds for g = κ with a = 0. (This is actually the case discussed by [AD 01b].) We note
that this case will allow a simpler treatment than that of the stadium because here the
expansion rate is much larger (though the logarithm of the free flight function in a corridor
does not form a random walk as it is the case in the stadium).

Theorem 30 (Nagaev-type theorem). There are constants ǫ > 0, K > 0 and θ < 1 and
a function ρ : (−ǫ, ǫ)→ L such that

∥

∥

∥

∥

P n
t h− λn

t ρt

∫

∆̄

hdm̄

∥

∥

∥

∥

L
≤ Kθn ‖h‖L ∀|t| < ǫ, n ≥ 1, h ∈ L (4.3)

and
‖ρt − ρ‖L3 = O(|t|1/10) (t→ 0), λt = 1 + (1 + o(1))c|t|2 log |t|

The proof of Theorem 30 can also be derived from considerations in [BG 06], namely
in the proof of their theorem 3.5 they check the conditions of [KL 99] and use Corollary
1 of that paper. Corollary 2 of [KL 99] is this theorem when translated to the concrete
situation.



4.3. NAGAEV TYPE THEOREMS 37

4.3.3 Proof of the integral condition (4.2)

In our case the function κ is locally constant, so we can pass the integral immediately to
∆. Denote the “tower-sum” by K =

∑ω
k=1 κ ◦ F−k. It is easy to see that the dominating

terms of the integral in (4.2) are those corresponding to parts of the phase space when
the process is close to a singular point say x0 (discussed in 2.1).

The estimate of this integral is based on the following fact. We have already observed
that high values of κ are typically reached rapidly: κ ◦ T−1 is in the order of

√

|κ|.
During this fast trajectory segment the tower-sum can be estimated with the last term,
hence it is also of order

√

|κ|. Since |eitK̄ − 1| ≤ tK̄, the integral can be estimated by
t
∑

n n
√
n · µ{|κ| = n} = O(t). The trajectories which do not provide fast reach have

polynomially small (in |κ|) relative measure in the level-sets. These domains can be
discarded due to the following lemma:

Lemma 31. Any part of the integration domain A with measure µ(A ∩ {|κ| = N}) =
O(N−3−α) with any α > 0 can be thrown away:

∫

∆

κ(ei〈t,K〉 − 1) =

∫

∆\A
κ(ei〈t,K〉 − 1) +O(|t|)

This is proved in proposition (4.17) of [BG 06]. Though the integration domains are
in the hyperbolic Young-tower, if we identify the sets to be disregarded on the original
phase-space X, then by measure preservation their pullbacks will satisfy the lemma.

First we are going to discard that part A1 of the neighbourhood of x0 where the last
step was not fast enough, i. e. A1 = {x ∈ U0 | |κ ◦ T−1| > |κ| 34} ⊂ X. We also discard the
set A2 of those points where κ ◦ T−1 = w0, i. e. A2 = U0 \ U ′

0.

A2

A1

Figure 4.1: The discarded sets A1 and A2 in the level set of κ and the foliation with nearly
unstable curves

We already know that the relative measure of (A1 ∪A2) inside {|κ| = N} is O(N−1/2)
(cf. propositions 16 and 17).

Let us foliate the remaining part with curves whose direction is nearly unstable (the
derivative is in the unstable cone for T−1).

The third discarded set A3 will consist of points, for which the backward Z logN -step
trajectory meets the {|κ| > N

4
5} set, where Z is a large number to be chosen later. To

estimate the relative measure of A3 we prove the following lemma:
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Lemma 32. There exists a constant C such that, for any large enough integer Z it is
true: for any large enough N , given any unstable curve (for the mapping T−1) in the
set {|κ| = N} \ ⋃i=1,2Ai, the points for which |κ| increases above N4/5 within Z logN

iterations of T−1 occupy a subset whose relative measure is less than CN−1/11 in that
curve.

Proof. The proof is a suitable modification of Lemma 4.14 of [BG 06]. Note first that in

the set {|κ| = N} \ A1 one has |κ ◦ T−1| < N
3
4 . The points which reach |κ| > N4/5 get

closer to the singularity than const ·N−8/5. We are going to measure the set of points of
the latter type.

The map T−1 satisfies Chernov’s axioms [Ch 99] as this was checked for our infinite
horizon case by Chernov in section 8 of the same article. Using exactly the same ideas as
in [BG 06] we choose δ = (Z[D,D, 0]n)−1/σ and apply Theorem 3.1 in [Ch 99].

We obtain a decreasing sequence W 1
0 ⊃ W 1

1 ⊃ · · · ⊃ W 1
[Z log N ] of subsets of the given

LUM such that

∀c > 0, ∀0 ≤ p ≤ Z logN

Leb{x ∈W 1
p | dist(T−px, S0) ≤ cN−8/5} ≤ CcN−8/5

(by equation (3.3) in [Ch 99]), and

∀0 ≤ p ≤ Z logN, Leb(W 1
p \W 1

p+1) ≤
C

N
Leb(LUM)

(By (iv), (3.5) in [Ch 99] and our choice of δ).
The second estimate is itself a relative measure estimate. For the first one we observe

that N−8/5 = N−1/10N−6/4 ≤ N−1/10const · Leb(LUM). This gives a measure at most
C logN N−1/10, hence the lemma.

The last discarded set will be defined on the tower: We are going to throw away that
part A4 of the integration domain, which is too high on the tower ω > Z log |κ|. Since
the tower has exponentially small tails, if Z was chosen large enough, then the discarded
set has measure µ∆(A4 ∩ {|κ| = N}) = O(N−4), and thus by lemma 31 the integral can
be restricted to its complement.

Now it remained to estimate the integral on the non-discarded set.

Lemma 33.
∫

π−1
X

(X\
S3

i=1 Ai)\A4

κ(ei〈t,K〉 − 1) = O(|t|)

Proof. Consider the integral on the left. By the definition of the discarded sets we have:

∣

∣

∣

∣

∣

∫

π−1
X

(X\S3
i=1 Ai)\A4

κ(ei〈t,K〉 − 1)

∣

∣

∣

∣

∣

≤

≤ |t|
∫

π−1
X

(X\
S3

i=1 Ai)\A4

|κ||K| ≤ C|t|
∑

n

µ{|κ| = n}n logn n4/5 ≤ C|t|



Chapter 5

Proof of the results

5.1 Local limit theorems

First we are going to deal with κ. Since it is an integer valued vector function Pt = Pu

if t − u ∈ 2πZ2. Hence we can consider t ∈ 2πT2. We are going to apply a Nagaev
type theorem (28 or 30) in a neighbourhood of zero. On the complement of the zero
neighbourhood, which is compact by the above factorisation, we are going to apply the
following theorem:

Lemma 34 ([AD 01]). Suppose that K is a compact set of L operators such that each
element of K is a Doeblin-Fortet operator, and none of them has an L-eigenvalue on the
unit circle. Then ∃K > 0 and θ < 1 such that

‖Qn‖L ≤ Kθn ∀n ≥ 1, Q ∈ K.

However to ensure compactness of the operator family one needs continuity in the
parameter, which is not the case if the horizon is infinite. By using results in [KL 99] it
is enough to prove uniform continuity in a weaker norm. We do not want to give details,
the conditions of [KL 99] were checked in [BG 06] for a good choice of norms, and for a
wide class of models including infinite horizon Lorentz-process. One of the conclusions of
[KL 99] -if applied to this situation- is the above uniform exponential bound.

Let Bn denote the normalisation i. e. Bn =
√
n in the finite horizon case, and Bn =√

n logn in the infinite horizon case.

Theorem 35. Let kn ∈ Z2 be such that kn

Bn
→ k ∈ R2. Let the joint distribution of

(x, T nx, Sn(x)− kn) be denoted by Υn, where x ∈ X is µ distributed. Then

lim
n→∞

B2
nΥn =

e−
1
2
kΣ−1kT

det Σ2π
µ2 × ♯.

where ♯ is the counting measure on Z2. In the infinite horizon case Σ is the matrix in
(1.1).

Proof. We are going to prove a similar result on the tower ∆̄. Before that, we have to
make it clear how the µ̄2

∆ × ♯ limit on the tower implies the µ2 × ♯ limit in the original
X2×Z2 space. The Markov-extension is an extension, so if the limit is proved for that, it

39
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is also valid for the original system. What we have to deal is the factorisation. As detailed
before in section 3.2.2 κ is locally constant, so it can be considered as a function on ∆̄.
What remained to change are the two µ∆ distributed variables to their µ̄∆ distributed
versions. The σ-algebra S̄, generated by factorised functions, is the multiplication of the
σ-algebra generated by the rectangles in ∆ in the stable direction, and the Borel-algebra
in the unstable direction (mod 0). The forthcoming limit theorem for Ῡn proves the
measure limit not only for the σ-algebra S̄, but also for F S̄, because the application of F
means the application of (x, y, ξ) 7→ (Fx, Fy, ξ − κ(x) + κ(y)), and the limit is invariant
under this action. Since

∨

n>0 F
nS̄ = S (mod 0) it is enough to prove the limit theorem

for Ῡn.
For to do this we are going to integrate test functions: w(x̄, ȳ, ξ). We will restrict

ourselves to product functions w(x̄, ȳ, ξ) = w1(x̄)w2(ȳ)w3(ξ), where w1 and w2 are in L,
and w3 is summable (integrable with respect to ♯). For simplicity we are going to use the
inverse transform: w(x̄, ȳ, ξ) =

∫

w1(x̄)w2(ȳ)ŵ3(t)e
itξdt.

B2
n

∫

∆̄2×Z2

wdῩn = B2
n

∫

w(x̄, F̄ nx̄, Sn(x̄)− kn)dµ̄∆

= B2
n

∫ ∫

2πT2

ŵ(x̄, F̄ nx̄, t)eit(Sn(x̄)−kn)dt dµ̄∆

= B2
n

∫

ρ−1(x̄)P nρ(x̄)

(
∫

2πT2

ŵ(x̄, F̄ nx̄, t)eit(Sn(x̄)−kn)dt

)

dµ̄∆

= B2
n

∫ ∫

ρ−1(x̄)e−itknw2(x̄)ŵ3(t)P
n
t (ρ(x̄)w1(x̄)) dt dµ̄∆

Using lemma 34 and the Nagaev type theorems (28 and 30) we can substitute P n
t ρw1

by λn
t ρt

∫

∆̄
ρw1dm̄ in the domain |t| < δ and we get an error term O(B2

nθ
n) inside the

integration wrt µ̄∆. This involves the error terms both from lemma 34 and from the
Nagaev-type theorems (28 and 30).

B2
n

∫

∆̄2×Z2

wdῩn =

∫
(

ρ−1(x̄)w2(x̄)

(
∫

w1dµ̄∆

)(
∫

|t|<δBn

ŵ3

(

t

Bn

)

e−it kn
Bn λn

t
Bn

ρ t
Bn

(x̄)dt

)

+ o(1)

)

dµ̄∆

→
∫

Rd

(
∫

w1dµ̄∆

)(
∫

w2dµ̄∆

)

ŵ3(0)e−itke
−tΣtT

2 dt

=
1

(2π)2

∫

Z2

w(x̄, ȳ, ξ)dµ̄2
∆ × d♯

1

det Σ
2πe−

1
2
kΣ−1kT

In the above limit the order of the error term is meant in L-norm (cf. lemma 34 and
theorems 28 and 30), this implies that limiting makes the error term vanish (cf. definition
of L-norm). The same applies for the x̄ dependence of ρ t√

n
. Remember that in the infinite

horizon case only L3-norm continuity was stated, but this is also enough. The convergence

in t is dominated, since in the finite horizon case ∃C ∀|t| ≤ δBn

∣

∣

∣
λn

t
Bn

∣

∣

∣
≤ e−C|t|2 . In the

infinite horizon case ∃C ∀|t| ≤ δ 3
√
n ∀n > n0(δ)

∣

∣

∣
λn

t
Bn

∣

∣

∣
≤ e−C|t|2, and ∃C ∀δ 3

√
n ≤

|t| ≤ Bn ∀n > n0(δ)
∣

∣

∣
λn

t
Bn

∣

∣

∣
≤ e−C|t|2/ log |t|.
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Proof of theorem 2. For the non-discrete free flight function ψ we can deduce the local
limit theorem easily. We know theorem 35 for κ, and we know the cohomology relation
from lemma 24. Applying the mapping (x, y, ξ) 7→ (x, y, ξ + h(x) − h(y)) to the triple
(x, T nx, Sn(x)− kn) we get the same with ψ in the place of κ. Applying the same map-
ping to the limit measure, it transforms the following way: the third component will be
convoluted with the distribution of h and that of −h. The reason for convolution is that
the coordinate functions were independent in the limit in theorem 35.

Theorem 36. Let jn ∈ Z2 be such that jn

Bn
→ j ∈ Rd, and kn ∈ Z2 be such that

kn

Bn
→ k ∈ Rd. Denote the joint distribution of Sm − jm, Sm+n − jm − kn by υm,n! Then

lim
m,n→∞

B2
mB

2
nυn,m →

e−
1
2
jΣ−1jT

e−
1
2
kΣ−1kT

det2 Σ(2π)2
♯2.

Proof. Again as in the previous proof if we consider the joint distribution Υm,n of the
5-tuple (x, Tmx, Tm+nx, Sm(x)− jm, Sm+n(x)− jm− kn), then it is enough to prove, that

lim
m,n→∞

B2
mB

2
nῩm,n →

e−
1
2
jΣ−1jT

e−
1
2
kΣ−1kT

det2 Σ(2π)2
µ̄3

∆ × ♯2.

To prove convergence we are going to integrate test functions: w(x̄, ȳ, z̄, ξ, ζ). Again
as in the previous proof we restrict ourselves to product functions w(x̄, ȳ, z̄, ξ, ζ) =
w1(x̄)w2(ȳ)w3(z̄)w4(ξ)w5(ζ), such that w1, w2 and w3 are in L, w4 and w5 are summable
(integrable wrt ♯). We are going to use the inverse transform:

w(x̄, ȳ, z̄, ξ, ζ) =

∫

ŵ(x̄, ȳ, z̄, t, u)ei(tξ+uζ)dt du

=

∫

w1(x̄)w2(ȳ)w3(z̄)ŵ4(t)ŵ5(u)e
i(tξ+uζ)dt du

B2
mB

2
n

∫

∆̄3×Z4

w dῩm,n =

B2
mB

2
n

∫ ∫

2πT4

ρ−1e−i(t+u)jm−iuknPm
t+u

(

ρeiu(Sm+n−Sm)ŵ(x̄, F̄mx̄, F̄m+nx̄, t, u)
)

dt du dµ̄∆

Pm
t+u

(

ρeiu(Sm+n−Sm)ŵ(x̄, F̄mx̄, F̄m+nx̄, t, u)
)

=

= eiuSnw2(x̄)w3(F̄
nx̄)ŵ4(t)ŵ5(u)P

m
t+u (ρw1(x̄)) =

= eiuSnw2(x̄)w3(F̄
nx̄)ŵ4(t)ŵ5(u)

(

ρt+uλ
m
t+u

(
∫

w1dµ̄∆

)

+O(B2
mθ

m)

)

Collecting the terms for the outer integration wrt µ̄∆ and using again P invariance
∫

∆̄

eiuSnw2(x̄)w3(F̄
nx̄)ρt+udm̄ =

∫

∆̄

P n
(

eiuSnw2(x̄)w3(F̄
nx̄)ρt+u

)

dm̄

=

∫

∆̄

w3(x̄)P
n
u (w2(x̄)ρt+u) dm̄

=

∫

∆̄

w3(x̄)

(

λn
uρu

∫

∆̄

w2(x̄)ρt+udm̄+O(θm)

)

dm̄

From this point the variables can be handled separately and the argument of the
previous proof should be repeated twice to get the statement of this theorem.
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5.2 Recurrence

In this subsection we want to apply the local limit theorem in order to get the recurrence
for the planar Lorentz-process, a result already proved in [Sch 98] and in [Conze 99] for
the finite horizon case. Theorem 35 ensures that µ(Sn ∈ D) > C

B2
n

for some C > 0. It
immediately extends to any fixed domain.

Theorem 37. The planar Lorentz process is almost surely recurrent.

Proof. The proof follows the ideas used in [KSz 85]. The sequence of events

An = {Sn ∈ D}

fulfils the condition of Lamperti’s Borel-Cantelli [Spi 64]:

∞
∑

k=1

µ{Ak} =∞

is clear by the main theorem

lim inf
n→∞

n
∑

j,k=1

µ(AjAk)

(

n
∑

k=1

µ(Ak)

)2 < c

in the finite horizon case the denominator is of order log2 n, the numerator will be de-
composed as follows:

n
∑

j,k=1

µ(AjAk) ≤
∑

min(j,k)<log n

µ(AjAk) +
∑

|j−k|<logn

µ(AjAk) +
∑

j,k,|j−k|≥logn

µ(AjAk).

The first sum can be estimated by 2 logn
∑n

k=1m(Ak) which is of order log2 n. The same
is true for the second term as well. Concerning the third one, by theorem 36 we know
that the asymptotics of this term is proportional to 1

jk
, so the sum is of order log2 n.

In the infinite horizon case the denominator is of order (log log n)2. We apply the same
decomposition rule for the numerator as in the finite horizon case, but with log logn in the
summation limits instead of log n. In this way all the terms will be of order (log logn)2.

Consequently, by Lamperti’s lemma

µ{Ak i. o.} > 1

c
.

Since this event is invariant under the ergodic dynamics, it happens almost surely.

Finally we note that, as observed by Simányi [Sim 89] the recurrence of the planar
Lorentz process is equivalent to saying that the corresponding billiard in the whole plane
(with an infinite invariant measure) is ergodic (see also [Pen 00]).
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