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1 Introduction

In the first part of this outline we define the class of models we consider, present
the steady states for them and show how to couple a pair of these models. In
the second part we state the results of the thesis.

1.1 The model

The class of models described here is a generalization of the so-called misan-
thrope process. For −∞ ≤ ωmin ≤ 0 and 1 ≤ ωmax ≤ ∞ (possibly infinite
valued) integers, we define

I : =
{
z ∈ Z : ωmin − 1 < z < ωmax + 1

}

and the phase space

Ω = {ω = (ωi)i∈Z : ωi ∈ I} = IZ.

For each pair of neighboring sites i and i + 1 of Z, we can imagine a column
built of bricks, above the edge (i, i + 1). The height of this column is denoted
by hi. If ω(t) ∈ Ω for a fixed time t ∈ R then ωi(t) = hi−1(t) − hi(t) ∈ I is the
negative discrete gradient of the height of the “wall”. The growth of a column
is described by jump processes. A brick can be added:

(ωi, ωi+1) −→ (ωi − 1, ωi+1 + 1) with rate r(ωi, ωi+1).

Conditionally on ω(t), these moves are independent. See fig. 1 for some possible
instantaneous changes. For small ε, the conditional expectation of the growth of
the column between i and i+1 in the time interval [t, t+ ε] is r(ωi(t), ωi+1(t)) ·
ε + o(ε).

i i+1

}
ωi

}
ωi+1 r(ωi, ωi+1)−−−−−−−−→

i i+1

Figure 1: A possible move

The rates must satisfy

r(ωmin, · ) ≡ r( · , ωmax) ≡ 0

whenever either ωmin or ωmax is finite. We assume r to be non-zero in all other
cases. We want the dynamics to smoothen our interface, that is why we assume
monotonicity in the following way:

(1) r(z + 1, y) ≥ r(z, y), r(y, z + 1) ≤ r(y, z)
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for y, z, z + 1 ∈ I. This means that the higher neighbors a column has, the
faster it grows. Our model is hence attractive.

We are going to use product property of the model’s stationary measure. For
this reason, similarly to Rezakhanlou [18], we assume that for any x, y, z ∈ I

(2) r(x, y) + r(y, z) + r(z, x) = r(x, z) + r(z, y) + r(y, x),

and for ωmin < x, y, z < ωmax + 1

(3) r(x, y − 1) · r(y, z − 1) · r(z, x − 1) = r(x, z − 1) · r(z, y − 1) · r(y, x − 1).

These two conditions imply product structure of the stationary measure, see
section 1.3. Equation (3) is equivalent to the condition r(y, z) = s(y, z+1)·f(y)
for some function f and a symmetric function s.

At time t, the interface mentioned above is described by ω(t). Let ϕ : Ω → R

be a finite cylinder function i.e. ϕ depends on a finite number of values of ωi.
The growth of this interface is a Markov process, with the formal infinitesimal
generator L:

(Lϕ)(ω) =
∑

i∈Z

r(ωi, ωi+1) · [ϕ(. . . , ωi − 1, ωi+1 + 1, . . . ) − ϕ(ω)] .

When constructing the process rigorously, problems may arise due to the
unbounded growth rates. The system being one-component and attractive, we
assume that existence of dynamics on a set of tempered configurations Ω̃ (i.e.
configurations obeying some restrictive growth conditions) can be established
by applying methods initiated by Liggett and Andjel [11] [1]. Technically we

assume that Ω̃ is of full measure w.r.t. the canonical Gibbs measures defined in
section 1.3. In fact this has been proved for some kinds of these models, see
below, and the results stated in section 2.3 concerning regularity of some of our
processes may imply existence of the dynamics, this is a work in progress.

1.2 Examples

There are three essentially different cases of these models, all of them are of
nearest neighbor type.

1. Generalized exclusion processes are described by our models in case
both ωmin and ωmax are finite.

• The totally asymmetric simple exclusion process (SE) intro-
duced by F. Spitzer [20] is described this way by ωmin = 0, ωmax = 1,

r(ωi, ωi+1) = ωi · (1 − ωi+1).

Here ωi is the occupation number for the site i, and r(ωi, ωi+1) is
the rate for a particle to jump from site i to i + 1. Conditions (1),
(2) and (3) for these rates are satisfied.

• A particle-antiparticle exclusion process is also shown to de-
monstrate the generality of the frame described above. Let ωmin =
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−1, ωmax = 1. Fix c (creation), a (annihilation) positive rates with
c ≤ a/2. Put

r(0, 0) = c, r(0, −1) =
a

2
, r(1, 0) =

a

2
, r(1, −1) = a,

and all other rates are zero. If ωi is the number of particles at site
i, with ωi = −1 meaning the presence of an antiparticle, then this
model describes a totally asymmetric exclusion process of particles
and antiparticles with annihilation and particle-antiparticle pair cre-
ation. These rates also satisfy our conditions.

Other generalizations are possible allowing a bounded number of particles
(or antiparticles) to jump to the same site. By the bounded jump rates
and by nearest-neighbor type of interaction, the construction of dynamics
of these processes is well understood, see e.g. Liggett [14].

2. Generalized misanthrope processes are obtained by choosing ωmin >
−∞, ωmax = ∞.

• The zero range process (ZR) is included by ωmin = 0, ωmax = ∞,

r(z, y) = f(z)

with an arbitrary f : Z
+ → R

+ nondecreasing function and f(0) =
0. Here ωi represents the number of particles at site i. These rates
trivially satisfy conditions (1), (2), (3). The dynamics of this process
is constructed by Andjel [1] under the condition that the rate function
f obeys the growth condition |f(z + 1) − f(z)| ≤ K for some K > 0
and all z ≥ 0. See section 2.3 for stochastic bounds on this process
in the general case.

3. General deposition processes are the type of these models where
ωmin = −∞ and ωmax = ∞. In this case, the height difference between
columns next to each other can be arbitrary in Z. Hence the presence of
antiparticles can not be avoided when trying to give a particle represen-
tation of the process.

• Bricklayers’ models (BL). Let

r(z, y) := f(z) + f(−y)

with the property
f(z) · f(−z + 1) = 1

for the nondecreasing function f and for any z ∈ Z. This process can
be represented by bricklayers standing at each site i, laying a brick
on the column on their left with rate f(−ωi) and laying a brick to
their right with rate f(ωi). This interpretation gives reason to call
these models bricklayers’ model. Conditions (1), (2) and (3) hold for
r. Similarly to the ZR process, this model is constructed by Booth
[4] and Quant [17] only in case |f(z +1)− f(z)| is bounded in Z. See
section 2.3 for stochastic bounds on this process in the general case.

Especially, the exponential bricklayers’ model (EBL) has

(4) f(z) = e−
β

2 eβz

with a positive real parameter β.
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1.3 Translation invariant stationary product measures

We are interested in translation invariant stationary measures for these pro-
cesses, i.e. canonical Gibbs-measures. We construct such measures similarly to
Rezakhanlou [18] of the following form. Fix f(1) > 0 and define

(5) f(z) :=
r(z, 0)

r(1, z − 1)
· f(1)

for ωmin < z < ωmax + 1. Then f is a nondecreasing strictly positive function.
For I ∋ z > 0 we define

f(z)! : =

z∏

y=1

f(y),

while for I ∋ z < 0 let

f(z)! : =
1

0∏
y=z+1

f(y)

,

finally f(0)! : = 1. Then we have

f(z)! · f(z + 1) = f(z + 1)!

for all z ∈ I. Let

θ̄ : =





log
(
lim inf
z→∞

(f(z)!)
1/z

)
= lim

z→∞
log(f(z)) , if ωmax = ∞

∞ , else

and

θ : =





log

(
lim sup

z→∞
(f(−z)!)

1/z

)
= lim

z→∞
log(f(−z)) , if ωmin = −∞

−∞ , else.

By monotonicity of f , we have θ̄ ≥ θ. We assume θ̄ > θ. With a generic real
parameter θ ∈

(
θ, θ̄

)
, we define

Z(θ) :=
∑

z∈I

eθz

f(z)!
.

Let the product-measure µ
θ

have marginals

(6) µθ(z) = µ
θ
{ω : ωi = z} : =

1

Z(θ)
· eθz

f(z)!
,

this is stationary for the process.
As can be verified, the expectation value ̺(θ) := Eθ(ωi) is a strictly increas-

ing function of θ. We introduce its inverse θ(̺) and the function

(7) H(̺) := Eθ(̺) {r(ωi, ωi+1)} ,

playing an important role in hydrodynamical considerations.
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For the SE model, the construction leads to the well-known Bernoulli pro-
duct-measure with marginals

µ(1) = µ{ω : ωi = 1} : = ̺,

µ(0) = µ{ω : ωi = 0} : = 1 − ̺

with a real number ̺ between zero and one (the density of the particles). In
our notations, −̺ describes the average slope of the interface.

For the particle-antiparticle exclusion process, the relative probability of
having a particle or an antiparticle as a function of the rates goes as

√
c/a,

independently for the sites. The density of particles relative to antiparticles can
be set by an arbitrary parameter.

Both for the ZR process and for BL models, it turns out that f defined in
(5) and f in the definition of the rates agree.

1.4 The basic coupling

We consider two realizations of a model, namely, ζ and η. We show the basic
coupling preserving

(8) ζi(t) ≥ ηi(t),

if this property holds initially for t = 0. We say that n = ζi(t)− ηi(t) ≥ 0 is the
number of second class particles present at site i at time t. During the evolution
of the processes, the total number of these particles is preserved, and each of
them performs a nearest neighbor random walk.

The height of the column of ζ (or η) between sites i and i + 1 is denoted by
gi (or hi, respectively). (These quantities are just used for easier understanding,
they are not essential for the processes.) Let gi ↑ (or hi ↑) mean that the column
of ζ (or the column of η, respectively) between the sites i and i + 1 has grown
by one brick. Then the coupling rules are shown in table 1. Each line of this
table represents a possible move, with rate written in the first column. In the
last column, y (or x) means that a second class particle has jumped from i
to i + 1 (or from i + 1 to i, respectively). This coupling for the SE model is
described (with particle notations) in Liggett [13], [14] and [15]. The rates of
these steps are non-negative due to (8) and monotonicity (1) of r. These rules
clearly preserve property (8), since the rate of any move which could destroy
this condition becomes zero. Summing the rates corresponding to either gi ↑ or
to hi ↑ shows that each ζ and η evolves according to its own rates.

with rate gi ↑ hi ↑ a second class particle

r(ζi, ζi+1) − r(ηi, ζi+1) • y

r(ηi, ηi+1) − r(ηi, ζi+1) • x

r(ηi, ζi+1) • •

Table 1: Growth coupling rules
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When there is only one second class particle in the coupled system of two
processes, then we shall call it the defect tracer, and we denote its position at
time t by Q(t).

2 Results

2.1 Microscopic shape of shocks in some of our models

The hydrodynamical limit of the nearest neighbor asymmetric simple exclusion
model leads to the inviscid Burgers equation

∂u

∂t
+

1

2

∂u2

∂x
= 0

which is a special case of the one-component hyperbolic conservation law

∂u

∂t
+

∂J(u)

∂x
= 0

where u 7→ J(u) is a smooth, typically convex function. (By changing x to −x,
concave J-s can be transformed to convex ones.) This equation has a shock
(weak) solution starting with initial data

u(0, x) =





uleft , x < 0

uright , x ≥ 0

with uleft > uright. The stable weak solution is of the form

u(t, x) =





uleft , x < st

uright , x ≥ st

where the speed s of the traveling shock is determined by the Rankine-Hugoniot
formula

s =
J(uright) − J(uleft)

uright − uleft
,

see e.g. [19]. This is what we see on a macroscopic scale. The microscopic
structure (i.e. on the level of particles) of the shock is of great interest. It has
been considered in the context of the asymmetric simple exclusion process, and
rather complicated microscopic structures have been found [5] [6] [7] [9] [10]. In
the more general context of attractive particle systems the microscopic structure
of the shock was investigated by [18].

In this part, we show a shock-like stationary distribution for some of our
processes. We consider the bricklayers’ process ω, and we put a defect tracer
initially to the origin: Q(0) = 0. We introduce the process σ, for which

σi(t) = ωi+Q(t)(t);

this is the process ω as seen from the random position Q(t) of the defect tracer.
Let

θ : = {θi : i ∈ Z}
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be a sequence of parameters, and define the product measure µ(θ) with marginals

µi(z) = µ(θ) {σ : σi = z} : = µ(θi)(z) =
1

Z(θi)
· eθiz

f(z)!
.

This measure only differs from the canonical µ(θ) (6) in that the parameter of
its one-dimensional marginals depends on the position.

Theorem 2.1. For a bricklayers’ model, if f is not the constant function, then
the measure µ(θ) described above is stationary for σ if and only if f is the rate
of an EBL model (4) with any parameter β > 0, and for the θ parameters of
µ(θ)

θi =

{
θleft if i ≤ −1 ,
θright : = θleft − β if i ≥ 0

is satisfied with an arbitrary real number θleft.

The form of the measure described in this theorem shows after a bit of
calculations that the distribution of ωi, i ≤ −1 is shifted by +1 compared to
the distribution of ωj , j ≥ 0. This gives us the picture of a (random) valley
with the (randomly) moving defect tracer in its center. Since the position of the
defect tracer is not deterministic, we do not see the sharp change between the
distribution of the two sides of this valley, if looking the model from outside.

2.2 Growth fluctuations in the models

Stochastic deposition models can be used to obtain microscopic description of
domain growths, e.g. a colony of cells or an infected area of plants. The fluc-
tuation of the growth is itself of great interest. Moreover, these models are
in close connection to interacting particle systems, where the particle diffusion
corresponds to rescaled surface fluctuation. It has been known [8] for the sim-
ple exclusion process, that the current fluctuation is in close connection to the
motion of the called second class particle, and, divided by time, its variance
vanishes for an observer moving with the speed of this particle. In this latter
case, Prähofer and Spohn [16] suggest this quantity to be in the order of t2/3.

Here we consider the whole class of the models introduced. In this general
frame, we compute the growth fluctuations in order O(t), hence generalize the
result of Ferrari and Fontes [8]. We need law of large numbers and a second
moment condition for the position of the defect tracer. These have been estab-
lished for simple exclusion [7], but, as far as we know, only L1-convergence is
known for most kinds of zero range processes [18]. We prove Ln-convergence
with any n for the defect tracer of the totally asymmetric zero range process
and for our new bricklayers’ models via various coupling techniques.

We start our model in a canonical Gibbs-distribution, with parameter θ. For
a fixed speed value V > 0 we define

J (V )(t) := h⌊V t⌋(t) − h0(0),

the height of column at site ⌊V t⌋ at time t, relative to the initial height of the
column at the origin. For V < 0, we introduce

J (V )(t) := h⌈V t⌉(t) − h0(0),

8



which is the mirror-symmetric form of J (V ) defined above for positive V ’s. For
V = 0 we write

J(t) = J (0)(t) := h0(t) − h0(0).

In particle notations of the models, J (V )(t) is the current, i.e. the algebraic
number of particles jumping through the moving window positioned at V t, in
the time interval [0, t]. We prove law of large numbers for this quantity:

lim
t→∞

J (V )

t
= E(r) − V E(ω) a.s.

We need law of large numbers and a second-moment condition for the po-
sition Q(t) of the defect tracer if one of the coupled models is started from its
canonical Gibbs-measure:

Condition 2.2. With initial distribution µ
θ

of ω, weak law of large numbers

(9) lim
t→∞

Pθ

(∣∣∣∣
Q(t)

t
− C(θ)

∣∣∣∣ > δ

)
= 0

for a speed value C(θ) and for any δ > 0 holds, and the bound

(10) Eθ

(
Q(t)2

t2

)
< K < ∞

is satisfied for all large t for the position Q(t) of the defect tracer.

Inequality (10) is obvious in case of bounded rates, since in this situation, the
process |Q(t)| is bounded by some Poisson-process.

Theorem 2.3. Assume condition 2.2. Then

(11) lim
t→∞

Varθ(J
(V )(t))

t
= |V − C(θ)| · Varθ(ω0) = : DJ (θ)

for any V ∈ R, where Varθ stands for the variance w.r.t. µθ.

Theorem 2.4 (Central limit theorem). Assuming condition 2.2,

lim
t→∞

Pθ

(
J̃ (V )(t)√
DJ (θ) ·

√
t
≤ x

)
= Φ(x) =

x∫

−∞

e−y2/2

√
2π

dy,

i.e. J̃ (V )(t)/
√

t converges in distribution to N(0, DJ (θ)), a centered normal
random variable with variance DJ(θ) of (11). Tilde means here that the mean
value of J (V )(t) is subtracted.

For the SE model, (9) is proven in [7]. It is shown there that

lim
t→∞

Q(t)

t
= 1 − 2̺ a.s.

Condition 2.2 is satisfied by this law, hence theorem 2.3 gives

lim
t→∞

Var(J (V )(t))

t
= ̺ (1 − ̺) |(1 − 2 ̺) − V |,

and the central limit theorem 2.4 also holds. These results have been known for
SE by Ferrari and Fontes [8].

For the ZR and BL models, we need a condition on the growth rates:
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Condition 2.5. For ZR and BL processes defined above, the rate function f is
convex.

For the ZR process, under this condition and assuming either strict convexity
or concavity of H(̺) defined in (7), more than (9), namely, L1-convergence is
established by Rezakhanlou [18] with speed

(12) C(θ) =
eθ

Varθ(ω)
.

As far as we know, the second-moment condition (10) has not yet been proven
for this model.

Theorem 2.6. For ZR and BL models satisfying condition 2.5 with initial
distribution µ

θ
of ω, and for any n ∈ Z

+,

Q(t)

t
→ C(θ) in Ln,

where C(θ) is defined in (12) for the ZR process, and

(13) C(θ) :=
2 sinh(θ)

Varθ(ω)

for the BL model.

Hence under condition 2.5, condition 2.2 and thus theorem 2.3 and 2.4 hold
for both ZR and BL models with C(θ) defined in (12) and (13), respectively.
As we expect by mirror symmetric properties of the BL model, the speed C(θ)
of the defect tracer is zero in case θ = 0 in this model.

Our methods do not rely on hydrodynamic limits. It follows that C(θ) is
a nondecreasing function for the totally asymmetric ZR process and BL model
under condition 2.5. This shows (non strict) convexity of the function H(̺) of
(7) for these models, since

C(θ(̺)) =
dH(̺)

d̺

after some computations, and θ(̺) is also a monotone function.

Proposition 2.7. Under condition 2.5, the function H(̺) is strictly convex for
the BL model. For the ZR process satisfying 2.5, linearity of H(̺) is equivalent
to linearity of the rate function f on Z, which is the case of independent random
walk of the particles. If this is not the case, then H(̺) is strictly convex.

This is an important observation for [2], since this property is only proved
for small θ values there. It is also remarkable for [18], where strict convexity is
just assumed.

We remark that rates for removal of the bricks can also be introduced to ob-
tain a model with both growth and decrease of columns. In particle notations
this represents possible left jumps of particles (or right jump of antiparticles,
respectively). Therefore, not only the totally asymmetric case, but the general
asymmetric case of particle processes (SE or ZR, for example) can also be in-
cluded in the description. The extension of the proof of theorems 2.3 and 2.4 to
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this case is straightforward. However, the coupling arguments used to establish
condition 2.2 for ZR and BL models in later sections are not applicable in case
of brick-removal.

We see that lim
t→∞

Var(J(V )(t))
t vanishes if we observe this quantity from the

moving position V t = C(θ)t, having the characteristic speed of the hydrodynam-
ical equation. This has been known for the SE model with strongly restricted
values of ωi, and now it is proven for the class of more general models with pos-
sibly ωi ∈ all Z also. The interesting question, of which the answer is strongly
suggested for some models [16], is the correct exponent of t leading to nontrivial
limit of Var(J (C)(t))/t2α as t → ∞. α is believed to be 1/3, in close connection
to t2/3 order fluctuations of the position Q(t) of the defect tracer.

2.3 Stochastic bounds on the growth

The shock-like product (time-) stationary measure we found in section 2.1 works
for exponential dependence of the growth rates on the relative heights. As
the model is not rigorously constructed, the natural question of existence of
dynamics arises here.

In the area of interacting particle systems, there are two main situations
where construction methods are available. One of them applies when the rate
with which the configuration changes at a site is bounded. As described in
Liggett [14], the construction can be carried out in this case via functional anal-
ysis properties of the infinitesimal generator and via the Hille-Yosida theorem.
This is the way how existence of dynamics is usually proved for stochastic Ising
models, the voter model, contact processes, simple- and K-exclusion processes.

The other situation is when the growth rates are unbounded, but satisfy
a sublinear growth condition. This means that the growth rates are bounded
from above by a linear function of the local state space. The famous example
is the zero range process, where there is a nonnegative number ωi of particles
at each site i, and with rate f(ωi) depending on the number of these particles,
one of them jumps to another site. Slightly more than the sublinear condition
mentioned above is formulated here by |f(k + 1) − f(k)| ≤ K for any k ≥ 0
and some K > 0. Under this condition, it is possible to compare the model
to the so-called multi-type branching process, or to consider some differential
equation arguments, and hence give stochastic bounds on the states realized by
the process. This is the way Andjel [1] constructs the process, generalizing the
earlier work of Liggett [12]. The method can be extended to more complicated
systems, but sublinearity is still an essential condition in the proof of existence.

None of these methods fit to the bricklayers’ process with exponential rates
in section 2.1. Although a sublinear growth condition would make it possible
to use the arguments mentioned above (see Booth [4] or Quant [17]), e.g. [2]
sets up a claim to a proof of existence for models with superlinear growth rates.
Not superlinearity, but convexity considerations also play an important role in
hydrodynamical and second class particle-related arguments, see e.g. Balázs [3]
or Rezakhanlou [18], and convexity of the growth rates in some cases may imply
superlinearity of them.

We consider here the bricklayers’ process, where the jump rates are un-
bounded, and we do not require sublinear growth conditions. We use attractiv-
ity of the system instead to show stochastic bounds on it. This is carried out
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via coupling considerations, and makes use of auxiliary systems. All our argu-
ments are also valid for the zero range process, hence the bounds also apply to
this model for any monotone increasing rate function. Formally, to obtain the
statements for zero range, the reader should simply neglect all terms f(−ωi),
e−θ, e−θ1 , e−θ2 .

First we show a process on a finite number of sites. Fix n ∈ N, and define
the infinitesimal generator L(n) acting on functions of ω:

(
L(n)ϕ

)
(ω) =

n−1∑

i=−n

[f(ωi) + f(−ωi+1)] ·
[
ϕ(ω(i, i+1)) − ϕ(ω)

]
.

This is well defined for any ω ∈ Ω. For this finite site-process, which we call the
n-monotone process, the jump ω → ω(i, i+1) happens with rate f(ωi)+f(−ωi+1),
independently for different sites i, but only for −n ≤ i ≤ n − 1. For columns
not in this interval, nothing happens.

We say that a measure π on Ω is a good measure with parameters θ1 and θ2,
if there exist −θ̄ < θ1 < θ2 < θ̄ such that the measure µ(θ2) (see (6)) dominates

π and π dominates µ(θ1) stochastically. This is equivalent to saying that η

distributed according to the product measure µ(θ1), ζ distributed according to

π and ξ distributed according to µ(θ2) can be coupled in such a way that

ηi ≤ ζi ≤ ξi

holds for all i ∈ Z. Note that if π is a product of marginals πi on Z, then this
is equivalent to the corresponding stochastic dominations for the marginals at
each site i.

Theorem 2.8. Let ω(0) be distributed according to the good distribution π with
parameter θ1, θ2, and let it evolve according to the n-monotone evolution. The

height of column i at time t is denoted by h
(n)
i (t), with the convention h

(n)
0 (0) =

0. Then for all i ∈ Z, t > 0, the limit

hi(t) := lim
n→∞

h
(n)
i (t)

exists a.s. for each ω(0) ∈ Ω,

E [hi(t) − hi(0)] ≤ t ·
(
eθ2 + e−θ1

)

for all t, and

E
(
[hi(t) − hi(0)]

2
)
≤ const. · t2

for all t large enough.

Now we refine the results in order to show the bounds when the process
starts from a deterministically given initial state ω(0) ∈ Ω = Z

Z. Of course, we
shall not allow all elements of this set. For ω fixed, we define the set

A(ω) :=
{
(ζ, g0(0)) ∈ Ω × N : gi(0) ≥ hi(0) for all i ∈ Z

}

with columns

hi : =





h0 −
i∑

j=1

ωj for i > 0,

h0 +

0∑

j=i+1

ωj for i < 0
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of ω and

gi : =





g0 −
i∑

j=1

ζj for i > 0,

g0 +

0∑

j=i+1

ζj for i < 0

of another configuration ζ. We assume h0(0) = 0 initially. Imagining the wall
of bricks, a typical ζ has larger negative gradient on the left-hand side than on
the right-hand side of the origin.

For a measure Π on Ω×N we call the first marginal π on Ω, while the second
marginal ν on N. We define

Ω̃ := {ω ∈ Ω : there exists Π for which π is a good measure,

ν has finite second moment and Π {A(ω)} > 0}.

Note that one has many choice for Π, it is not unique. Ω̃ is going to be the set
of initial configurations for which we shall bound the growth of the process.

Theorem 2.9. Let us fix ω(0) ∈ Ω̃ with Π, of which the first marginal π is a
good measure having parameters θ1 and θ2. Let ω evolve according to the n-

monotone evolution; the height of column i at time t is denoted by h
(n)
i (t), with

the convention h
(n)
0 (0) = 0. Then for all i ∈ Z, t > 0, the limit

hi(t) := lim
n→∞

h
(n)
i (t)

exists a.s., and

E [hi(t)] ≤
K · t√
Π{A}

+

√√√√E
(
[gi(0)]

2
)

Π{A}
for all t large enough and for some ∞ > K > 0 depending on θ. Here gi(0)
is the height of column i for ζ(0) distributed according to π, with g0(0) having
distribution ν.

Proposition 2.10. Fix −θ̄ < θ1 < θ2 < θ̄ and E(θ1)(z) < K1 < K2 < E(θ2)(z).
Then

{
ω : K2 > lim sup

n→−∞

1

|n|

0∑

i=n+1

ωi , lim inf
n→∞

1

n

n∑

i=1

ωi > K1

}
⊂ Ω̃.

Especially, for any θ < θ < θ̄, one can find parameters θ1, θ2 such that the set

above has µ(θ) measure one, hence µ(θ)
{

Ω̃
}

= 1 holds.
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