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Ezen értekezés b́ırálatai és a védésről készült jegyzőkönyv a későbbiekben a Bu-
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Chapter 1

Introduction

The theory of billiards is one of the fields of Dynamical Systems theory that is most
directly motivated by Statistical Physics. In the Dynamical Systems literature, a billiard
is the dynamical system describing the motion of a single point particle which moves freely
in a container Q – which can have a complicated shape – and bounces back elastically
when reaching the walls. However, this also covers the motion of several bodies with
elastic collisions: instead of many bodies in a few dimensions, one considers a single point
particle in many dimensions. The condition that the bodies cannot overlap is translated
into the condition that the point particle cannot enter certain regions – that is, into the
shape of the container Q. Actually, this is where the name comes from: the motion of
billiard balls on a table can be described by such a dynamical system if we neglect friction
and the loss of energy at collisions. This example also demonstrates well the key feature
of the most studied billiard systems: the motion of the system is highly unpredictable
if the initial conditions are not known precisely. In exactly which sense this motion is
unpredictable, is the basic question of billiard theory.

One important example of billiard systems with strong physical motivation is the class
of hard ball systems. They are simple mathematical models for ideal gases: atoms are
modeled by balls which bounce elastically and momentarily. Their history is strongly con-
nected to the Boltzmann Ergodic Hypothesis, a fundamental assumption of equilibrium
Statistical Physics. This hypothesis states that in any large physical system in equi-
librium, the time average of any measurable quantity will tend, as time goes
to infinity, to the “ensemble average”, that is, the average value of the measur-
able on many realizations of the system, chosen according to the equilibrium
distribution. This equality of the averages is called the ergodicity of the system.

At the present state of science, this statement is far too general for a rigorous math-
ematical discussion. The first problem is with the word “large”: it is unclear how large
the system is excepted to be, or in what sense a limit should be taken as the size goes to
infinity. The second problem is with the “equilibrium distribution”: the theory of dynam-
ical systems has many widely investigated open questions concerning in what systems,
and in which sense, an equilibrium distribution exists at all. However, the main problem
is with the phrase “any physical system”: we don’t have any unified way of handling the
vast variety of physical systems one can imagine: we are forced to look at them “one at
a time”.

In 1963 Sinai [37] proposed to study the ergodicity of hard ball systems – systems of
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6 CHAPTER 1. INTRODUCTION

hard balls moving on a flat torus (thus colliding with each other only). These systems are
complicated enough to show many statistical properties of the ideal gases they are used
to model, yet simple enough to be accessible with tools of rigorous Mathematics. The
existence of a unique equilibrium distribution is no problem. It was Sinai’s great discovery
that the problem of “what is a large system” is also easy to handle: he conjectured that
such a system is ergodic for every possible number of balls greater than one. Ergodicity is,
of course, understood on the subset of the phase space defined by the trivial invariants of
motion (energy, momentum and centre of mass). This conjecture is the Boltzmann-Sinai
Ergodic Hypothesis. Sinai proved the conjecture in 1970 for the simplest case of two balls
in two dimensions [38]. Since then, much work has been done (by, among others, Sinai,
Bunimovich, Chernov, Krámli, Simányi and Szász), and now the conjecture is near to
being proven in general. This thesis also contains one contribution: in Chapter 4 we give
an improved proof of the local ergodicity theorem for semi-dispersing billiards (including
hard ball systems). This improvement is necessary in view of the results of Chapter 3 on
the structure of the singularity set of these systems.

Another important and physically motivated class of billiard systems is the class of
Lorentz processes. A Lorentz Process is a simple deterministic model of Brownian motion:
a single particle moves in a periodic array of strictly convex obstacles (called scatterers),
and bounces back elastically when reaching one. This could be a model e.g. of an electron
moving in a crystal lattice. Many results show that the motion of such a particle resembles
in many aspects a random walk (and a Wiener-process), but many questions are still open,
especially if the system is high (more than two) dimensional.

Convention 1.1. Throughout this thesis, when concerning dimensions, “high” or “multi”
mean “more than two”.

Part of this thesis is motivated by one of these open questions, the decay of correlations
in (high dimensional) Lorentz processes.

In Dynamical Systems, there are many notions of “chaotic” or “statistical” behaviour.
In this thesis we mainly look at two of these: ergodicity (in Chapter 4) and exponential
decay of correlations (EDC) (in Chapter 5). A third notion, hyperbolicity is used exces-
sively as a tool, and a fourth, the central limit theorem (CLT) is obtained as a byproduct
of EDC.

For a better understanding of the work, we give the definitions we use, of these notions
here:

Definition 1.2. The dynamical system (M,T, µ) is ergodic if every µ-measurable T -in-
variant set A ⊂M has either µ(A) = 1 or µ(A) = 0.

Ergodic components of the dynamical system (M,T, µ) are the atoms of the σ-algebra
of T -invariant µ-measurable subsets of M . Obviously, (M,T, µ) is ergodic if and only if
it has an ergodic component with measure 1.

Definition 1.3. We say that the dynamical system (M,T, µ) has exponential decay of
correlations (EDC) , if for every pair of Hölder-continuous functions f, g : M → R there
exist constants C <∞ and a > 0 such that for every n ∈ N∣∣∣∣∫

M

f(x)g(T nx)dµ(x)−
∫

M

f(x)dµ(x)

∫
M

g(T nx)dµ(x)

∣∣∣∣ ≤ Ce−an.
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Definition 1.4. We say that (M,T, µ) satisfies the central limit theorem (CLT) (for
Hölder continuous functions) if for every η > 0 and every Hölder-continuous function
f : M → R with

∫
f dµ = 0, there exists a σf ≥ 0 such that

1√
n

n−1∑
i=0

f ◦ T i distr−→ N (0, σf )

where N (0, σf ) is the Gaussian distribution with variance σ2
f .

Figure 1.1 demonstrates the key feature of billiards which is responsible for their
chaotic behaviour. This is the “scattering” mechanism which causes (certain) nearby
trajectories to divert from each-other. We show two well-distinguished cases. One is a
dispersing billiard, meaning that scatterers are strictly convex, and so parallel trajectories
can be diverted (from each other) in all directions through a single collision. The other
is only semi-dispersing : scatterers are not strictly convex, resulting in a “less effective”
scattering.

(a) dispersing (b) semi-dispersing

Figure 1.1: scattering in dispersing and semi-dispersing billiards

1.1 History

Mathematical studies of billiards have begun over thirty years ago. Ya. Sinai in his seminal
paper of 1970 [38] described the first large class of billiards with truly chaotic behaviour –
with nonzero Lyapunov exponents, positive entropy, enjoying ergodicity, mixing, and (as
was later discovered by G. Gallavotti and D. Ornstein [22]) the Bernoulli property. Sinai
billiards are defined in two dimensions (d = 2), i.e. the container Q ⊂ R2 or Q ⊂ T2, and
the boundary of Q must be concave (i.e., convex outward Q), similarly to the Lorentz
process (where the scatterers are convex). Due to the geometric concavity, the boundary
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∂Q scatters (disperses) bundles of geodesic lines falling upon it, see Figure 1.1. For this
reason, Sinai billiards are said to be dispersing.

Lorentz processes in two dimensions have been studied very thoroughly since 1970.
Many fine ergodic and statistical properties have been established by various researchers,
including P. Bleher, L. Bunimovich, N. Chernov, J. Conze, C. Dettmann, G. Gallavotti,
A. Krámli, J. Lebowitz, D. Ornstein, K. Schmidt, N. Simányi, Ya. Sinai, D. Szász, and
others (see the references). The latest major result for this model (the exponential decay of
correlations) was obtained by L.-S. Young [43]. The success in these studies had significant
impact on modern statistical mechanics. The methods and ideas originally developed for
the planar Lorentz process were applied to many other classes of physical models – see
recent reviews by Cohen, Gallavotti, Ruelle and Young [21, 32, 44].

On the other hand, the progress in the study of the multi-dimensional Lorentz process
(where d > 2) has been much slower and somewhat controversial. Relatively few papers
were published covering specifically the case d > 2, especially in contrast to the big
number of works on the 2-D case. Furthermore, the arguments in the published articles
were usually rather sketchy, as in Chernov’s paper [11]. It was commonly assumed that
the geometric properties of the multi-dimensional Lorentz process were essentially similar
to those of the 2-D system, and so the basic methods of study should be extended from
2-D to any dimension at little cost. Thus, the authors rarely elaborated on details.

Recent discoveries proved that spatial dispersing billiards are very much different from
planar ones. Bunimovich and Reháček [10] studies of astigmatism (the role of which was
already stressed by Wojtkowski in [42]), in the somewhat different context of focusing
billiards, emphasized the known fact that billiard trajectories that are initially parallel,
may focus very rapidly in one plane and very slowly in the orthogonal planes. Astigmatism
is unique to 3-D (and higher dimensional) billiards, it cannot occur on a plane.

In Chapter 5 we will also consider a generalization of the above billiard systems, the
so-called “soft billiard”. The history of soft billiards is as old as that of the hard ones.
After many works of others, Donnay and Liverani in [17] have proven ergodicity of 2-
dimensional systems under nearly necessary conditions. Exponential decay is discussed
for some of these systems in this thesis. For the higher dimensional case, to my knowledge,
the first result is the proof of hyperbolicity in [7], not yet appeared. Some more details
about the history of soft billiards are given in Section 5.1.

1.2 Structure of the thesis, results

In proofs of ergodicity of billiards – especially in higher dimensions – the key tool is
the “Fundamental Theorem” or “local ergodicity theorem”, which was first proven by
Chernov and Sinai in [13]. Later several modifications were presented by others. The
version of Krámli, Simányi and Szász ([28]) is described in detail in Chapter 4.

In proofs of exponential decay of correlations, the key tool is the tower construction
of Young [43]. We don’t give a description of this method here, instead, we use a theorem
of Chernov from [12] which lists explicit geometrical properties of the system that imply
the applicability of Young’s construction, and thus EDC and CLT. In Chapter 5, the
conditions of Chernov’s theorem are checked for a modification of the Lorentz process. A
precise formulation of Chernov’s theorem is given in the Appendix.
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In Chapter 2 we give a precise definition of the billiard dynamical system, and intro-
duce some basic notions of the theory.

In Chapters 3 and 4 we consider multi-dimensional dispersing billiards. We show that
multi-dimensionality has great effect on the dynamics in the dispersing case as well – the
system requires much more elaborated study than the 2D process. As already mentioned,
much of this work was motivated by the problem of EDC in high dimensional Lorentz
processes. This property is still not proven. Chapter 3 points out an important difficulty
in the application of Chernov’s (and, actually, also Young’s) method. This is the main
result of that chapter, Theorem 3.1 about a “pathological” behaviour of singu-
larity manifolds, meaning the blow-up of curvatures at certain submanifolds.
Actually, singularity manifolds are, in these pathologies, not even differentiable. Indeed,
as it will be shown in Chapter 3, the unit normal vector to the singularity manifold has
different directional limits at the pathological points – the geometry is pretty much like
the classical Whitney umbrella x2z = y2 in R3. This phenomenon is again unique to
billiards in dimension d ≥ 3.

This discovery calls for an immediate reconsideration of the local ergodicity theorem,
this is done in Chapter 4. An important new condition, the “local Lipschitz decompos-
ability of singularities” is added, in order to counterbalance the pathological behaviour
of curvatures. This property is conjectured to be true in general, however, we are only
able to prove it for the case of algebraic billiards – when scatterers are defined by alge-
braic equations. The main results of the chapter are theorems 4.16 and 4.18, which
state local ergodicity when singularities are locally Lipschitz decomposable,
and Corollary 4.39, which states local ergodicity for algebraic billiards. Fortu-
nately, almost all important examples we know of, are algebraic.

Due to the pathologies described in Chapter 3, the proof of exponential correlation
decay for high dimensional billiards is still very hard. This is also indicated by the fact
that in the 6 years that have elapsed by the appearence of [43], noone was able to apply
the method for this case. Therefore, in Chapter 5 we return to the problem of EDC in
a modified approach: Instead of high dimensions, we look at a modification of the two-
dimensional billiard system, a so-called soft billiard, where the collision with the scatterers
is not momentary, but, instead, is a motion in some potential. See the details there. The
main result of that chapter is Theorem 5.9, which states exponential decay of
correlations (and the central limit theorem) for a class of soft billiard systems.
Proof of EDC for such a system requires extra work in two dimensions. However, there is
hope (see Chapter 6) that in high dimensions such a modified system could be handled
easier than the original: the pathological behaviour of singularities from Chapter 3 does
not show up. This research is in progress: at the moment, hyperbolicity is proven for a
class of multi-dimensional soft billiards [7]. Discussion of this is already out of the scope
of this thesis.

It’s useful to observe that the proof of EDC for hard ball systems is yet further away.
That is, in some sense, hard ball systems are more difficult than the multi-dimensional
Lorentz process. The main difference is that a Lorentz-process – even in high dimension
– is a dispersing billiard, while hard ball systems (of more than two balls) are only semi-
dispersing (see Figure 1.1).

All of this work is based on the material that has appeared in the papers [4], [3],
[6] and [5]. Unfortunately, the notation used in these papers often had to be changed
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considerably, in order to keep notation consistent within this thesis.



Chapter 2

Preliminaries on billiards

2.1 The dynamical system

In this section we describe the traditional ‘hard collision’ billiard systems, which are
called billiards in the literature. This notion will be used through Chapters 3 and 4. In
Chapter 5 we will discuss similar, yet different systems called ‘soft billiards’. There will
be given new definitions of the dynamical system.

A billiard is a dynamical system describing the motion of a point particle in a con-
nected, compact domain Q ⊂ Td. In general, the boundary of the domain, ∂Q is assumed
to be piecewise C3-smooth (see Remark 2.10). However, for the results of Section 4.4 to
hold, we will need to impose the further restriction of algebraicity on the billiard. Inside
Q the motion is uniform while the reflection at the boundary ∂Q is elastic. As the ab-
solute value of the velocity is a first integral of motion, we fix this value to be 1. So the
phase space of the billiard flow is the set Q of possible configuration points, each point
equipped with possible unit velocity vectors. The set of possible velocity vectors is typi-
cally Sd−1, however, at ∂Q, where momentary collisions take place, it is only a hemisphere
– pre-collision (incoming) and post-collision (outgoing) velocities have to be identified, so
that for every moment in time, the state of the particle can be uniquely defined. So, the
phase space is M = Q × Sd−1/ ∼, where ∼ is the equivalence of appropriate incoming
and outgoing velocities. Still we will denote a phase point x as x = (q, v) with q ∈ Q and
v ∈ Rd, |v| = 1. The dynamics St is the function from M to M that tells in which point
St(x) of the phase space the system will be at time t, if it is in x at time zero. The usual
invariant measure for this system is the Liouville probability measure µ0 on M, which is
essentially the product of the Lebesgue measures, i.e. dµ0 = const.dL0dH where L0 is the
Lebesgue measure on Q and H is the Riemannian measure on Sd−1.

Definition 2.1. The resulting dynamical system (M, {St, t ∈ R}, µ0) is the billiard flow.

Instead of the flow, one often considers a discrete time version of the system by looking
only at collision moments. In other words, the boundary ∂Q defines a natural cross-section
for the billiard flow. Consider namely

M = {(q, v) ∈M | q ∈ ∂Q} .

With slight abuse of notation, one can write M = ∂M. (Strictly speaking, M has no
boundary after the identification of incoming and outgoing velocities.)

11



12 CHAPTER 2. PRELIMINARIES ON BILLIARDS

Notation. n(q) will denote the unit normal vector of ∂Q at q, pointing inward Q.
ϕ will denote the collision angle, which is the angle of n(q) and the outgoing velocity

v, such that cosϕ = 〈v, n(q)〉. When d = 2, it will be convenient to consider ϕ as a signed
angle, ϕ ∈ [−π

2
, π

2
].

We will always use outgoing velocities, such that

M = {(q, v) ∈M | q ∈ ∂Q, 〈n(q), v〉 ≥ 0} = ∂Q× Sd−1
+ ,

where + means that we only take into account the hemisphere of the outgoing velocities.
The discrete time dynamics T will denote the first return map to M : For any x ∈M

we set t+(x) := inf{t > 0| Stx ∈ M}, and T+x := St+(x)x (of course, T+ : M → M).
Then the Poincaré section map T : M →M is defined as Tx := T+x for x ∈M .

The natural invariant measure for this map, which is the ‘projection’ of the flow-
invariant measure µ0 onto M by the dynamics, is again absolutely continuous with respect
to the product of Lebesgue measures:

dµ = const.〈n(q), v〉dLdH = const. cosϕdLdH,

where L is the Riemannian measure on ∂Q and H is still the Riemannian measure on
Sd−1.

Definition 2.2. The resulting discrete time dynamical system (M,T, µ) is the billiard
map.

Remark 2.3. If ∂Q is only piecewise smooth (that is, there billiard has ‘cornar points’),
a precise definition of the phase space and the dynamics requires more care. For example,
at certain points the set of possible outgoing velocities is not a hemisphere – it may be
less or more, depending on the way the boundary components intersect. Also, n(q) is not
unique, and it is not clear what “elastic collision” should mean. Thus the dynamics is not
uniquely defined (see also Remark 2.9). In this work we don’t investigate these problems
– the reader may see the literature, e.g. [34].

We will work with semi-dispersing billiards, which means that the smooth components
of ∂Q are convex (as seen from outside Q). If these components are strictly convex, the
billiard is dispersing. In other words:

Definition 2.4. A billiard system is semi-dispersing if for any point q of a smooth com-
ponent of ∂Q, the curvature operator (or second fundamental form) of ∂Q – which is
actually the derivative operator of the function n(q) – is positive semi-definite. If this
operator is positive definite for every q ∈ ∂Q, the billiard is dispersing.

The name ‘dispersing’ comes from the effect that particles reaching ∂Q at nearby
points with parallel velocities will be diverted from each-other – a planar front will be
‘scattered’ (see Figure 1.1 and Section 2.2). In a semi-dispersing billiard, planar fronts
are scattered in some directions. In these cases, components of the complement of Q are
often called ‘scatterers’.

Throughout this work, unless otherwise emphasized, we will work with the discrete
time dynamical system. Most results obtained can be transferred to the flow, e.g. the
ergodicity of the map implies that of the flow (see [28]). In Chapter 5 we will discuss a
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modification of the above system, where collisions are not momentary, the walls are ‘soft’.
See the details there.

We finish this section by one more

Notation. ρ will denote the Riemannian metric on M arising from the natural bundle
structure (cf. [4]).

2.2 Fronts

Our most important tools in describing hyperbolicity are local orthogonal manifolds or
simply fronts. A front W is defined in the flow phase space rather than in the Poincaré
section.

Definition 2.5. Take a smooth one codimensional submanifold E of the whole configu-
ration space Q, and add the unit normal vector v(q) of this submanifold at every point q
as a velocity, continuously. Consequently, at every point the velocity points to the same
side of the submanifold E. The set

Σ = {(q, v(q)) | q ∈ E} ⊂ M, (2.1)

where v : E → Sd−1 is continuous (smooth) and v ⊥ E at every point of E, is called
a front.

The derivative of this function v, called B plays a crucial role: dv = Bdq for tangent
vectors (dq, dv) of the front. B acts on the tangent plane TqE of E, and takes its values
from the tangent plane J = Tv(q)S

d−1 of the velocity sphere. These are both naturally
embedded in the configuration space Q, and can be identified through this embedding.
So we just write B : J → J . B is nothing else than the curvature operator of the
submanifold E. Yet we will prefer to call it second fundamental form (SFF), in order to
avoid confusion with other curvatures that are coming up. Obviously, B is symmetric.

Definition 2.6. A front is called convex if its SFF B is positive semi-definite. A front is
called strictly convex if its SFF B is positive definite.

In billiards, fronts remain fronts during time evolution – at least locally, and apart
from some singularity lines.

Remark 2.7. We note that this will not exactly be the case in the ‘soft’ billiards of
Chapter 5. However, fronts there can be used just as good as in ‘hard’ billiards: time can
be rescaled locally so that slower particles of the front are ‘awaited’. This will not modify
the discrete time dynamics we use there.

When we talk about a front, we sometimes think of it as the subset (submanifold)
of the (whole) flow phase space M (for example, when we talk about time evolution
under the flow), but sometimes just as the submanifold E of the configuration space Q
(for example, when we talk about the tangent space or the curvature of the front). This
should cause no confusion.
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2.3 Hyperbolicity

Hyperbolicity is a key property of most billiard systems, used heavily in the proof of other
properties representing strong statistical behaviour. In general, hyperbolicity means that
all Lyapunov exponents are non-zero. 1 In Hamiltonian systems (including billiards) this
means that at every point of the phase space the tangent space can be decomposed into
two subspaces of equal dimension, on one of which (the unstable subspace) the dynamics
is expanding, and on the other (the stable subspace) contracting. However, in billiards
the notion of hyperbolicity is always connected to the geometrical picture of instability:
the unstable subspace corresponds to some strictly convex front. See the outgoing front of
Figure 1.1 (dispersing case) for an example. Phase points forming such a front will depart
from each other, corresponding to expansion is the unstable direction. In semi-dispersing
billiards, convex fronts remain convex during their time evolution, so this expansion is
preserved. In other examples, including focusing billiards (e.g. the famous Bunimovich
stadium) and soft billiards, the mechanism is more complicated, but the essence is the
same: convex fronts remain convex. Section 5.2 describes this mechanism in detail for
soft billiards. There a precise statement of (uniform) hyperbolicity is also formulated
(Proposition 5.17). A further notion connected to hyperbolicity, the sufficiency of a
phase point will be described in Section 4.1.1.

2.4 Singularities

Consider the set of tangential reflections, i.e.

S0 := {(q, v) ∈M | 〈v, n(q)〉 = 0} = ∂M.

It is easy to see that the map T is not continuous at the set T−1S0. Further pre-images
of S0 are

Sk := T−kS0 (k > 0),

the so-called ‘higher order’ singularities. The singularity set (i.e. where it is not continu-
ous) for a higher iterate T n is

S(n) = ∪n
i=1Si. (2.2)

What is even worse, the derivative of the dynamics blows up near these singularities, as
we will see. In the multi-dimensional case (d > 2) this is crowned by a vast anisotropy:
expansion is blowing up in one direction, while disappearing in the other (both within
the unstable subspace). This is the heart of the phenomenon we discuss in Chapter 3.

Generally it was assumed in the literature that the set S(n) is a finite collection of
smooth and compact submanifolds of the Poincaré phase space M . However, for multi-
dimensional semi-dispersing billiards these manifolds can be treated as submanifolds of M
only in a topological sense (see Chapter 3). So we view all these sets as (finite unions of)
topologically embedded one codimensional compact submanifolds with boundary. They
have smooth manifold structure in the interiour, however, the behaviour at the boundary
is irregular (the curvature diverges).

1In the case of a billiard flow, one Lyapunov exponent – corresponding to the flow direction – is
necessarily zero. Hyperbolicity means that all others are nonzero. See also Section 4.1.1.



2.5. DIMENSIONS OF DIFFERENT MANIFOLDS 15

Remark 2.8. Above the (tangential) singularities have been introduced for the Poincaré
section map T . But in some of the arguments later, they will also be needed for the flow.
Remark 4.28 will discuss how this extension of the singularities is understood.

Remark 2.9. In case the boundary ∂Q is only piecewise smooth, further singularities
– the multiple collisions – arise. As already mentioned in Remark 2.3, at such points
neither n(q), nor the flow dynamics is uniquely defined, thus we can speak about several
“branches” of a trajectory. The singularity set must also be treated with more care. For
this reason, in all cases we will denote by S+ the set of all singular phase points, which can
be points of S0 or multiple collision points supplied with the possible outgoing velocities.
(See [34] and its references for details). In the present work we consider only tangential
singularities. Multiple collisions can be treated in an analogous way, although the main
difficulty – the blow-up of the derivative of the dynamics – does not appear here.

Remark 2.10. the condition that we set in the definition of the billiard, that ∂Q should
be piecewise C3, ensures exactly that S1 is piecewise C1. However, smoothness of S2 can
not be ensured by higher regularity of ∂Q.

2.5 Dimensions of different manifolds

In order to make the picture clearer, let us summarize the dimensions of the different
spaces and manifolds that show up. Suppose that a billiard particle is moving in d
dimensions, that is, on the torus Td. Then the dimension of the flow phase space is
2d − 1 (the energy is constant). The phase space of the Poincaré section map is 2d − 2
dimensional. Stable and unstable subspaces are d− 1 dimensional (both for the flow and
the map). Singularity manifold have 2d−2 dimensions for the flow and 2d−3 dimensions
for the map.

2.6 Different notions of norms and metrics

In this section we summarize the different notions of metrics and distances used in the
theory of billiards. This description is rather technical, and can be skipped for a first
reading. It will only be essential for the understanding of technical details of chapters 4
and 5.

Let us assume that two phase points x = (q, v) and x′ = (q′, v′) and a vector in the
tangent plane at x, w = (δq, δv) are fixed. Most of the metric notions of the theory use
the Euclidean norm ‖w‖ =

√
|δq|2 + |δv|2 and the generated Euclidean distance ρ(x, x′).

The measure on M corresponding to this Riemannian metric (generated by the volume
form) is simply the Lebesgue measure const. dq dv. However, in several other statements
referred (see e.g. [28], especially the Erratum), two other metrics come about. For their
definition we fix the notation for two d−1 dimensional linear subspaces in Rd: T , the one
orthogonal to n(q) and J , the one orthogonal to v. Furthermore we introduce the linear
operator V : J → T which is simply the projection parallel to v. (On details see [4].)

This way we may define the invariant norm of a vector: ‖w‖i =
√
|V −1δq|2 + |δv|2

and the generated invariant distance ρi(x, x
′). The name ‘invariant’ comes from the fact

that the measure corresponding to this Riemannian metric (via the volume form) is the
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invariant measure dµ = const. |〈v, n(q)〉| dq dv. Note that ‖w‖|〈v, n(q)〉| ≤ ‖w‖i ≤ ‖w‖,
thus the two distances are equivalent if we can ensure |〈v, n(q)〉| ≥ c for some constant c.
This happens throughout the proof of the Fundamental Theorem (cf. Section 4.3) where
we work in a neighbourhood of an interiour point x ∈ M and thus the two metrics are
(locally) equivalent.

The third metric-type quantity is the so-called p-metric ‖w‖p = |V −1δq|. Even though
this is a degenerate metric in general (that is the reason for the name ‘p’ – pseudo), it
is non-degenerate when restricted to vectors w corresponding to convex fronts (cf. [28],
[4]). Its importance is related to the fact that the most convenient way of handling
hyperbolicity issues is in terms of the p-metric (see e.g. Lemma 4.2).

Related to the above mentioned metrics there are two ways of measuring distance of a
phase point x = (q, v) from the set of tangential reflections S0. z(x) = ρi(x,S0) is simply
the distance in terms of ρi. Alternatively we may consider tubular neighbourhoods Ur

(of radius r) of the flow trajectory starting out of x in the configuration space Q. Then
define ztub(x) as the supremum of the radii r for which the tube does not intersect the set
of singular reflections (see [13] and [28], especially the Erratum). It is not difficult to see
that z(x) ≤ ztub(x).



Chapter 3

Geometry of singularities in
multi-dimensional dispersing
billiards

In several papers that appeared, singularities were assumed – either explicitly or implicitly
– to consist of smooth one codimensional submanifolds of the phase space. Often, even a
uniform bound on the curvature was assumed, independent of the order of the singularity.
These assumptions were needed in order to estimate the measures of neighbourhoods
of the singularities. Such a uniform bound on curvature does exist in 2-dimensional
billiards. However, it does not exist in higher dimensions. In this chapter we present a
counter example in a 3-dimensional dispersing billiard, but similar counter examples exist
in every multi-dimensional semi-dispersing billiard. In correspondence with the notations
introduced in Section 2.4, we will use the notation S1 and S2 for the set of those phase
points, the trajectories of which have tangential first and second collisions, respectively.
We will demonstrate that already the curvature of S2 has no upper bound, i.e. the
curvature blows up near a point where the singularity manifold is not even differentiable.

To avoid confusion let us set up one further convention. As already mentioned, billiard
dynamics has singularities: points where the billiard map is not continuous. These singu-
larities occur on one codimensional submanifolds of the phase space. The development of
the theory is based on considering connected and essentially smooth components of the
singularity manifolds. The recently discovered phenomenon described below shows that
these components are, indeed, only essentially smooth. On certain two codimensional
submanifolds of them pathologies occur: singularities in the sense of algebraic singularity
theory. To avoid confusion we will refer to these singular two codimensional submani-
folds as ‘pathologies’ – in contrast to the ‘singularities’, the singularity manifolds of the
dynamics itself.

3.1 Counter example for bounded curvature

In this section we prove

Theorem 3.1. Generally in multi-dimensional dispersing billiards, the cur-
vature of S2 is not bounded. The unit normal vector is not a continuously
differentiable function of its base point.

17
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The proof is rather implicit. We start with a specific 3D dispersing billiard and the
indirect assumption that the curvature is bounded, and find that the two-step singularity
intersects the one-step singularity tangentially at every point of their intersection, except
for a one codimensional degeneracy, where the intersection is not tangent. However –
as a consequence of bounded curvature – our indirect assumption implies that the unit
normal vector of S2 is a continuously differentiable function of its base point. Thus the
set of those points where the two singularity manifolds intersect non-tangentially is open
in S1∩S2. This way we get a contradiction. Then we argue that the same situation would
occur in any multi-dimensional dispersing billiard.

Consider the situation demonstrated in Figure 3.1. To perform as transparent an
argument as possible,

• the parameters on the figure and in the calculations below are different,

• the first scatterer, the surface where the trajectories start out, is a plane – thus it
is not strictly convex.

Nevertheless the reader can easily see that these modifications have no real significance.
We are in 3 dimensions, so take a standard 3D Cartesian coordinate system. Let the
first ‘scatterer’ be the {z = 0} plane. Let the second scatterer be the sphere with centre
O1 = (0,−1, 1) and radius R = 1. Let the third scatterer be the sphere with centre O2 =
(1, 0, 2) and radius R = 1. We look at the component of the phase space corresponding
to the first scatterer, near the phase point (x0 = 0, y0 = 0, vx0 = 0, vy0 = 0). Of course,
vz0 = 1, and the trajectory is the z axis. We are interested in the singularity manifold
belonging to a tangent second collision. To describe this, let D ∈ R4 be the set of those
points (x, y, vx, vy) the trajectories of which hit the first sphere. Let r : D → R be the
distance of the trajectory and O2. That is, the singularity manifold we are looking at is
the set

S2 = {(x, y, vx, vy) ∈ D | r(x, y, vx, vy) = 1}.
So, if we want to construct the normal vector of the singularity manifold, we just need
to calculate the gradient of r. We will directly calculate the partial derivatives. Since
(x0, y0, vx0, vy0) = (0, 0, 0, 0) is on the boundary of D, we can only hope to find one-side
partial derivatives. What is even worse: (x, y, vx, vy) = (x, 0, 0, 0) ∈ D only if x = 0, so
we cannot differentiate with respect to x. The same is true for vx. What we can do is
take these partial derivatives at the points (0, y, 0, vy) and then the limits

lim
y→0

lim
vy→0

∂

∂x
r(x, y, vx, vy)

∣∣
x=vx=0

.

(We will see that it is important to fix x = vx = 0. If we were to approach the origin via
a different path, we could get a different limit.)

We start with the indirect assumption that S2 has bounded curvature. This implies
that the unit normal vector of S2 is a continuously differentiable function of its base point
with bounded derivative. In this way it makes sense to define the normal vector of S2 on
the boundary points of S2 as the limit of (unit) normal vectors on the interiour. For us
the indirect assumption will mean that the limit

gradr(0, 0, 0, 0) := lim
(x,y,vx,vy)→(0,0,0,0)

gradr(x, y, vx, vy)
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plane

sphere1

sphere2

n1

n2

x

y

z

Figure 3.1: the studied billiard configuration

exists.
The closer a reflection is to tangential, the less effect it has on the ‘neutral’ direction.

In our case, the reflection on the first sphere causes ‘no scattering’ in the x direction.
That is, let (v′x, v

′
y, v

′
z) be the velocity after the first collision. The x direction being the

‘neutral’ direction means that

lim
y→0

∂

∂vx

v′x(0, y, 0, 0) = 1,

which implies that

lim
y→0

∂

∂vx

r(0, y, 0, 0) = −2.

Similarly,

lim
y→0

∂

∂x
v′x(0, y, 0, 0) = 0,

which implies that

lim
y→0

∂

∂x
r(0, y, 0, 0) = −1.

According to our indirect assumption, this means that

∂

∂x
r(0, 0, 0, 0) = −1

and
∂

∂vx

r(0, 0, 0, 0) = −2.

For the other two components, fix x = vx = 0. So the trajectory is in the {x = 0}
plane, the scattering is just a 2D problem. We will calculate the one-side partial derivatives
∂
∂y
r(0, 0, 0, 0) and ∂

∂vy
r(0, 0, 0, 0).



20 CHAPTER 3. GEOMETRY OF SINGULARITIES

To find out about v′y, let ϕ be the angle of the first sphere’s radius at the first collision
point and the n1 = (0, 1, 0) vector. If vy = 0, then 1−cosϕ = −y (y < 0, of course), which,
in leading order, gives ϕ =

√
−2y. It can be seen that after the reflection v′y = sin 2ϕ.

That is, the trajectory is far from being a line. However, it is diverted in the very direction
which – in the first order – does not affect its distance from O2. Instead, in leading terms,
r2 = 1 + (v′y)

2.
Putting these together, we get r =

√
1− 8y, that is,

∂

∂y
r(0, 0, 0, 0) = −4.

If we fix y = 0, the exact same consideration gives r =
√

1− 8vy, that is,

∂

∂vy

r(0, 0, 0, 0) = −4

as well. All together, we get

gradr(0, 0, 0, 0) = (−1,−4,−2,−4).

This is (one possible limit of) the normal vector of the singularity at the point (x = 0, y =
0, vx = 0, vy = 0).

It is easy to see that the singularity corresponding to a tangent reflection on the first
sphere has the normal vector

gradr0(x, y, vx, vy) = (0,−1, 0,−1).

That is, the two singularities are not tangent at this point.
The previous consideration for gradr also shows that this behaviour is exceptional. It

is the result of the fact that in the first order r was unaffected by v′y. If the radii n1 and
n2 of the scatterers at the reflection points (x, y, z) = (0, 0, 1) and (x, y, z) = (0, 0, 2) had
not been orthogonal, the result would have been

∂r

∂y
= ∞,

∂r

∂vy

= ∞,

corresponding to a normal vector (0, 1, 0, 1), meaning that the two singularities are tan-
gent. Non-tangentiality of the two singularities is a one codimensional degeneracy.

As we have pointed out at the beginning of the section, this contradicts our indirect
assumption on the boundedness of the curvature. In this way we have only proven that the
assumption was false. However, we believe that the picture of the singularity suggested
above is correct, the singularities are tangent almost everywhere, and their curvature only
blows up near the pathological points described.

3.2 Discussion

For a rigorous proof of some finer properties (such as ergodicity and correlation decay (see
Definition 1.3)) of multi-dimensional dispersing billiards, it seems essential to characterize
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singularities in a systematic way. Part of this characterization – which is adequate for
the proof of local ergodicity – is done in Section 4.2. In the present section we do not
give rigorous proofs; we would like to point out some analogies to and emphasize some
interesting features of the irregularities demonstrated above.

The Whitney-umbrella. Consider the one codimensional set in R3 defined by the
polynomial equation

{(x, y, z) ∈ R3 | x2z = y2},

the Whitney-umbrella. ‘One half’ of this set (its intersection with the quadrants {xy ≤ 0})
is shown in Figure 3.2. For simplicity we use the notations W2 for this ‘half-umbrella’ and
W1 for the {z = 0} plane. Clearly

• W2 terminates on W1 (in the points of the x axis), thus W1 ∩W2 = ∂W2.

• at every point of the x axis where x 6= 0 the intersection of W2 and W1 is tangential.

• W2 has smooth manifold structure in its interiour; nevertheless, near the origin its
curvature is unbounded as the normal vector changes rapidly (actually, the unit
normal vector does not even have a well-defined limit at the origin).

x

y

z

Figure 3.2: the Whitney umbrella

By these properties the geometry of singularities in the counter example is analogous
to Figure 3.2. 1 W1 corresponds to S1, W2 corresponds to S2 while the origin corresponds
to the set of those doubly tangential reflections where the two radii are orthogonal (this
set is one codimensional in S1 ∩ S2).

Lipschitz decomposability of the Whitney-umbrella
As mentioned in the beginning of this section, assumptions about the curvature of sin-

gularity manifolds were used in estimates on the size of a neighbourhood of the manifold.
This analogy also shows that bounded curvature is not needed for the neighbourhood of
a manifold to be small. Indeed, the ‘half-umbrella’ W2 can be cut further into two pieces

1To be precise, the situation in Figure 3.2 has one dimension less – in contrast to W2 the singularities
are 3-dimensional manifolds – but this has little significance to the analogy.
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(namely, its intersections with the quadrants {x ≥ 0, y ≤ 0} and {x ≤ 0, y ≥ 0}), each of
which is the graph of a Lipschitz function, when viewed from the appropriate direction.
Indeed, easy calculations show that if we choose the direction (1, 1, 1) or (−1,−1, 1) to be
‘vertical’ (respectively), these ‘quarter-umbrellas’ become graphs of Lipschitz functions
with Lipschitz constant

√
2. So the whole Whitney-umbrella consists of four such graphs

plus a one-dimensional tail. This tail (the negative z axis) has no analogue in the singu-
larities of billiards. It’s only there because the umbrella was defined in an algebraic way.
However, if we consider the whole umbrella instead of the part actually corresponding to
the singularity, this tail will not spoil our measure-theoretic estimates because it has one
dimension less than the rest of the set.

Generalization I. First let us consider the first-step singularity S1. By the notations
of the previous counter example we may characterize the points (x, y, vx, vy) belonging to
S1 easily. These are precisely those for which d(x, y, vx, vy) = 1, where d(., ., ., .) is the
distance of the point O1 = (0,−1, 1) from the line that passes through the point (x, y, 0)
and has direction specified by the velocity components vx, vy. As d is a smooth function
of its variables there is no curvature blow-up for S1 – and, for first-step singularities in
general. Thus S2 is a pre-image of a smooth one codimensional compact submanifold,
however, the map under which the pre-image is taken has unbounded derivatives and
is highly anisotropic. Curvature blow-up occurs only at those points of S2 (near its
intersection with S1) where the map behaves irregularly.

In correspondence with the above observation we conjecture that curvature blow-up is
not a feature peculiar to S2, it is present in the pre-images of one codimensional smooth
submanifolds in general. Consider for example two-step secondary singularities Γ2 – those
phase points for which at the second iterate, instead of tangentiality, the collision term
(〈n, v〉) is a given constant (see Chapter 5 for more detail). In the specific example of
section 3.1 such secondary singular trajectories are precisely those that touch tangentially
a sphere of radius R′ (R′ < 1) at the second iterate. It is clear that the geometry of Γ2 is
completely analogous to the geometry of S2.

Generalization II. Our calculations do not use any speciality of the explicitly given
billiard configuration. Doubly tangential reflections for which the normal vectors of
the scatterers at the consecutive collisions are orthogonal can be found in any multi-
dimensional semi-dispersing billiard. Near such trajectories a similar calculation can be
performed, and the same pathology will show up.

Generalization III. All in all, the discovered pathology is general. In addition,
the higher step singularities Sk; (k ≥ 3) may show even wilder behaviour near their
intersections. Nevertheless, we strongly conjecture that a nice geometric characterization –
suggested by the analogy with the Whitney-umbrella in the case of S2 – can be performed.

We have mentioned these generalizations to present the reader the picture of singu-
larities we have in mind. Nevertheless, for our further discussion we do not need to verify
any of these calculations or generalizations since they are completely independent.



Chapter 4

Local ergodicity theorem for
multi-dimensional semi-dispersing
billiards

This chapter is devoted to the ergodicity of semi-dispersing billiards. We restrict our at-
tention to the question of local ergodicity. The main theorem of the chapter, Theorem 4.16
is called the “Fundamental Theorem” or “local ergodicity theorem” for semi-dispersing
billiards. The essence of the statement is that for every sufficient point (see Definition 4.1)
a neighbourhood of the point belongs to one ergodic component. 1 However, the state-
ment of the theorem in its raw form is not about ergodic components, but about the
existence of (many long) stable and unstable manifolds. To get local ergodicity from
that, one uses the chain method of Hopf. See e.g. [13].

In contrast to smooth dynamical systems, billiards have singularities which make the
application of the classical methods substantially more difficult. One reason is that in
the neighbourhood of orbits tangent to the obstacles (the so-called tangent singularities)
the derivative of the Poincaré section map diverges. Nevertheless, Sinai’s celebrated 1970
result demonstrated that, at least for d = 2, the hyperbolicity caused by the strictly
convex scatterers overcomes the harmful effect of singularities. In fact, he showed that
2D dispersing billiards, i.e. those with strictly convex obstacles, are ergodic and even
K-mixing [38].

Multi-dimensional geometry is, however, essentially richer so it is not surprising that
it had taken 17 years until Chernov and Sinai [13] could extend Sinai’s original result
to multi-dimensional dispersing billiards. This remarkable achievement was a corollary
of their local ergodicity theorem, often called the Fundamental Theorem, formulated for
semi-dispersing billiards, i.e. those with convex scatterers. Their theorem got slightly
generalized with the clarification of some technical details and conditions by Krámli,
Simányi and Szász [28] in 1990.

The considerations in the proof of the local ergodicity theorem are local. As a matter
of fact, by assuming the boundedness (from above) of the curvature of all images of the
‘tangent collisions’ set S0 – which is a straightforward fact for d = 2 – it became possible
to assume that they are linear objects, at least locally. However, as discussed in Chapter 3

1Having this statement, the proof of ergodicity boils down to showing that there are many sufficient
phase points, which is not a topic of this thesis.

23
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(the result was originally published in [4]), for d ≥ 3, in the neighbourhoods of singulari-
ties the images of other singularities (and of other smooth one codimensional submanifolds
of the phase space) develop a pathological behaviour contradicting the boundedness of
the curvatures. Therefore, for its own interest, but also for its various important conse-
quences it became necessary to correct the original arguments and this is the aim of this
chapter. Indeed, instead of the boundedness property of the aforementioned curvatures
we formulate a new condition, the so called Lipschitz decomposability condition. Roughly
speaking it requires that the singularities can be decomposed into a finite number of
graphs of locally Lipschitz functions with the boundaries of these graphs being not too
wild. This assumption, together with the other requirements of the local ergodicity theo-
rem, is already sufficient to save the old proof. The next question is, of course, when this
new condition holds. Fortunately, we can verify it under one additional requirement: we
assume that the scatterer boundaries are algebraic. Luckily enough, the main examples
of multi-dimensional semi-dispersing billiards are all algebraic. Just think – first of all –
of hard ball systems [36], [34], of the Lorentz process with spherical scatterers [23], [41],
of general algebraic cylindrical billiards [40], [35], and of the multi-dimensional stadia
designed by Bunimovich and Reháček [10].

For keeping our exposition possibly short, we rely heavily on that of [28]. In Section 4.1
we summarize the necessary notations and prerequisites from the aforementioned work. In
Section 4.2 we present the Lipschitz decomposability property of the singularities. Based
on this assumption, in Section 4.3 we reformulate the local ergodicity theorem and discuss
in detail where and how the classical proof of [13] and [28] should be modified. Finally,
in Section 4.4 it is shown that the Lipschitz decomposability property holds for algebraic
billiards.

The methods, though quite elementary, come from different branches of mathematics.
Throughout the arguments we try to keep the exposition self-contained. More details on
the basic notions from algebra or geometric measure theory can be found in the books
[2], [33], [39] and [20], [18], [19]; respectively.

4.1 Multi-dimensional semi-dispersing billiards

In this section we summarize some basic properties of semi-dispersing billiards. Our
aim is to introduce the most important concepts and fix the notation in order to keep the
exposition of the chapter self-contained. For a more detailed description see the literature,
especially [28].

Notation. For any n ∈ N, ∆n stands for the set of doubly singular phase points up to
order n, i.e.

∆n =
{
x ∈M | there exist indices k1 6= k2, |ki| ≤ n such that T k1x ∈ S0, T

k2x ∈ S0

}
.

We are mainly interested in phase points with regular or with at most once singular



4.1. MULTI-DIMENSIONAL SEMI-DISPERSING BILLIARDS 25

trajectories, thus we consider the following sets:

M0 := M \
⋃
n∈Z

Sn

M∗ := M \
∞⋃

n=1

∆n

M1 := M∗ \M0.

As to regular and at most once singular phase points of the flow, the sets M0, M∗ and
M1 refer to flow-images of M0, M∗ and M1, respectively.

4.1.1 Hyperbolicity

Beside the presence of singularities, the most important feature of semi-dispersing billiard
dynamics is that it is – at least locally and non-uniformly – hyperbolic. A highly important
consequence of this fact is the abundance of local invariant manifolds. The notion of a
local invariant manifold will be used in the traditional sense, i.e. a C1-smooth, connected
submanifold γs ⊂ ∂M is a local stable manifold at x ∈ ∂M iff

(i) x ∈ γs

(ii) ∃K(γs), C(γs) > 0 such that for any y1, y2 ∈ γs

ρ(T ny1, T
ny2) ≤ K exp(−Cn)ρ(y1, y2).

Local stable manifolds for the inverse dynamics T−1 will be referred to as local unstable
manifolds.

Let us consider a nonsingular finite trajectory segment for the flow: S[a,b]x, where
a < 0 < b and a, b, 0 are not moments of collision.
N0(S

[a,b]x), the neutral subspace at time 0 for the segment S[a,b]x is defined as follows:

N0(S
[a,b]x) := { w ∈ Rd : ∃δ > 0 such that ∀α ∈ (−δ, δ)

v(Sa(q(x) + αw, v(x))) = v(Sax) &

v(Sb(q(x) + αw, v(x))) = v(Sbx) }.

Observe that v(x) ∈ N0(S
[a,b]x) is always true, the neutral subspace is at least 1 dimen-

sional. Neutral subspaces at time moments different from 0 are defined by Nt(S
[a,b]x) :=

N0(S
[a−t,b−t](Stx)), thus they are naturally isomorphic to the one at 0.

Definition 4.1. The non-singular trajectory segment S[a,b]x is sufficient if for some
(and in that case for any) t ∈ [a, b] : dim(Nt(S

[a,b]x)) = 1. A point x ∈ M0 is said to be
sufficient if its entire trajectory S(−∞,∞)x contains a finite sufficient segment. Singular
points are treated by the help of trajectory branches (see [28]): a point x ∈ M1 (this
means that the entire trajectory contains one singular reflection) is sufficient if both of its
trajectory branches are sufficient.

All these concepts have their natural counterparts for the billiard map phase space
M . For example, a smooth piece Σ ∈ M of the image of a local orthogonal manifold in
M is referred to as a front as well.
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The treatment of hyperbolicity is traditionally related to fronts through the following
simple phenomena. Near sufficient phase points, hyperplanes in Q orthogonal to the flow
evolve into strictly convex fronts. Convex fronts remain convex under time evolution. The
importance of this is shown by the lemma below. Before formulating it we introduce one
more notation: Dn

y,Σ is the derivative of the (nth power of the) dynamics T n restricted to
the front Σ.

Lemma 4.2. (Equivalent of Lemma 2.13 from [28].) For every x ∈ M0 for which the
trajectory is sufficient there exists a neighbourhood U(x) and a constant 0 < λ(x) < 1
such that

• through almost every point y ∈ U(x) there do pass uniformly transversal local stable
and unstable manifolds γs(y) and γu(y) of dimension d− 1;

• for any y ∈ U(x) and any convex front Σ± passing through ±y:

‖(Dτ
±y,Σ±)−1‖p < λ(x),

where τ ∈ Z+ is the first return time to U(x).

More details about local hyperbolicity and semi-dispersing billiards in general can be
found in [28].

4.2 Lipschitz property of singularities

We have mentioned that in several papers that appeared, singularities were assumed –
either explicitly or implicitly – to consist of smooth one codimensional submanifolds of
the phase space. Often, even a uniform bound on the curvature was assumed, indepen-
dent of the order of the singularity. This is true for 2D billiards. However, it is not true
in higher dimensions. In Chapter 3 we presented a counter example in a 3D dispersing
billiard. Already the curvature of S2 has no upper bound, i.e. the curvature blows up
near a point where the singularity manifold is not even differentiable. After this exam-
ple we propose another property, which, in most applications, can replace the bounded
curvature assumption. We conjecture that this property: the Lipschitz decomposability of
singularities holds for multi-dimensional semi-dispersing billiards.

The analogy shown in Chapter 3 – the Whitney umbrella – not only illustrates better
the pathological situation in three dimensions (rather than our counter example in dimen-
sion 4), but also suggests the way out: to substitute the condition on the boundedness of
curvatures with the Lipschitz decomposability property.

When treating ergodic or stochastic properties of singular systems, we need to under-
stand the properties of singularities in order to know that their neighbourhood is of small
measure. By assuming that the singularities are smooth, e.g. they have bounded curva-
ture, in local considerations one can treat them as planes, by choosing an appropriately
small scale. This, of course, implies that the intersection of a (smooth) singularity compo-
nent and a sphere of radius r has a surface-volume of order rm−1 where m = 2d− 2 is the
dimension of the phase space. Similarly, the δ-neighbourhood of such a singularity-piece
has measure of order rm−1δ. These properties have been used in several papers without
being checked. We now know that the curvature is in general not bounded, so a more
careful investigation is essential.
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Notation. For any subset in a Riemannian manifold H ⊂ M, H [δ] shall denote its δ-
neighbourhood:

H [δ] := {x ∈ M | ρ(x,H) ≤ δ}.

To ensure that the regularity properties mentioned hold, we (approximately) propose
to assume that the singularities have components which are graphs of Lipschitz functions
– instead of assuming they have smooth components. A subset H of Rm will be called
a Lipschitz graph, if we can choose a Cartesian coordinate system so that H becomes
the graph of a Lipschitz function: H = {(x, f(x)) | x ∈ D} with some (measurable)
D ⊂ Rm−1 and f : Rm−1 → R Lipschitz-continuous. Being a Lipschitz graph ensures
that H is rectifiable, and that for its surface-volume one has µ(H) ≤ Cµ(D) where the
constant C depends only on the Lipschitz constant of f . The main property of Lipschitz
graphs is shown by the following very basic

Lemma 4.3. Let D ⊂ Rm−1 arbitrary, f : Rm−1 → R Lipschitz-continuous with Lipschitz-
constant L. Let H = {(x, f(x)) | x ∈ D} ⊂ Rm. Denote by Lm the Lebesgue-measure in
Rm, and by Lm−1 the Lebesgue-measure in Rm−1. Then

Lm(H [δ]) ≤ 2δ
√
L2 + 1Lm−1(D̄) + o(δ)

Proof. Just notice that

H [δ] ⊂ {(x, y) | x ∈ D[δ], |y − f(x)| ≤ δ
√
L2 + 1},

where D[δ] is the δ-neighbourhood of D in Rm−1. This implies

Lm(H [δ]) ≤ 2δ
√
L2 + 1Lm−1(D[δ])

which gives the lemma, since Lm−1(D[δ]) → Lm−1(D̄) as δ → 0.

To precisely formulate the property that we propose instead of smoothness of the
singularities, we need the following two definitions:

Definition 4.4. (cf. [20]) A function f : D ⊂ Rm−1 → R will be called locally Lipschitz
(with Lipschitz constant L), if for any x ∈ D there exists a neighbourhood U ⊂ Rm−1 of

x such that the restricted function f
∣∣∣
D∩U

is Lipschitz (with Lipschitz constant L).

In all our applications D will be open. Notice that in this case, f typically cannot
even be extended to D̄ in a continuous way.

Definition 4.5. H ⊂ Rm will be called a (one codimensional) locally Lipschitz graph
(with Lipschitz constant L), if we can choose an appropriate Cartesian coordinate system
so that H becomes the graph of a locally Lipschitz function:

H = {(x, f(x) | x ∈ D}

with some D ⊂ Rm−1 and f : D → R locally Lipschitz (with constant L).
We will be mainly interested in the case when the domain D is an open set in Rm−1,

then
– H will be called an open locally Lipschitz graph (even though it is not an open set in

Rm),
– and we will denote by ∂H the boundary of H as of a surface: ∂H = H̄ \H.
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Now we are able to define the regularity property that should replace the smoothness of
singularities. This property, called ‘Lipschitz decomposability’ will be defined for subsets
of Rm here. For Lipschitz decomposability of subsets of a Riemannian manifold, see
Remark 4.7.

Definition 4.6. Consider H ⊂ Rm, and L ∈ R. H will be called a ‘Lipschitz decom-
posable’ (one codimensional) subset with constant L if it can be decomposed into a finite
number of open locally Lipschitz graphs and a small remainder set in the following way:
There exist H∗ and H1, ..., HK such that:

• H ⊂
K⋃

i=1

H̄i

⋃
H∗,

• Hi ∩Hj = ∅ for any i 6= j,

• every Hi is a one codimensional open locally Lipschitz graph (with constant L),

• Lm

((
(

K⋃
i=1

∂Hi) ∪H∗
)[δ]
)

= o(δ).

The set H∗ is included in the decomposition for technical reasons: we want to allow
for sets H having parts of strictly higher codimension. This occurs generically if H is an
algebraic subvariety of Rn. See Section 3.1 on the Lipschitz decomposability and the one
dimensional tail of the Whitney-umbrella. We wish to substitute our singularity manifold
by algebraic varieties (see Section 4.4), that’s why we allow this higher codimensional tail.
Nevertheless we would like to note that such higher codimensional parts are not present
in the singularities of semi-dispersing billiards.

Remark 4.7. Lipschitz decomposability in Riemannian manifolds. Throughout the chap-
ter – and in particular in Conjecture 4.8 below – subsets of a compact Riemannian man-
ifold M are considered. For H ⊂ M Lipschitz decomposition is understood in terms of
coordinate charts.

To be more precise, let us fix some convention related to the atlas {Ut, ψt}T
t=1 for

M first. It is important that M is compact thus we may consider a finite atlas. We
say that the atlas is bi-Lipschitz if all charts ψt : Ut → Rm are bi-Lipschitz maps, i.e.
both ψt and (ψt)

−1 are Lipschitz with some constant K > 1. All atlases considered are
assumed to be bi-Lipschitz with a fixed constant. This ensures that Euclidean distance on
Rm is comparable to Riemannian metric on the manifold, and thus our metric estimates
indeed apply in the arguments of Section 4.3. Note that bi-Lipschitzness – with Lipschitz
constant arbitrarily close to one – can always be obtained by choosing the coordinate
patches sufficiently small.

As to the problem of Lipschitz decomposition, we will say that H ⊂ M is Lipschitz
decomposable whenever a finite bi-Lipschitz atlas can be chosen, such that for all charts
ψt(H ∩ Ut) is Lipschitz decomposable as a subset of Rm, in the sense of Definition 4.6.2

The precise property that we expect the singularities of semi-dispersing billiards to
have is formulated in the form of a conjecture:

2The delicate question, how sensitive this notion of Lipschitz decomposition is to the choice of the
atlas, needs further investigation.
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Conjecture 4.8. For any semi-dispersing billiard with a finite horizon there exists an
L ∈ R such that for any integer N the set

⋃
|n|≤N Sn of singularities of order up to N is

‘Lipschitz decomposable’ with constant L.

It is worth noting that by introducing ‘transparent walls’ (cf. [13]) any semi-dispersing
billiard can be reduced to one with a finite horizon.

The statement of this conjecture will appear word by word among the conditions of
the modified version of the Fundamental Theorem for semi-dispersing billiards stated in
Section 4.3.1. The conjecture will be proven for the utmost important special case of
semi-dispersing billiards with algebraic scatterers in Section 4.4.

To help the reader understand why this ‘Lipschitz decomposability’ property is defined
exactly as it is, we present two more lemmas in this section. These are the lemmas through
which the decomposability of singularities will be used.

Lemma 4.9. Let H ∈ Rm be a one codimensional locally Lipschitz graph with H =
{(x, f(x)) | x ∈ D}, D ⊂ Rm−1 open, f : D → R locally Lipschitz with constant L.
Assume furthermore that Lm

(
(∂H)[δ]

)
= o(δ).

Let D′ ⊂ D arbitrary, H ′ = {(x, f(x)) | x ∈ D′}. Then

Lm
(
H ′[δ]

)
≤ 2δ

√
L2 + 1Lm−1

(
D̄′
)

+ o(δ).

Proof. Let x0 ∈ D, X0 = (x0, f(x0)) ∈ H. If dist(x0, ∂D) > δ then

Bδ(X0) ⊂
{

(x, y) | x ∈ D, dist(x, x0) ≤ δ, |y − f(x)| ≤ δ
√
L2 + 1

}
.

On the other hand, if d = dist(x0, ∂D) ≤ δ, then there exists an x1 ∈ ∂D with
dist(x0, x1) = d.

With this x1, for every 0 ≤ t < 1 xt := tx1 +(1− t)x0 ∈ D, otherwise dist(x0, ∂D) < d
would hold. The function g : [0, 1) → R, g(t) := f(xt) is Lipschitz with constant dL, so
g(1) := limt↗1 g(t) exists and |g(1)− g(0)| ≤ dL.

Obviously X1 := (x1, g(1)) ∈ ∂H and dist(X0, X1) ≤ d
√
L2 + 1. That is, Bδ(X0) ⊂

B(
√

L2+1+1)δ(X1). Putting everything together, we have

(H ′)[δ] ⊂
{

(x, y) | x ∈ (D′)[δ] ∩D, |y − f(x)| ≤ δ
√
L2 + 1

}
∪ (∂H)[(

√
L2+1+1)δ]. (4.1)

This implies

Lm
(
(H ′)[δ]

)
≤ 2δ

√
L2 + 1Lm−1

(
(D′)[δ]

)
+ Lm

(
(∂H)[(

√
L2+1+1)δ]

)
.

This gives the statement of the lemma since Lm−1
(
(D′)[δ]

)
= Lm−1

(
D̄′
)

+ o(1) and the
second term is o(δ) because of our assumption.

In the next lemma, π will denote the projection of Rm to Rm−1 parallel to the last
axis: π((x, y)) := x when x ∈ Rm−1 and y ∈ R.

Lemma 4.10. Let H ⊂ Rm be a one codimensional locally Lipschitz graph with H =
{(x, f(x)) | x ∈ D}, D ⊂ Rm−1 open, f : D → R locally Lipschitz with constant L. Let
δ > 0 and G ⊂ Rm be such that dist(G, ∂H) > (

√
L2 + 1 + 1)δ. Then

Lm
(
H [δ] ∩G

)
≤ 2δ

√
L2 + 1Lm−1 (π(G)) .
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Proof. Let H ′ = H. (4.1) holds just like in the previous lemma. Since dist(G, ∂H) >
(
√
L2 + 1 + 1)δ, this means that

H [δ] ∩G ⊂
{

(x, y) | x ∈ D ∩ π(G), |y − f(x)| ≤ δ
√
L2 + 1

}
,

which gives the statement of the lemma.

4.3 The Fundamental Theorem

In this section we present our version of the Fundamental Theorem – or local ergodicity
theorem – for semi-dispersing billiards. The first version by Chernov and Sinai [13] of-
fered a quite involved, but in essence very transparent formulation of the theorem and a
delicate proof. A self-contained exposition of the original ideas with detailed conditions
and arguments was provided in [28] where a slightly more general, the so called ‘transver-
sal’ version of the Fundamental Theorem was announced – mainly with its application to
three-billiards in mind. Several other papers have appeared in the 90’s with nice exposi-
tions of the theorem, even for classes of dynamical systems more general than the original
semi-dispersing billiard setting (eg. Hamiltonian systems with singularities in [29]). How-
ever, all of these papers assumed that for all powers of the dynamics the singularity set is
a finite collection of one codimensional smooth and compact submanifolds. Since, as our
counter example shows, this is not the case, it became utmost necessary to replace this
assumption.

Throughout the section our main reference is [28]. Actually, our aim is to demonstrate
that it is possible to modify the proof presented there to the case when the singularity sets
are not smooth but just finitely Lipschitz decomposable. After formulating the conditions
and the statement of the theorem, we give a sketch of the proof (that goes along the lines
of [28]) and work out those parts in more detail, where the original argument is to be
modified. However, the original notation had to be modified at many points – in order to
be consistent with the other chapters of this work.

4.3.1 Formulation of the theorem

Before its formulation, it is important to point out the conditions under which the
modified proof of the theorem works. We use the notations introduced in Section 4.1.

Condition 4.11. (Chernov-Sinai Ansatz, Condition 3.1 from [28]). For νS+-almost every
point x ∈ S+ 3 we have x ∈ M∗ and, moreover, the positive semi-trajectory of the point
x is sufficient.

What follows below is our new condition – Lipschitz decomposability – on singularities.
In the original proof smoothness was assumed, even though it was only formulated as a
condition for the set of double singularities – see Condition 3.3 from [28]).

Condition 4.12. There exists an L ∈ R such that for every N ∈ N the singularity set⋃
|n|≤N

Sn is ‘Lipschitz decomposable’ with constant L (cf. Conjecture 4.8).

3S+ is the set of all singular phase points (tangent or multiple collisions) introuced in Remark 2.9.
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Remark 4.13.

• For the set of singular reflections itself the original property remains true: S0 is a
finite collection of smooth compact manifolds of codimension 1.

• Condition 4.12 can only be satisfied by semi-dispersing billiards with a finite horizon.
However, the infinite horizon case can easily be reduced to the finite horizon case
(cf. [13], [28]).

• As to the original exposition, one more condition was assumed on the geometry of the
scatterers (the regularity of the set of degenerate tangencies - Condition 3.2 in [28]).
However, the role of this condition was to guarantee that points belonging to two dif-
ferent smooth components of the singularity set belong to finitely many codimension
2 submanifolds. Now instead of smooth components we have locally Lipschitz graphs
and it is enough to require that the δ-neighbourhoods of their boundaries have a vol-
ume of o(δ), which is a little less than being two codimensional (cf. Definition 4.6).

To formulate the Fundamental Theorem, we introduce the notion of regular coverings.
Note that m = 2d − 2 is the dimension of the (Poincaré) phase space M . The next
definition will not be absolutely precise, for we omit some technical details for the sake of
easier understanding. For a precise formulation please see Definition 3.4 in [28]).

Definition 4.14. Let us assume that for a point x ∈ M∗ and its neighbourhood U(x)
a smooth foliation U(x) = ∪α∈Bd−1Γα is given. The foliae Γα are d − 1-dimensional
manifolds uniformly transversal to all possible local stable manifolds (Bd−1 is the standard
d− 1-dimensional open ball).

The parameterized family of finite coverings

Gδ = {Gδ
i | i = 1, ..., I(δ) } 0 < δ < δ0

is a family of regular coverings iff:

1. each Gδ
i is an open parallelepiped of dimension 2d− 2;

2. the d − 1-dimensional faces of Gδ
i are all cubes with edge-length δ, moreover, they

may belong to two different categories: the s-faces are ’parallel with leaves of the
stable foliation’ while the Γ-faces are ’parallel’ with the leaves of the foliation Γ;4

3. For any point, the maximal number of parallelepipeds covering it is 22d−2;

4. if Gδ
i ∩Gδ

j 6= ∅, then

µ(Gδ
i ∩Gδ

j) ≥ c1δ
2d−2

with c1 independent of δ.

Some further convention:

4More precisely if we consider the center of each parallelepiped wδ
i ∈ Gδ

i , the s- and Γ- faces are
parallel to the tangent planes Twδ

i
γs(wδ

i ) and Twδ
i
Γ(wδ

i ), respectively.
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Definition 4.15. Given any Gδ
i its s-jacket, ∂s(Gδ

i ) is the union of those (2d − 3)-
dimensional faces of Gδ

i which contain at least one s-face of it. The Γ-jacket, ∂Γ(Gδ
i )

is defined similarly. Clearly, ∂(Gδ
i ) = ∂s(Gδ

i ) ∪ ∂Γ(Gδ
i ). We say that a stable manifold

γs(y) intersects Gδ
i correctly if:

∂(Gδ
i ∩ γs(y)) ⊂ ∂Γ(Gδ

i ).

Theorem 4.16. (The Fundamental Theorem) We assume that:
- conditions 4.11 and 4.12 are satisfied;
- a sufficient phase point x ∈M∗ is given;
- a smooth transversal foliation Γ in a neighbourhood U0 of x is fixed;
- a constant 0 < ε1 < 1 is chosen.

Then there is a sufficiently small neighbourhood Uε1(x) such that for any U(x) ⊂ Uε1(x)
and for any family of regular coverings, the covering Gδ can be divided into two disjoint
subsets, Gδ

g and Gδ
b (called ‘good’ and ‘bad’), in such a way that:

(I) For any Gδ
i ∈ Gδ

g and any s-face Es of it, the set:

{y ∈ Gδ
i | ρ(y, Es) < ε1δ and γs(y) intersects correctly}

has positive relative µ-measure in Gδ
i .

(II)

µ

 ⋃
Gδ

i∈Gδ
b

Gδ
i

 = o(δ).

Remark 4.17. With suitable modifications of the proof the theorem applies to all sufficient
points x ∈M∗ (see [28]), however, for simplicity here we restrict ourselves to regular phase
points.

As mentioned before, the statement of local ergodicity follows from this theorem
through the application of Hopf’s chain method, see e.g. [13]. This way we get

Theorem 4.18. (Local ergodicity theorem) Suppose Conditions 4.11 and 4.12
are satisfied and x is a sufficient phase point. Then, there is a neighbourhood
U of x such that every point of U belongs to the same ergodic component.

4.3.2 Proof of the Fundamental Theorem

Here we would like to give a sketch of the proof following [28]. For brevity we do not
repeat the whole argument. Our aim is to emphasize the main ideas on the one hand
and point out those parts where the original proof is to be modified on the other hand.
Several arguments apply word by word, as to these, we do not give an exposition, just
refer to the original paper. Those steps that need non-trivial modification are emphasized
and worked out in detail.

Throughout the section we think of the sufficient point x ∈M0 and its neighbourhood
U as being fixed. y usually denotes some point in U . Furthermore, a sufficiently small δ
is kept fixed – thus we work with one particular covering Gδ. Of course, for every Gδ

i ∈ Gδ

we have diam(Gδ
i ) ≤ mδ, where m = 2d− 2 is the dimension of the Poincaré phase space

M . As a preparation for the main argument we state two important lemmas:
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Lemma 4.19. In correspondence with condition 4.12 let us denote the Lipschitz compo-
nents of ∪|n|≤NSn with S i (i = 1, ..., K), rest with S∗, and the Lipschitz-constant with L.
Consider the set

∆δ,N := {x | ∃i, j ≤ K, , i 6= j, ρ(x,S i) ≤ δ, ρ(x,Sj) ≤ δ} ∪ {x | ρ(x,S∗) ≤ δ}.

For all N :
µ(∆δ,N) = o(δ).

This lemma plays essentially the role of Lemma 4.6 from [28]. However, the proof
of it is the first point where the original proof of the Fundamental Theorem had to be
modified.

Proof. Fix an index i and find a coordinate system so that

S i = {(x, fi(x))| x ∈ Di}.

where Di ⊂ Rm−1. πi shall denote the usual projection onto Rm−1: πi((x, y)) := x, when
x ∈ Rm−1 and y ∈ R. Obviously ∂Di = πi(∂S i), so Lm

(
(∂S i)[δ]

)
≥ 2δLm−1(∂Di). So the

condition Lm
(
(∂S i)[δ]

)
= o(δ) implies Lm−1(∂Di) = 0.

As a consequence, for any η > 0 it is possible to find η′ > 0 such that the (closure
of the) open η′-neighbourhood of ∂Di inside Di has Lm−1-measure less than η. Let us
denote this open neighbourhood by Di

η and furthermore

∆i
η =

{
(x, fi(x)) | x ∈ Di

η

}
.

Now consider the parts of the singularity far away from the borders of the singularities.
For different i-s the sets S i\∆i

η (i = 1, ..., K) are pairwise disjoint compact sets (as they are

continuous images of compact sets). Consequently, for δ small enough the sets (S i \∆i
η)

[δ]

are pairwise disjoint as well. Now for the set mentioned in the Lemma, we can write:

∆δ,N ⊂ ∆[δ]
η ∪ (S∗)[δ]

where ∆η =
K⋃

i=1

∆i
η.

Now apply Lemma 4.9 to get

Lm((∆i
η)

[δ]) ≤ 2
√
L2 + 1δη + o(δ).

This means that
Lm(∆[δ]

η ) ≤ 2K
√
L2 + 1δη + o(δ)

stands for every η > 0, meaning that Lm(∆
[δ]
η ) = o(δ). Together with Lm((S∗)[δ]) = o(δ)

this gives the statement of the lemma.

Before formulating the other key lemma, we would like to note that – for Lipschitz-
continuous functions are differentiable almost everywhere – in almost every point of a
singularity component (i.e. in one particular open locally Lipschitz graph Ŝ) it makes
sense to talk about their (one codimensional) tangent planes TŷŜ. Knowing the behaviour
of the tangent plane wherever it exists allows us to think about the “direction” of the
whole Ŝ.
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Lemma 4.20. Given any x ∈M0 and any ε > 0 there is a neighbourhood U(x) ⊂M of x
such that for any two local stable manifolds γs

1, γ
s
2 and any (2d− 3)-dimensional Lipschitz

component Ŝ of some Sn (n > 0) intersecting U(x) with points y1, y2 and ŷ, lying on the
three manifolds, respectively, so that TŷŜ exists:

^(Ty1γ
s
1, Ty2γ

s
2) < ε,

^(Ty1γ
s
1, TŷŜ) < ε. (4.2)

This Lemma is on the parallelization effect and it is exactly the same as Lemma 4.9 in
[28] – the original argument applies. Nevertheless it might be useful to point out what the
second inequality in (4.2) means: there is a (d − 1)-dimensional subspace of the tangent
space at almost any point of the (2d− 3)-dimensional manifold Ŝ very close to the stable
subspace. Note, however, that Ŝ may behave extremely widely – i.e. in a non-smooth
manner – in the remaining (d− 2) dimensions (in case d ≥ 3).

Notation. The following two quantities measure the hyperbolicity near the point y ∈M0.
Let

κn,0(y) = inf
Σ
‖(Dn

−T ny,Σ)−1‖−1
p ,

where the inf is taken over all convex local orthogonal manifolds passing through −T ny.
Furthermore denote

κn,δ(y) = inf
Σ

inf
w∈Σ

‖(Dn
w,Σ)−1‖−1

p .

Here the infimum is taken for the set of convex fronts Σ passing through −T ny such that
(i) T n is continuous on Σ and (ii) T nΣ ⊂ Bδ(−y).

Remark 4.21. (cf. Lemma 5.3 in [28] and Lemma 4.2 in the present thesis) It is not
difficult to see that κn,δ(y) is an increasing function of n. Furthermore, for sufficient
points y clearly:

lim
n→∞

κn,0(y) = ∞.

(Here we do not state in general that κn,0 grows exponentially, linear growth – which is
obvious for sufficient points y – is enough.)

The following subsets of the neighbourhood U 3 x depend on the constants δ and c3.

U g := {y ∈ U | ∀n ∈ Z+, ztub(T
ny) ≥ (κn,c3δ(y))

−1c3δ};
U b := U \ U g;

U b
n := {y ∈ U |ztub(T

ny) < (κn,c3δ(y))
−1c3δ} (4.3)

Remark 4.22. Note that for the points y ∈ U g the stable manifold extends to the boundary
of Bc3δ(y), the ball of radius c3δ around y (cf. Lemma 5.4 from [28]). The constant c3
will be chosen in an appropriate way to guarantee that for any y ∈ U g ∩Gδ

i the stable leaf
γs(y) intersects Gδ

i correctly unless it intersects ∂sGδ
i .

Furthermore, we introduce the class of permitted functions.

Definition 4.23. A function F : R+ → Z+ defined in a neighbourhood of the origin is
permitted whenever F (δ) ↗ ∞ as δ ↘ 0. For a fixed permitted function F (δ) we define
U b

ω = ∪n>F (δ)U
b
n.
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Most of the statements to come hold for any permitted function F (δ). At one point
of the argument we shall fix one particular F (δ).

Lemma 4.24. (Tail bound; Lemma 6.1 from [28]). For any permitted function:

µ(U b
ω) = o(δ).

The measure estimates in the proof of the Tail Bound are related to S0, the set of
singular reflections. As already mentioned, this set (in contrast to the higher iterates Sn)
is a finite collection of smooth and compact one codimensional submanifolds of the phase
space. Consequently, there is no need for Lipschitz decomposition here, thus we do not
include the proof. Essentially, the original argument from [28] applies, nevertheless, at
the definition of the small set of non-sufficient points a little more care is needed. We
would also like to emphasize that the proof of the Tail Bound is the point where the
Chernov-Sinai Ansatz (Condition 4.11) is exploited. On more details see [28].

Remark 4.25. In what follows we will work with distances defined by the Euclidean metric
ρ. However, as the interiour point x in M is fixed and its neighbourhood U(x) is fixed we
have |〈v, n(q)〉| ≥ c for some positive constant c = c(x) in this neighbourhood. Thus the
two distances ρ and ρi are equivalent (cf. Section 2.6).

Now we can start proving the Fundamental Theorem by telling explicitly how the
collection of parallelepipeds Gδ is divided into a good and a bad part. We say Gδ

i ∈ Gδ
b iff

(A) either

• it intersects more than one Lipschitz component of SF (δ) (the singularities of T F (δ)),

• or it intersects only one component Ŝ, but ρ(Gδ
i , ∂Ŝ) ≤ δ,

• or it intersects the remaining small set S∗.

(B) or it is not of type (A), but it has an s-face Es such that

µ(Gδ
i ∩ (Es)[ε1δ] ∩ Uic) ≤

ε3
4
µ(Gδ

i ), (4.4)

where ε3 is a positive constant to be defined later and Uic is the set of points in Gδ
i with

correctly intersecting local stable manifolds.

Now we choose one particular permitted function F (δ): by virtue of Lemma 4.19 there
definitely exists a permitted function such that:

µ(∆(m+1)δ,F (δ)) = o(δ). (4.5)

(Remember that m = 2d− 2 is the dimension of the Poincaré phase space.)
As a consequence the overall measure of bad parallelepipeds of type (A) is o(δ) (such

parallelepipeds lie inside the set ∆(m+1)δ,F (δ)).
It is time to tell about the choice of our small constants εi as well. In the formulation

of the Fundamental Theorem one particular constant ε1 is given. We shall choose three
further constants in the following order: ε1 → ε3 → ε4 → ε2. It is utmost important that
all of these choices are independent of δ. (they are chosen in the arguments below, ε3 in
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1., ε4 in 2. and ε2 in 3.). After all these choices are made we fix the neighbourhood Uε1(x)
(see the formulation of the Fundamental Theorem) in such a way that for all Lipschitz
components Ŝ of some Sn (n > 0) that intersect Uε1(x):

^(γs
1, γ

s
2) < ε2,

^(γs
1, Ŝ) < ε2. (4.6)

Such a choice is clearly possible by virtue of Lemma 4.20. Here the second inequality is
understood at every point of Ŝ where it makes sense, that is, where Ŝ is differentiable.

One more remark: having fixed the neighbourhood Uε1(x) and the foliation Γ uni-
formly transversal to the stable foliation, it is possible to uniformly compare two different
measures for each product-type set inside Uε1(x). More precisely there is a constant c4 > 0
such that given any product-type set, the ratio of its µ-measure and its measure that arises
as a product of measures in the s− and Γ−directions lies between c−1

4 and c4.
From now on Gδ

i will always denote a bad parallelepiped of type (B). The proof of the
Fundamental Theorem follows from the small arguments to come.

1. Let us first give an estimate from below on the measure of Gδ
i ∩ (Es)[ε1δ] where Es is

an s-face for the bad parallelepiped Gδ
i . By the above remark on product measures:

µ(Gδ
i ∩ (Es)[ε1δ]) ≥ c−1

4 (ε1δ)
d−1δd−1 ≥ c6ε

d−1
1 µ(Gδ

i ) ≥ ε3µ(Gδ
i ),

in case ε3(ε1) is chosen sufficiently small.

2. For estimates from above we fix the constant ε4 = ε4(ε3) sufficiently small. The
measure of points near the s-jacket (which consists of 2(d − 1) faces of dimension
2d− 3), is:

µ(Gδ
i ∩ (∂sGδ

i )
[ε4δ]) ≤ 2(d− 1)c4ε4δδ

2d−3 ≤ ε3
4
µ(Gδ

i ).

We need one more estimate of similar type. This is the second point where the
original proof has to be modified, and the smoothness/Lipschitzness of singularity
components is used. Recall that for a bad parallelepiped of type (B) there is at most
one Lipschitz component Ŝ of the singularity set SF (δ) for T F (δ) intersecting it. We
are interested in estimating the measure of the ε4δ-neighbourhood of this Lipschitz
graph inside the parallelepiped. If ε4 <

1√
L2+1+1

(L is the Lipschitz-constant), then,

by the construction of type (A) parallelepipeds, Lemma 4.10 can be applied, and
gives

µ(Gδ
i ∩ (Ŝ)[ε4δ]) ≤ c5ε4δδ

2d−3 ≤ ε3
4
µ(Gδ

i ).

whenever again ε4(ε3) is small enough.

3. Now we choose ε2(ε4) small enough, so that by (4.6) stable manifolds and singularity
components are ‘almost parallel’. Namely, the smallness of ε2 should guarantee that
for any y ∈ Gδ

i for which γs(y) does not intersect correctly we have:

y ∈ (Gδ
i ∩ (Ŝ)[ε4δ]) ∪ (Gδ

i ∩ (∂sGδ
i )

[ε4δ]) ∪ U b
ω. (4.7)

To see that, given a suitable choice of ε2, the above formula is valid, we make two
remarks.
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• First we note that for stable manifolds and singularity components ‘not to
approach each other too quickly’, being ‘almost parallel’ is enough at almost
every point of Ŝ.

• Recalling the definitions from (4.3) and the various notions of distances from
Section 2.6 what we see immediately is that the inclusion of (4.7) is valid with
writing Gδ

i ∩ (∪n≤F (δ)U
b
n) instead of Gδ

i ∩ Ŝ [ε4δ] for the first set. Nevertheless,

with a suitable choice of ε2 we certainly have Gδ
i ∩ (Ŝ [ε4δ]) ⊂ Gδ

i ∩ (∪n≤F (δ)U
b
n)

as (i) ztub(x) ≥ z(x) and (ii) the Euclidean distance ρ and the distance ρi (in
terms of which z(x) is defined) are equivalent, see Remark 4.25.

We only need some minor considerations to complete the proof. Observe first that for
good parallelepipeds the statement (I) evidently holds. As for (II) we have already shown
that bad parallelepipeds of type (A) are of measure o(δ) (recall (4.5)), we shall show the
same for those of type (B) as well. Indeed, let us consider a Gδ

i with an s-face Es for
which (4.4) holds. By the arguments 1.-3. above:

µ(Gδ
i ∩ U b

ω) ≥ µ(Gδ
i ∩ (Es)[ε1δ] ∩ U b

ω) ≥ ε3
4
µ(Gδ

i ).

Now recall that in a regular covering there are at most 22d−2 parallelepipeds with a non-
empty common intersection. Thus:

22d−2µ(U b
ω) ≥

∑′

µ(Gδ
i ∩ U b

ω) ≥ ε3
4

∑′

µ(Gδ
i ),

where
∑′

denotes the sum over bad parallelepipeds of type (B). By the Tail Bound
(Lemma 4.24) we have

∑′ µ(Gδ
i ) = o(δ) thus the proof of Theorem 4.16 is complete.

4.4 The case of algebraic scatterers

The main aim of this section is to show that the singularity submanifolds of algebraic
semi-dispersing billiards satisfy the Lipschitz decomposability property formulated in
Conjecture 4.8. Fortunately, the most important examples of semi-dispersing billiards
are algebraic. Consequently, the algebraicity condition does not essentially restrict the
applicability of the Fundamental Theorem.

For definiteness we will say that the zero-set of a system of polynomial equations is an
algebraic variety (we will use these notions over the real ground field). Any (measurable)
subset of a k-dimensional algebraic variety will be denoted as a k-dimensional SSAV (for
‘subset of an algebraic variety’). As for the dimension of an algebraic variety, see [33].
We also use the following definition.

Definition 4.26. A semi-dispersing billiard is algebraic if it has finitely many scatterers
and the boundary of each of these scatterers is a finite union of one codimensional SSAV-s
(as subsets of Td ⊂ Rd).

Remark 4.27. Assume, in general, that we are given a Riemannian manifold M = Mm

and a subset A ⊂ M. We say that A is a k-dimensional weakly algebraic subset of
M if it is possible to find an appropriate atlas {Ut, ψt}T

t=1 on M such that, for every t,
ψt(Ut ∩ A) (⊂ Rm) is a k-dimensional SSAV in Rm. Bi-Lipschitzness of the atlas
{Ut, ψt}T

t=1 can always be assumed (cf. Remark 4.7)
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Note that being ‘weakly algebraic’ is really a weak notion due to the high degree of
freedom in the choice of the atlas. For example, every smooth curve is 1-dim. weakly
algebraic.

What follows below in three subsections is a proof of Lipschitz decomposability for
the singularities Sn in an algebraic billiard. In Section 4.4.1 it is shown that singularities
are algebraic as subsets of R2d. This implies that Sn ⊂ ∂M is algebraic in the sense of
Remark 4.27 as well.5 The proof is completed in Sections 4.4.2 and 4.4.3 where a Lipschitz
decomposition is constructed for any (one codimensional) SSAV of Rm.

4.4.1 The algebraicity of Sn

Our approach generalizes that of section 3 of [36]. Since there a detailed exposition was
given, here we are satisfied by referring to the main steps of the complexification of the
dynamics. Still we completely explain those parts where our arguments are different.

In a nutshell the picture in [36] is the following.

• the authors were only considering quadratic boundaries since hard ball systems are
quadratic billiards;

• and for the quadratic case they elaborated a most detailed algebraic analysis of the
situation.

Here we do not need such a delicate picture. But on the other hand, we are treating
the general algebraic case. The chain of field extensions of [36] relied upon the explicit
solvability of the arising quadratic equations and applied the related elimination of the
square roots. In the general case we rather apply the norm used in Galois theory.

We first fix some notation – slightly different from the usual conventions – at this
point. According to Definition 4.26 above, ∂Q = ∪J

j=1∂Qj, where both the components
∂Qj and their boundaries are all appropriate dimensional SSAV-s (the decomposition is
finer than the one into connected components in Rd). In other words, for each ∂Qj there
is a (non-zero) irreducible polynomial Bj(q) such that

∂Qj ⊂ {q ∈ Rd | Bj(q) = 0}.

Note that symbolic collision sequences (4.8) are defined in terms of these algebraic bound-
ary components as well.

From this point on it will be suitable to consider orbit segments S[0,T ]x0, T > 0 of the
billiard flow with T sufficiently large. In fact, it will be useful to also drop the condition
||v|| = 1. Consequently, the dimension of our phase space will be 2d (first the phase space
will be Td × Rd and later just R2d).

The symbolic collision sequence of S[0,T ]x0 will be denoted by

σ = Σ(S[0,T ]x0) = (σ1, σ2, . . . , σn) (n ≥ 0) (4.8)

5In a small neighbourhood of y ∈ M identify the tangent plane TyM with Rm and restrict the
orthogonal projection Π : R2d → TyM onto M to obtain coordinate charts.
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Remark 4.28. By definition, (q0, v0) corresponds to the initial, generally non-collision
phase point x0 of the flow. Furthermore T kx0 = xk = (qk, vk) ∈ ∂Qσk

for every 1 ≤ k ≤ n
(we note that for a phase point x0 /∈M of the flow Tx0 ∈M coincides by definition with
the first point where the positive semi-orbit of x0 reaches the boundary M ; in [28] this map
was denoted by T+). By a slight abuse of notation we will keep denoting by Sn (introduced
in Section 2.4) the n-th inverse image of S0 in a 2d-dimensional neighbourhood of x0 .

Having fixed σ, we first explore the algebraic relationship between the consecutive
xks. For being able to carry out arithmetic operations on our data, we lift the genuine
orbit segment to the covering Euclidean space of the torus. This can be done by a
straightforward generalization of the trivial Proposition 3.1 of [36].

Proposition 4.29. Let S[0,T ]x0 be an orbit segment of the discretized dynamics. Assume
that a certain pre-image (Euclidean lifting) q̃0 ∈ Rd of the position q0 ∈ Td is given.
Then there is a uniquely defined Euclidean lifting {q̃i ∈ Rd|0 ≤ k ≤ n} of the given orbit
segment which, when considered in continuous time, is a time-continuous extension of the
original lifting q̃0. Moreover, for every collision σk there exists a uniquely defined integer
vector ak ∈ Zd – named the adjustment vector of σk – such that

Bσk
(q̃k − ak) = 0 (1 ≤ k ≤ n).

The orbit segment ω̃ = {q̃k|0 ≤ k ≤ n} is called the lifted orbit segment with the system
of adjustment vectors A = (a0, . . . , an) ∈ Z(n+1)d.

In the sequel, 〈, 〉 denotes Euclidean inner product of d-dimensional real vectors. Our
next proposition is also a straightforward extension of Proposition 3.3 of [36].

Proposition 4.30. Between the kinetic data corresponding to σk−1 and σk one has the
following algebraic relations:

— the linear collision equation

vk = vk−1 − 2〈vk−1, nk〉nk (1 ≤ k ≤ n) (4.9)

where nk is the outer unit normal vector of the scatterer Qσk
at the point of impact;

— the linear free flight equation

q̃k = q̃k−1 + τkvk−1 (1 ≤ k ≤ n) (4.10)

— where the time slot τk = tk−tk−1 (t0 = 0) in (4.10) is determined by the polynomial
equation

Bσk
(q̃k−1 + τkvk−1 − ak) = 0. (4.11)

Next we turn to the complexification of the billiard map T . Given the pair (Σ,A) =
(σ1, σ2, . . . , σn; a0, a1, . . . , an), the equations (4.9), (4.10), (4.11) make it possible to alge-
braically characterize the kinetic data (q̃k, vk) by using the preceding data (q̃k−1, vk−1).
Since – at the moment – we are dealing with genuine, real orbit segments, in this situ-
ation the equations have at least one positive, real root τk; in case of several such roots
its selection is unique by the geometry of the problem. Our further arguments, however,
also use the algebraic closedness of the arising fields and therefore we complexify the dy-
namics. From this point on, our approach, though related but nevertheless will already
be different from that of [36].
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Definition 4.31. For n = 0 the field K0 = K(∅; ∅) is the transcendental extension C(B)
of the coefficient field C by the algebraically independent formal variables

B = {(q̃0)j, (v0)j|1 ≤ j ≤ d}

Suppose now that the commutative field Kn−1 = K(Σ′;A′) has already been defined, where
Σ′ = (σ1, σ2, . . . , σn−1);A′ = (a0, a1, . . . , an−1). Consider now the polynomial equation

blτ
l + bl−1τ

l−1 + . . .+ b0 = 0 (4.12)

arising from (4.11) with k=n. It defines a new field element τn to be adjoined to the field
Kn−1 (of course, b0, . . . , bl ∈ Kn−1). At this point, however, we should be a bit cautious. If
the equation 4.12 is irreducible, then all its roots are algebraically equivalent, and τn can
denote any of them. If (4.11) is reducible, then we should select a particular irreducible
factor of its. Indeed, since we are only interested in the images of S, at each step we
choose such an irreducible factor of (4.12) which, when its root τn gets evaluated for real
values of x0, gives us a real root of (4.12) which is actually the real root specified after
(4.11). This irreducible factor defines the extension Kn = Kn−1(τn).

In such a way we are given a chain of extensions K0,K1, . . . ,Kn where for every
k = 1, . . . , n the relation Kk = Kk−1(τk) holds. By our construction and by the theorem
on the prime element of algebra, Kn can also be expressed as K0(τ̃n) for some τ̃n ∈ Kn

with minimal polynomial m(α) over K0.

By applying the previous construction we are going to look for an algebraic charac-
terization of Sn.

For every x0 ∈ MΣ,A = {x ∈ M | Σ(S[0,T ]x) = Σ, A(S[0,T ]x) = A} one has q̃n ∈ Kn.
q̃n can formally be understood as a function q̃n(x0, τ1, . . . , τn) or (by the theorem on the
prime element) simply as a function q̃n(x0, τ̃n) with values in Kn. We will be considering
this function exactly in MΣ,A, that is, where Σ and A are constants. Consider Qσn at the
point T nx0. At this point the submanifold Bσn(q̃n− an) = 0 has a normal vector ~n which
can be expressed by the partial derivatives of Bσn at q̃n − an. The condition x̃n ∈ S just
says that 〈~n, vn〉 = 0. Here both ~n and vn are elements of Kn, i. e. formal functions of
x0 and τ̃n. Consequently 〈~n, vn〉 = Φ(τ̃n) where Φ is a polynomial whose coefficients are
rational functions over K0. Take now the (Galois-) norm (cf. [39]) of this element, i.e.

‖Φ‖ = ΠΦ(τ̃ i
n)

where the product is taken for all roots τ̃ i
n of the irreducible polynomial m. This norm

does not vanish since it is the product of non-zero elements in the normal hull of Kn.
Moreover, it is a symmetric polynomial of the elements τ̃ i

n. As such it can be expressed as a
polynomial of the elementary symmetric polynomials of the variables τ̃ i

n : 1 ≤ i ≤ l. These
elementary symmetric polynomials can, however, be easily expressed by the coefficients
of m which are elements of K0. As a consequence, we obtain a non-zero element of K0.
The construction just described generalizes the elimination of the square roots method
applied in [36]. By our construction it remains also true that this polynomial has real
coefficients for our real, dynamical orbit. All in all for every fixed Σ and A the resulting
piece of Sn is an algebraic submanifold. From the finiteness of the horizon it is clear that
in the case of our real dynamics only a finite number of Σ and A provide a non-empty
piece of Sn.

In this way we have established
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Theorem 4.32. Sn is a finite union of one codimensional SSAV-s in R2d.

4.4.2 Dimension and measure of algebraic varieties

The motivation for this section is that we need to estimate the Lebesgue-measure (denoted
here by Lm) of the δ-neighbourhood of an algebraic variety. Actually we only need that
Lm(H [δ]) = o(δ) if H is (at least) two codimensional, but our results will be more general
than that.

As we will see, this problem is closely related to the box dimension and the so-called
Minkowski-content of H (on box dimension, Minkowski-content and their relation to
Hausdorff dimension and measure, see Section 3.1 in [19]). To start, let us recall some
notions and basic facts related to box dimension.

Definition 4.33. Let H be a bounded subset of Rm, 0 ≤ d ∈ R. Then the quantities

Md
(H) := lim sup

δ→0

Lm(H [δ])

δm−d
,

Md(H) := lim inf
δ→0

Lm(H [δ])

δm−d

are called the upper and lower d-dimensional Minkowski-content of H.

Definition 4.34. Let H be a bounded subset of Rm, ε > 0. The set I ⊂ H is called an
ε-net in H if H ⊂ I [ε].

We will always be interested in finite ε-nets I, and we will never use that I ⊂ H.

Notation. dimH H and dimB H will denote the Hausdorff and box dimensions of H,
respectively. For 0 ≤ d ∈ R we will denote the d-dimensional Hausdorff-measure by Hd.

Some simple facts:

(a) dimH H ≤ dimBH ≤ dimBH

(b) Hd(H) ≤Md(H) ≤Md
(H)

(c) If Md
(H) <∞, then dimBH ≤ d.

(d) If dimH H < d then Hd(H) = 0.

(e) If Md
(H) <∞ then Lm(H [δ]) = O(δm−d).

(f) If I is an ε-net (finite) in H ∈ Rm then Lm(H [ε]) ≤ (2ε)m|I|, where |I| is the cardi-
nality of I.

Now we turn to the investigation of algebraic varieties. Our proposition will be an
easy corollary of the following lemma.



42 CHAPTER 4. LOCAL ERGODICITY THEOREM

Lemma 4.35. Let H = Ĥ ∩ [0, 1]m, where Ĥ ⊂ Rm is an algebraic variety. Let k be
the maximum of the degrees of the polynomials defining Ĥ. Let ε > 0, 0 ≤ d ∈ Z. Let
c > 1 arbitrary. We claim that if Hd+1(H) = 0 then, if ε is small enough, there exists a
(d · ε)-net I in H with

|I| ≤ Nm,d,k,ε :=
d∑

i=0

ci
(

m!

(m− i)!

)3/2

km−i 1

εi
.

Proof. The proof goes by induction on d, and the induction is based on the following
Fact: For every x ∈ [0, 1] let Hx = H ∩ ({x} × [0, 1]m−1). Then Hd+1(H) = 0 implies
that for Lebesgue almost every x ∈ [0, 1], Hd(Hx) = 0. This is an easy consequence of
Theorem 5.8 in [18].

The same is true for subsets of H arising by fixing another (than the first) coordinate:
for every 1 ≤ l ≤ m if P l

x := [0, 1]l−1 × {x} × [0, 1]m−l and H l
x := P l

x ∩ H then we
have Hd(H l

x) = 0 for L1-a.e. x. We will take advantage of this by choosing ε′ arbitrary
(later on we will fix ε′ = ε√

m
) and fixing K ≤ c

ε′
points: 0 = xl,1 < . . . < xl,K = 1,

such that xl,j+1 − xl,j ≤ ε′ and Hd(H l
xl,j

) = 0 for every j. The m · K hyperplanes

P l
xl,j

: l = 1, . . . ,m, j = 1, . . . , K cut H into blocks of diameter ≤ ε′
√
m.

Notice that if H has a point A in any of these blocks, then either it also has one (B)
on the surface of the block, so that dist(A,B) ≤ ε′

√
m, or the entire component of H

containing A is inside the block.

1. We start the induction with d = 0. The previous construction gives (for any ε′)
H0(H l

xl,j
) = 0, that is, H l

xl,j
= ∅ for every l, j. That is, the components are points,

and we can certainly find the 0 · ε = 0-net I = H with |I| ≤ km = Nm,0,k,ε, an upper
bound for the number of components coming from Bezout’s theorem.

2. Suppose we have the statement for some d− 1 ≥ 0.

3. We prove for d. That is, H ⊂ [0, 1]m, Hd+1(H) = 0. Apply the previous construction
with ε′ = ε√

m
. The set H l

xl,j
is now an algebraic variety in [0, 1]m−1, the polynomials

defining it can be derived from those defining H by fixing a variable. So the degrees
can not grow. We can use the inductive assumption for the mK ≤ mc

√
m
ε

sets
H l

xl,j
with m → m − 1 and the same k. Thus taking a (d − 1)ε-net on every H l

xl,j

according to the inductive assumption, and choosing a point from every component
that happens to be entirely inside a block, we get a d · ε-net I in H with |I| ≤
mc

√
m
ε
Nm−1,d−1,k,ε + km = Nm,d,k,ε

This lemma leads to the following

Proposition 4.36. If H = Ĥ∩ [0, 1]m where Ĥ ⊂ Rm is an algebraic variety, and k is the
maximum of the degrees of the polynomials defining Ĥ, then s := dimH(H) = dimB(H) ∈
Z and

0 < Hs(H) ≤Ms(H) ≤Ms
(H) ≤ 2mss

(
m!

(m− s)!

)3/2

km−s <∞. (4.13)
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Proof. By (b) we have Hs(H) ≤ Ms(H) ≤ Ms
(H). On the other hand, if we choose

d ∈ Z in such a way that Hd+1(H) = 0 then by the Lemma for any c > 1:

Md
(H)

def
= lim supε→0

Lm(H[dε])
(dε)m−d

(f)

≤ lim supε→0
(2dε)mNm,d,k,ε

(dε)m−d

Lemma
= (4.14)

= lim supε→0 2mddcd
∑d

i=0

(
m!

(m−i)!

)3/2

km−iεd−i =

= cd2mdd
(

m!
(m−d)!

)3/2

km−d <∞.

By (c) and (d) this implies dimB(H) ≤ d if s < d+ 1 (or even if Hd+1(H) = 0).
This contradicts (a) unless dimB(H) = s ∈ Z (or even if Hs(H) = 0). Now with d = s
(4.14) implies the right end of (4.13).

Corollary 4.37. If H is a bounded subset of an (at least) two (algebraic) codimensional
algebraic variety in Rm, then Lm(H [δ]) = o(δ).

Proof. Knowing from [20] that the algebraic and Hausdorff dimensions coincide, the

proposition actually gives Mm−2
(H) < ∞ which means (by (e)) that Lm(H [δ]) = O(δ2).

4.4.3 Lipschitz decomposability of algebraic varieties

In this subsection our aim is to establish the fact that one codimensional SSAV-s possess
the finite Lipschitz decomposability property (in the sense of Definition 4.6). Having
already shown the algebraic nature of Sn – and thus S(n), this way we find that algebraic
billiards satisfy Conjecture 4.8. The main result of the subsection is:

Theorem 4.38. Any one codimensional algebraic variety H is Lipschitz decomposable
(in the sense of Definition 4.6) with any constant L > 0.

In the following, π shall denote the standard projection of Rm to Rm−1. That is,
π(x, y) = x for any x ∈ Rm−1, y ∈ R.

Proof. We construct the decomposition of H. Fix an arbitrary L > 0. Let I(H) denote
the ring of polynomials vanishing on H. Let H∗ be the set of points in H where the
gradient of every polynomial in I(H) vanishes. We know from [2] that this set is at least
two (algebraic) codimensional, so Corollary 4.37 ensures that H∗ is good (for the purpose
of Definition 4.6). For the points x ∈ H \ H∗, there is at least one P ∈ I(H) for which
gradP (x) 6= 0 and the gradients of all polynomials in I(H) are parallel to gradP (x). In
the following we will assume H = {x|P (x) = 0} for one such P , only for the sake of more
transparent notation.

Fix a finite collection of unit vectors v1, . . . , vN in Rm, such that for any nonzero vector
v ∈ Rd, there is a vi for which tan(^(v, vi)) < L′ < L. We shall identify those components
of H that are Lipschitz graphs as viewed from the direction vi. We will omit the index
i. The construction clearly depends on the vector v = vi. Having fixed v it is possible to
choose an orthogonal coordinate system in Rm such that the mth base vector points in
the direction v. For arctan(L′) < ϕ < arctan(L) and h = cos(ϕ), consider the following
subset of the algebraic variety:
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H<ϕ = {x ∈ H |^(gradP (x), v) < ϕ} =

=

{
x ∈ H | (

∂

∂xm

P (x))2 > h2(gradP (x))2

}
.

Note that H<ϕ ∩ H∗ = ∅, because the inequality in the definition of H<ϕ is strict. We
claim that for almost every possible ϕ, ∂H<ϕ is two codimensional. Indeed,

∂H<ϕ ⊂ H=ϕ :=

{
x ∈ H | (

∂

∂xm

P (x))2 = h2(gradP (x))2

}
.

The intersection of H=ϕ-s corresponding to different ϕ-s is H∗, which is two-codimen-
sional, so its one codimensional Hausdorff-measure is zero. However, Proposition 4.36
says that the union of all H=ϕ-s (which is part of H) has a finite one codimensional
Hausdorff-measure. So apart from a countable number of ϕ-s, the one codimensional
Hausdorff-measure of H=ϕ is zero. Since H=ϕ is algebraic, Proposition 4.36 tells us that
almost every H=ϕ is two codimensional.

We fix H ′ = H<ϕ with one such arctan(L′) < ϕ < arctan(L).
We will cut H ′ into locally Lipschitz graphs. Let k : Rm−1 → N be the multiplicity

of π(H ′). Clearly for every x ∈ π(H ′) the restriction of P to π−1(x) is nonzero, so k is
bounded by the degree of P , and the Implicit Function Theorem implies that it is lower
semicontinuous. So, the set D1 ⊂ Rm−1 where k is maximal, is open. Here we can define
the finitely many functions f1,1, . . . , f1,kmax : D1 → R taking the least, second least, ...,
greatest element of π−1(x) for some x ∈ D1. the Implicit Function Theorem implies that
these functions are locally Lipschitz with constant L and that their graphs are disjoint.

Now we claim that the boundary of these graphs is two codimensional. Indeed, H=ϕ is
two codimensional and algebraic, so π(H=ϕ) is also part of a one codimensional algebraic
variety in Rm−1. The pre-image (by π) of this variety is one codimensional in Rm, and the
boundary of our graphs is on the intersection of this pre-image withH. This intersection is
transversal (ensuring two codimensions) at points of H ′\H∗, and the rest of the boundary
is in H∗.

Now erase the closure of these graphs from H ′. So the argument can be repeated
with kmax already at least one less. The procedure ends in finitely many steps, and so
finitely many open locally Lipschitz graphs are constructed. Their closures cover H ′ by
construction, and their boundary is two codimensional.

We carry out this construction for every vi, and get a covering of the entire H \H∗ by
finitely many locally Lipschitz graphs. To get the sets H1,...,HN in Definition 4.6 we only
need to make these graphs disjoint by subtracting the closure of one from the other.

Putting together the statements of theorems 4.18, 4.32 and 4.38 we get

Corollary 4.39. (The Fundamental Theorem for algebraic semi-dispersing bil-
liards.) Suppose Condition 4.11 is satisfied and the semi-dispersing billiard
is algebraic. Let x be a sufficient phase point. Then, there is a neighbourhood
U of x such that every point of U belongs to the same ergodic component.



Chapter 5

Correlation decay in soft billiards

5.1 Introduction

Consider the motion of a point particle in a planar periodic array of circular scatterers.
There are several physically relevant dynamical systems related to such a geometrical
configuration. For all of these, motion outside the scatterers is uniform, i.e. the point
particle proceeds along a straight (geodesic) line with constant (unit) velocity. If the
particle bounces off the circles according to the laws of elastic collision (angle of incidence
equals to the angle of reflection), we talk about the hard Lorentz process, a paradigm for
strongly chaotic behaviour. Among other important properties ergodicity [38, 13] and
exponential decay of correlations [43, 12] have been proven for the corresponding billiard
system.

Here we consider the following natural modification. The scatterers are no longer hard
disks, the point particle may enter them. The particle moves according to some rotation
symmetric potential which vanishes identically outside the disks. This modification leaves
the most important features of the dynamics unchanged: the systems we can describe will
be hyperbolic dynamical systems with singularities. Examination of such a generalization
of billiard dynamics is interesting in itself, however, we also have another motivation. As
mentioned in the Introduction (and will be discussed in the Outlook, Chapter 6) we hope
to be able to construct a soft billiard which is hyperbolic, but the singularities behave more
regularly than those of hard billiards. This may open the way to a proof of exponential
correlation decay in higher dimensional systems.

Even the issue of these softened Lorentz processes has a large literature. Results point
into two different directions. On the one hand, for quite general softening of the potential,
the chaotic behaviour is no longer present. Stable periodic orbits and islands appear in
the phase space. This is generally the case with smooth potentials, see [31, 15, 16] and
references therein.

However, in many cases, especially when the potential is not C1, the chaotic behaviour
persists.1 The investigation of such soft billiards dates back to the pioneering works of
Sinai [37] and Kubo et al. [26], [27]. There are two different approaches present in the
literature to this hyperbolic case. On the one hand, under conditions on the derivatives
(up to the second) of the potential the Hamiltonian flow turned out to be equivalent to

1In [17] there is a smooth potential example with ergodic behaviour, too. However it is unstable with
respect to small perturbations like varying the full energy level.
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a geodesic flow on a negatively curved manifold. This point of view is especially suitable
for potentials with Coulomb type singularities, see [24] on details.

The other approach – which is actually what we follow – is to study dynamics as
a hyperbolic system with singularities. [30] and, especially, [17] – which is one of our
main references – are written in the spirit of this principle. Actually, in most cases it is
convenient to study the discrete time dynamics, a naturally defined Poincaré section map
of the Hamiltonian flow – this is the track we are going to take.

Hyperbolicity of these systems is mainly related to the properties of the so called
rotation function that can be calculated from the potential. Being a bit technical its
definition and relevant properties are discussed in Section 5.1.1. Formulation of our main
theorem (Theorem 5.9) is likewise left to the next section as it is in terms of the rotation
function. Nevertheless, it might be useful to point out that

• In case the rotation function (and the billiard configuration) satisfies some hyper-
bolicity condition (see Definition 5.5), the soft billiard system is hyperbolic and
ergodic. Although a little bit otherwise stated, this fact was proved in [17]. The
condition is, essentially, necessary for ergodicity (note however Remark 6.1).

• In this chapter we concentrate on decay of correlations. If – in addition to those
needed for hyperbolicity – the rotation function satisfies further regularity conditions
(see Definition 5.7), the rate of mixing is proved to be exponential.

In most of the chapter we think of the rotation function as being fixed with the desired
properties. It is only Section 5.4 when we turn to some specific potentials. Nevertheless,
three technical conditions supposed to hold throughout the chapter are:

• In order to be able to define a rotation function at all, we introduce h(r) = r2(1−
2V (r)) (cf. Section 5.4) and require h′(r) > 0 for all but finitely many r (this
condition ensures the lack of trapping zones, cf. [17])

• The scattering occurs on rotation symmetric potentials of finite range – that is, the
potential for every scatterer is concentrated on a circle and depends only on the
distance from the center. (Note that this is the case in our references like [17], too.)

• The horizon is finite (i.e. the maximum time between two enterings of consecutive
potential disks is uniformly bounded from above for any trajectory).

The proof of our main theorem is based on our second main reference, on [12]. In
this paper, by implementing the techniques of L. S. Young from [43], N. Chernov showed
that given any hyperbolic system with singularities for which one can show the validity
of certain technical properties, correlations decay exponentially fast.

What we perform below is the proof of these technical properties for our ‘soft’ bil-
liard system. Even though the existence of invariant cone fields is established in [17],
the uniformity of hyperbolicity (Section 5.2.2) needs detailed investigation. An even
more important new difficulty that we have to overcome is the treatment of quantities
connected to the second derivative of the dynamics, especially while traveling through
the potential. An analysis finer than before – in this sense – of the evolution of fronts
is needed. This applies especially to the self-contained proof of curvature and distortion
bounds (Section 5.2.3).
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It is a key aspect of our method that arguments related to expansion and distortion
can be carried out by considering motion inside and outside the potential disks sepa-
rately. Actually, our choice of the outgoing phase space and the Euclidean metric (see
Section 5.1.1) is related to this point of view and not to the tradition of [12]. (Using
the Euclidean metric with the phase space of incoming particles instead of outgoing, our
distortion bounds would no longer hold.) The splitting of motion into ‘potential’ and
‘free’ intervals is, however, slightly restrictive. Namely, certain soft billiard systems that
seem ergodic and exponentially mixing are covered neither in this work nor in [17] (see
also Chapter 6, especially Remark 6.1).

We note that it is not clear how sharp our results are. On the one hand, the conditions
for ergodicity – which are part of our conditions – formulated by Donnay and Liverani
are more or less sharp (see [16]). On the other hand, the conditions formulated for EDC
by Chernov are sufficient, but most probably not necessary. So, although we know that
Chernov’s conditions (eg. the bounded curvature assumption and the distortion bounds)
are not satisfied when our regularity conditions are not met, it is well possible that
EDC still occurs. At some points of the discussion we will point out why our regularity
conditions are necessary for Chernov’s method to work.

As a beginning, we introduce the dynamical system, together with some necessary
notions, and state the main result of the chapter, Theorem 5.9. The proof is briefly
sketched in Section 5.1.6. Details of the proof are in Sections 5.2 and 5.3. Finally, specific
examples where the theorem is valid are discussed in Section 5.4.

5.1.1 The dynamical system and the rotation function

Consider finitely many disjoint circles of radius R on the unit two-dimensional flat torus
T2. (Thinking of a periodic array of circular disks on the Euclidean plane R2 would not
be very much different.) We require that the configuration has finite horizon: there is a
certain constant τmax such that any straight segment longer than τmax on R2 intersects at
least one of the scatterers.

Remark 5.1. As the circles are disjoint, the minimum distance between two scatterers is
bigger than some positive constant τmin.

Let the Hamiltonian motion of our point particle be described by a potential which is
identically zero outside and is some rotation symmetric function V (r) inside the circular
scatterers (here r is the distance from the center of the scatterer). For simplicity we fix
the mass and the full energy of our point particle as

m = 1, E =
1

2
.

This way the free flight velocity has unit length, |v| = 1 (in other words v ∈ S1, the unit
circle in R2).

We know that as a result of the assumptions we will make, the Hamiltonian flow
restricted to this surface of constant full energy is ergodic with respect to Liouville measure
(cf. Definition 5.5 and the remarks following it.) Equivalently one can say that the map
corresponding to the naturally defined Poincaré section of the flow (see below) is ergodic.
Our aim is to study the rate of mixing for this map.
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We work with the Poincaré section of outgoing velocities (particles that have just left
one of the scatterers).

Notation. Denote by M the Poincaré section of outgoing particles. Sometimes we will
also use the notation M+ = M to stress that this is the outgoing phase space, to avoid
confusion.

The phase points are the boundary points of the scatterers, equipped with unit ve-
locities pointing outwards. The phase space M is a finite union of cylinders (each corre-
sponding to one of the circular scatterers). Coordinates for the cylinders are:

Notation. s denotes the arclength parameter along the scatterer (starting from a point
arbitrarily fixed), describing position of the outgoing particle.

ϕ denotes the collision angle, the angle that the outgoing velocity makes with the normal
vector of the scatterer in the point s. Clearly ϕ ∈ [−π

2
, π

2
].

The position can be equivalently described by another angle parameter Θ ∈ [0, 2π], for
which s = RΘ (here R is the radius of the scatterer).

Note that M defined this way is a (finite union of) Riemannian mani-
fold(s).

Let
|dx|e =

√
ds2 + dϕ2 (5.1)

denote the Riemannian metric on M , which will be referred to as the Euclidean metric
(e-metric).

Later on, just like in the hard billiard case, we will introduce the p-metric
for soft systems as well.

The dynamics T is the first return map onto M .
Notation for the Lebesgue measure on M is m, i.e. dm = ds dϕ. Furthermore, given

a curve γ in M we denote the Lebesgue measure on γ with mγ (this is simply the length
on γ).

Denote by µ the natural invariant probability measure on M . µ is absolutely continuous
w.r.t. Lebesgue, and the density is of the form

dµ = const. cos(ϕ) dm = const. cos(ϕ) ds dϕ. (5.2)

It is this latter measure for which T is shown to be ergodic and K-mixing in [17] under
the appropriate conditions, and this is the one we work with as well.

Definition 5.2. The dynamical system (M,T, µ) is the soft billiard map.

Remark 5.3. In a completely similar manner we could consider the Poincaré section M−
of incoming particles. The two coordinates would be the point of income and the angle the
incoming velocity makes with the (opposite) normal vector. However, in some key steps
of the proof – eg. the distortion bounds of Section 5.2.3.2 – we heavily use that our phase
space is the outgoing, and not the incoming Poincaré section.

With slight abuse of notation we often refer to the incoming Poincaré coordinates with
the same symbols s and ϕ. That should cause no confusion.

To describe the first return map T we decompose the motion into two parts: free flight
among the scatterers and flight in the potential of the scatterers. Free flight can be treated
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completely analogously to the billiard case. The particle leaves one of the scatterers in
the point s0 with velocity ϕ0 and reaches some other scatterer in point s (or equivalently,
Θ) with unit incoming velocity that makes an angle ϕ with the (opposite) normal vector
n(s) at the point of income. After some inter-potential motion the particle leaves the
circle in some point s1(= RΘ1) with outgoing velocity specified by ϕ1. Out of symmetry
reasons ϕ1 = ϕ, thus the only nontrivial quantity is the angle difference ∆Θ = Θ1 − Θ.
Again out of symmetry reasons ∆Θ depends only on the angle ϕ.

The role in the map T played by the potential is completely described by the function
∆Θ(ϕ).

Definition 5.4. From here on we will refer to this function ∆Θ(ϕ) as the rotation
function.

phi

dtp

phi

Figure 5.1: meaning of the rotation function

Being mainly interested in the differential aspects of T we introduce one more

Notation.

κ(ϕ) =
d∆Θ(ϕ)

dϕ
.

5.1.2 Mechanisms of hyperbolicity

There is a rather large class of potentials for which [17] obtained ergodicity and hyper-
bolicity, both repelling and attracting. Reason for their success is that V. Donnay and
C. Liverani have found conditions on κ sufficient for hyperbolic behaviour that later on
also turned out to be essentially necessary. Before formulating these we turn to a simple,
though slightly artificial example. Fix the potential inside the scatterers as identically
zero. Thus, when entering the circle, the particle proceeds along its straight trajectory
without changing its direction or velocity magnitude. This system is, of course, not hy-
perbolic: neutral fronts remain neutral and convex ones loose more and more convexity
as they evolve. It is straightforward to calculate ∆Θ(ϕ) = π − 2ϕ and thus κ(ϕ) = −2
identically.

In view of the above example it is not surprising that the value κ = −2 is to be
avoided. Actually, [17] obtained results in two different cases.

Dispersing case. Assume κ < −2 or κ ≥ 0 for all ϕ. The soft billiard is ergodic and
hyperbolic. Mechanism of hyperbolicity is, just like in the hard case, related to convex
fronts. I.e. incoming convex fronts (those reaching the potential disk) turn into outgoing
convex fronts (convex when leaving the disk). See Figure 5.2.
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(a) dispersing case (b) defocusing case

Figure 5.2: mechanisms of hyperbolicity

Defocusing case. Assume there is some δ > 0 such that 0 ≥ κ > −2 + δ. In addition,
the configuration is such that there is some lower bound tmin on the free flight between
two disks which satisfies tmin > 2R(2−δ)

δ
. The soft billiard is ergodic and hyperbolic.

Nevertheless, the mechanism of hyperbolicity is different from the one in the dispersing
case. Incoming convex fronts may turn into outgoing concave fronts. These concave fronts,
as there is enough time until the next disk is reached, defocus and turn into convex fronts
during free flight. Thus, when entering a potential region for the next time, they are
convex again. See Figure 5.2. The mechanism is discussed in full detail in Section 5.2.2.

The above brief discussion sheds some light on the fact why these conditions are, es-
sentially, necessary for chaotic behaviour. Assume there is some ϕ for which κ approaches
−2 from above and the suitable bound on tmin is missing. The outgoing concave fronts
do not have enough time to defocus, thus they remain concave for all positive times. In
case one can construct a periodic orbit in the vicinity of these persistent concave fronts,
the periodic orbit turns out to be stable. [16] shows obstructions for ergodicity roughly
along these lines.

5.1.3 Regularity of the rotation function

Our aim is to prove exponential decay of correlations in certain ergodic soft billiards.
Based on these results we conjecture that the rate of mixing is exponential in essentially
all the (finite horizon) cases for which [17] obtained hyperbolic ergodicity. Nevertheless,
in contrast to [17], we do not have many – actually, we do have only two classes of –
specific potentials for which exponential decay of correlations can be explicitly shown.

The small number of specific examples is related to the necessity of understanding the
‘second derivative of the dynamics’. To obtain curvature and distortion bounds – which
is inevitable for the application of methods from [12] and [43] – we need to check the
derivative of κ(ϕ).

Below two important properties are defined and discussed, in terms of which our main
theorem is formulated.

Definition 5.5. The soft billiard system satisfies property H (H stands for ‘hyperbolicity’)
in case

1. there is some positive constant c such that |2 + κ(ϕ)| > c for all ϕ;
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2. the configuration of scatterers is such that the distance of any two circles is bounded
below by τmin where

τmin 	 max
ϕ

{
−2Rκ(ϕ)

cosϕ

2 + κ(ϕ)

}
.

Remark 5.6.

• Although a bit otherwise formulated, it was essentially proven in [17] that soft billiard
systems with property H are hyperbolic and ergodic. The mechanism of hyperbolicity
is explained in Section 5.2.2. (Actually, the hyperbolicity shown in [17] is not enough
for our purposes, so we prove uniform hyperbolicity.)

• Note that in case κ > 0 or κ < −2 for all ϕ, the lower bound for τmin turns out to
be negative. Thus the second assumption is only restrictive in the opposite case, and
the closer κ may get to −2 from above, the more restrictive it is.

• In case there is some ϕ for which 0 > κ > −2, a positive lower bound on the
free path is to be assumed. As already mentioned, we will also require that the
horizon is finite – that is, the length of free flight is bounded. Thus a planar periodic
configuration of circles is needed which has finite horizon and (a possibly great) given
τmin simultaneously. At first sight it seems questionable whether such configurations
exist at all, nevertheless, as proven in [9], this happens with positive probability in
a random construction.

Definition 5.7. The rotation function is termed regular in case the following properties
hold.

1. ∆Θ(ϕ) is piecewise uniformly Hölder continuous. I.e. there are constants C < ∞
and α > 0, and furthermore, [−π

2
, π

2
] can be partitioned into finitely many intervals,

such that for any ϕ1 and ϕ2 (from the interiour of one of the intervals):

|∆Θ(ϕ1)−∆Θ(ϕ2)| ≤ C|ϕ1 − ϕ2|α.

2. ∆Θ(ϕ) is a piecewise C2 function of ϕ on the closed interval [−π
2
, π

2
], in the above

sense. (Note, however, that κ, in contrast to ∆Θ, can happen to have no finite
one-sided limits at discontinuity points.)

3. There is some finite constant C such that

|κ′(ϕ)| ≤ C|(2 + κ(ϕ))3|

where κ′(ϕ) is the derivative of κ with respect to ϕ.

4. For the final property consider any discontinuity point ϕ0 where κ(ϕ) (in contrast to
∆Θ(ϕ)) has no finite limit from the left. Of course, in case there is no finite limit
from the right, the analogous property is similarly assumed.

Restricted to some interval [ϕ0 − ε, ϕ0); ω(ϕ) = 2+κ(ϕ)
cos ϕ

is a monotonic function of
ϕ.

Remark 5.8. Note that in case κ is C1 (or piecewise C1 with boundedness of itself and of
κ′) regularity is automatic. In case the asymptotics of κ near some discontinuity is some
power law (ϕ0 − ϕ)−ξ (with ξ > 0), regularity means 1

2
≤ ξ < 1.



52 CHAPTER 5. CORRELATION DECAY IN SOFT BILLIARDS

5.1.4 Singularities

Just like in billiards the dynamics T is not smooth at certain one codimensional subman-
ifolds (curves) of M . Consider the set of tangential reflections:

S0 =
{

(s, ϕ) ∈M | ϕ = ±π
2

}
.

Actually S0 = ∂M (the boundary of the phase space). We know that T is not continuous
at S1 = T−1S0, i.e. at the preimages of tangential reflections. However, additional
singularities appear at

Z0 = { (s, ϕ) ∈M | ϕ = ϕ0 }
in case ϕ0 is some discontinuity point for ∆Θ(ϕ), κ(ϕ) or κ′(ϕ). In such a case we will
consider the phase space as if it were cut into two regions, more precisely Z0 is treated
as part of the boundary. As κ is not differentiable at Z0, T is not C1 at the preimage of
this set, at Z1 = T−1Z0.

Similarly to the definition of S(n) in (2.2), we introduce

Z(n) = Z1 ∪ T−1Z1 ∪ · · · ∪ T−n+1Z1.

The n-th iterate of the dynamics is not smooth precisely at Z(n) ∪ S(n).
The geometrical structure of Z(n) is much similar to that of S(n). Indeed, one can

think of Z1 as the set of those trajectories that would touch tangentially a smaller disk
(one of radius R sin(|ϕ0|)) at the next collision. The following properties of the singularity
set are of crucial importance:

• Z(n) ∪ S(n) is a finite union of C2 curves.

• Continuation property. Each endpoint, x0, of every unextendable smooth curve
γ ⊂ Z(n) ∪S(n), lies either on the extended boundary Z0 ∪S0 or on another smooth
curve γ′ ⊂ Z(n) ∪ S(n) that itself does not terminate at x0.

• Complexity property. Let us denote by Kn the complexity of Z(n) ∪ S(n), i.e. the
maximal number of smooth curves in Z(n) ∪ S(n) that intersect or terminate at any
point of Z(n) ∪ S(n). Kn grows sub-exponentially with n.

For the proof of these properties in the billiard setting see the literature, especially [14],
our case is analogous.

One more similarity to ‘hard’ billiards is that for technical reasons later on we will
introduce countably many secondary singularities parallel to the lines of S(n). Such sec-
ondary singularities are to be introduced parallel to Z(n) as well, in case |κ| is unbounded
as ϕ→ ϕ0, at least from one side. We will turn back to this question in Section 5.2.2.6.

5.1.5 Formulation of the theorem

Now we are ready to formulate our main theorem, which uses definitions 1.3 and 1.4.

Theorem 5.9. Suppose that the soft billiard system (M,T, µ) satisfies property
H and the rotation function is regular. Suppose furthermore that there are
no corner points and the horizon is finite (0 < τmin, τmax <∞).

Then, the dynamics enjoys, in addition to ergodicity and hyperbolicity,
exponential decay of correlations and the central limit theorem for Hölder-
continuous functions.
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5.1.6 Sketch of the proof

The proof of Theorem 5.9 is rather long, thus for a better understanding, we first give a
brief sketch of the main argument. As already discussed in the Introduction, the main
new difficulty is the treatment of quantities connected to the second derivative of the
dynamics. This is needed for the proof of curvature bounds, and, especially, distortion
bounds (described below). It is also worth mentioning that the choice of the right phase
space and metric is not trivial. For example, using the Euclidean metric (as we do) with
the phase space of incoming particles instead of outgoing, our distortion bounds would
no longer hold. The complete discussion of the proof is given in Sections 5.2 and 5.3.

Actually, our theorem is an application of [12]. In this paper N. Chernov showed
that given a hyperbolic system with singularities for which certain properties can be
shown, correlations decay exponentially. Our proof establishes these properties for the
investigated soft billiard systems. More precisely, our theorems are the consequences of
Theorem 2.1 from [12] (see the Appendix, Theorem A.1 for a precise formulation) and the
properties with a bold typeface below. Arguments are to be presented at three different
levels.

1. Uniform hyperbolicity (Proposition 5.17) and geometric properties. We define
stable/unstable manifolds as those curves inM that correspond to fronts that remain
concave/convex for all future/past iterates of T . Unlike in [17], we need to show that
contraction/expansion (in the natural Riemannian metric of M) is indeed uniform.
To achieve this, one needs to introduce an auxiliary metric quantity (the p-metric
of billiard literature, cf. Section 2.6 for a general definition or (5.26) for the specific
form in two dimensions) and furthermore, needs to discuss the cases of κ ≥ 0,
0 > κ ≥ −1, −1 > κ > −2 + δ and −2 − δ > κ separately. In addition, uniform
transversality of stable and unstable manifolds is to be shown. Besides hyperbolicity,
it is to be shown that singularities and stable/unstable manifolds, even though not
necessarily transversal to each other, can have tangential intersections of at most
some polynomial rate. This property, often termed as alignment, is the point where
Hölder continuity of the rotation function (the first property from Definition 5.7) is
applied.

2. Technicalities on stable/unstable manifolds. To apply the result of [12] (or more gen-
erally, the ideas of L.-S. Young from [43]) one needs to show that stable/unstable
manifolds enjoy certain regularity properties. The proof of uniform curvature
bounds (Proposition 5.23) relies on the fact that curvature of a convex front (when
viewed as a submanifold of the flow phase space) cannot blow up during time evo-
lution as distances on the front always grow faster than the inhomogeneities in
its shape. This behaviour is why we need the third regularity property in Defini-
tion 5.7. It might be worth mentioning that the proof of curvature bounds seemed
much more difficult for the case of −1 < κ < 0 at first sight as in this case one needs
to handle fronts that defocus even within the potential, nevertheless, finally, based
on Definition 5.7, we could find an argument that applies to all allowed κ values. As
to distortion bounds (Proposition 5.24) and the absolute continuity (Proposi-
tion 5.28) of holonomy maps, following the idea already applied in ‘hard’ billiards
(cf. [12] and references), the phase space is partitioned into ‘homogeneity layers’ by
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introducing further, ‘artificial’ singularities. This is to be done with special care, for
– in addition to the phenomena near tangential singularities common to all billiards
– further unbounded derivatives may appear at discontinuities of κ. This is the
point where the fourth regularity property from Definition 5.7 is exploited.

3. Growth properties of unstable manifolds (Proposition 5.29). The main idea
of the papers [43] and [12] is that expansion of unstable manifolds is uniformly
stronger than their fractioning caused by the presence of singularities. This is quan-
tified by three rather technical growth formulas in [12]. However, establishing the
validity of these formulas is the part of our proof which is closest to the analogous
discussion from [12]. We note that this is the point where the alignment property
of singularities and unstable manifolds is used.

The proof consists of checking all these properties described.

Ingredients for the proof of Theorem 5.9 are in Sections 5.2 and 5.3. Actually, following
tradition (eg. [12]) we modify the dynamical system in several steps (Conventions 5.16
and 5.19). We will use a phase space M̄ , which is the original M cut into (countably
many) connected components by singularities and so called ‘secondary singularities’. We
will also use a higher iterate of the dynamics T1 = Tm0 with some m0 to be found later.

It is the modified dynamical system (M̄, T1, µ) for which the conditions for EDC and
CLT given in [12] are checked. Precisely, EDC and CLT for (M̄, T1, µ) are the consequence
of propositions 5.17, 5.23, 5.24, 5.28 and 5.29 and Theorem 2.1 from [12].

Exponential decay of correlations and the central limit theorem for (M,T, µ) follow
easily from EDC and CLT for (M̄, T1, µ).

For the reader’s convenience, we give a formulation of Theorem 2.1 from [12] in the
Appendix.

In the two corollaries in Section 5.4 we present two important classes of potentials for
which calculation of the rotation function is relatively straightforward. In these two cases
the assumptions of Theorem 5.9 are satisfied.2

Before turning to the details of the above proof, we fix some conventions.

Convention 5.10. Constants that depend only on the map T itself (like τmin, τmax, . . . )
will be called global constants.

Positive and finite global constants, whose value is otherwise not important, will be
often denoted by just c or C (typically c for lower bounds and C for upper). That is, in
two different lines of the same section, C can mean two different numbers.

Two quantities f and g defined on (the tangent bundle of) M (or on some subset like
the unstable cone field, see Section 5.2.1) will be called equivalent (f ∼ g) if there are
some global positive constants c and C such that cf ≤ g ≤ Cf .

2It might be worth mentioning that these potentials, as functions on R2, are not C1, thus the equations
of motion are to be integrated with care. One needs to integrate inside and outside the disks separately
and apply plausible boundary conditions: the magnitude of the velocity at R− can be obtained from the
kinetic energy, and the tangential velocity component is continuous at R.
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5.2 Fronts, u-manifolds and unstable manifolds

5.2.1 Fronts and their geometric properties

Analysis of the time evolution of fronts (Section 2.2) is the key to almost all the geometric
properties of the system that we need. For this reason, we first discuss time evolution of
an arbitrary front. Later subsections will deal with special cases. In two dimensions, a
front is just a curve in configuration space.

dqmdvm

s theta

phim phip

dqpdvp

dtp

Figure 5.3: conventions for notation and signs for fronts

Consider a front with a reference point just before reaching a scatterer, and another
‘perturbed’ point nearby. With the notations of Section 5.1.1 (see also Figure 5.3), the
perturbation bringing the reference trajectory into the perturbed one is (dq−, dv−) just
before collision, (ds−, dϕ−) in the incoming Poincaré section, (ds+, dϕ+) in the outgo-
ing Poincaré section, (dq+, dv+) just after collision, and (dq′−, dv

′
−) just before the next

collision. In general:

Convention 5.11. with any x, x′ denotes the equivalent of the quantity x after one
collision – that is, one collision ahead in time.
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The evolution of the perturbations is:

ds− =
dq−

cosϕ−

dΘ− =
ds−
R

dϕ− = dv− + dΘ−

dΘ+ = dΘ− + κdϕ− (5.3)

dϕ := dϕ+ = dϕ−

ds+ = RdΘ+

dq+ = − cosϕds+

dv+ = −dΘ+ − dϕ+

while crossing the potential. For the evolution equations of free flight, we introduce the

Notation. τ = τ(x) will denote the length of free flight of the particle before reaching the
next scatterer.

So, during free flight we have

dq′− = dq+ + τdv+ (5.4)

dv′− = dv+.

Note that the angles of incidence and reflection are measured in different directions – in
order to keep them equal, as they traditionally are, – but dq− and dq+ (just like dv− and
dv+) are measured in the same direction, unlike usually in billiards.

Based on these, we can find out about the evolution of the derivative B = dv
dq

.
In this 2D case, the SFF B of a front is just a number – the derivative of the unit

normal vector (velocity) v(q) of a front: dv = Bdq for tangent vectors (dq, dv) of the front.

Notation. m = dϕ
ds

will denote the slope of the (trace of the) front in the Poincaré section.

Remember, B is the curvature of the submanifold E, yet we prefer to call it second
fundamental form (SFF), in order to avoid confusion with other curvatures. The term
‘form’ refers to higher dimensional cases when B is a symmetric operator.

(5.3) gives

m− = cosϕB− +
1

R
1

m+

=
1

m−
+Rκ (5.5)

cosϕB+ = m+ +
1

R

while crossing the potential, which can be summarized in

B+ =
2 + κ(ϕ) + (1 + κ(ϕ))R cosϕB−

R cosϕ(1 + κ(ϕ) + κ(ϕ)R cosϕB−)
, (5.6)
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and (5.4) gives
1

B′
−

=
1

B+

+ τ (5.7)

during free flight.

Notation.

λ1 :=
dq+
dq−

, (5.8)

λ2 :=
dq′−
dq+

, (5.9)

λ := λ1λ2.

These are exactly the expansion factors along the front, for the respective ‘pieces’
of the dynamics. (They are also expansion factors in the Poincaré section, but in the
p-metric – as we will see later.) We have

λ1 = 1 + κ+ κR cosϕB− = 1 + κRm− =
m−

m+

, (5.10)

λ2 = 1 + τB+ =
B+

B′
−
. (5.11)

To study decay of correlations, we need one more derivative.

Notation. D = dB
dq

.

This is exactly the curvature of the front as of a subset of the flow phase space (and
not as of a subset of the configuration space – unlike B, cf. (2.1)).

To study the evolution of D we need to consider two small pieces of the front, one
around the reference point, and one around the perturbed one. Let the change in the SFF
be

dB−− = D−dq.

before scattering, and
dB++ = D+dq.

after scattering. dB−− is not the difference of SFF-s at the points of incidence, because
the perturbed point has to travel another dτ− = tanϕ−dq− to reach the scatterer (dτ can
be negative), which changes its SFF according to the rules (5.7) of free flight. Taking that
into account, we have

dB− = dB−− −B2
−dτ− = dB−− −B2

− tanϕ−dq−. (5.12)

Similarly, for the fronts leaving the potential,

dB++ = dB+ −B2
+dτ+ = dB+ −B2

+ tanϕ+dq+. (5.13)

(Note our convention on the signs of dq−, dq+, ϕ− and ϕ+.)
To follow the evolution of curvature we introduce

Notation. D1 = dB−
dq−

(6= D−), K− = dm−
ds−

, K+ = dm+

ds+
, D2 = dB+

dq+
and η(ϕ) = dκ(ϕ)

dϕ
.
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With these we get from (5.3), (5.5), (5.8), (5.10), (5.12) and (5.13)

D1 = D− − tanϕB2
−

K− = cos2 ϕD1 − sinϕB−m−

K+ =
1

λ3
1

K1 −R

(
m−

λ1

)3

η (5.14)

cos2 ϕD2 = −K+ − sinϕB+m+

D+ = D2 − tanϕB2
+

while crossing the potential, and, from (5.4), (5.7) and (5.9)

D′
− =

1

λ3
2

D+ (5.15)

during free flight.

5.2.2 Invariance of convex fronts, u-fronts and u-manifolds

In [17] it is shown – although not explicitly stated in this integrated form – that if Property
H (defined in Definition 5.5) is satisfied, then convex fronts with suitably small SFF-s (the
upper bound may be ∞) either remain convex, or focus before reaching the next scatterer,
and become convex again, with suitably small SFF. This property is called the ‘invariance
of convex fronts’. In the present work we also require (see Theorem 5.9) that τ be bounded
from below by some τmin > 0 even in the case when [17] did not (the ‘no corner points’
assumption), and an upper bound τmax (the ‘finite horizon’ assumption). In order to
establish estimates that we will need later, we must repeat some steps of the argument in
[17]. We omit details of the calculations, these can be done by the reader or can be found
in the above paper.

Notation.

τ1 = max

{
0,max

ϕ

{
−Rκ(ϕ)

cosϕ

2 + κ(ϕ)

}}
, (5.16)

B∗ =
1

τ1
(∞ if τ1 = 0).

Let us consider the three different possible cases for the value of κ.

• If κ < −2− δ and B− > 0, then from (5.5) we get B+ > δ
R(1+δ) cos ϕ

≥ δ
R(1+δ)

.

• If κ ≥ 0 and B− > 0, then from (5.5) we get B+ > 2+κ
R(1+κ) cos ϕ

> 1
R
.

• If −2 < κ < 0 and 0 < B− < B∗, then (5.16) gives B− < − 2+κ
Rκ cos ϕ

. Putting that

in (5.5), we get that either m+ > 0 and thus B+ > 1
R cos ϕ

≥ 1
R

or m+ < 0 and thus

B+ < 2+κ
Rκ cos ϕ

≤ −B∗.

In any of these cases, (5.7) implies that B∗ < B′
− < B∗∗ with some global constants

B∗ > 0 and B∗∗ < B∗, whenever τmin > 2τ1, which is exactly Property H. All in all,

B∗ < B− < B∗∗ implies B∗ < B′
− < B∗∗. (5.17)

This motivates our
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Definition 5.12. A u-front is a front with B∗ < B− < B∗∗. A u-manifold is the trace of
a u-front on the Poincaré phase space.

and

Definition 5.13. An s-front is a front with B∗ < −B+ < B∗∗. An s-manifold is the trace
of an s-front on the Poincaré phase space.

As we have seen, u-manifolds remain u-manifolds under time evolution. s-fronts are
exactly the u-fronts of the inverse dynamics.

The aim of this subsection is to show important properties of u-fronts and u-manifolds,
which are stronger than those shown for an arbitrary front in the previous subsection. In
Section 5.2.3 we further restrict to the case of unstable manifolds, which are special kinds
of u-manifolds.

5.2.2.1 Expansion estimates along u-fronts

First we work out estimates for the expansion along a front from one moment of incidence
to the next. We will use these estimates later to estimate expansion of our dynamics T
in our outgoing Poincaré phase space M .

Consider a u-front with the earlier notations. We start with an easy observation we
will often use: from (5.5) and (5.17) we get 1

R
< m− <

1
R

+B∗∗, which implies

m− ∼ 1. (5.18)

To get the order of magnitude for the expansion factor λ, put the formulas in (5.6)
and (5.10) together, and get that

R cosϕB+λ1

2 + κ(ϕ)
= 1 + (1 + κ(ϕ))RB−

cosϕ

2 + κ(ϕ)
.

The right hand side is trivially bounded from above since B− is bounded, and so is
1+κ(ϕ)
2+κ(ϕ)

= 1− 1
2+κ(ϕ)

. On the other hand,

• It is greater than 1 if 1+κ(ϕ)
2+κ(ϕ)

> 0.

• If 1+κ(ϕ)
2+κ(ϕ)

≤ 0 (that is, −2 < κ(ϕ) ≤ −1), then

1 + (1 + κ(ϕ))RB−
cosϕ

2 + κ(ϕ)
≥ 1 + (1 + κ(ϕ))R

cosϕ

2 + κ(ϕ)
B∗ ≥

≥ 1 + (1 + κ(ϕ))R
cosϕ

2 + κ(ϕ)

2 + κ(ϕ)

−Rκ(ϕ) cosϕ
=

−1

κ(ϕ)
≥ 1

2
.

All in all, using λ2 = B+

B′
−
∼ B+ (see (5.11) and (5.17)) we have

λ ∼ B+λ1 ∼
2 + κ(ϕ)

cosϕ
, (5.19)

which is one of our key estimates. Notice that the right hand side cannot be too small
due to Property H (Definition 5.5).
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We can also get the order of magnitude for λ1 and λ2 separately: (5.10) and (5.18)
gives

|λ1|
√

1 +m2
+ =

√
λ2

1 +m2
− ∼ |2 + κ(ϕ)|. (5.20)

(The last equivalence is true because both sides are bounded away from zero, and can
only be big when they grow linearly with κ.) Notice that λ1 can be very small (even
zero), and can even change signs while 2 + κ(ϕ) remains positive. Of course, m+ has to
be infinity (and change signs) simultaneously.

Putting (5.19) and (5.20) together, we get

|λ2|√
1 +m2

+

∼ 1

cosϕ
. (5.21)

This last line can be rewritten as

1 ∼ |λ2| cosϕ√
1 +m2

+

∼ |B+| cosϕ√
1 +m2

+

=
|m+ + 1

R
|√

1 +m2
+

,

which implies that there is a global constant c such that∣∣∣∣m+ +
1

R

∣∣∣∣ > c. (5.22)

5.2.2.2 Expansivity

To obtain hyperbolicity, we must see that u-manifolds are expanded by the dynamics.
In the first round we prove a lemma about the expansion on u-fronts from collision to
collision.

Lemma 5.14. There exists a global constant Λ > 1, such that for every u-front, |λ| ≥ Λ.

Proof. Besides τ > 0 and B− > 0 we will use that τ ≥ 2τ1 + d where d := τmin − 2τ1 > 0,
and τ1 ≥ −Rκ(ϕ) cos ϕ

2+κ(ϕ)
for every ϕ (see Definition 5.5 and (5.16)). Altogether:

τ ≥ d− 2Rκ(ϕ)
cosϕ

2 + κ(ϕ)
. (5.23)

We will also use from (5.16) and Definition 5.12 that

0 < B− ≤
2 + κ(ϕ)

−Rκ(ϕ) cosϕ
(5.24)

whenever the right hand side is positive, which is the −2 < κ(ϕ) < 0 case. Now we start
by putting together (5.10), (5.11) and (5.6) to get

λ = (1+κ(ϕ)Rm−)(1+τB+) = 1+κ(ϕ)+κ(ϕ)R cosϕB−+τ

(
2 + κ(ϕ)

R cosϕ
+ (1 + κ(ϕ))B−

)
We estimate this taking care of the signs of the particular terms.

• If κ(ϕ) ≤ −2− δ, then
λ ≤ 1 + κ(ϕ) ≤ −1− δ.
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• If −2 + δ ≤ κ(ϕ) ≤ −1 then both coefficients of B− are negative, so we can use
(5.24) to estimate the right hand side from below. In the next step we find the
coefficient of τ positive, so we can use (5.23). What we get is

λ ≥ 1 + κ(ϕ) + κ(ϕ)R cosϕ
2 + κ(ϕ)

−Rκ(ϕ) cosϕ
+

+τ

(
2 + κ(ϕ)

R cosϕ
+ (1 + κ(ϕ))

2 + κ(ϕ)

−Rκ(ϕ) cosϕ

)
=

= −1 + τ
2 + κ(ϕ)

−κ(ϕ)R cosϕ

≥ −1 +

(
d− 2Rκ(ϕ)

cosϕ

2 + κ(ϕ)

)
2 + κ(ϕ)

−κ(ϕ)R cosϕ

≥ 1 +
dδ

2R
.

• If −1 ≤ κ(ϕ) ≤ 0, then the coefficient of τ is positive, so we first use (5.23) to
estimate the right hand side from below. In the next step we find one coefficient of
B− positive, so we just use B− > 0, and one coefficient of B− negative, so we can
use (5.24). What we get is

λ ≥ 1 + κ(ϕ) + κ(ϕ)R cosϕB− +

+

(
d− 2Rκ(ϕ)

cosϕ

2 + κ(ϕ)

)(
2 + κ(ϕ)

R cosϕ
+ (1 + κ(ϕ))B−

)
=

= 1 + d
2 + κ(ϕ)

R cosϕ
+ d(1 + κ(ϕ))B− − κ(ϕ)− κ2(ϕ)R cosϕ

2 + κ(ϕ)
B−

≥ 1 + d
2 + κ(ϕ)

R cosϕ
− κ(ϕ) − κ2(ϕ)R cosϕ

2 + κ(ϕ)

2 + κ(ϕ)

−Rκ(ϕ) cosϕ

≥ 1 +
d

R
.

• If 0 < κ(ϕ), then

λ ≥ 1 +
2d

R
.

5.2.2.3 Transversality

Lemma 5.15. We will see that u- and s-manifolds are uniformly transversal. I.e. there
is some global constant α0 > 0 such that given any two tangent vectors (in the outgoing
Poincaré phase space) dxs and dxu of an s- and a u-manifold, respectively, we have

^(dxu, dxs) > α0.

Proof. To see this, use Definition 5.13 and (5.5) to get ms
+ ∼ −1 for the slope of any s-

manifold. This way, it is enough to see that the slopes of u- and s-manifolds are bounded
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away, that is, |mu
+ −ms

+| > c. To get this, use – again – Definition 5.13, Definition 5.12,
the estimates before them and (5.5) to get

− 1

R
> ms

+ > − 1

R
− cosϕB∗∗

mu
+ > 0 or mu

+ < − 1

R
− cosϕB∗ (5.25)

so either mu
+−ms

+ > 1
R

or ms
+−mu

+ > cosϕ(B∗−B∗∗). This implies the statement when
cosϕ is not too small. However, when cosϕ is small, we have to use the estimate (5.22)
and (5.25) to see also that

mu
+ > 0 or mu

+ < − 1

R
− c

which completes the proof.

5.2.2.4 Hyperbolicity

In what follows we will consider time evolution of vectors tangent to u-manifolds. Notation
both in the incoming and the outgoing phase space will be of the type dx = (ds, dϕ). In
addition to the e-metric (5.1) we will use the p-metric introduced in Section 2.6, which
now has the form

|dx|p = |ds| cos(ϕ). (5.26)

The p-metric measures distances along the corresponding u-front. It is degenerate on the
whole tangent bundle. However, when restricted to a u-manifold in the incoming phase
space, by (5.18) we have:

|dx|p ∼ |dx|e cos(ϕ).

According to Lemma 5.14, u-vectors are expanded uniformly (from collision to collision,
that is, in the incoming phase space) in the p-metric:

|DT |p = λ ≥ Λ > 1

To obtain expansion in the e-metric and the outgoing phase space, we look at the n-th
iterate of the outgoing phase space dynamics the following way:

• switch to p-metric

• reach the next scatterer

• do n− 1 steps in the incoming phase space

• cross the potential

• switch back to Euclidean metric.

This way we get

|DT n dx|e =

√
1 +m2

+(n)

cosϕ(n)

λ1(n)λ(n−1)λ(n−2) . . . λ(1)λ2
cosϕ√
1 +m2

+

|dx|e
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where symbols with ()-ed subscripts mean values at the appropriate iterate of the phase
point. Using (5.20), (5.21) and Lemma 5.14 we get

|DT n dx|e ∼ λ(n−1)λ(n−2) . . . λ(1)

2 + κ(ϕ(n))

cosϕ(n)

|dx|e. (5.27)

This way we have
|DT n dx|e > c1Λ

n|dx|e (5.28)

with some global constant c1. Again, this is for u-vectors in the outgoing phase space.
The transversality of s- and u- vectors, stated in Proposition 5.17 implies that the

product of (length) expansion factors for s- and u- vectors is equivalent to the n-step
(Lebesgue) volume expansion factor. Using (5.2), and the T -invariance of µ, we get that
if dx is a u-vector and dy is an s-vector, then

|DT n dx|e
|dx|e

|DT n dy|e
|dy|e

∼ cosϕ

cosϕ(n)

.

Combining this with (5.27) we get

|DT n dy|e ∼
cosϕ

2 + κ(ϕ(n))

1

λ(n−1)λ(n−2) . . . λ(1)

|dy|e,

which implies

|DT n dy|e <
C1

Λn
|dx|e (5.29)

with some global constant C1. Again, this is for s-vectors in the outgoing phase space.

Convention 5.16. We choose a positive integer m0 the following way. First take m1

such that c1Λ
m1 > 1 and C1

Λm1
< 1. This way any enough high power of the dynamics,

Tm with m > m1 is uniformly expanding along u-manifolds and uniformly contracting
along s-manifolds with Λ1 = Λm−m1. Now recall the notion and the basic properties of
complexity Kn from Section 5.1.4. As Kn grows subexponentially we may choose m2 for
which we have Km < Λm−m1 whenever m > m2. We fix m0 = min(m1,m2) + 1.

The advantage of this choice is that the iterate T1 = Tm0 is uniformly hyperbolic (see
the proposition to come) with constant Λ1 for which Λ1 > Km0 + 1. This later fact we
only use in Section 5.3.

Let us summarize what we have seen so far from the hyperbolic properties in the
following

Proposition 5.17. There exist two families of cones Cs(x) and Cu(x) – called stable and
unstable cones – in the tangent space of M such that

DT (Cu(x)) ⊂ Cu(Tx) and Cs(Tx) ⊂ DT (Cs(x)).

The stable/unstable cone is uniformly contracting/expanding:

|DT−1
1 (dx)| ≥ Λ1|dx| ∀dx ∈ Cs(x),

|DT1(dx)| ≥ Λ1|dx| ∀dx ∈ Cu(x).

Furthermore, the two cone fields are uniformly transversal in the sense above.
Vectors of the stable/unstable cone are often called s- and u-vectors.
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Proof. The two cones are formed by the tangent vectors of s- and u-manifolds, respectively.
Invariance is the implication (5.17), recalling Definition 5.12 and 5.13. Expansion and
contraction are (5.28), (5.29) and Convention 5.16. Transversality is Lemma 5.15.

We note that so far we have only used that our billiard satisfies property H, which
is a property already formulated in [17], and which is known from [16] to be essentially
necessary for ergodicity.

5.2.2.5 Alignment

We need to investigate the relative position of u-manifolds and singularities in order to
find out how much of a u-manifold can be ‘close’ to a singularity. Our aim is to prove the
following

Lemma 5.18. Take any smooth component Z of T−kZ0 with k ≥ 0, where

Z0 = { (s, ϕ) ∈M | ϕ = ϕ0 }

with any ϕ0 ∈ [−π
2
, π

2
]. Given some small positive δ let us denote the δ-neighbourhood of

Z by Z [δ]. There are global constants C <∞ and α > 0 such that for any u-manifold W
we have

mW

(
Z [δ] ∩W

)
≤ Cδα, (5.30)

where mW is the Lebesgue measure – the length – on the u-manifold W .

Proof. If k > 0, then Z is an s-manifold, and is transversal to our u-manifold W according
to Lemma 5.15, so the statement holds even with α = 1.

So take k = 0, then Z is described by mZ = 0. If κ(ϕ) remains bounded near ϕ0, then
for our u-manifold W ,

1

m+

=
1

m−
+Rκ(ϕ)

is bounded (see (5.5) and (5.18)), so the two curves are transversal again, we can choose
α = 1.

The interesting case is k = 0, κ(ϕ) → ∞ as ϕ → ϕ0. In this case (5.18) ensures that
1

m−
is negligible – say, less than ε portion – compared to Rκ(ϕ). This – through (5.5) and

the definition m+ = dϕ+

ds+
= dϕ

ds
– implies that for u-manifolds

(1− ε)Rκ(ϕ) ≤ ds

dϕ
≤ (1 + ε)Rκ(ϕ)

Integrating this with respect to ϕ and using the definition of κ(ϕ), we get

(1− ε)R(∆Θ(ϕ)−∆Θ(ϕ̄) ≤ s− s̄ ≤ (1 + ε)R(∆Θ(ϕ))−∆Θ(ϕ̄))

which means that, close (enough) to a κ(ϕ) →∞ singularity, a u-manifold is (arbitrarily)
similar to the graph of the rotation function ∆Θ(ϕ). Now the Hölder-continuity of ∆Θ(ϕ)
required in the regularity condition (Definition 5.7) implies the statement of the Lemma.
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We note that the proof of alignment is the only place where we use our assumption that
the rotation function is Hölder-continuous. The above proof shows that Hölder-continuity
is indeed a necessary condition for alignment. Alignment is not among the conditions of
Chernov’s theorem which our proof is based on, but we will use it in the proof of the
growth properties (Proposition 5.29). At that place it seems to be unavoidable, so we
think that Hölder-continuity of the rotation function is needed for Chernov’s method to
work. On the other hand, as already pointed out earlier, we do not claim that it is a
necessary condition for EDC.

5.2.2.6 Homogeneity strips, secondary singularities and homogeneous u-ma-
nifolds

Notation.

ω(ϕ) :=
2 + κ(ϕ)

cosϕ
(5.31)

We will see that expansion in the e-metric is unbounded as |ω(ϕ)| → ∞. This certainly
happens in the vicinity of ±π

2
, nevertheless, there can exist other discontinuity values ϕ0

with the same property. Big expansion comes together with big variations of expansion
(i.e. distortion) rates along u-manifolds. For that reason we need to partition the phase
space into homogeneity layers in which ω(ϕ) is nearly constant. We fix a large integer k0

(to be specified in Section 5.3) and define for k > k0 the I-strips as

Ik =
{

(s, ϕ) | k2 ≤ |ω(ϕ)| < (k + 1)2
}

(5.32)

Recall from Definition 5.7 that whenever limϕ→ϕ0 |ω(ϕ)| = ∞, there exists an interval
[ϕ0 − ε, ϕ0) restricted to which |ω(ϕ)| is a monotonic function of ϕ. We partition a
subinterval of this interval into I-strips, thus k0 is chosen accordingly large. In case
there are several discontinuity points of ω(ϕ) (with unbounded one-sided limits) we may

construct further I-strips, I
(s)
k , analogously. Here the index s labels the finitely many

discontinuities of this kind.
Furthermore take I

(u)
0 ; u = 1 · · ·U where the index u labels the finitely many connected

components of the complement of all the above layers (that is, the ‘remaining part’ of the
phase space).

We will use the notations Γ0 for the countably many boundary components of I-strips.

Convention 5.19. From now on, Γ0 – just like S0 and Z0 before – is considered as part
of the boundary of the phase space. That is, we will use a modified phase space M̄ , whose
connected components are the homogeneity strips Ik (and I

(u)
0 ).

In complete analogy with primary singularities we introduce furthermore the notations
Γ1 and Γ(n) for the corresponding preimages. The geometric properties of these secondary
singularity lines are analogous to those of primary ones (for example, (5.30) applies).

Definition 5.20. We will say that a u-manifold is homogeneous whenever it is contained
in one of the homogeneity strips Ik (or I

(u)
0 ).

In sections 5.2.3.2 and 5.3 we will be concerned with u-manifolds that remain homo-
geneous for several steps of the dynamics.
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5.2.3 Regularity properties of unstable manifolds

Definition 5.21. An unstable manifold is a u-manifold for which all past iterates are
u-manifolds as well.

Analogously, a stable manifold is an s-manifold for which all future iterates are s-
manifolds as well.

From the theory of hyperbolic systems (see [12] and references therein) we know that
there is a unique unextendable unstable (and similarly a unique unextendable stable)
manifold through (µ−)almost every point of M̄ . Thus it makes sense to talk about the
(un)stable manifold through the point.

We will also refer to unstable manifolds as ‘local unstable manifolds’ (LUMs), stressing
the fact that they are (and all their past iterates as well are) contained in some homogeneity
layer Ik. (Remember that our phase space ends on the boundary of Ik, so Ik+1 is already
another connected component.)

In this subsection we deal with properties of unstable manifolds which are stronger
than those proved before for arbitrary u-manifolds in Section 5.2.2.

5.2.3.1 Curvature bounds

In what follows we obtain bounds on unstable manifolds that will guarantee that their
curvature is uniformly bounded from above.

First we look at u-fronts as submanifolds of the flow phase space.
Putting the formulas in (5.14) and (5.15) together, we get

D′
− = −D−

λ3
+

2 sinϕB2
−

λ3 cosϕ
−

2 sinϕB′
−

2

λ2 cosϕ
+

sinϕB−
Rλ3 cos2 ϕ

+
sinϕB′

−

Rλ2
2 cos2 ϕ

−Rm3
−

η

λ3 cos2 ϕ

Our key estimate (5.21) implies

cosϕ|λ2| ∼
√

1 +m2
+

which is bounded from below. So, in the above sum, terms number 2,3,4 and 5 are all
bounded in absolute value. The last term is bounded due to our assumption∣∣∣∣ η(ϕ)

(2 + κ(ϕ))3

∣∣∣∣ < C.

As a consequence, we have

|D′
−| ≤

|D−|
Λ3

+ C2, (5.33)

with some global constant C2 and can state

Lemma 5.22. There is a global constant D̂ such that for almost any point of the phase
space, the front corresponding to the LUM has

|D−| ≤ D̂
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Proof. Choose D̂ = C2Λ3

Λ3−1
. Now suppose indirectly that there is a set H ⊂ M of positive

measure, for the points of which |D−| > D̂+ε. Then (5.33) implies that there is a c(ε) > 0
such that |D−| > D̂+ ε+ c on T−1H. This implies that |D−| > D̂+ ε+ 2c on T−2H, and
so on: |D−| > D̂ + ε + kc on T−kH for all k > 0. But the T−kH-s are all sets of equal
positive measure, which contradicts the finiteness of the phase space.

As a consequence, we can give curvature bounds for local unstable manifolds in the
incoming and outgoing phase spaces. Since an unstable manifold in the Poincaré section
is the graph of a function ϕ = ϕ(s), its curvature is given by

g =
ϕ′′(s)√

1 + (ϕ′(s))2
3 =

K
√

1 +m2
3 .

We have reached

Proposition 5.23. There is a global constant C such that for almost any point of the
phase space, the front corresponding to the LUM has

|g+| ≤ C.

Proof. It can be read from (5.14) that

|K−| < C, (5.34)

thus

|g−| < C.

To find out about g+, we write

g+ =
K+√

1 +m2
+

3 =

(
m+√

1 +m2
+

)3
K−

m3
−
−R

η√
1 + ( 1

m−
+Rκ(ϕ))2

3 .

This is also bounded in absolute value due to our assumption∣∣∣∣ η(ϕ)

(2 + κ(ϕ))3

∣∣∣∣ < C

(see Definition 5.7).

We note that this proof suggests that our condition

|κ′(ϕ)| ≤ C|(2 + κ(ϕ))3|

is necessary for bounded curvature, and consequently for Chernov’s method to work.
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5.2.3.2 Distortion bounds

Length of a u-manifold W is expanded by T n locally with a factor

JW,n(x) =
|DT ndx|e
|dx|e

,

where dx is the vector tangent to the curve of W at x. The aim of this subsection is to
prove

Proposition 5.24. Let W be an unstable manifold on which T n is smooth. Assume that
Wi = T iW is a homogeneous unstable manifold for each 1 ≤ i ≤ n. Then for all x, x̄ ∈ W

| ln JW,n(x)− ln JW,n(x̄)| ≤ C [distWn(T nx, T nx̄)]
1
5 .

Proof. Note that JW,n(x) =
∏n−1

i=0 JWi,1(T
ix). Hence, it is enough to prove the proposition

for n = 1, because dist(T ix, T ix̄) grows uniformly exponentially in i due to (5.28). So we
put n = 1.

Denote x′ = Tx and, we will use a ’ to denote quantities related to the point x′.
Recall from Section 5.2.2 that the expansion factor is easily calculated in the p-metric.

To obtain J := JW,1(x) we transform |dx|e to |dx|p, take the p-expansion factor from (5.8)
and (5.9) and transform back. This way:

J =

√
1 +m′2

cosϕ′
λ′1 λ2

cosϕ√
1 +m2

.

In order to calculate the change in the logarithm of J as we move from x to x̄, it is
best to write it with the help of (5.31) in the form

J = ω(ϕ′)J ′1J2 (5.35)

with

J1 =

√
1 +m2

+

2 + κ(ϕ)
λ1

and
J2 =

cosϕ√
1 +m2

+

λ2.

(5.20) and (5.21) imply
|J1| ∼ |J2| ∼ 1. (5.36)

The change in logarithm of the three factors can be calculated independently, moreover,
J1 and J2 are expected to change moderately, while ω(ϕ′) can be kept under good control,
because it depends only on ϕ′. The three terms are investigated in three lemmas. Thus
Proposition 5.24 is the direct consequence of the three lemmas 5.25, 5.26 and 5.27. Of
course, the first and third (concerning J1 and ω(ϕ)) have to be applied with ′-es. When
applying Lemma 5.27, we use the trivial fact |ϕ− ϕ̄| ≤ dist(x, x̄).

In the arguments below, as usual, quantities with neither + nor − in their index are
meant to have a +, that is, to be in the outgoing phase space.
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Lemma 5.25. There exists a global constant C such that when a perturbation of size dx
is performed on the base point, we have

|d ln J1| ≤ C|dx|.

Proof. In many estimates, we will use – without further mention – that m− and K− are
bounded (see (5.18) and (5.34)).

With the help of (5.10) we choose the form

J1 =

√
(1 + κ(ϕ)Rm−)2 +m2

−

2 + κ(ϕ)
.

When calculating the differential, we use

dκ(ϕ) = η(ϕ)dϕ =
η(ϕ)m+√
1 +m2

+

dx

and

dm− = K−ds− = K−
ds+

λ1

=
K−

λ1

dx√
1 +m2

+

=
K−√
λ2

1 +m2
−
dx

Calculating the differential, we get

d ln J1 =
m− + κ(ϕ)R + κ2(ϕ)R2m−

((1 + κ(ϕ)Rm−)2 +m2
−)3/2

K−dx+

+
2Rm− − 1−m2

− + (2Rm− − 1)Rm−κ(ϕ)

(2 + κ(ϕ))((1 + κ(ϕ)Rm−)2 +m2
−)

η(ϕ)m+√
1 +m2

+

dx.

The coefficient of dx in the first term is obviously bounded since the denominator is one
degree higher in κ(ϕ) and is bounded away from zero. In the second term, we use (5.10)
and (5.20) to get ∣∣∣∣∣ m+√

1 +m2
+

∣∣∣∣∣ =

∣∣∣∣∣ m−√
1 +m2

+λ1

∣∣∣∣∣ ∼
∣∣∣∣ 1

2 + κ(ϕ)

∣∣∣∣ (5.37)

so, looking again at the degrees of polynomials (in κ) in the numerator and denominator
of the second term, we have

2Rm− − 1−m2
− + (2Rm− − 1)Rm−κ(ϕ)

(2 + κ(ϕ))(1 + κ(ϕ)Rm−)2 +m2
−)

η(ϕ)m+√
1 +m2

+

≤ C

∣∣∣∣ η(ϕ)

(2 + κ(ϕ))3

∣∣∣∣ ≤ C1.

Lemma 5.26. There exists a global constant C such that when a perturbation of size dx
is performed on the base point, we have

|d ln J2| ≤ C|dx′|

(note the ’ on the right hand side).
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Proof. With the help of (5.5) and (5.11) we choose the form

J2 =
cosϕ+ τm+ + τ

R√
1 +m2

+

.

When calculating the differential, we use

dϕ =
m+√

1 +m2
+

dx

and

dm+ = K+ds+ = K+
dx√

1 +m2
+

= (1 +m2
+)g+dx.

This way we get

d ln J2 =
− sinϕm+

cosϕλ2

√
1 +m2

+

dx+B′
−dτ −

m+( τ
R

+ cosϕ)− τ

cosϕλ2

g+dx.

Due to (5.21), the coefficient of dx in the first term is equivalent to − sin ϕm+

1+m2
+

, and in the

third term to −m+( τ
R

+cos ϕ)−τ√
1+m2

+

g+, both of which are bounded (cf. (5.37)).

We finish by estimating dx and dτ with dx′. First,

dx′ = Jdx ∼
∣∣∣∣2 + κ(ϕ′)

cosϕ′

∣∣∣∣ dx ≥ cdx. (5.38)

Second, the triangle inequality implies |dτ | ≤ |ds|+ |ds′−|. On the one hand, (5.38) implies
|ds| ≤ |dx| ≤ C|dx′|. On the other hand (5.20) implies,

dx′ =
√

1 +m′
+

2|λ′1|ds′− ∼ |2 + κ(ϕ′)|ds′− ≥ cds′−.

These give
|dτ | ≤ C|dx′|.

Lemma 5.27. There exists a global constant C such that if x = (s, ϕ) and x̄ = (s̄, ϕ̄) are
in the same homogeneity layer

Ik =
{

(s, ϕ) | k2 ≤ |ω(ϕ)| < (k + 1)2
}
,

then
|ln |ω(ϕ)| − ln |ω(ϕ̄)|| ≤ C|ϕ− ϕ̄|1/5.

Proof. We use the notation ω′(ϕ) = d
dϕ
ω(ϕ). It is easy to see that the regularity of κ(ϕ)

implies ∣∣∣∣ω′(ϕ)

ω3(ϕ)

∣∣∣∣ ≤ C.

That is, everywhere inside Jk,∣∣∣∣d| lnω(ϕ)|
dϕ

∣∣∣∣ =

∣∣∣∣ω′(ϕ)

ω(ϕ)

∣∣∣∣ ≤ C|ω(ϕ)|2 ≤ 2Ck4.
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This, together with the obvious k2 ≤ |ω(ϕ)|, |ω(ϕ̄)| < (k + 1)2, implies

| ln |ω(ϕ)| − ln |ω(ϕ̄)|| ≤ min
{
2Ck4|ϕ− ϕ̄|, ln(k + 1)2 − ln k2

}
≤ min

{
2Ck4|ϕ− ϕ̄|, 2

k

}
.

It is easy to check that for every k and every ξ

min

{
2Ck4|ξ|, 2

k

}
≤ 2C1/5ξ1/5,

which completes the proof.

5.2.3.3 Absolute continuity

After proving that the expansion factors vary nicely between nearby points on the same
u-manifold, we now investigate their behaviour at points of different u-manifolds that lie
on the same s-manifold. This is the absolute continuity property. Just like it was with
the distortion bounds, it is important to consider homogeneous manifolds.

We introduce the simplified notation Ju
k (x) and Js

k(x) for the k-step length expansion
factor at x along the unstable and the stable manifold, respectively.

Proposition 5.28. Let Ws be a small s-manifold, x, x̄ ∈ Ws, and Wu, W̄u two u-mani-
folds crossing Ws at x and x̄, respectively. Assume that T k is smooth on Ws and T iWs is
a homogeneous s-manifold for each 0 ≤ i ≤ k. Then

| ln Ju
k (x)− ln Ju

k (x̄)| ≤ C

where C is a global constant.

Proof. We have bounds on the change in expansion as we move along unstable manifolds.
In order to have such bounds as we move along stable manifolds, we wish to use the
fact that stable manifolds are turned into unstable ones when we revert time. However,
this time reflection symmetry is not complete: we always work in the outgoing Poincaré
section, and reverting time turns this into the incoming one. To deal with the problem,
we introduce the map P which is the dynamics through the potential, and which maps
from the incoming to the outgoing Poincaré section. That is,

P ((s−, ϕ)) := (s+, ϕ) = (s− +R∆Θ(ϕ), ϕ).

We can see from (5.5) that if dx− = (ds−, dϕ) is a tangent vector of the incoming phase
space, then

|DP (dx−)|e =
√

1 +m2
+|λ1|

1√
1 +m2

−
|dx−|e.

Denote by ν(x) the expansion factor of DP along the unstable manifold at x, that is

ν(x) = |DP (dx−)|e
|dx−|e where dx is an unstable vector at x. We can use (5.20) and (5.18) to get

ν(x) ∼ |2 + κ(ϕ)|.

We also introduce the ‘turn back’ operator, which we will denote by a ‘−’ sign: this
turns incoming phase points into outgoing phase points which corresponds to reverting
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the velocity. ‘−’ is almost the identity function from M− to M+, only the collision angle
is reverted (see our sign convention in figure 5.3):

− : M− →M+

−(s,ϕ−) := (s+, ϕ+) = (s−,−ϕ−).

With these notations, if x = P (y), the time reflection symmetry implies

Js
k(x) =

ν(−x)
Ju

k (−T ky)ν(−T kx)
∼ 1

Ju
k (−T ky)

|2 + κ(ϕ)|
|2 + κ(ϕk)|

(5.39)

The transversality of stable and unstable vectors, stated in Proposition 5.17 implies
that Ju

k (x)Js
k(x) is equivalent to the k-step (Lebesgue) volume expansion factor. Using

(5.2), and the T -invariance of µ, we get

Ju
k (x)Js

k(x) ∼
cosϕ

cosϕk

(5.40)

Putting together (5.39) and (5.40) we get

Ju
k (x) ∼ Ju

k (−T ky)
2 + κ(ϕk)

2 + κ(ϕ)

cosϕ

cosϕk

= Ju
k (−T ky)

ω(ϕk)

ω(ϕ)

The same is true for x̄ = P (ȳ), so we have

| ln Ju
k (x)− ln Ju

k (x̄)| ≤ | ln Ju
k (−T ky)− ln Ju

k (−T kȳ)|+
∣∣∣∣ln ∣∣∣∣ω(ϕk)

ω(ϕ̄k)

∣∣∣∣∣∣∣∣+ ∣∣∣∣ln ∣∣∣∣ω(ϕ)

ω(ϕ̄)

∣∣∣∣∣∣∣∣+ C.

To see the boundedness of the first term of the right hand size we can apply Proposi-
tion (5.24), because −T ky and −T kȳ are on the same local unstable manifold. The second
and third term is bounded because Ws and T kWs are homogeneous, see Definition 5.20.
Now the proof of Proposition 5.28 is complete.

5.3 Growth properties of unstable manifolds

This last section og the proof is concerned with the growth properties of LUMs. Our aim
is to show that LUMs “grow large and round, on the average”. This is expressed in the
formulas of Proposition 5.29 below.

Recall Convention 5.16. Throughout the section we use the higher iterate of the
dynamics, T1 = Tm0 . This has singularity set (secondary and primary) Ξ = Γ(m0). For
the higher iterates of T1 the singularity set is Ξ(n) = Ξ ∪ T1

−1Ξ ∪ . . . ∪ T−n+1Ξ.

δ0-LUM’s. To formulate and prove further important conditions on growth of LUMs we
need to recall several notions and notations from [12]. Let δ0 > 0. We call W a δ0-LUM
if it is a LUM and diamW ≤ δ0. For an open subset V ⊂ W and x ∈ V denote by V (x)
the connected component of V containing the point x. Let n ≥ 0. We call an open subset
V ⊂ W a (δ0, n)-subset if V ∩ (Ξ(n)) = ∅ (i.e., the map T n

1 is smooth and homogeneous on
V ) and diamT n

1 V (x) ≤ δ0 for every x ∈ V . Note that T n
1 V is then a union of δ0-LUM’s.

Define a function rV,n on V by

rV,n(x) = dT n
1 V (x)(T

n
1 x, ∂T

n
1 V (x)).
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Note that rV,n(x) is the radius of the largest open ball in T n
1 V (x) centered at T n

1 x. In
particular, rW,0(x) = dW (x, ∂W ).

One further notation we introduce is Uδ (for any δ > 0), the δ-neighbourhood of the
closed set Ξ ∪ S0 ∪ Z0.

The aim of this section is to prove the Proposition below.

Proposition 5.29. There are constants α0 ∈ (0, 1) and β0, D0, η, χ, ζ > 0 with the fol-
lowing property. For any sufficiently small δ0, δ > 0 and any δ0-LUM W there is an open
(δ0, 0)-subset V 0

δ ⊂ W ∩ Uδ and an open (δ0, 1)-subset V 1
δ ⊂ W \ Uδ (one of these may be

empty) such that mW (W \ (V 0
δ ∪ V 1

δ )) = 0 and that ∀ε > 0

mW (rV 1
δ ,1 < ε) ≤ α0Λ1 ·mW (rW,0 < ε/Λ1) + εβ0δ

−1
0 mW (W ), (5.41)

mW (rV 0
δ ,0 < ε) ≤ D0δ

−η mW (rW,0 < ε) (5.42)

and
mW (V 0

δ ) ≤ D0mW (rW,0 < ζδχ). (5.43)

Proof of this Proposition goes along the lines of the arguments from [12]. First let us
consider
Accumulation of singularity lines. There are two sources of accumulation of the
components of the set Ξ that can cut LUM’s into arbitrary many pieces.

First, the set Γ1 consists of countably many curves stretching approximately parallel
to some curves in S1 (or Z1) and approaching them. So, each set T−1Ik and k 6= 0, is a
narrow strip with curvilinear boundaries. The expansion of unstable fibers in these strips
can be estimated using (5.35), (5.36) and (5.32). More precisely, let W ⊂ T−1Ik be a
LUM, for some k 6= 0. Then the expansion factor, Ju(x), on W satisfies

Ju(x) ∼ ω(ϕ) ∼ k2 ∀x ∈ W. (5.44)

Second, there might be multiple intersections of the curves in S1∪Z1. Recall Kn, the com-
plexity of S(n)∪Z(n) and its properties from Section 5.1.4. Specifically important for us is
the choice of the higher iterate T1 = Tm0 with its relevant properties, see Convention 5.16.

Indexing system. Before proving the proposition we introduce a handy indexing system,
cf. [12]. Let δ0 > 0 and W be a δ0-LUM. If δ0 is small enough, then W crosses at most
Km0 curves of the set S(m0) ∪ Z(m0), so the set W \ (S(m0) ∪ Z(m0)) consists of at most
Km0 + 1 connected curves, let us call them W1, . . . ,Wp with p ≤ Km0 + 1.

On each Wj the map T1 (as a map on M) is smooth, but any Wj may be cut into
arbitrary many (countably many) pieces by other curves in Ξ, which are the preimages of
the boundaries of Ik. Let ∆ ⊂ W be a connected component of the set W \ Ξ. It can be
identified with the (m0 + 1)-tuple (k1, . . . , km0 ; j) such that ∆ ⊂ Wj and T i∆ ⊂ Iki

for
1 ≤ i ≤ m0. Note that this identification is almost unique. Indeed, given j, (T i∆ ⊂)T iWj

is contained in a strip of the phase space that lies between two horizontal lines: two
components of S0∪Z0. It might happen that expansion factors diverge – and consequently,
homogeneity strips have been constructed – at both sides of the strip. Thus given the index
ki, we have T i∆ ⊂ Iki

, where Iki
can be the ki-th layer from one of the two homogeneity

structures. In such a case we use the following convention; the homogeneity layers at the
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’upper’ and ’lower’ ends of the phase space strip (corresponding to j) are labeled by odd
and even numbers, respectively. This way the indexing system is made unique and (5.44)
remains true.

All in all, we will write ∆ = ∆(k1, . . . , km0 ; j). Of course, some strings (k1, . . . , km0 ; j)
may not correspond to any piece of W , for such strings ∆(k1, . . . , km0 ; j) = ∅.

Denote by Ju
1 (x) = Ju(x) · . . . · Ju(Tm0−1x) the expansion factor of unstable vectors

under DT1. Let |∆| = m∆(∆) be the Euclidean length of a LUM ∆. We record two
important facts:
(a) For every point x ∈ ∆(k1, . . . , km0 ; j) we have

Ju
1 (x) ≥ Lk1,...,km0

:= max

{
Λ1, C20

∏
ki 6=0

k2
i

}

where C20 is some positive global constant. This follows from (5.44).
(b) For each ∆(k1, . . . , km0 ; j) we have

|∆(k1, . . . , km0 ; j)| ≤Mk1,...,km0
:= min

{
|W |, C21

∏
ki 6=0

k−2
i

}

where C21 = C−1
20 |W |max and |W |max is the maximal length of LUMs in M . This follows

from the previous fact.
Next, put

θ0 := 2
∞∑

k=k0

k−2 ≤ 4/k0

and let us turn to the proof of our growth formulas.

Let W be a δ0-LUM and δ > 0 be small. For each connected component ∆ ⊂ W \ Ξ
put ∆0 = ∆∩ Uδ and ∆1 = int(∆ \ Uδ) (recall Uδ is the δ-neighbourhood of Ξ∪ S0 ∪Z0).
Due to the Continuation property (cf. Section 5.1.4) and to Alignment (cf. Lemma 5.18),
the set ∆0 consists of two subintervals adjacent to the endpoints of ∆ (they may overlap
and cover ∆, of course). The set ∆1 is either empty or a subinterval of ∆. We put
W 1 = ∪∆⊂W\Ξ∆1.

Proof of (5.41). For each ∆1 the set T1(∆1 ∩ {rW 1,1 < ε}) is the union of two subin-
tervals of T1∆

1 of length ε adjacent to the endpoint of T1∆
1. Using the above indexing

system we get

mW (rW 1,1 < ε) ≤
∑

k1,...,km0 ,j

2εL−1
k1,...,km0

≤ 2εp
[
Λ−1

1 + C20
−1(θ0 + θ2

0 + . . .+ θm0
0 )
]

≤ 2ε(Km0 + 1)
(
Λ−1

1 + C20
−1m0θ0

)
.

We now assume that k0 is large enough so that

α0 := (Km0 + 1)(Λ−1
1 + C20

−1m0θ0) < 1

and thus get
mW (rW 1,1 < ε) ≤ min{|W |, 2α0ε}.
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The first term on the right hand side of (5.41) is equal to

α0Λ1 min{|W |, 2ε/Λ1} = min{α0Λ1|W |, 2α0ε}.

Since α0Λ1 > 1, we get

mW (rW 1,1 < ε) ≤ α0Λ1 ·mW (rW,0 < ε/Λ1) . (5.45)

Next, to obtain an open (δ0, 1)-subset V 1
δ of W 1, one needs to further subdivide the

intervals ∆1 ⊂ W such that |T1∆
1| > δ0. Each such LUM T1∆

1 we divide into s∆ equal
subintervals of length ≤ δ0, with s∆ ≤ |T1∆

1|/δ0. If |T1∆
1| < δ0, then we set s∆ = 0 and

leave ∆1 unchanged. Then the union of the preimages under T1 of the above intervals will
make V 1

δ . Now we must estimate the measure of the ε-neighbourhood of the additional
endpoints of the subintervals of T1∆

1. This gives

mW (rV 1
δ ,1 < ε)−mW (rW 1,1 < ε) ≤

∑
∆⊂W\Ξ

2s∆ε|C22∆
1|/|T1∆

1|

≤
∑

∆⊂W\Ξ

2C22ε|∆1|/δ0

≤ 2C22εδ
−1
0 |W |.

Here C22 = exp(const · |W |
1
5
max) is an upper bound on distortions on LUM’s, see Propo-

sition 5.24. Combining the above bound with (5.45) completes the proof of (5.41) with
β0 = 2C22.

We now prove (5.42). It is enough to consider ε < |W |/2, so that the right hand side

of (5.42) equals 2D0δ
−ηε. We can put V 0

δ = W \ V 1
δ . Then the left hand side of (5.42)

does not exceed 2Jδε, where Jδ is the number of nonempty connected components of the
set V 0

δ , which is at most the number of connected components of W \ Ξ of length > 2δ.
Hence, clearly Jδ ≤ |W |/δ ≤ δ0/δ. This proves (5.42) with η = 1.

Finally, we prove the inequality (5.43). Again, let ∆ be a connected component of
W \ Ξ and ∆0, ∆1 be defined as above, with the set ∆0 consisting of two subintervals
adjacent to the endpoints of ∆. By (5.30) – and the analogous property for the secondary
singularities, see Sections 5.2.2.5 and 5.2.2.6 – each of these subintervals has length smaller
than Cδα.

Now, the right hand side of (5.43) equals D0 min{|W |, 2ζδχ}. So, it is enough to show
that mW (V 0

δ ) ≤ Bδχ for some B,χ > 0. We have

mW (V 0
δ ) ≤

∑
∆⊂W\Ξ

min{2Cδα, |∆|}

≤
∑

k1,...,km0 ,j

min{2Cδα,Mk1,...,km0
}

≤ const · δα + const ·
∑

k1,...,km0

∗
min

{
δα,
∏
ki 6=0

k−2
i

}

where
∑∗ is taken over m0-tuples that contain at least one nonzero index ki 6= 0. The

following Lemma – Lemma 7.2 from [12], which was proved in the Appendix of that paper
– completes the proof of (5.43) with χ = α

2m0
.
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Lemma 5.30. Let ε > 0 and m ≥ 1. Then∑
k1,...,km≥2

min
{
ε, (k1 · . . . · km)−2

}
≤ B(m) · ε1/2m.

With the help of this lemma Proposition 5.29, and, consequently, Theorem 5.9 is
proved. 2. 2.

5.4 Specific potentials

In this section we would like to show that, as important corollaries of Theorem 5.9,
exponential decay of correlations can be established for certain specific potentials. To
prove such corollaries we need to calculate the rotation function ∆Θ(ϕ) from the potential
V (r).

As to the detailed description of the Hamiltonian flow in a circularly symmetric po-
tential, we refer to the literature, e.g. [17] and references therein. Most important is that
besides the full energy there is an additional integral of motion, the angular momentum
l, that can be calculated for a specific trajectory as

l = R sinϕ

where ϕ is the collision angle at income. For brevity of notation it is worth introducing
the function

h(r) = (1− 2V (r))r2.

By the presence of the angular momentum motion is completely integrable and is described
by the pair of differential equations (recall our convention that the full energy is E = 1

2
):

ṙ2 = r−2(h(r)− l2)

r2Θ̇ = l.

Combining these we get
dΘ

dr
= ± l

r
√
h(r)− l2

(5.46)

where the sign depends on whether r is increasing or decreasing. More precisely, there is
a minimum radius

r̂ = r̂(ϕ) : h(r̂) = l2 = R2 sin2 ϕ,

down to which r decreases (with negative sign in (5.46)) and from which r increases (with
positive sign in (5.46)). This results in

∆Θ(ϕ) = 2

∫ R

r̂

l

r
√
h(r)− l2

dr. (5.47)

For a generic potential, the dependence of (5.47) on ϕ is rather implicit: ϕ is present
both in the integrand (via l) and in the limits (via r̂). One possible strategy to follow
is to obtain some even more complicated formulas for the derivatives in the general case,
and based on those perform estimates that guarantee the desired dynamical properties.
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This is possible as long as only hyperbolicity and ergodicity is treated – like in [17] – and
thus only the first derivative, κ(ϕ) = ∆Θ′(ϕ) is needed. However, for rate of mixing you
need one more derivative, κ′(ϕ) = ∆Θ′′(ϕ), cf. Definition 5.7. Finding good sufficient
conditions on the potential V (r) that guarantee the regularity of κ seems to be a very
hard task, if possible at all. Thus we have chosen instead to investigate some specific
cases where ∆Θ is directly computable from (5.47). Of course, this way we could handle
a much narrower class of potentials than [17], nevertheless, the established dynamical
property is stronger.

Corollary 5.31. Consider the case of a constant potential,

V (r) = V0 for any r ∈ [0, R).

Correlations decay with an exponential rate in case

• V0 > 0 and the configuration is arbitrary,

• V0 < 0 and the configuration is such that τmin >
2R√

1−2V0−1
.

Remark 5.32. Actually, the analysis of this constant potential case from the point of
ergodicity dates back to the late eighties, to [25] and [1]. Rate of mixing is, to our knowl-
edge, discussed for the first time. For potential values V0 >

1
2

the particle cannot enter
the disks, the system is equivalent to the traditional dispersing billiard, thus we consider
the opposite case, V0 <

1
2
.

Proof. Let us introduce the quantity

ν =
√

1− 2V0 (5.48)

which is less or greater than 1 depending on the sign of V0. Let us consider the case of
positive V0 first and introduce furthermore the angle ϕ0 for which:

ν = sinϕ0.

In case |ϕ| > ϕ0, |l| is greater than the maximum value h(r) can take, which indicates
that the particle has too large angular momentum to enter the potential, thus ∆Θ = 0. In
the opposite case of |ϕ| < ϕ0 it is easy to obtain r̂ = R| sin ϕ|

ν
and perform the integration

of (5.47). All in all

∆Θ(ϕ) =

{
2 arccos

(
sin(ϕ)

n

)
if |ϕ| < ϕ0,

0 if |ϕ| ≥ ϕ0.

See the left half of Figure 5.4.
On the one hand, whatever a configuration we have, the system satisfies property H

(cf. Definition 5.5), as either κ = 0 or κ ≤ −2
ν
< −2. On the other hand, κ is a piecewise

C1 function of ϕ and it behaves as (ϕ0 − ϕ)−
1
2 near the discontinuity point ϕ0. Thus

κ is regular (cf. Definition 5.7 and the remarks following it). This means that the first
statement of our Corollary follows from Theorem 5.9.

Now let us turn to the case of V0 < 0 (i.e. ν > 1). It is even simpler to calculate the
rotation function (5.47):

∆Θ(ϕ) = 2 arccos

(
sinϕ

ν

)
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for all ϕ. As ν > 1, this is a C2 function on the interval [−π
2
, π

2
], thus κ is definitely

regular. As to property H, we have 0 > κ ≥ − 2
ν

where the minimum is obtained at ϕ = 0.
Thus the assumption on the configuration from Definition 5.5 reads as τmin >

2R
ν−1

and
the second statement of the Corollary follows from Theorem 5.9.

Remark 5.33. Note that motion in the constant potential is equivalent to the problem
of diffraction form geometric optics. More precisely, we can think of the disks as if they
were made of a material optically different from their neighbourhood, where the relative
diffraction coefficient is ν from (5.48). In case the disks are optically less dense than
their neighbourhood (i.e. ν < 1, V0 > 0), we may observe the phenomenon of complete
reflection that corresponds to the limiting angle ϕ0.

zero phi
ppp0p-0mp

pi

twop

dtp

(a) V (r) = V0(> 0)

zero phi
ppmp

4p3

twop

dtp

2p3

(b) V (r) = 1
2

(
1−

(
r
R

)β) (β > 0)

Figure 5.4: rotation function for two examples

Corollary 5.34. Given constants A > 0 and β > −2, consider the potential

V (r) = A

(
1−

( r
R

)β
)
.

Correlations decay at an exponential rate in case:

• A = 1
2
, 0 > β(> −2) and the configuration is arbitrary,

• A = 1
2
, β > 0 and the configuration is such that τmin >

2R
β

.

Remark 5.35. Note that according to our construction the chosen value for the constant
A, A = 1

2
is exactly the full energy. If we had a different value for A, the integration

in (5.47) would be much more complicated. In other words, Corollary 5.34, in contrast
to Corollary 5.31 is unstable with respect to variations of the full energy (see also the
discussion below, following the proof). Nevertheless it is nice to have at least one potential
with exponential mixing for any kind of power law behaviour (if β ≤ −2, a positive measure
set of trajectories is pulled into the center of the disk, cf. [17]).

Proof. By straightforward calculation

h(r) =
r2+β

Rβ
; and r̂ = R | sinϕ|

2
2+β .
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Then it is not hard to integrate in (5.47):

∆Θ(ϕ) =
4

2 + β

(π
2
− ϕ

)
for all ϕ 6= 0. See the right half of Figure 5.4. Thus ∆Θ is piecewise linear (in the general
case with one discontinuity of the first kind at ϕ = 0) and thus

κ = − 4

2 + β

identically. Regularity (in terms of Definition 5.7) is automatic.
Let us consider the attracting potentials, β < 0 first. In such a case the potential

has a singularity at the center of the disk, resulting in the discontinuity at ϕ = 0. 3

Nevertheless, κ < −2, thus property H (cf. Definition 5.5) and consequently the first
statement of the Corollary follows.

Now if β > 0, as A = 1
2
, the ‘top’ of the potential is equal to the energy. As a

consequence, for the initial value ϕ = 0 the flow is not uniquely defined, resulting in
the discontinuity for the rotation function. However, in accordance with Definition 5.5,
property H is satisfied if τmin >

2R
β

. Thus the second statement of the Corollary holds.

5.4.1 Discussion

As already mentioned, Corollary 5.34 is much sensitive to the convention E = 1
2
. Though

very difficult to calculate, it is interesting to guess what happens if one perturbs the
constant A (or equivalently, the full energy level).

Let us consider the case β > 0 first. With A either increased or decreased from the
value 1

2
, the physical reason for the discontinuity at ϕ = 0 disappears and we expect

smooth rotation functions. By continuity of the potential at R, ∆Θ(π
2
) = 0 seems also

reasonable. As to the initial value ϕ = 0 let us have a look at the case A < 1
2

first. There
is no reason for the trajectory to deviate in direction: it slows down, reaches the center
and then speeds up following a linear track. Thus ∆Θ(0) = π. This altogether implies on
basis of Lagrange’s mean value theorem that there definitely exists at least one ϕ ∈ (0, π

2
)

for which κ(ϕ) = −2. In such a case, however, stable periodic orbits tend to appear
and the system is most likely not even ergodic, cf. [16]. One can suspect that a typical
repelling potential which has a maximum less than the total energy, leads to non-ergodic
soft billiards in a similar fashion.

In the opposite case of A > 1
2

the behaviour of trajectories in the vicinity of ϕ = 0 is
completely different. As the top of the potential is higher then the full energy, the particle
cannot ‘climb’ it thus it should ‘turn back’. We expect ∆Θ(0) = 0 and a smooth rotation
function with κ > −2 for all ϕ. That would mean ergodicity and possibly exponential
mixing in case of a suitable configuration (cf. Definition 5.5). All in all, ergodic and
statistical behaviour is much sensitive to perturbation of the full energy level.

In case of β < 0 it is no so easy to guess. Nevertheless, we can say something rather
surprising in one particular case that indicates similar sensitivity. Choose β = −1 and

3However, in case β = −2(1− 1
n ), the left and right limits coincide, this corresponds to the possibility

of regularizing the flow, cf. [17] and [24].
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A = 1. It is not difficult to obtain h(r) = 2r − r2. The integral in (5.47) is a bit more
complicated now, nevertheless, its is possible to evaluate:

∆Θ(ϕ) = 2π − 2ϕ (5.49)

which means κ = −2 identically. This corresponds to the least ergodic behaviour we can
have. It is straightforward to obtain that an identically zero potential (V (r) = 0 for all r)
would result in ∆Θ(ϕ) = π− 2ϕ. Thus by (5.49) in this particular case of A = 1, β = −1
trajectories evolve as if they passed on freely and were reflected when leaving the disc.

Thus if β = −1, we may have exponential mixing (A = 1
2
) and stability (A = 1). As

to other values of A it is worth mentioning that ergodicity follows from [17] in case A < 1
2
.



Chapter 6

Outlook

As described in the Introduction, much of this work is aimed at exponential decay of
correlations in high-dimensional systems. Moving in that direction, a first step is already
taken: hyperbolicity is proven for a class of multi-dimensional soft billiards [7]. To proceed
towards decay of correlations, we plan to follow the way described here.

1. As to the possibly most direct challenge, we conjecture that there exist rapidly
mixing potentials for which the condition |κ + 2| > c (i.e. property H from Defini-
tion 5.5) is not satisfied for nearly tangential trajectories. Thus these systems are
not covered by Theorem 5.9, even more, at least to our knowledge, there is no result
in the literature on the ergodicity or hyperbolicity of such soft billiards either. Thus
we make the following

Remark 6.1. Note that it is possible that κ tends to −2 as ϕ→ π
2
, nevertheless,

| 2+κ
cos ϕ

| > c and the system can be hyperbolic (possibly ergodic or exponentially mix-

ing). This question is under investigation.

The difficulty with the treatment of this case is, as already mentioned in Section 5.1,
that the separate investigation of motion inside and outside the disks seems not to
work at several arguments.

For such a system, even a proof of hyperbolicity in two dimensions would be inter-
esting in itself.

2. In the higher dimensional case, that is, softenings of multi-dimensional dispersing
billiards (motivated e.g. by the three dimensional Lorentz process with spherical
scatterers), even ergodicity seems to be difficult. That is because the algebraic
approach to handle singularities does not work for soft systems – so no fundamental
theorem is known at the moment. That is why a soft system where | 2+κ

cos ϕ
| is bounded

away from both zero and infinity may be easier to handle. In this case the pathology
in the singularities does not appear.

At the same time, it would be very nice to get rid of the algebraicity assumption in
the Fundamental Theorem. As mentioned before, while all the important hard billiard
examples are algebraic, soft billiards are not, so proof of their ergodicity in high dimensions
is presently blocked by the weakness of the Fundamental Theorem.
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Another direction of future research, motivated mainly by applications to Physics,
could be the further investigation of those systems for which rapid mixing is already
established. For example, as mathematical evidence on the existence of diffusion and
other transport coefficients is given, it would be interesting to understand the dependence
of these on certain parameters like the full energy level.

Last but not least, in contrast to the generality of Theorem 5.9, it is striking how nar-
row the class of specific potentials is for which we could apply the result in Section 5.4. It
would be desirable to establish – at least numerically – our reasonable regularity properties
for as wide a class of potentials as possible.
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Appendix

Here we provide, for the reader’s convenience, a very short, yet mainly self-contained
formulation of Theorem 2.1 from [12]. For self-containedness, many notions and notations
are repeatedly introduced. First we give the conditions P0 . . . P6 which are required,
and then the statement of the theorem.

P0. The dynamical system is a map T : M \ Γ → M , where M is an open subset
in a C∞ Riemannian manifold, M̄ is compact. Γ is a closed subset in M̄ , and T is a C2

diffeomorphism of its range onto its image. Γ is called the singularity set.

P1. Hyperbolicity. We assume there are two families of cone fields Cu
x and Cs

x in
the tangent planes TxM , x ∈ M̄ and there exists a constant Λ > 1 with the following
properties:

• DT (Cu
x ) ⊂ Cu

Tx and DT (Cs
x) ⊃ Cs

Tx whenever DT exists;

• |DT (v)| ≥ Λ|v| ∀v ∈ Cu
x ;

• |DT−1(v)| ≥ Λ|v| ∀v ∈ Cs
x;

• these families of cones are continuous on M̄ , their axes have the same dimensions
across the entire M̄ which we denote by du and ds, respectively;

• du + ds = dimM ;

• the angles between Cu
x and Cs

x are uniformly bounded away from zero:

∃ α > 0 such that ∀x ∈M and for any dw1 ∈ Cu
x and dw2 ∈ Cs

x one has

^(dw1, dw2) ≥ α

The Cu
x are called the unstable cones whereas Cs

x are called the stable ones.
The property that the angle between stable and unstable cones is uniformly bounded

away from zero is called transversality.

Some notation and definitions. For any δ > 0 denote by Uδ the δ-neighbourhood of the
closed set Γ∪ ∂M . We denote by ρ the Riemannian metric in M and by m the Lebesgue
measure (volume) in M . For any submanifold W ⊂M we denote by ρW the metric on W
induced by the Riemannian metric in M , by mW the Lebesgue measure on W generated
by ρW and by diamW , the diameter of W in the ρW metric.
LUM-s. To be able to formulate the further properties to be checked the reader is
kindly reminded of the notion of local unstable manifolds. We call a ball-like submanifold
W u ⊂ M a local unstable manifold (LUM) if (i) dimW u = du, (ii) T−n is defined and
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smooth on W u for all n ≥ 0, (iii) ∀x, y ∈ W u we have ρ(T−nx, T−ny) → 0 exponentially
fast as n→∞.
We denote by W u(x) (or just W (x)) a local unstable manifold containing x. Similarly,
local stable manifolds (LSM) are defined.

P2. SRB measure. The dynamics T has to have an invariant ergodic Sinai-Ruelle-
Bowen (SRB) measure µ. That is, there should be an ergodic probability measure µ on M
such that for µ-a.e. x ∈ M a LUM W (x) exists, and the conditional measure on W (x)
induced by µ is absolutely continuous with respect to mW (x).
Furthermore, the SRB-measure should have nice mixing properties: the system (T n, µ) is
ergodic for all finite n ≥ 0.

In our case the SRB measure is simply the Liouville-measure defined by (5.2) in Sec-
tion 5.1.1. Absolute continuity of µ is straightforward, while the other above required
properties (invariance, ergodicity, mixing) are proved in [17].

P3. Bounded curvature. The tangent plane of an unstable manifold at the point x
should be a Lipschitz function of x. By this we mean that a base can be chosen in every
tangent plane so that every base vector is a Lipschitz function of x.

Some notation. Denote by Ju(x) = | det(DT |Eu
x)| the Jacobian of the map T restricted

to W (x) at x, i.e. the factor of the volume expansion on the LUM W (x) at the point x.

P4. Distortion bounds. Let x, y be in one connected component of W \ Γ(n−1), which
we denote by V . Then

log
n−1∏
i=0

Ju(T ix)

Ju(T iy)
≤ ϕ (ρT nV (T nx, T ny))

where ϕ(·) is some function, independent of W , such that ϕ(s) → 0 as s→ 0.

P5. Absolute continuity. Let W1,W2 be two sufficiently small LUM-s, such that any
LSM W s intersects each of W1 and W2 in at most one point. Let W ′

1 = {x ∈ W1 :
W s(x)∩W2 6= ∅}. Then we define a map h : W ′

1 → W2 by sliding along stable manifolds.
This map is often called a holonomy map. This has to be absolutely continuous with
respect to the Lebesgue measures mW1 and mW2, and its Jacobian (at any density point of
W ′

1) should be bounded, i.e.

1/C ′ ≤ mW2(h(W
′
1))

mW1(W
′
1)

≤ C ′

with some C ′ = C ′(T ) > 0.

A few words are in order to discuss how our Proposition 5.28 implies property (P5).
Let us consider the unique ergodic SRB-measure µ for the dynamical system (in our
billiard dynamics this is precisely the Liouville measure defined by (5.2)). We know that
the conditional measure on any LUM induced by µ is absolutely continuous with respect
to the Lebesgue measure on the unstable manifold. These conditional measures are often
referred to as u-SRB measures and their density w.r.t. the Lebesgue measure, ρW (x) is
given by the following equation (cf. [12]):

ρW (x)

ρW (y)
= lim

n→∞

n∏
i=1

Ju(T−ix)

Ju(T−iy)
.
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Actually, what directly follows from Proposition 5.28 is that if we consider two nearby
LUM-s W and W̄ and points x, x̄ on them joint by the holonomy map along an s-manifold,
then the ratio of ρW (x) and ρW̄ (x̄), the densities for the two u-SRB measures is uniformly
bounded. However, taking into account the invariance of µ and the uniform contraction
along s-manifolds, we may get the uniform bound on the distortion of Lebesgue measures,
i.e. the property we assumed in (P5).

Some further notation. Let δ0 > 0. We call W a δ0-LUM if it is a LUM and diamW ≤ δ0.
For an open subset V ⊂ W and x ∈ V denote by V (x) the connected component of V
containing the point x. Let n ≥ 0. We call an open subset V ⊂ W a (δ0, n)-subset if
V ∩Γ(n) = ∅ (i.e., the map T n is smoothly defined on V ) and diamT nV (x) ≤ δ0 for every
x ∈ V . Note that T nV is then a union of δ0-LUM-s. Define a function rV,n on V by

rV,n(x) = ρT nV (x)(T
nx, ∂T nV (x))

Note that rV,n(x) is the radius of the largest open ball in T nV (x) centered at T nx. In
particular, rW,0(x) = ρW (x, ∂W ).

Now we are able to give the last group of technical properties that have to be verified:

P6. Growth of unstable manifolds Let us assume there is a fixed δ0 > 0. Further-
more, there exist constants α0 ∈ (0, 1) and β0, D0, κ, σ, ζ > 0 with the following prop-
erty. For any sufficiently small δ > 0 and any δ0-LUM W there is an open (δ0, 0)-subset
V 0

δ ⊂ W ∩ Uδ and an open (δ0, 1)-subset V 1
δ ⊂ W \ Uδ (one of these may be empty) such

that the two sets are disjoint, mW (W \ (V 0
δ ∪ V 1

δ )) = 0 and ∀ε > 0

mW (rV 1
δ ,1 < ε) ≤ α0Λ ·mW (rW,0 < ε/Λ) + εβ0δ

−1
0 mW (W )

mW (rV 0
δ ,0 < ε) ≤ D0δ

−κmW (rW,0 < ε)

and
mW (V 0

δ ) ≤ D0mW (rW,0 < ζδσ)

Now we can formulate Theorem 2.1 from [12].

Theorem A.1. (Chernov, 1999) Under the conditions P0 . . .P6, the dynamical
system enjoys exponential decay of correlations and the central limit theorem for Hölder-
continuous functions.

The properties stated in the theorem are defined in definitions 1.3 and 1.4.
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Dispersing Billiards, Astérisque 286 (2003) 119–150.
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[10] L. A. Bunimovich and J. Reháček, How high dimensional stadia look like, Commun.
Math. Phys. 197 (1998) 277–301.

[11] N. Chernov, Statistical properties of the periodic Lorentz gas. Multidimensional case.
J. Stat. Phys. 74 (1994), 11–53.

[12] N. Chernov, Decay of correlations and dispersing billiards, J. Stat. Phys. 94 (1999),
513–556.

[13] N. Chernov and Ya. G. Sinai, Ergodic Properties of Certain Systems of 2–D Discs
and 3–D Balls., Russ. Math. Surv. (3) 42 (1987), 181–201.

[14] N. Chernov and L.-S. Young, Decay of Correlations for Lorentz gases and hard balls,
89–120. in Hard ball systems and the Lorentz gas, Encyclopedia Math. Sci. 101,
Springer (2000), ed. D. Szász

89



90 BIBLIOGRAPHY

[15] V. Donnay, Elliptic islands in generalized Sinai billiards, Ergodic Theory and Dyn.
Syst. 16 (1997) no. 5, 975–1010.

[16] V. Donnay, Non-ergodicity of two particles interacting via a smooth potential, J. Stat.
Phys. 96 (1999) no. 5-6, 1021–1048.

[17] V. Donnay and C. Liverani, Potentials on the two-torus for which the Hamiltonian
flow is ergodic, Commun. Math. Phys. 135 (1991), 267–302.

[18] K. Falconer, The Geometry of Fractal Sets, Cambridge University Press, 1985

[19] K. Falconer, Fractal Geometry, Mathematical Foundations and Applications, John
Wiley & Sons, 1990

[20] H. Federer, Geometric Measure Theory, Springer, 1969

[21] G. Gallavotti and E.D.G. Cohen, Dynamical ensembles in stationary states, J. Stat.
Phys. 80 (1995), 931–970.

[22] G. Gallavotti and D. Ornstein, Billiards and Bernoulli schemes, Commun. Math.
Phys. 38 (1974), 83–101.

[23] E. H. Hauge, What can we learn from Lorentz models?, Transport Phenomena, Lec-
ture Notes in Physics, Springer 31 (1974), 377.

[24] A. Knauf, Ergodic and topological properties of Coulombic periodic potentials, Com-
mun. Math. Phys. 110 (1987), 89–112.

[25] A. Knauf, On soft billiard systems, Physica D 36 (1989), 259–262.

[26] I. Kubo, Perturbed billiard systems, I., Nagoya Math. J. 61 (1976), 1–57.

[27] I. Kubo and H. Murata, Perturbed billiard systems II, Bernoulli properties, Nagoya
Math. J. 81 (1981), 1–25.
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