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Preface

The dissertation deals with model selection problems. Chapter 1 is a survey of

these statistical problems. They can be formulated as follows. Let a stochastic

process be given that we would like to model. Further, let a family of model

classes be given, each class determined by a structure parameter. Each model in

a class is described by a parameter vector from a subset of an Euclidean space

whose dimension depends on the structure parameter. Suppose that based on a

realization of the process, called statistical sample, we can estimate the parameter

vector provided the structure parameter is known. The task is estimation of the

latter. Examples of model classes are autoregressive (AR) processes, ARMA

processes, Markov chains, tree models, Markov random fields.

The dissertation treats the model selection problem using the concept of in-

formation criterion. An information criterion assigns a real number to each hy-

pothetical model class, the structure parameter is estimated by minimizing this

criterion. The mostly used information criteria are the Bayesian Information

Criterion (BIC) and the Minimum Description Length (MDL). The BIC consists

of two terms. The first one is the negative logarithm of the maximum likelihood,

this measures the goodness of fit of the sample to the model class. The second

term is the half number of free parameters in the model class times the logarithm

of the sample size, this penalizes too complex models. The MDL is based on a

code of the sample tailored to the model class, and on a code of the structure

parameter; the sum of codelengths of these codes gives the criterion.

An estimator of the structure parameter is said to be strongly consistent if,

with probability 1, it equals the true structure parameter when the sample size

is sufficiently large. It has been known for various model classes that the BIC

and MDL estimators are strongly consistent, mostly under the assumption that

the true model belongs to a known finite set of model classes. It has been proved

recently that in the case of Markov chains, the latter assumption can be dropped;

for BIC, there is no need for any bound on the hypothetical order at all, for MDL

one can use a bound that grows with the sample size. The dissertation, motivated

by these results, presents new results in two areas.

v
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In Chapter 2, the concept of context tree, usually defined for finite memory

processes, is extended to arbitrary stationary ergodic processes (with finite al-

phabet). These context trees are not necessarily complete, and may be of infinite

depth. The BIC and MDL principles are shown to provide strongly consistent

estimators of the context tree; here the depth of the hypothetical context trees

is allowed to grow with the sample size n as o(log n), hence there is no need for

a prior bound on the true depth. Moreover, algorithms are provided to compute

these estimators in O(n) time, and to compute them on-line for all i ≤ n in

o(n log n) time. In the MDL case the algorithm is a modification of a known

method. It is important that this method can also be extended for the BIC

case, because previously the BIC estimator of the context tree was believed to be

computationally infeasible.

In Chapter 3, for Markov random fields on Zd with finite state space, the

statistical estimation of the basic neighborhood is addressed. The basic neigh-

borhood is the smallest region that determines the conditional distribution at a

site on the condition that the values at all other sites are given. Here the samples

are observations of a realization of the field on increasing finite regions. The BIC

and MDL estimators are unsuitable for this problem, but a modification of BIC,

replacing likelihood by pseudo-likelihood, is proved to provide a strongly consis-

tent estimator. The size of the hypothetical basic neighborhood may extend with

the sample size, thus no prior bound on the size of the true basic neighborhood

is required.

Each part of the dissertation is published. The three chapters correspond to

three papers. Essentially, Chapters 1, 2 and 3 are the papers (Talata, 2004),

(Csiszár and Talata, 2004b) and (Csiszár and Talata, 2004a), respectively. The

almost only difference between the papers and the dissertation is that the refer-

ences are merged into the end of the dissertation.

The referees’ report on the dissertation and the minutes of the defense of

thesis will be available at Dean’s Office, Faculty of Science, Budapest University

of Technology and Economics.

I thank Professor Imre Csiszár for being my thesis advisor. I am glad to work

with him, I have been learning a lot from him.

Finally, I declare the following.

I, the undersigned Zsolt Talata, state that I produced this dissertation myself

and I used only the indicated sources for it. Each part, which I adopted literally or

with the same content but rewritten, is referred unambiguously, with indication

the source.
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Chapter 1

Introduction

1.1 The model selection problem

Let a stochastic process {Xt, t ∈ T } be given, where each Xt is a random variable

with values a ∈ A, and T is an index set. The joint distribution of the random

variables Xt, t ∈ T will be referred to as the distribution of the process and will

be denoted by Q. A model of the process determines a hypothetical distribution

of the process or a collection of hypothetical distributions. Typically, a model

is determined by a structure parameter k with values in some set K, and by

a parameter vector θk ∈ Θk ⊂ Rdk ; this model is denoted by Mθk
. Given the

feasible models of the process, they can be arranged into model classes according

to the structure parameter: Mk = {Mθk
, θk ∈ Θk ⊂ Rdk }. Statistical inference

about the process is drawn based on a realization {xt, t ∈ T } of the process

observed in the range Rn ⊂ T , where Rn extends with n. Thus the n’th sample

is x(n) = {xt, t ∈ Rn }. Some typical examples for processes and their models

are listed below.

In the case of density function estimation, T = N and the random variables Xt,

t ∈ N are independent and identically distributed (i.i.d.) with density function

fθk
. The n’th sample is {xi, i = 1, . . . , n }.
The polynomial fitting involves T ⊆ R, where T is a countable set, A = R,

and the model

Xt = θk[0] + θk[1] t + θk[2] t2 + · · ·+ θk[k − 1] tk−1 + Zt,

where Zt, t ∈ T are independent random variables with normal distribution,

zero mean, unknown common variance, and θk[i] is the i’th component of the

k-dimensional parameter vector θk. Here the structure parameter k ∈ N is the

degree of the polynomial θk[0] + θk[1] t + θk[2] t2 + · · ·+ θk[k− 1] tk−1 plus 1, and

the n’th sample is {xt, t ∈ {t1, . . . , tn} ⊂ T }.

1
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The process with T = N, A = R is an autoregressive (AR) process of order k

if

Xt =
k∑

i=1

aiXt−i + Zt,

where Zt, t ∈ N are independent random variables with normal distribution, zero

mean, unknown common variance, and ai ∈ R, i = 1, . . . , k form the parameter

vector θk. Here the structure parameter k ∈ N is the number of coefficients ai,

and the n’th sample is {xi, i = 1, . . . , n }.
The autoregressive moving average (ARMA) process is similar to the AR pro-

cess. In this case we have

Xt =

p∑
i=1

aiXt−i + Zt +

q∑
j=1

bjZt−j.

The parameter vector is θk = { a1, . . . , ap, b1, . . . , bq } ∈ Rp+q, and the structure

parameter k has two components: k = (p, q) ∈ N2.

The process with T = N, |A| < ∞ is a Markov chain of order k if

(1.1) Q(Xn
1 = xn

1 ) = Q(Xk
1 = xk

1)
n∏

i=k+1

Q(xi|xi−1
i−k), n ≥ k, xn

1 ∈ An,

with suitable transition probabilities Q( · | · ). Here xj
i denotes the sequence

xi, xi+1, . . . , xj. Since for each ak
1 ∈ Ak the vector {Q(a| ak

1), a ∈ A } gives a

probability distribution on A, the parameter vector θk ∈ Rdk consists of dk =

(|A| − 1) |A|k transition probabilities Q(a| ak
1), a ∈ A∗, ak

1 ∈ Ak, where |A∗| =

|A|−1. Here the structure parameter k ∈ N is the length of the sequence that the

transitional probabilities depend on in their second argument. The n’th sample

is {xi, i = 1, . . . , n }.
The AR and ARMA processes, and Markov chains are examples for the case

when the model does not determine a unique hypothetical distribution of the

process. In particular, for AR processes or Markov chains of order k the model

determines only a hypothetical conditional distribution for Xk+1, Xk+2, . . . given

X1, . . . , Xk.

The set K of feasible structure parameters k is an ordered or partially ordered

set with respect to the inclusion of the model classes Mk. When the model Mθk

with structure parameter k corresponds to the true distribution Q of the process,

a more complex model with (in the above sense) greater structure parameter k′

may also correspond to the distribution Q with a suitable parameter vector θk′ .

For example, any AR process or Markov chain of order k is also of order k′, for

each k′ > k. We mean by the true model Mθ0 the minimal model among those
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that correspond to the true distribution Q, that is, for which there exists no

other model with the same property that has a smaller structure parameter in

the above sense. The structure parameter of this true model will be denoted by

k0.

The model selection problem consists in estimating the true structure param-

eter k0 based on the statistical observation x(n) of the process.

The term underestimation refers to the case when a smaller structure param-

eter k is selected than the true one k0. In such a case θ0 /∈ Θk, hence the true

model cannot be estimated accurately; the estimation of the parameter vector

will involve bias.

The term overestimation refers to the case when a greater structure parameter

k is selected than the true one k0. In this case Mθ0 ∈Mk0 ⊂Mk, thus Mθ0 = Mθk

for some θk ∈ Θk, but θk has more components than θ0, hence it is more difficult

to estimate the true setting; the estimation of the parameter vector will have

larger variance.

The dissertation treats the model selection problem using the concept of infor-

mation criterion. An information criterion (IC) based on the sample x(n) assigns

a real value to each model class: IC : K × {x(n)} → R, and the estimator of k0

equals the structure parameter with the minimum value of the criterion:

k̂(x(n)) = arg min
k∈K

ICk(x(n)).

The next sections give an overview about information criteria.

1.2 Historical review

The model selection problem can be regarded as multiple hypothesis testing, and

the likelihood ratio test procedure of Neyman and Pearson (1928) can be used.

Anderson worked out this procedure for polynomial fitting (Anderson, 1962) and

for AR processes (Anderson, 1963). These procedures are sequences of tests

taking the hypothetical orders successively, starting at the highest one. The

main disadvantage of these procedures is the subjective choice of the significance

levels of the tests for all hypothetical model orders.

Mallows (1964, 1973) introduced, for selecting the true variables of linear

models, a method similar to the information criteria. Consider the linear model

Xt =
K∑

i=1

aiuit + a0 + Zt, t ∈ Z,
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where ai, i = 1, . . . , K are the parameters of the model, uit, i = 1, . . . , K are

(non-random) independent variables whose values are given at t = 1, . . . , n, and

Zt’s are independent random variables with zero mean and unknown common

variance σ2. Given the sample x(n) = {xt, t = 1, . . . , n }, the problem is to

estimate the set {ui1 , . . . , uik } of variables that Xt effectively depends on, that

is, ail 6= 0 for il ∈ { i1, . . . , ik } and ail = 0 otherwise.

Mallows assigned to each hypothetical index set P = { i1, . . . , ik } the value

CP =
1

σ̂2
RSSP − n + 2|P |,

where RSSP is the residual sum of squares according to P :

RSSP = min
ail

, il∈P

n∑
t=1

xt −
∑

ail
, il∈P

ailuilt − a0

2

,

moreover σ̂2 is a suitable estimate of σ2, e.g., σ̂2 = RSS{1,...,k}/(n − k). The

estimator is the index set P with minimum CP . It can be shown that the expected

value of CP is equal to |P | when P is the true index set, and it is greater otherwise.

For stationary processes, Davisson (1965) analyzed the mean square predic-

tion error of the AR model of order k, when the coefficients of the model are

determined based on the past n observations x1, . . . , xn and this model is applied

to predict the next observation. Namely, for the predictor X̂n(k) =
∑k

i=1 âiXn−i

with coefficients which minimize the mean square prediction error, that is,

{ â1, . . . , âk } = arg min
{a1,...,ak}

n−1∑
t=0

(
xt −

k∑
i=i

aixt−i

)2

,

he obtained

E
(
Xn − X̂n(k)

)2

= σ2(k)

(
1 +

k

n

)
+ o

(
1

n

)
,

where σ2(k) is the asymptotic mean square error. Moreover, he suggested using

the main term of the above expression to estimate the true order, via minimizing

it over the candidate orders. Of course, this requires the estimation of σ2(k).

Akaike (1970) arrived at the same result, and he overcame the problem of

estimating σ2(k) by a suitable spectral estimation method. He defined a criterion

called final prediction error as

FPEk(x
n
1 ) =

n + k

n− k

(
Ĉ0 − â1Ĉ1 − · · · − âkĈk

)
,

where Ĉi = (1/n)
∑n−1

t=1 xt+lxt, i = 0, . . . , k are the correlation coefficients, and âi,

i = 1, . . . , k are the model coefficients which minimize the least square prediction



1.2. HISTORICAL REVIEW 5

error, as above. The latter values can be calculated from the Ĉi’s, solving the

Yule –Walker equation. The order estimator is

k̂(xn
1 ) = arg min

0≤k≤K
FPEk(x

n
1 ).

The only subjective element in this procedure is the determination of the upper

bound K of candidate orders. Akaike also showed that this estimator overesti-

mates the true order asymptotically with positive probability, that is,

lim inf
n→∞

Q
(
k̂(xn

1 ) > k0

)
> 0.

Akaike (1972) introduced a general concept for solving the model selection

problem. Assume that each model Mθk
specifies a unique distribution Pθk

of the

process, and let P
(n)
θk

denote its marginal equal to the distribution of the sample

x(n). The Kullback – Leibler information divergence between P
(n)
θk

and P
(n)
θ0

is

D
(
P

(n)
θ0

∥∥∥ P
(n)
θk

)
=

∫
f

(n)
θ0

(x(n)) log
f

(n)
θ0

(x(n))

f
(n)
θk

(x(n))
λ(dx(n)),

where f
(n)
θk

denotes the density of P
(n)
θk

with respect to a dominating measure λ

(typically, λ is either the Lebesgue measure or, in the discrete case, the count-

ing measure). Logarithms are to the base e. Akaike aimed at minimization of

this quantity for estimating the true parameter vector θ0 and the true structure

parameter k0. He found that this minimizer can be approximated by taking

the maximum likelihood estimator θ̂k = arg maxθk∈Θk
f

(n)
θk

(x(n)) in each candi-

date model class, and then selecting the model class whose structure parameter

minimizes the value

AICk(x(n)) = − log f
(n)

θ̂k
(x(n)) + dim Θk.

When the models do not determine uniquely the distribution of the process,

we can define the AIC similarly, with suitably defined f
(n)
θk

. For example, in the

case of AR process of order k we can prescribe X1, . . . , Xk to be 0, or to have the

marginal distribution of the stationary distribution of the process. This specifies a

unique joint distribution corresponding to the model, and we can take its density

as f
(n)
θk

. Note that suitable restriction on the parameter set Θk can guarantee the

existence of the stationary distribution. In the case of Markov chains of order k,

we can either proceed similarly, or we can define f
(n)
θk

as the right hand side of

(1.1) dropping the factor Q(Xk
1 = xk

1).

This model selection procedure has a clear interpretation. The first term of

the information criterion is the negative logarithm of the maximum likelihood.
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It measures the goodness of fit of the sample to the model class Mk. This term

decreases when the complexity of the model increases. The second term of the

information criterion, called the penalty term, is the number of free parameters of

the model. This penalizes too complex models: it increases with the model com-

plexity. Thus, the selected model has a good tradeoff between good description

of the data and the model complexity.

For AR models, AIC is asymptotically (i.e., as the sample size tends to in-

finity) identical to the FPE criterion (Akaike 1972, 1974). Therefore, the AIC

estimator also overestimates the true structure parameter asymptotically with

positive probability. Shibata (1976) derived the exact asymptotic distribution of

the order selected by these estimators.

The classical cross-validation principle can be adopted to the model selection

problem (e.g., Stone, 1974). The general principle requires dividing the sample

set into two subsets, and performing the model estimation based on one subset

only. Using the other subset, the candidate model can be validated correctly,

that is, the estimation and the validation will be independent. A formulation of

this principle for the polynomial fitting problem is the following. Divide the n’th

sample x(n) = {xt, t = t1, . . . , tn } into subsets via leaving out the p’th element:

x(n) = x\p ∪ {xtp}, where x\p = x(n) \ {xtp}. Estimate the coefficients of the

polynomial of degree k − 1 based on the sample set x\p:

θ̂
(p)
k = arg min

θk∈Θk

∑
i∈{1,...,n}\{p}

(
xti −

(
θk[0] + θk[1] ti + θk[2] t2i + · · ·+ θk[k − 1] tk−1

i

))2
,

and validate it based on the p’th sample element xtp :

ek(p) = xtp −
(
θk[0] + θk[1] tp + θk[2] t2p + · · ·+ θk[k − 1] tk−1

p

)
.

Calculate this prediction error for all p, and minimize

e2
k =

n∑
p=1

ek(p)2

over the hypothetical k’s to obtain the estimated degree of the polynomial. Stone

(1977) showed that the cross-validation criterion is asymptotically equivalent to

the AIC.

1.3 Consistent model selection

In this work the goodness of model selection will be considered only from the

asymptotical point of view; in the literature, this aspect is in the focus.
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An estimator k̂(x(n)) of the structure parameter k based on the sample x(n) is

said to be consistent if the probability that the estimator equals the true structure

parameter k0 approaches 1 when the sample size n tends to infinity:

Q
(
k̂(x(n)) = k0

)
−→ 1 if n →∞.

The estimator k̂(x(n)) is said to be strongly consistent if it equals the true

structure parameter k0 eventually almost surely as the sample size n tends to

infinity:

k̂(x(n)) = k0, eventually almost surely as n →∞.

Here and in the sequel, “eventually almost surely” means that with probability 1

there exists a threshold n0 (depending on the realization {xt, t ∈ T }) such that

the claim holds for all n ≥ n0.

For the case of density estimation, when the feasible density functions belong

to exponential families, Schwarz (1978) derived an information criterion from the

asymptotic approximation of the Bayesian Maximum A-posteriori Probability

(MAP) estimator. Suppose the model class Mk consists of density functions

fθk
(xi) = exp ( 〈 θk, yk(xi) 〉 − bk(θk) ) , θk ∈ Θk,

where 〈 · , · 〉 denotes the inner product in the dk = dim Θk dimensional Euclidean

space, yk : R → Rdk are given functions, and

bk(θk) = log

∫
exp ( 〈 θk, yk(xi) 〉 ) dxi.

Here k ranges over a finite set K. A prior distribution of the parameter vector can

be written in the form µ =
∑

k∈K αkµk, where αk is the a priori probability that

a model with structure parameter k is the true one, and µk is the conditional a

priori distribution of θk under the condition that the true structure parameter is k;

µk is concentrated on Θk. Schwarz showed that, under regularity conditions, the

MAP estimator of the parameter vector θk from an i.i.d. sample xn
1 asymptotically

does not depend on µ, and is equivalent to the maximum likelihood estimator

θ̂k = arg maxθk∈Θk
f

(n)
θk

(x(n)) in the model class Mk whose structure parameter

k minimizes the value

BICk(x(n)) = − log f
(n)

θ̂k
(x(n)) +

dim Θk

2
log n

over the set K. This value is called Bayesian Information Criterion (BIC).

The consistency of the BIC estimator in the above situation has been proved

by Haughton (1988). Note that for the polynomial fitting problem, Akaike (1977)
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introduced the same information criterion with the same notation BIC, in a

heuristic way.

For the AR model of order k the Bayesian Information Criterion has the

following form:

BICk(x
n
1 ) = − log f

(n)

θ̂k
(xn

1 ) +
k

2
log n.

Hannan and Quinn (1979) proved that the BIC estimator of the order of AR

processes is strongly consistent. For the ARMA model of order (p, q) the BIC

has the similar form, but k is replaced by p + q. Hannan (1980) proved that also

in this case, the BIC estimator is strongly consistent.

For the Markov chain of order k, we have

BICk(x
n
1 ) = − log P

(n)

θ̂k
(xn

1 ) +
(|A| − 1)|A|k

2
log n.

Finesso (1992) proved that this gives a strongly consistent order estimator.

It should be emphasized that all consistency results above include the assump-

tion that the number of candidate model classes is finite. This means that there

is a known upper bound K on the true order k0 or (p0, q0), and the minimization

of the value BIC is for the candidate orders k ≤ K or p ≤ K[1], q ≤ K[2].

1.4 Information theoretical approach

Rissanen (1978, 1983a, 1989) suggested an information theoretical approach to

the model selection problem. According to the Minimum Description Length

(MDL) principle, the best model of the process based on the observed data is the

one that gives the shortest description of the observed data, taking into account

that the model itself must also be described.

Let each model class Mk be assigned a uniquely decodable, variable-length

binary code C
(n)
k : x(n) 7→ b(x(n)) which maps a sample x(n) to a binary sequence

b whose length can vary with x(n). The codelength function L
(n)
k (x(n)) is the

length of the binary sequence C
(n)
k (x(n)). Moreover, let C : k 7→ b(k) be a code

of the model classesMk which maps a structure parameter k to a binary sequence

b. Its codelength function will be denoted by L(k). Thus, using a model classMk,

the sample x(n) can be encoded by encoding x(n) with C
(n)
k (x(n)) and adding

this a preamble C(k) to identify Mk. The MDL criterion is the total length of

this description:

MDLk(x(n)) = L
(n)
k (x(n)) + L(k).
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The MDL estimator selects the model class which provides the shortest descrip-

tion of the sample:

k̂(xn
1 ) = arg min

k∈K
MDLk(x(n)).

Assume for simplicity that A is finite and also that each model Mθk
uniquely

determines a hypothetical distribution of the process; as before, its marginal for

the sample x(n) is denoted by P
(n)
θk

. A uniquely decodable, variable-length binary

code C
(n)
k can be simply represented by a coding distribution P

(n)
k . To see this,

note the well-known fact that L
(n)
k is the codelength function of some uniquely de-

codable code C
(n)
k if and only if it satisfies the Kraft inequality

∑
x(n) 2−L

(n)
k (x(n)) ≤

1. We may assume that here the equality holds, for otherwise the code could

be improved by shortening some codewords. Clearly, for any code C
(n)
k with

codelength L
(n)
k which satisfies the Kraft inequality with the equality, we can

write P
(n)
k (x(n)) = 2−L

(n)
k (x(n)). On the other hand, for any probability distri-

bution P
(n)
k we can construct a uniquely decodable code C

(n)
k with codelength

L
(n)
k (x(n)) =

⌈
− log2 P

(n)
k (x(n))

⌉
, called a Shannon code. The code determined

by the coding distribution P
(n)
k will be referred to as P

(n)
k -code. It should be

chosen to be optimal in some sense under the assumption that the true model

Mθ0 is in the model class Mk. Note, however, that P
(n)
k will typically differ from

each P
(n)
θk

in the model class Mk.

The redundancy of a P
(n)
k -code relative to the true distribution P

(n)
θ0

is

R
(n)
θ0

(x(n)) = − log P
(n)
k (x(n)) + log P

(n)
θ0

(x(n)).

This is the difference of the codelength due to using the coding distribution

P
(n)
k instead of the true P

(n)
θ0

. Since the redundancy is a function of the sample,

to evaluate the goodness of P
(n)
k one usually considers either the maximum of

R
(n)
θ0

(x(n)) for all possible x(n), or its expectation with respect to P
(n)
θ0

. Moreover,

since the true distribution P
(n)
θ0

is unknown, as an optimality criterion for P
(n)
k

under the assumption Mθ0 ∈ Mk it is usual to consider worst case maximum or

expected redundancy for all feasible distributions P
(n)
θk

, θk ∈ Θk, in the role of

P
(n)
θ0

.

For the model class Mk, the worst case maximum redundancy of a P
(n)
k -code

is

R(n)∗ = sup
θk∈Θk

max
x(n)

R
(n)
θk

(x(n)).

It is easy to show that the coding distribution P
(n)
k minimizing this quantity is
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the Normalized Maximum Likelihood (NML) distribution defined as

NML
(n)
k (x(n)) = P

(n)

θ̂k
(x(n))

/∑
x′(n)

P
(n)

θ̂k
(x′(n)) ,

where θ̂k = arg maxθk∈Θk
P

(n)
θk

(x(n)) is the maximum likelihood estimator of the

parameter vector θk in the model class Mk. Using this coding distribution we

get the MDL criterion

MDLk(x(n)) = − log P
(n)

θ̂k
(x(n)) + log

∑
x′(n)

P
(n)

θ̂k
(x′(n))

+ L(k).

Shtarkov (1977) showed that for the case of Markov chains the middle term is

asymptotically (as n → ∞, with k fixed) equal to (1/2) (dim Θk) log n. The

same holds also in other cases, under suitable regularity conditions, see Rissanen

(1996). Hence, when the number of the candidate model classes is finite, the

NML version of the MDL criterion is equivalent to BIC.

For the model class Mk, the worst case expected redundancy of a P
(n)
k -code

is

R̄(n) = sup
θk∈Θk

Eθk

{
R

(n)
θk

(x(n))
}

= sup
θk∈Θk

∑
x(n)

P
(n)
θk

(x(n)) log
P

(n)
θk

(x(n))

P
(n)
k (x(n))

= sup
θk∈Θk

D
(
P

(n)
θk

∥∥∥ P
(n)
k

)
,

where Eθk
{ · } denotes the expected value with respect to the distribution P

(n)
θk

,

and D( · ‖ · ) is the Kullback –Leibler information divergence.

Concentrating on the Markov chain case, consider first the model class M
equal to Mk with k = 0, the class of i.i.d. processes. In this case, while the

exact minimizer of the worst case expected redundancy is unknown, a good cod-

ing distribution P (n) is the Krichevsky –Trofimov (KT) distribution (Krichevsky

and Trofimov, 1981). Its worst case expected redundancy over M approaches

the minimum up to a constant not depending on n. The KT distribution is de-

fined as the mixture of all i.i.d. distributions P
(n)
θ , with respect to the Dirichlet

distribution ν of parameters 1/2:

KT0(x
n
1 ) =

∫
P

(n)
θ (xn

1 ) ν(dθ).

Direct calculation gives the following explicit expression:

KT0(x
n
1 ) =

∏
a:Nn(a)≥1

[ (
Nn(a)− 1

2

) (
Nn(a)− 3

2

)
· · ·
(

1
2

) ](
n− 1 + |A|

2

)(
n− 2 + |A|

2

)
· · ·
(
|A|
2

) ,
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where Nn(a) denotes the number of occurrences of a ∈ A in the sample xn
1 .

For the Markov chains of order k we have a similar result. For the model class

Mk a good coding distribution is the Krichevsky –Trofimov distribution of order

k, denoted by KTk. It is a mixture of all distributions of form

P
(n)
θk

(xn
1 ) =

1

|A|k
n∏

i=k+1

P (xi |xi−1
i−k),

see (1.1) with Q(Xk
1 = xk

1) = |A|−k, where the parameter vector θk specifies

the matrix of transition probabilities P (a| ak
1), a ∈ A, ak

1 ∈ Ak. The mixing

distribution is defined by letting the rows
{

Pθk
(a| ak

1), a ∈ A
}

of this matrix

independent and having the Dirichlet distribution ν as above. We also have an

explicit form:

KTk(x
n
1 ) =

1

|A|k
∏

ak
1 :Nn(ak

1)≥1

∏
ak+1:Nn(ak+1

1 )≥1

[ (
Nn(ak+1

1 )− 1
2

) (
Nn(ak+1

1 )− 3
2

)
· · ·
(

1
2

) ]
(
Nn(ak

1)− 1 + |A|
2

)(
Nn(ak

1)− 2 + |A|
2

)
· · ·
(
|A|
2

) ,

where Nn(ak
1) denotes the number of occurrences of ak

1 ∈ Ak in the sample xn
1 .

The KTk distribution can be calculated recursively in the sample size n as

KTk(x
n
1 ) =

Nn−1(x
n
n−k) + 1/2

Nn−1(x
n−1
n−k) + |A|/2

KTk(x
n−1
1 ).

The NML and KT versions of the MDL criterion are asymptotically equivalent,

because for the minimzers of the worst case maximum and expected redundancy

we have

(1.2)
(|A| − 1)|A|k

2
log n−K1 ≤ min

P
(n)
k

R̄(n) ≤ min
P

(n)
k

R(n)∗ ≤ (|A| − 1)|A|k

2
log n−K2,

where K1 and K2 are constants (depending on k).

The MDL estimator can be regarded as a Bayesian MAP estimator when, as

above, the coding distribution P
(n)
k is a mixture of the distributions P

(n)
θk

, θk ∈ Θk,

with a suitable mixing distribution µ
(n)
k defined on Θk, that is,

P
(n)
k (x(n)) =

∫
Θk

P
(n)
θk

(x(n)) µ
(n)
k (dθk).

Indeed, representing the code C(k) of the model class Mk with the coding dis-

tribution P (k) = 2−L(k), minimization of the description length

L
(n)
k (x(n)) + L(k) = − log P

(n)
k (x(n))− log P (k)
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is equivalent to maximization of P (k) P
(n)
k (x(n)). The latter quantity is propor-

tional to the posterior probability of the structure parameter k, that is, of the

conditional probability of k given the sample x(n).

The MDL principle can be extended to the case of general A, say A = R, via

discretization, and this leads to similar results as above, see Rissanen (1989), in

particular, for AR processes Hemerly and Davis (1989), and for ARMA processes

Gerencsér (1987).

1.5 Motivation of the new results

For various processes it has been proved that BIC and MDL estimators of the

structure parameter are strongly consistent. This means that the minimizer of

BIC or MDL criterion over the candidate structure parameters is equal to the

true structure parameter, eventually almost surely as the sample size tends to

infinity. Most consistency proofs in the literature include the assumption that

the number of candidate structure parameters is finite, that is, there is a known

prior bound on the structure parameter. This assumption is of technical nature

and it simplifies the proof. However, it is undesirable, because in practice usually

there is no prior information on the structure parameter, moreover when we

have increasing amount of data, we would require to take into account more and

more complex hypothetical model classes as candidate ones. Therefore, it is a

reasonable aim to drop the assumption of prior bound on the structure parameter.

Csiszár and Shields (2000) proved that the BIC estimator of the order of

Markov chains is strongly consistent even if the assumption of the prior constant

bound on the order is dropped and based on the n’th sample xn
1 all possible orders

0 ≤ k < n are considered as candidate orders.

At the same time, Csiszár and Shields (2000) pointed out that the same result

cannot hold for the MDL estimator. Consider the i.i.d. process with uniform

distribution. This process is a Markov chain of order 0. For the MDL criterion

MDLk(x
n
1 ) = − log P

(n)
k (xn

1 ) + L(k),

where the coding distribution P
(n)
k is either NML

(n)
k or KTk, and the codelength

L(k) of the order k satisfies L(k) = o(k), we have

k̂(xn
1 ) = arg min

0≤k≤α log n
MDLk(x(n)) → +∞ as n →∞,

where α = 4/ log |A|. This counterexample shows that the MDL estimator fails

to be consistent when the prior bound on the order is totally dropped.



1.6. THE FIRST NEW RESULT 13

Csiszár (2002) proved strong consistency of the MDL estimator of the order

of Markov chains when the set of candidate orders is allowed to extend as the

sample size n increases, namely, the bound on the orders taken into account is

o(log n) in the KT case, and α log n with α < 1/ log |A| in the NML case. Let us

observe that these MDL estimators need no prior bound on the true order. The

consistency was proved for the MDL criterion without the term L(k), which is a

stronger result.

The dissertation addresses the model selection problem for two models de-

scribed below. Strongly consistent estimators of the structure parameters will

be presented. Motivated by the above results, the number of candidate model

classes will be allowed to grow with the sample size, thus no prior bound on the

structure parameter is required.

1.6 The first new result

The model called tree source or variable length Markov chain is a refinement

of the Markov chain model. Given a Markov chain of order k, for a sequence

ak
1 ∈ Ak the transition probabilities Q(a| ak

1), a ∈ A may depend not on the

whole sequence a1, . . . , ak, but only on a subsequence al, . . . , ak; this admits a

more parsimonious parameterization.

Consider a process with T = Z and |A| < ∞. For simplicity, assume that

all finite dimensional marginals of the distribution Q of the process is strictly

positive. The string s = a−1
−l ∈ Al is a context for the process Q if

Q(Xi = a | X i−1
−∞ = xi−1

−∞) = Q(a| s) for all i ∈ Z, a ∈ A,

with suitable transition probabilities Q( · | s), whenever xi−1
i−l = a−1

−l , and no sub-

string a−1
−l′ , l′ < l has this property. The set of all contexts is called context tree,

it will be denoted by T . Assume that for every past sequence xi−1
−∞ there exists

a context s of finite length l, and the supremum of these lengths is a finite num-

ber k. A process with such context tree T is a Markov chain of order k, but a

collection of (|A| − 1)|T | transition probabilities suffices to describe it, instead of

(|A| − 1)|A|k ones required for a general Markov chain of order k.

The term context tree refers to its visualization. The contexts s, written

backwards, can be regarded as leaves of a tree, where the path from the root to

a leaf is determined by the string s. This context tree is complete, that is, each

node except the leaves has exactly |A| children.
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For a process with context tree T , the probability of a realization xn
1 can be

written as

Q(Xn
1 = xn

1 ) = Q(Xk
1 = xk

1)
∏

s∈T , a∈A

Q(a| s)Nn(s,a),

where Nn(s, a) denotes the number of that occurrences of a ∈ A in the sequence

xn
k+1 when the context s ∈ T precedes a. Given the sample xn

1 , the maximum

of the second factor above is attained for Q(a| s) = Nn(s,a)
Nn(s)

, a ∈ A, s ∈ T ,

where Nn(s) =
∑

a∈A Nn(s, a). That is, the maximum likelihood estimates of the

transition probabilities are the empirical probabilities, as for Markov chains.

For the class of tree models as above, the context tree T plays the role of the

structure parameter. To the analogy of Markov chains, the Bayesian information

criterion for the model class determined by T is

BICT (xn
1 ) = −

∑
s∈T , a∈A

Nn(s, a) log
Nn(s, a)

Nn(s)
+

(|A| − 1)|T |
2

log n.

The MDL principle can also be formulated for tree models. One can define as

before the NML and KT distributions for the class of tree models with context tree

T , here we concentrate on the KT distribution. This has the following explicit

form:

(1.3)

KTT (xn
1 ) =

1

|A|k
∏

s:Nn(s)≥1

∏
a:Nn(s,a)≥1

[ (
Nn(s, a)− 1

2

) (
Nn(s, a)− 3

2

)
· · ·
(

1
2

) ](
Nn(s)− 1 + |A|

2

)(
Nn(s)− 2 + |A|

2

)
· · ·
(
|A|
2

) .

We can calculate it recursively in n as

KTT (xn
1 ) =

Nn−1(s, xn) + 1/2

Nn−1(s) + |A|/2
KTT (xn−1

1 ),

where s is the context for the past xn−1
−∞ . Similarly as for the class of k’th order

Markov chains, the coding distribution KTT minimizes the worst case expected

redundancy for the class of tree models with context tree T , up to an additive

constant. Moreover, the bounds (1.2) also hold if |A|k is replaced by |T |. Note

also that there is a simply code C (see, e.g., Willems, Shtarkov and Tjalkens,

1995) which describes a context tree T with codelength

(1.4) L(T ) =
|A||T | − 1

|A| − 1
.

For model selection in the tree model setting, instead of using the information

criteria above, mostly variants of Rissanen’s “context” algorithm (1983b) have

been used. The reason is computational complexity: as the number of possible
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context trees of depth at most D is very large if D is large, it is not feasible to

calculate an information criterion for all candidate context trees and choose the

context tree with minimal value. This problem has been partially overcome by

Willems, Shtarkov and Tjalkens (1993, 2000). They proved that the MDL esti-

mator with the KT coding distribution (1.3) and the context tree codelength (1.4)

is strongly consistent, when there is a prior bound D on the depth of candidate

context trees. At the same time they presented an algorithm, called Context Tree

Maximizing (CTM) method, to calculate the estimator without actually comput-

ing and comparing the KT values for all candidate context trees. For the n’th

sample xn
1 , the number of elementary computations required by the algorithm is

proportional to nD, that is, the algorithm is of linear time.

The first new result of this dissertation, included by Chapter 2, is concerned

with the estimation of the context tree, with the definition of the latter signifi-

cantly generalized. We no longer assume strictly positive probability of all finite

sequences, restricting attention in the definition of contexts to those infinite pasts

xi−1
−∞ for which Q(X i−1

i−l = xi−1
i−l ) > 0 for each l > 0; thus the context tree may not

be complete. More importantly, we allow the case that for some xi−1
−∞ as above

no context s of finite depth exists, and then the whole past is considered as an

infinite context. When the context tree has infinite depth, the process is no longer

a Markov chain.

The strong consistency of the BIC estimator and of the KT version of MDL

estimator of context trees generalized as above will be proved, defining these

estimators with the family of hypothetical context trees allowed to extend as the

sample size increases; namely, the depth of context trees considered for sample

size n is at most o(log n). When the true context tree is of infinite depth, it

cannot be exactly reconstructed from a finite sample. In this case, we mean by

strong consistency that for each D > 0, the estimated context tree pruned at

level D equals the true one pruned at the same level D, eventually almost surely.

In addition, algorithms are presented to calculate both estimators in linear time.

The computation complexity of the on-line versions of these algorithms, that is,

when they are being computed at all instances while the sample size is increasing,

is also discussed.

1.7 The second new result

The second new result of this dissertation addresses the model selection problem

for Markov random fields. The Gibbs fields are spatial processes which may have
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higher dimensional index set. The Markov random fields are Gibbs fields having

the Markov property in space.

Let T = Zd. The points of the d dimensional integer lattice Zd are called

sites. Let A be a Polish space (i.e., a complete separable metric space), and let

X = AZd
. The elements x of the set X are called configurations of the field.

The configuration in the region V ⊆ Zd or at the site i ∈ Zd will be denoted by

x(V ) ∈ AV , respectively x(i) ∈ A. Let ρ be a probability measure on A, and let

ρ⊗Zd
be the corresponding product measure on X .

An interaction potential I is a family I = { IV , V ⊂ Zd finite } of bounded

continuous functions IV : X → R which depend on the configuration in the region

V only. Moreover, suppose translation invariance of I:

IV (τ j(x)) = IV j(x) for all V, x ∈ X , j ∈ Zd,

where τ j(x) : X → X with (τ j(x))(i) = x(i + j), and V j = { i + j : i ∈ V }.
Suppose also summability of I:

∑
V : 0∈V

(
sup
x∈X

IV (x)

)
< +∞,

where 0 is the origin in Zd. Denote Λ ⊂ Zd a finite region, and Λc its complement.

For the interaction potential I, the energy of a configuration x(Λ) ∈ AΛ, given

the boundary condition y(Λc) ∈ AΛc
, is

UΛ(x(Λ) | y(Λc)) =
∑

V :V ∩Λ6=∅

IV (x(Λ) ∨ y(Λc)),

where x(Λ) ∨ y(Λc) ∈ X is the configuration equal to x(Λ) on Λ and to y(Λc) on

Λc.

Consider the parameter estimation problem, when there is only one model

class with parameter vector θ ∈ Θ ⊂ Rk. In this case we have a known collection

of interaction potentials I(l), l = 1, . . . , k and of energy functions U (l), l = 1, . . . , k.

The Gibbs specification parameterized by the parameter vector θ is

(1.5) πΛ,θ(x(Λ) | y(Λc)) = ZΛ,y(Λc)(θ)
−1 exp

(
k∑

l=1

θ[l] U
(l)
Λ (x(Λ) | y(Λc))

)
,

where ZΛ,y(Λc)(θ) is the normalizing factor

(1.6) ZΛ,y(Λc)(θ) =

∫
exp

(
k∑

l=1

θ[l] U
(l)
Λ (x(Λ) | y(Λc))

)
ρ⊗Λ(dx(Λ)).
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The set G(θ) of Gibbs distributions is the set of all probability distributions Pθ

on X whose conditional finite marginals, given the boundary condition y, satisfy

Pθ(dx(Λ) | y(Λc)) = πΛ,θ(x(Λ) | y(Λc)) ρ⊗Λ(dx(Λ))

for all finite regions Λ ⊂ Zd and Pθ-almost every y(Λc)) ∈ AΛc
. The translation

invariance and summability assumptions imply that there exists such distribution

Pθ. On the other hand, the above equation, called Dobrushin –Lanford –Ruelle

equation, is not necessarily satisfied by only one distribution Pθ, due to the fact

that a distribution is not necessarily determined by its conditional marginals.

This phenomenon is called phase transition.

Markov random fields are Gibbs distributions with finite range interaction

potentials, which means that there exists a positive constant such that IV ≡ 0

for all V whose diameter is greater than this constant. In this case the condi-

tional probability density Pθ(dx(Λ)| y(Λc)) depends on the value of the boundary

condition y at a finite number of sites only.

The parameter estimation problem consists in estimating the parameter vec-

tor θ ∈ Θ based on a realization x ∈ X observed in a finite region Λn; thus

the n’th sample is x(Λn). For simplicity, it is usually assumed that Λn =

[−n, n]d. Similarly to the case of Markov chains, likelihood is defined via the con-

ditional distribution of the sample given some boundary condition. The maximum

likelihood estimator is the parameter vector minimizing the likelihood function

πΛn,θ(x(Λn)| y(Λc
n)) for some boundary condition y, over the set Θ. An alternative

of fixing the boundary condition y is shrinking the region Λn to Λ̄n ⊂ Λn such

that x(Λn\Λ̄n) determines πΛ̄n,θ(x(Λ̄n)| y(Λ̄c
n)). Here the former option is chosen,

while the second new result of dissertation adopts the latter.

The maximum likelihood estimator can not be calculated in practice, because

of the intractable integrals in (1.6). The pseudo-likelihood, introduced by Besag

(1974), is defined as

(1.7) PLθ(x(Λn) | y(Λc
n)) =

∏
i∈Λn

π{i},θ (x(i) | (x(Λn) ∨ y(Λc
n)) ({i}c) ) .

The maximum pseudo-likelihood estimator of the parameter vector θ ∈ Θ based

on the sample x(Λn), given the boundary condition y, is

θ̂(x(Λn) | y(Λc
n)) = arg max

θ∈Θ
PLθ(x(Λn) | y(Λc

n)).

This estimator can be calculated favorably, because the form (1.6) contains only

a single integral for Λ = {i}.
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Comets (1992) proved that when the model is identifiable, that is, G(θ) ∩
G(θ0) = ∅ for all θ, θ0 with θ 6= θ0, the maximum pseudo-likelihood estimator is

strongly consistent, which means that

θ̂(x(Λn) | y(Λc
n)) −→ θ0,

Pθ-almost surely as n →∞, for any boundary condition y.

The second new result of dissertation, included by Chapter 3, is concerned

with model selection problem for Markov random fields when A is finite. In this

case the Markov random field can be parameterized differently from the above,

namely, by the specification (1.5) for the region consisting of one site. That is,

the parameters describe the (translation invariant) conditional distribution at a

site, say at the origin 0 ∈ Zd, given the values x(j) at all of the other sites

j ∈ Zd\{0}. The structure parameter is the smallest region Γ ⊂ Zd\{0} in which

the values x(Γ) of the sites determine this conditional distribution. Therefore,

for the structure parameter Γ ⊂ Zd, 0 /∈ Γ the parameter vector is the matrix

PΓ =
{

PΓ(x(0) | x(Γ)), x(0) ∈ A, x(Γ) ∈ AΓ
}

.

Note that the number of free parameters is not equal to (|A| − 1)|A||Γ|, because

the conditional probabilities may not be chosen arbitrarily.

The region Γ is called basic neighborhood. Its finiteness is equivalent to that the

Gibbs distribution is a Markov random field. On account of (1.5), the conditional

probability of a configuration in a finite region Λ given the boundary condition

x(Λc) depends on x(ΛΓ) only, where ΛΓ = (∪i∈ΛΓi) \Λ.

With this parameterization the pseudo-likelihood (1.7) can be written as

PLΓ(x(Λn), PΓ) =
∏

a(Γ∪{0})∈AΓ∪{0}

PΓ(a(0) | a(Γ))Nn(a(Γ∪{0})),

where Nn(a(Γ ∪ {0})) denotes the number of occurrences of the configuration

a(Γ∪ {0}) in the sample x(Λn). Below we consider the above PLΓ defined for all

matrices PΓ with non-negative components satisfying
∑

a(0)∈A PΓ(a(0)| a(Γ)) = 1

for all a(Γ) ∈ AΓ, whether or not PΓ is the one-point specification of some

Gibbs distribution. Then the maximum of pseudo-likelihood is attained for

PΓ(a(0)| a(Γ)) = Nn(a(Γ∪{0}))
Nn(a(Γ))

, where Nn(a(Γ)) =
∑

a∈A Nn(a(Γ ∪ {0})). Thus,

the maximum pseudo-likelihood is

MPLΓ(x(Λn)) =
∏

a(Γ∪{0})∈AΓ∪{0}

[
Nn(a(Γ ∪ {0}))

Nn(a(Γ))

]Nn(a(Γ∪{0}))

.
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Our aim is to estimate the true basic neighborhood Γ0 based on the sample

x(Λn). To this end, we use a modification of the Bayesian information crite-

rion, with maximum likelihood replaced by maximum pseudo-likelihood and the

number of free parameters by a quantity proportional to the number of parame-

ters. The so obtained information criterion, called Pseudo-Bayesian Information

Criterion (PIC), is

PICΓ(x(Λn)) = − log MPLΓ(x(Λn)) + |A||Γ| log |Λn|,

where |Λn| is the sample size, the cardinality of the region Λn. The PIC esti-

mator Γ̂(x(Λn)) is the basic neighborhood minimizing this value over the set of

hypothetical Γ’s.

It will be proved that the PIC estimator of the basic neighborhood is strongly

consistent, that is, Γ̂(x(Λn)) = Γ0 eventually almost surely as n →∞, even when

the set of candidate basic neighborhoods is allowed to grow with the sample size

|Λn|; namely, the diameter of the basic neighborhoods considered based on the

sample x(Λn) is o(log1/(2d) |Λn|), at most. The sample region Λn is not required to

be the cube [−n, n]d. Moreover, the presence of phase transition does not effect

the result.
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Chapter 2

Context Tree Estimation for Not

Necessarily Finite Memory

Processes, via BIC and MDL

2.1 Introduction

In this chapter, process always means a stationary ergodic stochastic process with

finite alphabet. Processes are often described by the collection of the conditional

probabilities of the possible symbols given the infinite pasts. When these proba-

bilities depend on at most k previous symbols, the process is a Markov chain of

order k.

The number of parameters of a general Markov chain grows exponentially with

the order. A more efficient description is possible if the strings determining the

conditional probabilities – referred to as contexts – are of variable length, some-

times substantially shorter than the order k. Models of this kind, and the term

context tree (referring to the representation of the set of contexts as a tree) dates

back to Rissanen (1983a). These models are also called finite memory sources

or tree sources (Weinberger, Lempel and Ziv, 1992), (Weinberger, Rissanen and

Feder, 1995), (Willems, Shtarkov and Tjalkens, 1995) or variable length Markov

chains (Bühlmann and Wyner, 1999). We note that the terms context and con-

text tree appear in the literature in various senses. Here, the context tree of a

finite memory process means, in effect, the minimal tree admitting a tree source

representation of the process; the exact definition will be given in Section 2.2.

As indicated above, the context tree model is typically used to more efficiently

describe certain Markov chains (of finite order k) and, accordingly, the context

21



22 CHAPTER 2. CONTEXT TREE ESTIMATION VIA BIC AND MDL

tree has finite depth k. Also, the context tree is usually required to be complete,

that is, each internal node has as many children as the cardinality of the alphabet.

In this work, we drop the requirements of finite depth and completeness. The

term “infinite-depth context tree” appears in (Willems, 1998), but it involves

an “indeterminate symbol” ε such that infinitely many ε’s may precede a finite

number of symbols of the true alphabet. Our approach does not involve such ε,

and processes whose context trees have infinite depth are no longer Markov chains.

Dropping the completeness requirement is justified by disregarding strings of zero

probability. Not necessarily complete context trees were previously considered in

(Mart́ın, Seroussi and Weinberger, 2004), in a sense different from ours.

We address the problem of statistical estimation of the context tree in the

indicated generality, based on an observed finite realization of the process. This

task, for finite depth context trees, has been considered, among others, in the ref-

erences above. As distinct from those, here we show that the standard methods

of Bayesian Information Criterion (BIC) of Schwarz (1978) and the Krichevsky-

Trofimov (KT) version of Minimum Description Length (MDL) of Rissanen (1989),

(Barron, Rissanen and Yu, 1998), are fully appropriate for this purpose. Note

that BIC is commonly regarded as an approximation of MDL, but this is justified

only when a fixed finite number of model classes is considered, see (Csiszár and

Shields, 2000).

For order estimation of Markov chains, it is well known that BIC and both the

KT and Normalized Maximum Likelihood (NML) versions of MDL are strongly

consistent when the number of candidate model classes is finite, that is, when

there is a known upper bound on the order (Finesso, 1992). The consistency of

the BIC order estimator without such prior bound has been proved by Csiszár

and Shields (2000). That paper also contains a counterexample to the consistency

of the KT and NML estimators without any bound on the order, or with a bound

depending on the sample size n, equal to a sufficiently large constant times log n.

The consistency of the KT and NML order estimators was proved by Csiszár

(2002) with bound o(log n) resp. O(log n) on the order.

For the estimation of context trees of finite memory processes, in the literature

mostly variants of Rissanen’s “context” algorithm (1983b) are used. In particular,

Bühlmann and Wyner (1999) proved the consistency of such an algorithm not

assuming any prior bound on the depth of the context tree (but using a bound

allowed to grow with the sample size). The KT version of MDL has been applied

to context tree estimation by Willems, Shtarkov and Tjalkens (1993, 2000), and

its consistency was proved assuming a known upper bound on the depth.
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In addition to consistency, an important feature of estimators is their compu-

tational complexity. One reason for not having used standard statistical meth-

ods for context tree estimation was the computational infeasibility of comparing

a very large number of hypothetical models. As shown in (Willems, Shtarkov

and Tjalkens, 1993, 2000), however, such time-consuming comparisons can be

avoided by clever use of tree techniques, viz. the Context Tree Maximizing (CTM)

method, and context tree estimation via the KT version of MDL can be imple-

mented in linear time (assuming a known upper bound on the depth). Recent

results on context tree estimation in linear time, assuming finite depth but no

known upper bound on it, appear in (Baron and Bresler, 2004), (Mart́ın, Seroussi

and Weinberger, 2004). We note that much of the literature of context tree mod-

els is motivated by universal source coding; in particular, the CTM method is

a modification of the celebrated Context Tree Weighting data compression algo-

rithm of Willems, Shtarkov and Tjalkens (1995).

In this chapter we prove that the BIC and KT estimators of the context tree

of a process is strongly consistent when the depths of the hypothetical context

trees are allowed to grow with the sample size n as o(log n). Here the context

tree may be of infinite depth, and is not necessarily complete. Strong consistency

means in the finite depth case that the estimated context tree is equal to the

true one, eventually almost surely as n →∞, while otherwise, that the estimated

context tree cut off at any fixed level is equal to the true one cut off at the same

level, eventually almost surely as n →∞. In addition, we provide algorithms to

calculate both estimators in O(n) time. These algorithms are based on the CTM

method; in particular, BIC also admits a CTM-like implementation.

By our consistency result, if the context tree of a process has finite depth,

it can be exactly recovered, with probability 1, when the sample size is large

enough. While our result gives no indication how large this sample size should

be, a heuristic rule might be to stop when the estimated context tree “stabilizes”,

that is, it remains unchanged when the sample size n runs over a large interval.

The last result in this chapter shows that our context tree estimators can be

calculated on-line in such a way that o(n log n) time suffices to calculate them

for all sample sizes i ≤ n. This implies that the above stopping rule can be

implemented with only a small increment in the order of required computations.

The structure of this chapter is the following. In Section 2.2 we introduce

the notation and definitions, and formulate the results for the BIC estimator and

KT estimator about strong consistency and computational complexity. In Section

2.3 we introduce the algorithms for calculating the estimators, and establish their
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claimed computational complexity both for off-line and on-line calculations. In

Section 2.4 we prove the consistency theorems. Section 2.5 contains some remarks

on the results.

2.2 Notation and statement of the main results

For a finite set A we denote its cardinality by |A|. A string s = amam+1 . . . an

(with ai ∈ A, m ≤ i ≤ n) is denoted also by an
m; its length is l(s) = n −m + 1.

The empty string is denoted by ∅, its length is l(∅) = 0. The concatenation of

the strings u and v is denoted by uv. We say that a string v is a postfix of a

string s, denoted by s � v, when there exists a string u such that s = uv. For a

proper postfix, that is, when s 6= v, we write s � v. A postfix of a semi-infinite

sequence a−1
−∞ = . . . a−k . . . a−1 is defined similarly. Note that in the literature �

more often denotes the prefix relation.

A set T of strings, and perhaps also of semi-infinite sequences, is called a tree

if no s1 ∈ T is a postfix of any other s2 ∈ T .

Each string s = ak
1 ∈ T is visualized as a path from a leaf to the root (drawn

with the root at the top), consisting of k edges labeled by the symbols a1 . . . ak.

A semi-infinite sequence a−1
−∞ ∈ T is visualized as an infinite path to the root.

The strings s ∈ T are identified also with the leaves of the tree T , the leaf s is

the leaf connected with the root by the path visualizing s as above. Similarly, the

nodes of the tree T are identified with the finite postfixes of all (finite or infinite)

s ∈ T , the root being identified with the empty string ∅. The children of a node

s are those strings as, a ∈ A, that are themselves nodes, that is, postfixes of some

s′ ∈ T .

The tree T is complete if each node except the leaves has exactly |A| children.

A weaker property we shall need is irreducibility, which means that no s ∈ T can

be replaced by a proper postfix without violating the tree property. The family

of irreducible trees will be denoted by I.

We write T2 � T1 for two trees T1 and T2, when each s2 ∈ T2 has a postfix

s1 ∈ T1, and each s1 ∈ T1 is a postfix of some s2 ∈ T2. When we insist on T2 6= T1,

we write T2 � T1.

Denote d(T ) the depth of the tree T : d(T ) = max{ l(s), s ∈ T }. Let T
∣∣
K

denote the tree T pruned at level K:

(2.1)

T
∣∣
K

= { s′ : s′ ∈ T with l(s′) ≤ K or s′ is a bKc-length postfix of some s ∈ T }.
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Consider a stationary ergodic stochastic process {Xi,−∞ < i < +∞} with

finite alphabet A. Write

Q(an
m) = Prob{Xn

m = an
m },

and, if s ∈ Ak has Q(s) > 0, write

Q(a| s) = Prob{X0 = a | X−1
−k = s }.

A process as above will be referred to as process Q.

Definition 2.1. A string s ∈ Ak is a context for a process Q if Q(s) > 0 and

Prob{X0 = a | X−1
−∞ = x−1

−∞ } = Q(a| s), for all a ∈ A,

whenever s is a postfix of the semi-infinite sequence x−1
−∞, and no proper postfix

of s has this property. An infinite context is a semi-infinite sequence x−1
−∞ whose

postfixes x−1
−k, k = 1, 2, . . . are of positive probability but none of them is a context.

Clearly, the set of all contexts is a tree. It will be called the context tree T0 of

the process Q.

Remark 2.2. The context tree T0 has to be complete if Q(s) > 0 for all strings

s. In general, for each node s of the context tree T0, exactly those as, a ∈ A,

are the children of s for which Q(as) > 0. Moreover, Definition 2.1 implies that

always T0 ∈ I. �

When the context tree has depth d(T0) = k0 < ∞, the process Q is a Markov

chain of order k0. In this case the context tree leads to a parsimonious description

of the process, because a collection of (|A|−1)|T0| transition probabilities suffices

to describe the process, instead of (|A| − 1)|A|k0 ones. Note that the context tree

of an i.i.d. process consists of the root ∅ only, thus |T0| = 1.
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Figure 2.1: Context tree of a renewal process. (a) k0 = 3. (b) k0 = ∞.
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Example 2.3. (Renewal Process). Let A = {0, 1} and suppose that the distances

between the occurrences of 1’s are i.i.d. Denote pj the probability that this

distance is j, that is, pj = Q(10j−11). Then for k ≥ 1 we have Q(10k−1) =∑∞
i=k pi , qk, Qk = Q(1| 10k−1) = pk/qk. Let Q0 = Q(1) , q0. Denote k0 the

smallest integer such that Qk is constant for k ≥ k0 with qk > 0, or k = ∞ if

no such integer exists. Then the contexts are the strings 10i−1, i ≤ k0, and the

string 0k0 (if k0 < ∞) or the semi-infinite sequence 0∞ (if k0 = ∞), see Fig. 2.1.

�

In this work, we are concerned with the statistical estimation of the context

tree T0 from the sample xn
1 , a realization of Xn

1 . We demand strongly consistent

estimation. We mean by this in the case d(T0) < ∞ that the estimated context

tree equals T0 eventually almost surely as n → ∞, while otherwise that the

estimated context tree pruned at any fixed level K equals T0

∣∣
K

eventually almost

surely as n → ∞, see (2.1). Here and in the sequel, “eventually almost surely”

means that with probability 1 there exists a threshold n0 (depending on the

doubly infinite realization x∞−∞) such that the claim holds for all n ≥ n0.

Let Nn(s, a) denote the number of occurrences of the string s ∈ Al(s) followed

by the letter a ∈ A in the sample xn
1 , where s is supposed to be of length at

most log n, and – for technical reason – only the letters in positions i > log n are

considered:

Nn(s, a) =
∣∣∣{ i : log n < i ≤ n, xi−1

i−l(s) = s, xi = a
}∣∣∣ .

Logarithms are to the base e. The number of such occurrences of s is denoted by

Nn(s):

Nn(s) =
∣∣∣{ i : log n < i ≤ n, xi−1

i−l(s) = s
}∣∣∣ .

Given a sample xn
1 , a feasible tree is any tree T of depth d(T ) ≤ dlog ne such

that Nn(s) ≥ 1 for all s ∈ T , and each string s′ with Nn(s′) ≥ 1 is either a postfix

of some s ∈ T or has a postfix s ∈ T . A feasible tree T is called r-frequent if

Nn(s) ≥ r for all s ∈ T . The family of all feasible respectively r-frequent trees is

denoted by F1(x
n
1 ) respectively Fr(x

n
1 ).

Clearly, ∑
a∈A

Nn(s, a) = Nn(s), and
∑
s∈T

Nn(s) = n− dlog ne

for any feasible tree T . Regarding such a tree T as a hypothetical context tree,

the probability of the sample xn
1 can be written as

Q(xn
1 ) = Q(x

dlog ne
1 )

∏
s∈T , a∈A

Q(a| s)Nn(s,a).
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With some abuse of terminology, for a hypothetical context tree T ∈ F1(x
n
1 ) we

define the maximum likelihood MLT (xn
1 ) as the maximum in Q(a| s) of the second

factor above. Then

log MLT (xn
1 ) =

∑
s∈T , a∈A

Nn(s, a) log
Nn(s, a)

Nn(s)
.

We investigate two information criteria to estimate T0, both motivated by the

MDL principle. An information criterion assigns a score to each hypothetical

model (here, context tree) based on the sample, and the estimator will be that

model whose score is minimal.

Definition 2.4. Given a sample xn
1 , the BIC for a feasible tree T is

BICT (xn
1 ) = − log MLT (xn

1 ) +
(|A| − 1)|T |

2
log n.

Remark 2.5. Characteristic for BIC is the “penalty term” half the number of

free parameters times log n. Here, a process Q with context tree T is described

by the conditional probabilities Q(a| s), a ∈ A, s ∈ T , and (|A| − 1)|T | of these

are free parameters when the tree T is complete. On the other hand, for a process

with an incomplete context tree, the probabilities of certain strings must be 0,

hence the number of free parameters is typically smaller than (|A| − 1)|T | when

T is not complete. Thus, Definition 2.4 involves a slight abuse of terminology.

We note that replacing (|A|−1)/2 in Definition 2.4 by any c > 0 would not affect

the results below and their proofs. �

It is known (Csiszár and Shields, 2000) that for estimating the order of Markov

chains, the BIC estimator is consistent without any restriction on the hypothetical

orders. The Theorem below does need a bound on the depth of the hypothetical

context trees. Still, as this bound grows with the sample size n, no a priori bound

on the size of the unknown T0 is required, in fact, even d(T0) = ∞ is allowed.

Note also that the presence of this bound decreases computational complexity.

Theorem 2.6. In the case d(T0) < ∞, the BIC estimator

T̂BIC(xn
1 ) = arg min

T ∈F1(xn
1 )∩I, d(T )≤D(n)

BICT (xn
1 )

with D(n) = o(log n), satisfies

T̂BIC(xn
1 ) = T0

eventually almost surely as n →∞.
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In general case, the BIC estimator

T̂BIC(xn
1 ) = arg min

T ∈Fnα (xn
1 )∩I, d(T )≤D(n)

BICT (xn
1 )

with D(n) = o(log n) and arbitrary 0 < α < 1, satisfies for any constant K

T̂BIC(xn
1 )
∣∣
K

= T0

∣∣
K

eventually almost surely as n →∞.

Proof. See Section 2.4.

Remark 2.7. Here and in Theorem 2.9 below, the indicated minimum is cer-

tainly attained, as the number of feasible trees is finite, but the minimizer is not

necessarily unique; in that case, either minimizer can be taken as arg min. �

The other information criterion we consider is the Krichevsky –Trofimov code-

length (see (Krichevsky and Trofimov, 1981), (Willems, Shtarkov and Tjalkens,

1995)). Note that a code with length-function equal to KTT (xn
1 ) below minimizes

the worst case average redundancy, up to an additive constant, for the class of

processes with context tree T .

Definition 2.8. Given a sample xn
1 , the KT criterion for a feasible tree T is

KTT (xn
1 ) = − log PKT,T (xn

1 ),
where

PKT,T (xn
1 ) =

1

|A|dlog ne

∏
s∈T

∏
a:Nn(s,a)≥1

[ (
Nn(s, a)− 1

2

) (
Nn(s, a)− 3

2

)
· · ·
(

1
2

) ](
Nn(s)− 1 + |A|

2

)(
Nn(s)− 2 + |A|

2

)
· · ·
(
|A|
2

)
is the KT-probability of xn

1 corresponding to T .

For estimating the order of Markov chains, the consistency of the KT estimator

has been proved when the hypothetical orders are o(log n) (Csiszár, 2002), while

without any bound on the order, or with a bound equal to a sufficiently large

constant times log n, a counterexample to its consistency is known (Csiszár and

Shields, 2000).

Theorem 2.9. In the case d(T0) < ∞, the KT estimator

T̂KT(xn
1 ) = arg min

T ∈F1(xn
1 )∩I, d(T )≤D(n)

KTT (xn
1 )

with D(n) = o(log n), satisfies

T̂KT(xn
1 ) = T0

eventually almost surely as n →∞.
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In general case, the KT estimator

T̂KT(xn
1 ) = arg min

T ∈Fnα (xn
1 )∩I, d(T )≤D(n)

KTT (xn
1 )

with D(n) = o(log n) and arbitrary 1/2 < α < 1, satisfies for any constant K

T̂KT(xn
1 )
∣∣
K

= T0

∣∣
K

eventually almost surely as n →∞.

Proof. See Section 2.4.

Remark 2.10. Strictly speaking, the MDL principle would require to minimize

the “codelength” KTT (xn
1 ) incremented by an additional term, the “codelength

of T ” (called the cost of T in (Willems, Shtarkov and Tjalkens, 1995)). This

additional term is omitted, since this does not affect the consistency result. �

Corollary 2.11. The vector of the empirical conditional probabilities,

Q̂T̂ (a| s) =
Nn(s, a)

Nn(s)
, a ∈ A, s ∈ T̂ ,

converges to that of the true conditional probabilities Q(a|s), a ∈ A, s ∈ T0 almost

surely as n →∞, where T̂ is either the BIC estimator or the KT estimator.

Proof. Immediate from Theorems 2.6, 2.9 and the ergodic theorem.

In practice, it is unfeasible to calculate estimators via computing the value

of an information criterion for each model, since the number of the hypothetical

context trees is very large. However, the algorithms in the next section admit

finding the considered estimators with practical computational complexity.

As usual, see (Baron and Bresler, 2004), (Mart́ın, Seroussi and Weinberger,

2004), we assume that the computations are done in registers of size O(log n).

We consider both off-line and on-line methods. Note that on-line calculation

of the estimator is useful when the sample size is not fixed but we keep sampling

until the estimator becomes “stable”, say it remains constant when the sample

size is doubled.

Theorem 2.12. The number of computations needed to determine the BIC esti-

mator and the KT estimator in Theorems 2.6 and 2.9 for a given sample xn
1 is

O(n), and this can be achieved storing O(nε) data, where ε > 0 is arbitrary.

Proof. See Section 2.3.
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Theorem 2.13. Given a sample xn
1 , the number of computations needed to de-

termine the KT estimator in Theorem 2.9 simultaneously for all subsamples xi
1,

i ≤ n, is o(n log n), and this can be achieved storing O(nε) data at any time,

where ε > 0 is arbitrary.

The same holds for the BIC estimator in Theorem 2.6 with a slightly modified

definition of BIC. Namely, let km, m ∈ N denote the smallest integer k satisfying

D(k) = m, and replace n in the penalty term in Definition 2.4 by the smallest

member of the sequence {km} larger than n.

Proof. See Section 2.3.

2.3 Computation of the KT and BIC estimators

For calculating the KT estimator we use the CTM algorithm of Willems, Shtarkov

and Tjalkens (1993, 2000), and for the computation of the BIC estimator we use

a similar algorithm.

Both algorithms have the following construction. Consider the full tree AD,

where D = D(n) = o(log n), and let SD denote the set of its nodes, i.e., the set of

all strings of length at most D. Based on the sample xn
1 we assign to each node

a value and a binary indicator. This assignment is recursive, that is, the value

and the indicator assigned to a node are calculated from the value assigned to

the children of this node. The desired estimator will be the subtree determined

by the indicators as specified below.

Consider the algorithm for the KT estimator. First, concentrate on the mini-

mization of the criterion KTT (xn
1 ) for T ∈ F1(x

n
1 )∩I with d(T ) ≤ D(n) (needed

in the case d(T0) < ∞). Let us factorize the KT-probability as

PKT,T (xn
1 ) =

1

|A|dlog ne

∏
s∈T

P̃KT, s(x
n
1 )(2.2a)

where

P̃KT, s(x
n
1 ) =


∏

a:Nn(s,a)≥1

[ (
Nn(s, a)− 1

2

) (
Nn(s, a)− 3

2

)
· · ·
(

1
2

) ](
Nn(s)− 1 + |A|

2

)(
Nn(s)− 2 + |A|

2

)
· · ·
(
|A|
2

) if Nn(s) ≥ 1,

1 if Nn(s) = 0.

(2.2b)
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Thus, the KT estimator can be written as

T̂KT(xn
1 ) = arg min

T ∈F1(xn
1 )∩I, d(T )≤D(n)

KTT (xn
1 )

= arg max
T ∈F1(xn

1 )∩I, d(T )≤D(n)

∏
s∈T

P̃KT, s(x
n
1 ).

Definition 2.14. Given a sample xn
1 , to each string s ∈ SD, D = D(n) we assign

recursively, starting from the leaves of the full tree AD, the KT-maximizing value

(no longer a probability)

V KT
D, s(x

n
1 ) =


max

{
P̃KT, s(x

n
1 ) ,

∏
a∈A

V KT
D, as(x

n
1 )

}
for s ∈ SD, 0 ≤ l(s) < D,

P̃KT, s(x
n
1 ) for s ∈ SD, l(s) = D,

and the KT-maximizing indicator

χKT
D, s(x

n
1 ) =



1 if
∏
a∈A

V KT
D, as(x

n
1 ) > P̃KT, s(x

n
1 ) ; for s ∈ SD, 0 ≤ l(s) < D,

0 if
∏
a∈A

V KT
D, as(x

n
1 ) ≤ P̃KT, s(x

n
1 ) ; for s ∈ SD, 0 ≤ l(s) < D,

0 for s ∈ SD, l(s) = D.

Using the KT-maximizing indicators, we assign to each s ∈ SD, D = D(n) a

KT-maximizing tree T KT
D, s (x

n
1 ) � {s}. This tree is defined recursively:

Definition 2.15. Given s ∈ SD, start with T = {s} at step 0. At each step

consider all s1 in the tree T at that step whose indicator is 1, and the shortest

s2 � s1 such that there exist at least 2 letters a ∈ A with Nn(as2) > 0. Replace

each s1 by the set of its continuations as2, a ∈ A satisfying Nn(as2) > 0, this

yields the tree T for the next step. T KT
D, s (x

n
1 ) is defined as the tree T when this

procedure stops.

For this definition to be meaningful, it should be verified that to each s1 ∈ SD

with indicator 1 there exists s2 ∈ SD−1 with the properties in Definition 2.15. This

follows from the facts that (i) χKT
D, s(x

n
1 ) = 0 if l(s) = D, and (ii) if Nn(s) = Nn(as)

holds for a string s and a letter a (and thus Nn(a1s) = 0 for all a1 6= a, a1 ∈ A)

then χKT
D, as(x

n
1 ) = 0 implies χKT

D, s(x
n
1 ) = 0.

Proposition 2.16. The KT estimator equals the KT-maximizing tree assigned

to the root, that is,

T̂KT(xn
1 ) = T KT

D,∅(xn
1 ).
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Proof. The claimed equality is a consequence of T KT
D,∅(xn

1 ) ∈ F1(x
n
1 ) ∩ I and of

the special case s = ∅ of the next lemma.

For any s ∈ SD, define F1(x
n
1 |s) as the family of all trees T such that Nn(us) ≥

1 for all u ∈ T , and each s′ � s with Nn(s′) ≥ 1 is either a postfix of us for some

u ∈ T or has a postfix us with u ∈ T .

Lemma 2.17. For any s ∈ SD

V KT
D, s(x

n
1 ) = max

T ∈F1(xn
1 |s): d(T )≤D−l(s)

∏
u∈T

P̃KT, us(x
n
1 ) =

∏
u∈T KT

D, s(x
n
1 )

P̃KT, u(x
n
1 ).

Proof. By induction on the length of the string s, similarly to (Willems, Shtarkov

and Tjalkens, 1993). For l(s) = D the statement is obvious.

Supposing the assertion holds for all strings of length d, for any s with l(s) =

d− 1 we have

V KT
D, s(x

n
1 ) = max

{
P̃KT, s(x

n
1 ) ,

∏
a∈A

V KT
D, as(x

n
1 )

}

= max

P̃KT, s(x
n
1 ),

∏
a∈A, Nn(as)≥1

(
max

Ta∈F1(xn
1 |as): d(Ta)≤D−d

∏
v∈Ta

P̃KT, vas(x
n
1 )

)
= max

{
P̃KT, s(x

n
1 ) , max

T ∈F1(xn
1 |s): 1≤d(T )≤D−(d−1)

∏
u∈T

P̃KT, us(x
n
1 )

}
= max

T ∈F1(xn
1 |s): d(T )≤D−(d−1)

∏
u∈T

P̃KT, us(x
n
1 ).

Here the first equality holds by Definition 2.14, and the second one by the induc-

tion hypothesis, using the obvious fact that V KT
D, as(x

n
1 ) = 1 if Nn(as) = 0. The

third equality follows since any family of trees Ta, a ∈ A, Nn(as) ≥ 1, satisfy-

ing the indicated constraints, uniquely corresponds to a tree T ∈ F1(x
n
1 |s) with

1 ≤ d(T ) ≤ D−(d−1) via T = ∪a{ sa : s ∈ Ta }, and the last equality is obvious.

Moreover, due to Definitions 2.14 and 2.15, the induction hypothesis implies

that the above maximum is attained for T = T KT
D, s (x

n
1 ), proving the second equal-

ity of the assertion.

Remark 2.18. Lemma 2.17 above, with the condition T ∈ F1(x
n
1 |s) replaced by

the condition that T is complete, is a result of Willems, Shtarkov and Tjalkens

(1993, 2000) (with the minor difference that the trees there also had “costs”),

and the above proof is similar to theirs. It follows, in particular, that the KT-

maximizing values for complete trees are the same as for trees in the families
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F1(x
n
1 |s). The KT-maximizing complete tree assigned to the root could be ob-

tained from our T KT
D,∅(xn

1 ) by adding edges that did not occur in the sample. This

no longer holds for the cases treated below. �

In the general case when the criterion KTT (xn
1 ) has to be minimized for T ∈

Fnα(xn
1 )∩I with d(T ) ≤ D(n), Proposition 2.16 still holds, with the same proof,

if F1(x
n
1 |s) is replaced by Fnα(xn

1 |s) defined analogously, and Definition 2.15 of

the KT-maximizing subtree is replaced by the following

Definition 2.19. Given s ∈ SD, start with T = {s} at step 0. At each step

consider all s1 in the tree T at that step whose indicator is 1, and the shortest

s2 � s1 such that there exist at least 2 letters a ∈ A with Nn(as2) > 0. Replace

those s1 as above whose continuations as2, a ∈ A with Nn(as2) > 0 all satisfy

Nn(as2) ≥ nα, by the sets of these continuations. This yields the tree T for the

next step. T KT
D, s (x

n
1 ) is defined as the tree T when this procedure stops.

Consider next the algorithm for the BIC estimator. First, concentrate on the

minimization of the criterion BICT (xn
1 ) for T ∈ F1(x

n
1 ) ∩ I with d(T ) ≤ D(n)

(needed in the case d(T0) < ∞). Factorize the maximum likelihood as

MLT (xn
1 ) =

∏
s∈T

P̃ML, s(x
n
1 )(2.3a)

where

P̃ML, s(x
n
1 ) =


∏
a∈A

[
Nn(s, a)

Nn(s)

]Nn(s,a)

if Nn(s) ≥ 1,

1 if Nn(s) = 0.

(2.3b)

It will be convenient to consider the BIC estimator replacing n in the penalty

term, see Definition 2.4, by a temporarily unspecified n̆. In the proof of Theorem

2.12, n̆ = n will be taken, and in the proof of Theorem 2.13, n̆ will be chosen as

the number replacing n in the statement of that theorem. Then

T̂BIC(xn
1 ) = arg min

T ∈F1(xn
1 )∩I, d(T )≤D(n)

BICT (xn
1 )

= arg max
T ∈F1(xn

1 )∩I, d(T )≤D(n)
n̆−

|A|−1
2

|T |
∏
s∈T

P̃ML, s(x
n
1 ).

The appropriate formalization of the algorithm is the following.
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Definition 2.20. Given a sample xn
1 , to each string s ∈ SD, D = D(n) we assign

recursively, starting from the leaves of the full tree AD, the BIC-maximizing value

V BIC
D, s (xn

1 ) =


max

{
n̆−

|A|−1
2 P̃ML, s(x

n
1 ) ,
∏
a∈A

V BIC
D, as(x

n
1 )

}
for s ∈ SD, 0 ≤ l(s) < D,

n̆−
|A|−1

2 P̃ML, s(x
n
1 ) for s ∈ SD, l(s) = D,

and the BIC-maximizing indicator

χBIC
D, s(x

n
1 ) =



1 if
∏
a∈A

V BIC
D, as(x

n
1 ) > n̆−

|A|−1
2 P̃ML, s(x

n
1 ) ; for s ∈ SD, 0 ≤ l(s) < D,

0 if
∏
a∈A

V BIC
D, as(x

n
1 ) ≤ n̆−

|A|−1
2 P̃ML, s(x

n
1 ) ; for s ∈ SD, 0 ≤ l(s) < D,

0 for s ∈ SD, l(s) = D.

Using the BIC-maximizing indicators, we assign to each s ∈ SD, D = D(n) a

BIC-maximizing tree T BIC
D, s (xn

1 ) � {s}.

Definition 2.21. T BIC
D, s (xn

1 ) is defined similarly as T KT
D, s (x

n
1 ) in Definition 2.15.

Proposition 2.22. The BIC estimator equals the BIC-maximizing tree assigned

to the root, that is,

T̂BIC(xn
1 ) = T BIC

D,∅ (xn
1 ).

Proof. The proof is similar to the KT case, the claimed equality is now a conse-

quence of the special case s = ∅ of the lemma below.

Lemma 2.23. For any s ∈ SD

V BIC
D, s (xn

1 ) = max
T ∈F1(xn

1 |s): d(T )≤D−l(s)
n̆−

|A|−1
2

|T |
∏
u∈T

P̃ML, us(x
n
1 )

=
∏

u∈T BIC
D, s (xn

1 )

n̆−
|A|−1

2 |T BIC
D, s |P̃ML, us(x

n
1 ).



2.3. COMPUTATION OF THE KT AND BIC ESTIMATORS 35

Proof. Analogous to the proof of Lemma 2.17:

V BIC
D, s (xn

1 ) = max

{
n̆−

|A|−1
2 P̃ML, s(x

n
1 ) ,

∏
a∈A

V BIC
D, as(x

n
1 )

}

= max

 n̆−
|A|−1

2 P̃ML, s(x
n
1 ) ,

∏
a∈A, Nn(as)≥1

(
max

Ta∈F1(xn
1 |as): d(Ta)≤D−d

n̆−
|A|−1

2
|Ta|
∏
v∈Ta

P̃ML, vas(x
n
1 )

)
= max

{
n̆−

|A|−1
2 P̃ML, s(x

n
1 ) , max

T ∈F1(xn
1 |s): 1≤d(T )≤D−(d−1)

n̆−
|A|−1

2
|T |
∏
u∈T

P̃ML, us(x
n
1 )

}
= max

T ∈F1(xn
1 |s): d(T )≤D−(d−1)

n̆−
|A|−1

2
|T |
∏
u∈T

P̃ML, us(x
n
1 ),

where, for the third equality, we used that for a family of trees Ta, a ∈ A,

Nn(as) ≥ 1 and the corresponding T as in the proof of Lemma 2.17, we have

|T | =
∑

a∈A, Nn(as)≥1 |Ta|.

In the general case when the criterion BICT (xn
1 ) has to be minimized for

T ∈ Fnα(xn
1 ) ∩ I with d(T ) ≤ D(n), Proposition 2.22 still holds, with the same

proof, if F1(x
n
1 |s) is replaced by Fnα(xn

1 |s) defined analogously, and Definition

2.21 of the BIC-maximizing tree is replaced by the following

Definition 2.24. T BIC
D, s (xn

1 ) is defined similarly as T KT
D, s (x

n
1 ) in Definition 2.19.

Finally, we show that the above algorithms have the asserted computational

complexity in off-line and on-line cases.

Proof of Theorem 2.12. Since D(n) = o(log n), we may write D(n) = εn log n,

where εn → 0. Denote P̃s(x
n
1 ), VD, s(x

n
1 ), χD, s(x

n
1 ) either the values P̃KT, s(x

n
1 ),

V KT
D, s(x

n
1 ), χKT

D, s(x
n
1 ) or P̃ML, s(x

n
1 ), V BIC

D, s (xn
1 ), χBIC

D, s(x
n
1 ). In the BIC case we use

n̆ = n in Definition 2.20.

For each string s ∈ SD, D = D(n) = εn log n, the counts Nn(s, a), a ∈ A, and

the values P̃s(x
n
1 ), VD, s(x

n
1 ), χD, s(x

n
1 ) are stored. The number of stored data is

proportional to the cardinality of SD, which is

(2.4)
D∑

j=0

|A|j =
|A|D+1 − 1

|A| − 1
≤ 2|A|D = O(nε).

To get the maximizing indicators χD, s(x
n
1 ), s ∈ SD which give rise to the

estimated context tree according to Definitions 2.15, 2.19, 2.21, 2.24, first we

need the counts Nn(s, a), s ∈ SD, a ∈ A.
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The counts Nn(s, a), l(s) = D, a ∈ A can be determined successively process-

ing the sample xn
1 from position j = dlog ne to j = n, and at instance j incre-

menting the count Nn

(
xj−1

j−D(n) , xj

)
by 1 (the starting values of all counts being

0). This is O(n) calculations. The other counts Nn(s, a), s ∈ SD−1, a ∈ A can be

determined recursively, as Nn(s, a) =
∑

b∈A Nn(bs, a). This is |A| |SD−1| = o(n)

calculations.

Then, from these counts the values P̃s(x
n
1 ) are determined by O(n) multipli-

cations. The calculation of the values VD, s(x
n
1 ) and χD, s(x

n
1 ) requires calculations

proportional to the cardinality of SD, which is less than 2|A|D = o(n).

Proof of Theorem 2.13. We use the same notation as in the previous proof, except

that in the BIC case n̆ in Definition 2.20 is set equal to the smallest km > n

(m ∈ N), see the statement of Theorem 2.13. Clearly, see (2.6) in the next

section, for the BIC estimator with the increased penalty term in Theorem 2.13,

the consistency assertions in Theorem 2.6 continue to hold.

The calculations required by the algorithms in Definitions 2.14 and 2.20 can

be performed recursively in the sample size n.

Suppose at instant i, for each string s ∈ SD(i), the counts Ni(s, a), a ∈ A, and

the values P̃s(x
i
1), VD, s(x

i
1), χD, s(x

i
1) are stored. The number of stored data is

proportional to the cardinality of SD(i), which is O(iε), see (2.4).

Consider first those instances i when the sample size increases from i− 1 to i

but the depth does not change, D(i) = D(i−1). If P̃s(x
i−1
1 ) at a node s is known,

the value P̃s(x
i
1) can be calculated using, for the KT case, that

P̃KT, s(x
i
1) =

Ni(s, xi) + 1/2

Ni(s) + |A|/2
P̃KT, s(x

i−1
1 ),

and in the BIC case that in the expression of P̃ML, s(x
i−1
1 ) only the counts Ni(s, xi)

and Ni(s) were incremented to obtain P̃ML, s(x
i
1). From P̃s(x

i
1) the values VD, s(x

i
1)

and χD, s(x
i
1) can be computed in constant number of steps. These values are

different for xi−1
1 and xi

1 only when s is a postfix of xi−1
1 , hence updating is needed

at D(i) nodes only. Thus the number of required computations is proportional

to D(i).

Consider next those instances i when the depth increases, D(i) = D(i−1)+1.

In this case we have three tasks. We have to update the values P̃s(x
i−1
1 ) at those

nodes s that already existed at instance i − 1, namely where l(s) < D(i). In

addition, we have to calculate the values P̃s(x
i
1) for the new terminal nodes s,

l(s) = D(i), and recalculate VD, s(x
i
1) and χD, s(x

i
1) at all nodes s of the new full

tree. The former needs O(i) calculations. Indeed, the counts Ni(s, a), l(s) = D(i)
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can be determined successively processing the sample xi
1 from position j = dlog ne

to j = i, and at instance j incrementing the count Ni

(
xj−1

j−D(i) , xj

)
by 1 (the

starting values of all counts being 0), and from these counts the values P̃s(x
i
1)

are determined by O(i) multiplications. The recalculation of the values VD, s(x
i
1)

and χD, s(x
i
1) requires calculations proportional to the cardinality of SD(i), which

is O(iε).

Finally, the total number of computations performed on a sample xn
1 is bounded

as follows. The number of computations needed for the updating at all instances

i ≤ n is proportional to

n∑
i=1

D(i) =
n∑

i=1

bεi log ic = o(n log n).

The number of computations to calculate the values P̃s for the new terminal nodes

at the instances when D(i) increases is proportional to

bεn log nc∑
D=0

min{ i : D ≤ εi log i } =

bεn log nc∑
D=0

min{ i : 2D/εi ≤ i }

≤
bεn log nc∑

D=0

2D/εn + 1 ≤ O
(
2

1
εn

εn log n
)

+ εn log n = O(n).

The number of computations to recalculate VD, s, χD, s for all nodes in the full

tree AD(i) at the instances when D(i) increases is of order

bεn log nc∑
D=0

2|A|D = O
(
|A|εn log n

)
= o(n).

2.4 Consistency of the KT and BIC estimators

Proof of Theorem 2.6. In the case d(T0) < ∞, the properties T ∈ F1(x
n
1 ), d(T ) ≤

D(n), D(n) = o(log n), imply that T ∈ Fnα(xn
1 ), eventually almost surely as

n → ∞, by Lemma 2.27 in the Appendix. Hence it suffices to prove the second

assertion of the Theorem.

The proof is indirect. Fix an arbitrary constant K. It suffices to show that if

T
∣∣
K
6= T0

∣∣
K

for some T ∈ Fnα(xn
1 )∩ I with d(T ) ≤ D(n), D(n) = o(log n), then

there exists a modification T ′ of T also satisfying T ′ ∈ Fnα(xn
1 )∩I, d(T ′) ≤ D(n)

such that

(2.5) BICT (xn
1 ) > BICT ′(xn

1 ),

simultaneously for all considered trees T , eventually almost surely as n →∞.
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Recall the factorization (2.3a):

MLT (xn
1 ) =

∏
s∈T

P̃ML, s(x
n
1 ).

Using this and the definition of BIC, see Definition 2.4, (2.5) is equivalent to

(2.6)
∑
s∈T

log P̃ML, s(x
n
1 )−

∑
s′∈T ′

log P̃ML, s′(x
n
1 ) <

(|A| − 1)

2
(|T | − |T ′|) log n.

Since T is a feasible tree by assumption, so is also T
∣∣
K

defined by (2.1). For

n sufficiently large, so that Nn(s) ≥ 1 for all s with l(s) ≤ K, Q(s) > 0, it follows

by Remark 2.2 that T0

∣∣
K

is feasible, as well. Hence, the indirect assumption

T
∣∣
K
6= T0

∣∣
K

implies that there exist strings s̃ ∈ T
∣∣
K

and s̃0 ∈ T0

∣∣
K

such that

either s̃ ≺ s̃0 (underestimation) or s̃ � s̃0 (overestimation). Equivalently, there

exist s ∈ T and s0 ∈ T0 such that either (a) l(s) < K, s ≺ s0 or (b) l(s0) < K,

s0 ≺ s.

In case (a), apply Lemma 2.25 below with s̃ = s. For T̃ in Lemma 2.25 we

have

T ′ = ( T \{s} ) ∪ T̃ ∈ Fnα(xn
1 ) ∩ I,

and T ′ satisfies (2.6), since the right hand side of (2.7) is smaller than ν(1 −
|T̃ |) log n, for any ν > 0, if n is sufficiently large. Moreover, (2.6) holds simulta-

neously for all considered T , since the number of possible strings s ∈ T , l(s) ≤ K

is finite.

In case (b), apply Lemma 2.26 below with s′ = s. Then with T̃ and w as in

Lemma 2.26 we have

T ′ = ( T \T̃ ) ∪ {w} ∈ Fnα(xn
1 ) ∩ I,

and this T ′ satisfies (2.6) simultaneously for all considered T , eventually almost

surely as n →∞.

Lemma 2.25. For any proper postfix s̃ of some s0 ∈ T0, there exists an irreducible

tree T̃ � {s̃} with d(T̃ ) < ∞ such that Nn(s) ≥ nα for each s ∈ T̃ , each v � s̃

with Nn(v) ≥ 1 has a postfix in T̃ , and

(2.7) log P̃ML, s̃(x
n
1 )−

∑
s∈T̃

log P̃ML, s(x
n
1 ) < −c n,

eventually almost surely as n →∞, where c > 0 is a sufficiently small constant.

Proof. Given s̃ ≺ s0 ∈ T0, denote by s0l the l-length postfix of s0. Let

T̃ = { as0l : l(s̃) ≤ l ≤ L, a ∈ A, as0l 6= s0l+1, Q(as0l) > 0 } ∪ { s0L+1 }.
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We show that if L = l(s0)− 1 when l(s0) < ∞, or L is sufficiently large with the

property Q(s0L+1) < Q(s0L) when l(s0) = ∞, this tree T̃ satisfies the assertions

of the Lemma.

Now, using (2.3b), the inequality (2.7) can be written as∑
s∈T̃ , a∈A

Nn(s, a) log
Nn(s, a)

Nn(s)
−
∑
a∈A

Nn(s̃, a) log
Nn(s̃, a)

Nn(s̃)
> c n.

Due to the ergodic theorem, Nn(v, a)/n → Q(va) for any string v, almost surely

as n →∞. Hence, it is enough to show that∑
s∈T̃ , a∈A

Q(sa) log
Q(sa)

Q(s)
−
∑
a∈A

Q(s̃a) log
Q(s̃a)

Q(s̃)
> 0.

Jensen’s inequality implies

Q(s̃)
∑
s∈T̃

Q(s)

Q(s̃)

(
Q(sa)

Q(s)
log

Q(sa)

Q(s)

)
≥ Q(s̃a) log

Q(s̃a)

Q(s̃)
, a ∈ A,

where the strict inequality holds for some a ∈ A, unless Q(a| s̃) = Q(a| s) for

each a ∈ A and s ∈ T̃ , in particular, for s = s0L+1. In the case l(s0) < ∞ we

have s0L+1 = s0, hence the last contingency is ruled out by s̃ ≺ s0 ∈ T0 and

the definition of context tree T0. In the case l(s0) = ∞, if Q(a|s̃) were equal to

Q(a|s0L+1) for each a ∈ A and all L satisfying Q(s0L+1) < Q(s0L), letting L →∞
would give Q(a|s̃) = Q(a|s0), again contradicting s̃ ≺ s0 ∈ T0.

The irreducibility of T̃ is obvious when l(s0) = ∞, and in the case l(s0) < ∞
it only requires checking that for L = l(s0)− 1 there exists a ∈ A with as0L 6= s0,

Q(as0L) > 0; this follows from s0 ∈ T0 by Definition 2.1.

Moreover, we have Nn(s) ≥ nα for each s ∈ T̃ eventually almost surely as

n → ∞, on account of the ergodic theorem and d(T̃ ) < ∞. Finally, each s � s̃

with Nn(s) ≥ 1, in fact any s � s̃ with Q(s) > 0, has a postfix in T̃ by its

construction.

Lemma 2.26. For any tree T ∈ I with d(T ) ≤ D(n), D(n) = o(log n), and

s′ ∈ T that has a proper postfix s0 ∈ T0 with l(s0) ≤ K, there exists w satisfying

s′ � w � s0 such that, for T̃ = { s ∈ T : s � w } and arbitrary ν > 0,∑
s∈T̃

log P̃ML, s(x
n
1 )− log P̃ML, w(xn

1 ) < ν( |T̃ | − 1 ) log n,

holds simultaneously for all considered T and s′, eventually almost surely as n →
∞. Moreover, here w = a−ka−k+1 . . . a−1 can be chosen such that a−k+1 . . . a−1 is

a proper postfix of some s ∈ T \T̃ .
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Proof. Let w = a−ka−k+1 . . . a−1 be the longest postfix of s′ with k < l(s′) for

which there exists a string in T not equal to w but having the postfix a−k+1 . . . a−1.

Then T0 ∈ I implies that w � s0, and hence a−k+1 . . . a−1 ≺ s for some s ∈ T \T̃ .

Since ∏
a∈A

[
Nn(w, a)

Nn(w)

]Nn(w,a)

≥
∏
a∈A

Q(a|w)Nn(w,a),

the left hand side of the claimed inequality can be bounded above by∑
s∈T̃ , a∈A

Nn(s, a) log
Nn(s, a)

Nn(s)
−
∑
a∈A

Nn(w, a) log Q(a|w)

(i)
=

∑
s∈T̃ , a∈A

Nn(s, a) log
Nn(s, a)

Nn(s)
−

∑
s∈T̃ , a∈A

Nn(s, a) log Q(a| s)

=
∑
s∈T̃

Nn(s)
∑
a∈A

Nn(s, a)

Nn(s)
log

Nn(s, a)/Nn(s)

Q(a| s)

=
∑
s∈T̃

Nn(s) D

(
Nn(s, ·)
Nn(s)

∥∥∥∥ Q( · |s)
)

Here (i) follows as s � w � s0 ∈ T0 implies Q(a| s) = Q(a|w) = Q(a| s0) by

Definition 2.1. Using Lemmas 2.28 and 2.29 in the Appendix, this can be further

bounded above, eventually almost surely simultaneously for all considered T and

s′, by

∑
s∈T̃

Nn(s)
1

qmin

∑
a∈A

[
Nn(s, a)

Nn(s)
−Q(a| s)

]2

<
∑
s∈T̃

Nn(s)
1

qmin

|A| δ log Nn(s)

Nn(s)
≤ δ |A|

qmin

|T̃ | log n,

where qmin is the minimum of the nonzero conditional probabilities Q(a| s0), a ∈
A, s0 ∈ T0, l(s0) ≤ K, and δ > 0 is arbitrary small.

Proof of Theorem 2.9. Similarly to the Proof of Theorem 2.6, it suffices to prove

the second assertion.

The proof is indirect. Fix an arbitrary constant K. It suffices to show that if

T
∣∣
K
6= T0

∣∣
K

for some T ∈ Fnα(xn
1 )∩ I with d(T ) ≤ D(n), D(n) = o(log n), then

there exists a modification T ′ of T also satisfying T ′ ∈ Fnα(xn
1 )∩I, d(T ′) ≤ D(n)

such that

(2.8) KTT (xn
1 ) > KTT ′(xn

1 ),

simultaneously for all considered trees T , eventually almost surely as n →∞.
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Recall the factorization (2.2a):

PKT,T (xn
1 ) =

∏
s∈T

P̃KT, s(x
n
1 ).

Using this and the definition of KT, see Definition 2.8, (2.8) is equivalent to

(2.9)
∑
s′∈T ′

log P̃KT, s′(x
n
1 )−

∑
s∈T

log P̃KT, s(x
n
1 ) > 0.

First, for any string s with Nn(s) ≥ 1 we use the standard bound (see, e.g.,

eq. (2.12) in (Csiszár and Shields, 2000))∣∣∣∣∣ log P̃KT, s(x
n
1 )−

∑
a∈A

Nn(s, a) log
Nn(s, a)

Nn(s)
+
|A| − 1

2
log Nn(s)

∣∣∣∣∣ < C,

where C is a constant depending only on the alphabet size |A|. This implies for

any tree T ∈ F1(x
n
1 )

(2.10)∣∣∣∣∣∑
s∈T

log P̃KT, s(x
n
1 )−

∑
s∈T

log P̃ML, s(x
n
1 ) +

|A| − 1

2

∑
s∈T

log Nn(s)

∣∣∣∣∣ < C|T | .

Since T ∈ Fnα(xn
1 ) implies, by definition, log Nn(s) > α log n for s ∈ T , it follows

that

(2.11)
∑
s∈T

log P̃ML, s(x
n
1 )−

∑
s∈T

log P̃KT, s(x
n
1 ) >

|A| − 1

2
|T |α log n− C|T | .

On the other hand, (2.10) implies the following upper bound for any T ∈ F1(x
n
1 ):

(2.12)
∑
s∈T

log P̃ML, s(x
n
1 )−

∑
s∈T

log P̃KT, s(x
n
1 ) <

|A| − 1

2
|T | log n + C|T |.

As in the proof of Theorem 2.6, the indirect assumption T
∣∣
K
6= T0

∣∣
K

implies

that there exist s ∈ T and s0 ∈ T0 such that either (a) l(s) < K, s ≺ s0 or (b)

l(s0) < K, s0 ≺ s.

In case (a), apply Lemma 2.25 above with s̃ = s. For T̃ in Lemma 2.25 we

have

∑
u∈T̃

log P̃KT, u(x
n
1 )−log P̃KT, s(x

n
1 ) =

∑
u∈T̃

log P̃KT, u(x
n
1 )−

∑
u∈T̃

log P̃ML, u(x
n
1 )


+

∑
u∈T̃

log P̃ML, u(x
n
1 )− log P̃ML, s(x

n
1 )

+
(

log P̃ML, s(x
n
1 )− log P̃KT, s(x

n
1 )
)

(i)
> c n +

|A| − 1

2
α log n− |A| − 1

2
|T̃ | log n− C

(
1 + |T̃ |

)
> 0,
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eventually almost surely as n →∞, where (i) follows using (2.11) with T = {s},
(2.12) with T = T̃ , and Lemma 2.25. This gives that

T ′ = ( T \{s} ) ∪ T̃ ∈ Fnα(xn
1 ) ∩ I

satisfies (2.9), and (2.9) holds simultaneously for all considered T , since the num-

ber of possible strings s ∈ T , l(s) ≤ K is finite.

In case (b), apply Lemma 2.26 above with s′ = s. Then with T̃ and w as in

Lemma 2.26 we have

log P̃KT, w(xn
1 )−

∑
u∈T̃

log P̃KT, u(x
n
1 ) =

(
log P̃KT, w(xn

1 )− log P̃ML, w(xn
1 )
)

+

log P̃ML, w(xn
1 )−

∑
u∈T̃

log P̃ML, u(x
n
1 )

+

∑
u∈T̃

log P̃ML, u(x
n
1 )−

∑
u∈T̃

log P̃KT, u(x
n
1 )


(ii)
>
|A| − 1

2

(
|T̃ |(α− ν)− 1

)
log n− C(|T̃ |+ 1) > 0,

eventually almost surely as n → ∞, simultaneously for all considered T , where

(ii) follows using (2.11) with T = T̃ , (2.12) with T = {w}, and Lemma 2.26.

This gives that

T ′ = ( T \T̃ ) ∪ {w} ∈ Fnα(xn
1 ) ∩ I

satisfies (2.9), eventually almost surely as n →∞, simultaneously for all consid-

ered T .

2.5 Discussion

We have proved the strong consistency of the BIC estimator and the KT version

of MDL estimator of the context tree of any (stationary ergodic) process, when

the depth of the hypothetical context trees is allowed to grow with the sample

size n as o(log n). This context tree may have infinite depth, and it is not nec-

essarily complete. These consistency results are generalizations of similar results

for estimation of the order of Markov chains (Csiszár and Shields, 2000), (Csiszár,

2002).

We have considered process with time domain equal to the set of all integers,

but as long as stationarity and ergodicity are insisted upon, any process with

one-sided time domain N can be obtained by restricting the time domain of a

process of the former kind. When dealing with Markov chain order estimation

in the one-sided case, dropping the stationarity assumption causes no additional

difficulty, see (Csiszár and Shields, 2000). For context tree estimation of tree
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sources, non-stationarity may cause technical problems in dealing with transient

phenomena, but does not appear to significantly change the picture, see (Mart́ın,

Seroussi and Weinberger, 2004).

While the BIC Markov order estimator is consistent without any bound on

the hypothetical orders (Csiszár and Shields, 2000), it remains open whether the

BIC context tree estimator remains consistent when dropping the depth bound

o(log n), or replacing it by a bound c log n. For the KT context tree estimator it

also remains open whether the depth bound could be increased; it certainly can

not be dropped or replaced by a large constant times log n, since then consistency

fails even for Markov order estimation (Csiszár and Shields, 2000).

Both with BIC and KT, we have considered two kinds of estimators, the second

kind admitting only “r-frequent” hypothetical trees with r = nα. The latter

conforms to the intuitive idea that the estimation should be based on those strings

that “frequently” appeared in the sample, see (Bühlmann and Wyner, 1999).

When the context tree has finite depth, the restriction to nα-frequent hypothetical

trees was not necessary since all feasible trees (of depth D(n) = o(log n)) satisfied

it automatically, eventually almost surely. It remains open whether the mentioned

restriction is necessary for consistency when the context tree has infinite depth,

and also whether the technical condition α > 1/2 we need in the KT (but not in

the BIC) case is really necessary.

A consequence of the consistency theorems is that when a process is not a

Markov chain of any (finite) order, the estimated order, produced by either of the

BIC or KT estimators tends to infinity almost surely.

The NML version of MDL was not considered for the context tree estima-

tion problem (unlike for Markov order estimation (Csiszár, 2002)), because the

structure of the NML criterion, unlike BIC and KT, appears unsuitable for CTM

implementation.

We have also shown that the BIC and KT context tree estimators can be

computed in linear time, via suitable modifications of the CTM method (Willems,

Shtarkov and Tjalkens, 1993, 2000). An on-line procedure was also considered

that calculates the estimators for all sample sizes i ≤ n in o(n log n) time. This

result may be useful, for example, to implement context tree estimation with a

stopping rule based on “stabilizing” of the estimator.

Finally we note that in the definition of BIC (Definition 2.4), the factor (|A|−
1)|T |/2 in the penalty term could be replaced by c|T |, with any positive constant

c, without affecting our results. The question of what other penalty terms might

be appropriate is not in the scope of this work.
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2.A Appendix

Lemma 2.27. Given a process Q with context tree of finite depth, for any 0 <

α < 1 there exists κ > 0 such that, eventually almost surely as n →∞,

Nn(s) ≥ nα,

simultaneously for all strings s with l(s) ≤ κ log n.

Proof. This bound has been used in (Csiszár, 2002), proof of Theorem 5. It is

a consequence of the typicality theorem in (Csiszár and Shields, 2000), see also

(Csiszár, 2002), remark after Th. 1. Indeed, the latter implies the existence of

κ > 0 such that Nn(s)/n ≥ Q(s)/2 simultaneously for all s with l(s) < κ log n,

eventually almost surely as n → ∞. The assertion of the lemma follows, since

Q(s), when positive, is bounded below by ξl(s) for a constant ξ > 0.

Lemma 2.28. Given a process Q and arbitrary α > 0, δ > 0, there exists κ > 0

such that, eventually almost surely as n →∞,∣∣∣∣ Nn(s, a)

Nn(s)
−Q(a| s)

∣∣∣∣ <
√

δ log Nn(s)

Nn(s)

simultaneously for all strings s with l(s) ≤ κ log n and Nn(s) ≥ nα which have a

postfix in the context tree of Q.

Proof. This is, in effect, Corollary 2 in (Csiszár, 2002). While that Corollary is

stated for Markov processes only, the proof relies upon the martingale property

of the sequence Zn of (Csiszár, 2002), eq. (10). Zn = Nn(s, a) − Q(a|s) Nn−1(s)

defines a martingale whenever s has a postfix in the context tree of Q, and the

mentioned proof applies literally.

Lemma 2.29. If P1 and P2 are probability distributions on A satisfying

1

2
P2(a) ≤ P1(a) ≤ 2 P2(a), a ∈ A,

then

D(P1‖P2) ≤
∑
a∈A

(P1(a)− P2(a))2

P2(a)
.

Proof. See (Csiszár, 2002), Lemma 4.



Chapter 3

Consistent Estimation of the

Basic Neighborhood of Markov

Random Fields

3.1 Introduction

In this chapter, Markov random fields on the lattice Zd with finite state space

are considered, adopting the usual assumption that the finite dimensional dis-

tributions are strictly positive. Equivalently, these are Gibbs fields with finite

range interaction, see Georgii (1988). They are essential in statistical physics,

for modeling interactive particle systems, Dobrushin (1968), and also in several

other fields, Besag (1974), for example, in image processing, Azencott (1987).

One statistical problem for Markov random fields is parameter estimation

when the interaction structure is known. By this we mean knowledge of the basic

neighborhood, the minimal lattice region that determines the conditional distribu-

tion at a site on the condition that the values at all other sites are given; formal

definitions are in Section 3.2. The conditional probabilities involved, assumed

translation invariant, are parameters of the model. Note that they need not

uniquely determine the joint distribution on Zd, a phenomenon known as phase

transition. Another statistical problem is model selection, that is, the statistical

estimation of the interaction structure (the basic neighborhood). This work is

primarily devoted to the latter.

Parameter estimation for Markov random fields with a known interaction

structure was considered, among others, by Pickard (1987), Gidas (1986), (1991),

Geman and Graffigne (1987), Comets (1992). Typically, parameter estimation

does not directly address the conditional probabilities mentioned above, but

45
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rather the potential. This admits parsimonious representation of the conditional

probabilities that are not free parameters, but have to satisfy algebraic conditions

that need not concern us here. For our purposes, however, potentials will not be

needed.

We are not aware of papers addressing model selection in the context of

Markov random fields. In other contexts, penalized likelihood methods are pop-

ular, see Akaike (1972), Schwarz (1978). The Bayesian Information Criterion

(BIC) of Schwarz (1978) has been proved to lead to consistent estimation of the

“order of the model” in various cases, such as i.i.d. processes with distributions

from exponential families, Haughton (1988), autoregressive processes, Hannan

and Quinn (1979), and Markov chains, Finesso (1992). These proofs include

the assumption that the number of candidate model classes is finite, for Markov

chains this means that there is a known upper bound on the order of the process.

The consistency of the BIC estimator of the order of a Markov chain without

such prior bound was proved by Csiszár and Shields (2000); further related re-

sults appear in Csiszár (2002). A related recent result, for processes with variable

memory length (Weinberger, Rissanen and Feder (1995), Bühlmann and Wyner

(1999)), is the consistency of the BIC estimator of the context tree, without any

prior bound on memory depth, Csiszár and Talata (2004).

For Markov random fields, penalized likelihood estimators like BIC run into

the problem that the likelihood function can not be calculated explicitly. In addi-

tion, no simple formula is available for the “number of free parameters” typically

used in the penalty term. To overcome these problems, we will replace likeli-

hood by pseudo-likelihood, first introduced by Besag (1975), and modify also the

penalty term; this will lead us to an analogue of BIC called the Pseudo-Bayesian

Information Criterion or PIC. Our main result is that minimizing this criterion

for a family of hypothetical basic neighborhoods that grows with the sample size

at a specified rate, the resulting PIC estimate of the basic neighborhood equals

the true one, eventually almost surely. In particular, the consistency theorem

does not require a prior upper bound on the size of the basic neighborhood. It

should be emphasized that the underlying Markov field need not be stationary

(translation invariant), and phase transition causes no difficulty.

An auxiliary result perhaps of independent interest is a typicality proposition

on the uniform closeness of empirical conditional probabilities to the true ones,

for conditioning regions whose size may grow with the sample size. Though this

result is weaker than analogous ones for Markov chains in Csiszár (2002), it will

be sufficient for our purposes.
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The structure of this chapter is the following. In Section 3.2 we introduce the

basic notation and definitions, and formulate the main result. Its proof is provided

by the propositions in Sections 3.4 and 3.5. Section 3.3 contains the statement

and proof of the typicality proposition. Section 3.4 excludes overestimation, that

is, the possibility that the estimated basic neighborhood properly contains the

true one, using the typicality proposition. Section 3.5 excludes underestimation,

that is, the possibility that the estimated basic neighborhood does not contain

the true one, via an entropy argument and a modification of the typicality result.

Section 3.6 is a discussion of the results. The Appendix contains some technical

lemmas.

3.2 Notation and statement of the main results

We consider the d-dimensional lattice Zd. The points i ∈ Zd are called sites,

and ‖i‖ denotes the maximum norm of i, that is, the maximum of the absolute

values of the coordinates of i. The cardinality of a finite set ∆ is denoted by |∆|.
The notations ⊆ and ⊂ of inclusion and strict inclusion are distinguished in the

dissertation.

A random field is a family of random variables indexed by the sites of the

lattice, {X(i) : i ∈ Zd }, where each X(i) is a random variable with values in a

finite set A. For ∆ ⊆ Zd, a region of the lattice, we write X(∆) = {X(i) : i ∈ ∆ }.
For the realizations of X(∆) we use the notation a(∆) = { a(i) ∈ A : i ∈ ∆ }.
When ∆ is finite, the |∆|-tuples a(∆) ∈ A∆ will be referred to as blocks.

The joint distribution of the random variables X(i) is denoted by Q. We

assume that its finite dimensional marginals are strictly positive, that is,

Q(a(∆)) = Prob{X(∆) = a(∆) } > 0 for ∆ ⊂ Zd finite, a(∆) ∈ A∆.

The last standard assumption admits unambiguous definition of the conditional

probabilities

Q(a(∆)| a(Φ)) = Prob{X(∆) = a(∆) | X(Φ) = a(Φ) }

for all disjoint finite regions ∆ and Φ.

By a neighborhood Γ (of the origin 0) we mean a finite, central-symmetric set

of sites with 0 /∈ Γ. Its radius is r(Γ) = maxi∈Γ ‖i‖. For any ∆ ⊆ Zd, its translate

when 0 is translated to i is denoted by ∆i. The translate Γi of a neighborhood Γ

(of the origin) will be called the Γ-neighborhood of the site i, see Fig.3.1.
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A Markov random field is a random field as above such that there exists a

neighborhood Γ, called a Markov neighborhood, satisfying for every i ∈ Zd

(3.1) Q(a(i)| a(∆i)) = Q(a(i)| a(Γi)) if ∆ ⊃ Γ, 0 /∈ ∆,

where the last conditional probability is translation invariant.

This concept is equivalent to that of a Gibbs field with a finite range interac-

tion, see Georgii (1988). Motivated by this fact, the matrix

QΓ =
{

QΓ(a| a(Γ)) : a ∈ A, a(Γ) ∈ AΓ
}

specifying the (positive, translation invariant) conditional probabilities in (3.1)

will be called one-point specification. All distributions on AZd
that satisfy (3.1)

with a given conditional probability matrix QΓ are called Gibbs distributions with

one-point specification QΓ. The distribution Q of the given Markov random field

is one of these; Q is not necessarily translation invariant.

The following lemma summarizes some well-known facts; their formal deriva-

tion from results in Georgii (1988) is indicated in the Appendix.

Lemma 3.1. For a Markov random field on the lattice as above, there exists a

neighborhood Γ0 such that the Markov neighborhoods are exactly those that contain

Γ0. Moreover, the global Markov property

Q(a(∆)| a(Zd \∆)) = Q(a(∆)| a(∪i∈∆Γi
0 \∆))

holds for each finite region ∆ ⊂ Zd. These conditional probabilities are translation

invariant and uniquely determined by the one-point specification QΓ0.

The smallest Markov neighborhood Γ0 of Lemma 3.1 will be called the basic

neighborhood. The minimal element of the corresponding one-point specification

matrix QΓ0 is denoted by qmin:

qmin = min
a∈A, a(Γ0)∈AΓ0

QΓ0(a| a(Γ0)) > 0.

In this chapter, we are concerned with the statistical estimation of the basic

neighborhood Γ0 from observing a realization of the Markov random field on an

increasing sequence of finite regions Λn ⊂ Zd, n ∈ N; thus the n’th sample is

x(Λn).

We will draw the statistical inference about a possible basic neighborhood Γ

based on the blocks a(Γ) ∈ AΓ appearing in the sample x(Λn). For technical

reason, we will consider only such blocks whose center is in a subregion Λ̄n of
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Λn, consisting of those sites i ∈ Λn for which the ball with center i and radius

log
1
2d |Λn| also belongs to Λn:

Λ̄n =
{

i ∈ Λn :
{

j ∈ Zd : ‖i− j‖ ≤ log
1
2d |Λn|

}
⊆ Λn

}
,

see Fig.3.1. Logarithms are to the base e. Our only assumptions about the sample

regions Λn will be that

Λ1 ⊂ Λ2 ⊂ . . . ; |Λn|
/∣∣Λ̄n

∣∣ → 1.
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Figure 3.1: The Γ-neighborhood of the site i, and the sample region Λn.

For each block a(Γ) ∈ AΓ, let Nn(a(Γ)) denote the number of occurrences of

the block a(Γ) in the sample x(Λn) with the center in Λ̄n:

Nn(a(Γ)) =
∣∣{ i ∈ Λ̄n : Γi ⊆ Λn, x(Γi) = a(Γ)

}∣∣ .
The blocks corresponding to Γ-neighborhoods completed with their centers, will

be denoted briefly by a(Γ, 0). Similarly as above, for each a(Γ, 0) ∈ AΓ∪{0} we

write

Nn(a(Γ, 0)) =
∣∣{ i ∈ Λ̄n : Γi ⊆ Λn, x(Γi ∪ {i}) = a(Γ, 0)

}∣∣ .
The notation a(Γ, 0) ∈ x(Λn) will mean that Nn(a(Γ, 0)) ≥ 1.

The restriction Γi ⊆ Λn in the above definitions is automatically satisfied if

r(Γ) ≤ log
1
2d |Λn|. Hence, the same number of blocks is taken into account for all

neighborhoods, except for very large ones:∑
a(Γ)∈AΓ

Nn(a(Γ)) =
∣∣Λ̄n

∣∣ , if r(Γ) ≤ log
1
2d |Λn|.

For Markov random fields, the likelihood function cannot be explicitly deter-

mined. We shall use instead the pseudo-likelihood defined below.
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Given the sample x(Λn), the pseudo-likelihood function associated with a

neighborhood Γ is the following function of a matrix Q′
Γ regarded as the one-

point specification of a hypothetical Markov random field for which Γ is a Markov

neighborhood:

(3.2)

PLΓ(x(Λn), Q′
Γ) =

∏
i∈Λ̄n

Q′
Γ(x(i)|x(Γi)) =

∏
a(Γ,0)∈x(Λn)

Q′
Γ(a(0)| a(Γ))Nn(a(Γ,0)).

We note that not all matrices Q′
Γ satisfying∑

a∈A

Q′
Γ(a(0)| a(Γ)) = 1, a(Γ) ∈ AΓ

are possible one-point specifications, the elements of a one-point specification

matrix have to satisfy several algebraic relations not entered here. Still, we define

the pseudo-likelihood also for Q′
Γ not satisfying those relations, even admitting

some elements of Q′
Γ to be 0.

The maximum of this pseudo-likelihood is attained for Q′
Γ(a(0)| a(Γ)) = Nn(a(Γ,0))

Nn(a(Γ))
.

Thus, given the sample x(Λn), the logarithm of the maximum pseudo-likelihood

for the neighborhood Γ is

(3.3) log MPLΓ(x(Λn)) =
∑

a(Γ,0)∈x(Λn)

Nn(a(Γ, 0)) log
Nn(a(Γ, 0))

Nn(a(Γ))
.

Now we are able to formalize a criterion to the analogy of the Bayesian Infor-

mation Criterion that can be calculated from the sample.

Definition 3.2. Given a sample x(Λn), the Pseudo-Bayesian Information Cri-

terion, shortly PIC, for the neighborhood Γ is

PICΓ(x(Λn)) = − log MPLΓ(x(Λn)) + |A||Γ| log |Λn| .

Remark 3.3. In our penalty term, the number |A||Γ| of possible blocks a(Γ) ∈ AΓ

replaces “half the number of free parameters” appearing in BIC, for which number

no simple formula is available. Note that our results remain valid, with the same

proofs, if the above penalty term is multiplied by any c > 0. �

The PIC estimator of the basic neighborhood Γ0 is defined as that hypothetical

Γ for which the value of the criterion is minimal. An important feature of our

estimator is that the family of hypothetical Γ’s is allowed to extend as n → ∞,

thus no a priori upper bound for the size of the unknown Γ0 is needed. Our main

result says the PIC estimator is strongly consistent if the hypothetical Γ’s are

those with r(Γ) ≤ rn, where rn grows sufficiently slowly.
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We mean by strong consistency that the estimated basic neighborhood equals

Γ0 eventually almost surely as n →∞. Here and in the sequel, “eventually almost

surely” means that with probability 1 there exists a threshold n0 (depending on

the infinite realization x(Zd)) such that the claim holds for all n ≥ n0.

Theorem 3.4. The PIC-estimator

Γ̂PIC(x(Λn)) = arg min
Γ: r(Γ)≤rn

PICΓ(x(Λn)),

with

rn = o
(
log

1
2d |Λn|

)
,

satisfies

Γ̂PIC(x(Λn)) = Γ0,

eventually almost surely as n →∞.

Proof. Theorem 3.4 follows from Propositions 3.10 and 3.11 below.

Remark 3.5. Actually, the assertion will be proved for rn equal to a constant

times log
1
2d

∣∣Λ̄n

∣∣. However, as this constant depends on the unknown distribution

Q, the consistency can be guaranteed only when

rn = o
(
log

1
2d

∣∣Λ̄n

∣∣) = o
(
log

1
2d |Λn|

)
.

It remains open whether consistency holds when the hypothetical neighborhoods

are allowed to grow faster, or even without any condition on the hypothetical

neighborhoods. �

As a consequence of the above, we are able to construct a strongly consistent

estimator of the one-point specification QΓ0 .

Corollary 3.6. The empirical estimator of the one-point specification,

Q̂Γ̂(a(0)| a(Γ̂)) =
Nn(a(Γ̂, 0))

Nn(a(Γ̂))
, a(0) ∈ A, a(Γ̂) ∈ AΓ̂,

converges to the true QΓ0 almost surely as n →∞, where Γ̂ is the PIC estimator

Γ̂PIC.

Proof. Immediate from Theorem 3.4 and Proposition 3.7 below.
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3.3 The typicality result

Proposition 3.7. Simultaneously for all Markov neighborhoods with r(Γ) ≤
α

1
2d log

1
2d

∣∣Λ̄n

∣∣, and blocks a(Γ, 0) ∈ AΓ∪{0},∣∣∣∣ Nn(a(Γ, 0))

Nn(a(Γ))
−Q(a(0)| a(Γ))

∣∣∣∣ <
√

κ log Nn(a(Γ))

Nn(a(Γ))
,

eventually almost surely as n →∞, if

0 < α ≤ 1, κ > 23de α log(|A|2 + 1).

To prove this proposition we will use an idea similar to the “coding technique”

of Besag (1974), namely we partition Λ̄n into subsets Λ̄k
n such that the random

variables at the sites i ∈ Λ̄k
n are conditionally independent given the values of

those at the other sites. First, we introduce some further notation. Let

(3.4) Rn =
⌊

α
1
2d

⌈
log
∣∣Λ̄n

∣∣ ⌉ 1
2d

⌋
.
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rr
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Figure 3.2: The sieve Λ̄k
n.

We partition the region Λ̄n by intersecting it with sublattices of Zd such that

the distance between sites in a sublattice is 4Rn + 1. The intersections of Λ̄n

with these sublattices will be called sieves. Indexed by the offset k relative to the

origin 0, the sieves are

Λ̄k
n =

{
i ∈ Λ̄n : i = k + (4Rn + 1)v, v ∈ Zd

}
, ‖k‖ ≤ 2Rn,

see Fig.3.2. For a neighborhood Γ, let Nk
n(a(Γ)) denote the number of occurrences

of the block a(Γ) ∈ AΓ in the sample x(Λn) with center in Λ̄k
n:

Nk
n(a(Γ)) =

∣∣{ i ∈ Λ̄k
n : Γi ⊆ Λn, x(Γi) = a(Γ)

}∣∣ .
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Similarly, let

Nk
n(a(Γ, 0)) =

∣∣{ i ∈ Λ̄k
n : Γi ⊆ Λn, x(Γi ∪ {i}) = a(Γ, 0)

}∣∣ .
Clearly,

Nn(a(Γ)) =
∑

k: ‖k‖≤2Rn

Nk
n(a(Γ)) and Nn(a(Γ, 0)) =

∑
k: ‖k‖≤2Rn

Nk
n(a(Γ, 0)).

The notation a(Γ) ∈ x(Λk
n) will mean that Nk

n(a(Γ)) ≥ 1.

Denote by Φn(Γ) the set of sites outside the neighborhood Γ whose norm is

at most 2Rn:

Φn(Γ) =
{

i ∈ Zd : ‖i‖ ≤ 2Rn, i /∈ Γ
}

,

see Fig.3.2. Φi
n(Γ) denotes the translate of Φn(Γ) when 0 is translated to i.

For a finite region Ξ ⊂ Zd, conditional probabilities on the condition X(Ξ) =

x(Ξ) ∈ AΞ, will be denoted briefly by Prob{ · | x(Ξ) }.
In the following Lemma the neighborhoods Γ need not be Markov neighbor-

hoods.

Lemma 3.8. Simultanously for all sieves k, neighborhoods Γ with r(Γ) ≤ Rn,

and blocks a(Γ) ∈ AΓ,

(1 + ε) log Nk
n(a(Γ)) ≥ log

∣∣Λ̄n

∣∣ ,
eventually almost surely as n →∞, where ε > 0 is an arbitrary constant.

Proof. As a consequence of Lemma 3.1, for any fixed sieve k and neighborhood Γ

with r(Γ) ≤ Rn, the random variables X(Γi), i ∈ Λ̄k
n are conditionally indepen-

dent given the values of the random variables in the rest of the sites of sample

region Λn. By Lemma 3.20 in the Appendix,

Q ( a(Γ) | a(Φn(Γ)) ) ≥ q
|Γ|
min, a(Φn(Γ)) ∈ AΦn(Γ),

hence we can use the large deviation theorem of Lemma 3.18 in the Appendix

with p∗ = q
|Γ|
min to obtain

Prob

{
Nk

n(a(Γ))∣∣Λ̄k
n

∣∣ <
1

2
q
|Γ|
min

∣∣∣∣∣ x
(

Λn\
⋃

i∈Λ̄k
n

Γi

)}
≤ exp

[
−
∣∣Λ̄k

n

∣∣ q|Γ|min

16

]
.

Hence also for the unconditional probabilities,

Prob

{
Nk

n(a(Γ))∣∣Λ̄k
n

∣∣ <
1

2
q
|Γ|
min

}
≤ exp

[
−
∣∣Λ̄k

n

∣∣ q|Γ|min

16

]
.
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Note that for n ≥ n0 (not depending on k) we have

∣∣Λ̄k
n

∣∣ ≥ 1

2

∣∣Λ̄n

∣∣
(4Rn + 1)d

>

∣∣Λ̄n

∣∣
(5Rn)d

.

Using this and the consequence |Γ| ≤ (2Rn + 1)d < (3Rn)d of r(Γ) ≤ Rn, the last

probability bound implies for n ≥ n0

Prob

{
Nk

n(a(Γ))∣∣Λ̄n

∣∣ <
q
(3Rn)d

min

2 (5Rn)d

}
≤ exp

[
−
∣∣Λ̄n

∣∣ q
(3Rn)d

min

16 (5Rn)d

]
.

Using the union bound and Lemma 3.21 in the Appendix, it follows that

Prob

{
Nk

n(a(Γ))∣∣Λ̄n

∣∣ <
q
(3Rn)d

min

2 (5Rn)d
,

for some k, Γ, a(Γ) with ‖k‖ ≤ 2Rn, r(Γ) ≤ Rn, a(Γ) ∈ AΓ

}

≤ exp

[
−
∣∣Λ̄n

∣∣ q
(3Rn)d

min

16 (5Rn)d

]
· (4Rn + 1)d · (|A|2 + 1)(2Rn+1)d/2.

Recalling (3.4), this is summable in n, thus the Borel –Cantelli lemma gives

Nk
n(a(Γ)) ≥

∣∣Λ̄n

∣∣ q
3dα1/2(1+log|Λ̄n|)1/2

min

2 · 5dα1/2
(
1 + log

∣∣Λ̄n

∣∣)1/2
,

eventually almost surely as n →∞, simultanously for all sieves k, neighborhoods

Γ with r(Γ) ≤ Rn, and blocks a(Γ) ∈ AΓ. This proves the Lemma.

Lemma 3.9. Simultaneously for all sieves k, Markov neighborhoods Γ with r(Γ) ≤
Rn, and blocks a(Γ, 0) ∈ AΓ∪{0},

∣∣∣∣ Nk
n(a(Γ, 0))

Nk
n(a(Γ))

−Q(a(0)| a(Γ))

∣∣∣∣ <
√

δ log
1
2 Nk

n(a(Γ))

Nk
n(a(Γ))

,

eventually almost surely as n →∞, if

δ > 2de α
1
2 log(|A|2 + 1).

Proof. Given a sieve k, a Markov neighborhood Γ, and a block a(Γ, 0), the dif-

ference Nk
n(a(Γ, 0))−Nk

n(a(Γ)) Q(a(0)| a(Γ)) equals

Yn =
∑

i∈Λ̄k
n: x(Γi)=a(Γ)

[ I(X(i) = a(0))−Q(a(0)| a(Γ)) ] ,



3.3. THE TYPICALITY RESULT 55

where I( · ) denotes indicator function, hence the claimed inequality is equivalent

to

−
√

Nk
n(a(Γ))δ log

1
2 Nk

n(a(Γ)) < Yn <

√
Nk

n(a(Γ))δ log
1
2 Nk

n(a(Γ)).

We will prove that the last inequalities hold eventually almost surely as n →∞,

simultaneously for all sieves k, Markov neighborhoods Γ with r(Γ) ≤ Rn, and

blocks a(Γ, 0) ∈ AΓ∪{0}. We concentrate on the second inequality, the proof for

the first one is similar.

Denote

Gj(k, a(Γ, 0)) =

{
max

n∈Nj(k,a(Γ))
Yn ≥

√
ejδj

1
2

}
,

where

Nj(k, a(Γ)) =
{

n : ej < Nk
n(a(Γ)) ≤ ej+1, (1 + ε) log Nk

n(a(Γ)) ≥ log
∣∣Λ̄n

∣∣ } ;

if n ∈ Nj(k, a(Γ)) then, by (3.4),

(3.5) Rn =
⌊

α
1
2d

⌈
log
∣∣Λ̄n

∣∣ ⌉ 1
2d

⌋
≤ α

1
2d (1 + (1 + ε)(j + 1) )

1
2d

def
= R(j).

The claimed inequality Yn <

√
Nk

n(a(Γ))δ log
1
2 Nk

n(a(Γ)) holds for each n with

ej < Nk
n(a(Γ)) ≤ ej+1 if

max
n: ej<Nk

n(a(Γ))≤ej+1
Yn <

√
ejδj

1
2 .

By Lemma 3.8, the condition (1 + ε) log Nk
n(a(Γ)) ≥ log

∣∣Λ̄n

∣∣ in the definition

of Nj(k, a(Γ)) is satisfied eventually almost surely, simultanously for all sieves

k, neighborhoods Γ with r(Γ) ≤ Rn, and blocks a(Γ) ∈ AΓ. Hence it suffices

to prove that the following holds with probability one: the union of the events

Gj(k, a(Γ, 0)) for all k with ‖k‖ ≤ 2R(j), all Γ ⊇ Γ0 with r(Γ) ≤ R(j), and all

a(Γ, 0) ∈ AΓ∪{0}, obtains only for finitely many j.

As n ∈ Nj(k, a(Γ)) implies j < log
∣∣Λ̄n

∣∣ ≤ (1 + ε)(j + 1),

Gj(k, a(Γ, 0)) ⊆
b (1+ε)(j+1) c⋃

l=j

{
max

n∈Nj,l(k,a(Γ))
Yn ≥

√
ejδj

1
2

}
,(3.6)

where

Nj,l(k, a(Γ)) =
{

n : ej < Nk
n(a(Γ)) ≤ ej+1, l < log

∣∣Λ̄n

∣∣ ≤ l + 1
}

.

The random variables X(i), i ∈ Λ̄k
n are conditionally independent given the

values of the random variables in their Γ-neighborhoods. Moreover, those X(i)’s
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for which the same block a(Γ) appears in their Γ-neighborhood, are also con-

ditionally i.i.d.. Hence Yn is the sum of Nk
n(a(Γ)) conditionally i.i.d. random

variables with mean 0 and variance

1

4
≥ D2 = Q(a(0)| a(Γ)) [ 1−Q(a(0)| a(Γ)) ] ≥ 1

2
qmin.

As Rn is constant for n with l < log
∣∣Λ̄n

∣∣ ≤ l+1, the corresponding Yn’s are actu-

ally partial sums of a sequence of Nk
n∗(a(Γ)) ≤ ej+1 such conditionally i.i.d. ran-

dom variables, where n∗ is the largest element of Nj,l(k, a(Γ)). Therefore, using

Lemma 3.19 in the Appendix with µ = µj = (1 − η)
√

e−1δj1/2 , where η > 0 is

an arbitrary constant, we have

Prob

 max
n∈Nj,l(k,a(Γ))

Yn ≥
√

ejδj
1
2

∣∣∣∣∣∣ x
 ⋃

i∈Λ̄k
n: x(Γi)=a(Γ)

Γi


≤ Prob

 max
n∈Nj,l(k,a(Γ))

Yn ≥ D
√

ej+1

(
(1− η)

√
e−1δj

1
2 + 2

)
∣∣∣∣∣∣ x

 ⋃
i∈Λ̄k

n: x(Γi)=a(Γ)

Γi


≤ 8

3
exp

− µ2
j

2
(
1 +

µj

2D
√

ej+1

)2


On account of lim

j→∞
µj/(2D

√
ej+1 ) = 0, the last bound can be continued, for

j > j0, as

≤ 8

3
exp

[
− (1− η)2

2e(1 + η)
δj

1
2

]
.

This bound also holds for the unconditional probabilities, hence we obtain from

(3.6)

Prob {Gj(k, a(Γ, 0)) } ≤ (εj + 2) · 8

3
exp

[
− (1− η)2

2e(1 + η)
δj

1
2

]
≤ exp

[
− (1− η)3

2e(1 + η)
δj

1
2

]
.

To bound the number of all admissible k, Γ, a(Γ, 0) (recall the conditions

‖k‖ ≤ 2R(j), r(Γ) ≤ R(j), with R(j) defined in (3.5)), note that the number of

possible k’s is bounded by

(4R(j) + 1)d ≤ (4 + ρ)dα
1
2 (1 + ε)

1
2 (j + 1)

1
2 ,
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and, by Lemma 3.21 in the Appendix, the number of possible blocks a(Γ, 0) with

r(Γ) ≤ R(j) is bounded by

(|A|2 + 1)(2R(j)+1)d/2 < (|A|2 + 1)(1+ρ)d2d−1α1/2(1+ε)1/2(j+1)1/2

.

Combining the above bounds, we get for the probability of the union of the

events Gj(k, a(Γ, 0)) for all admissible k, Γ, a(Γ, 0) the bound

exp

[
− (1− η)3

2e(1 + η)
δj

1
2

+ [log(|A|2 + 1)](1 + ρ)d2d−1α
1
2 (1 + ε)

1
2 (j + 1)

1
2 + O

(
log j

1
2

)]
.

This is summable in j, if we choose η, ε, ρ sufficiently small, and δ/(2e) >

2d−1α
1
2 log(|A|2 + 1), that is, if δ > 2de α

1
2 log(|A|2 + 1).

Proof of Proposition 3.7. Using Lemma 3.9,∣∣∣∣ Nn(a(Γ, 0))

Nn(a(Γ))
−Q(a(0)| a(Γ))

∣∣∣∣
≤

∑
k: ‖k‖≤2Rn

∣∣∣∣ Nk
n(a(Γ, 0))

Nk
n(a(Γ))

−Q(a(0)| a(Γ))

∣∣∣∣ · Nk
n(a(Γ))

Nn(a(Γ))

<
∑

k: ‖k‖≤2Rn

√
δ log1/2 Nk

n(a(Γ))

Nk
n(a(Γ))

· Nk
n(a(Γ))

Nn(a(Γ))

eventually almost surely as n → ∞. By Jensen’s inequality and Nk
n(a(Γ)) ≤

Nn(a(Γ)), this can be continued as

≤

√
δ (4Rn + 1)d log1/2 Nn(a(Γ))

Nn(a(Γ))
.

Since by (3.4) and Lemma 3.8, we have for any ε, ρ > 0 and n sufficiently large

(4Rn+1)d ≤
(
4α

1
2d

(
1 + log

∣∣Λ̄n

∣∣) 1
2d + 1

)d

≤ (4+ρ)dα1/2(1+ε)1/2 log1/2 Nn(a(Γ)),

eventually almost surely as n →∞. This completes the proof.

3.4 The overestimation

Proposition 3.10. Eventually almost surely as n →∞,

Γ̂PIC(x(Λn)) /∈ {Γ : Γ ⊃ Γ0 } ,

whenever rn in Theorem 3.4 is equal to Rn in (3.4) with

α <
qmin

23de

|A| − 1

|A|2 log(|A|2 + 1)
.
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Proof. We have to prove that simultaneously for all neighborhoods Γ ⊃ Γ0 with

r(Γ) ≤ Rn,

(3.7) PICΓ(x(Λn))− PICΓ0(x(Λn)) > 0,

eventually almost surely as n →∞.

The left hand side

− log MPLΓ(x(Λn)) + |A||Γ| log |Λn|+ log MPLΓ0(x(Λn))− |A||Γ0| log |Λn|

is bounded below by

− log MPLΓ(x(Λn)) + log PLΓ0(x(Λn), QΓ0) +

(
1− 1

|A|

)
|A||Γ| log |Λn| .

Hence, it suffices to show that simultaneously for all neighborhoods Γ ⊃ Γ0 with

r(Γ) ≤ Rn,

(3.8) log MPLΓ(x(Λn))− log PLΓ0(x(Λn), QΓ0) <
|A| − 1

|A|
|A||Γ| log |Λn| ,

eventually almost surely as n →∞.

Now, for Γ ⊃ Γ0 we have PLΓ0(x(Λn), QΓ0) = PLΓ(x(Λn), QΓ), by the defi-

nition (3.2) of pseudo-likelihood, since Γ0 is a Markov neighborhood. Thus, the

left hand side of (3.8) equals

log MPLΓ(x(Λn))− log PLΓ(x(Λn), QΓ)

=
∑

a(Γ,0)∈x(Λn)

Nn(a(Γ, 0)) log
Nn(a(Γ, 0)) /Nn(a(Γ))

Q(a(0)| a(Γ))

=
∑

a(Γ)∈x(Λn)

Nn(a(Γ))
∑

a(0): a(Γ,0)∈x(Λn)

Nn(a(Γ, 0))

Nn(a(Γ))
log

Nn(a(Γ, 0)) /Nn(a(Γ))

Q(a(0)| a(Γ))
.

To bound the last expression, we use Proposition 3.7 and Lemma 3.22 in the

Appendix, the latter applied with P (a(0)) = Nn(a(Γ,0))
Nn(a(Γ))

, Q(a(0)) = Q(a(0)| a(Γ)).

Thus we obtain the upper bound∑
a(Γ)∈x(Λn)

Nn(a(Γ))
1

qmin

∑
a(0): a(Γ,0)∈x(Λn)

[
Nn(a(Γ, 0))

Nn(a(Γ))
−Q(a(0)| a(Γ))

]2

<
∑

a(Γ)∈x(Λn)

Nn(a(Γ))
1

qmin

|A|κ log Nn(a(Γ))

Nn(a(Γ))
≤ κ|A|

qmin

|A||Γ| log
∣∣Λ̄n

∣∣ ,
eventually almost surely as n →∞, simultaneously for all neighborhoods Γ ⊃ Γ0

with r(Γ) ≤ Rn.

Hence, since |Λn|
/∣∣Λ̄n

∣∣ → 1, the assertion (3.8) holds whenever

κ|A|
qmin

<
|A| − 1

|A|
,

which is equivalent to the bound on α in Proposition 3.10.
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3.5 The underestimation

Proposition 3.11. Eventually almost surely as n →∞,

Γ̂PIC(x(Λn)) ∈ {Γ : Γ ⊇ Γ0 } ,

if rn in Theorem 3.4 is chosen as in Proposition 3.10.

Proposition 3.11 will be proved using the lemmas below. Let us denote

Ψ0 =
(⋃

i∈Γ0

Γi
0

)∖(
Γ0 ∪ {0}

)
.

Lemma 3.12. The assertion of Proposition 3.7 holds also with Γ replaced by

Γ ∪Ψ0, where Γ is any (not necessarily Markov) neighborhood.

Proof. As Proposition 3.7 was a consequence of Lemma 3.9, we have to check that

the proof of that Lemma works when the Markov neighborhood Γ is replaced by

Γ ∪ Ψ0, where Γ is any neighborhood. To this end, it suffices to show that

conditioned on the values of all random variables in the (Γ ∪Ψ0)-neighborhoods

of the sites i ∈ Λ̄k
n, those X(i), i ∈ Λ̄k

n are conditionally i.i.d. for which the same

block a(Γ ∪ Ψ0) appears in the (Γ ∪ Ψ0)-neighborhood of i. This follows from

Lemma 3.16 in the Appendix, with ∆ = Γ0 ∪ {0} and Ψ = Ψ0.

Lemma 3.13. Simultanously for all neighborhoods Γ 6⊇ Γ0 with r(Γ) ≤ Rn,

PICΓ∪Ψ0(x(Λn)) > PIC(Γ∩Γ0)∪Ψ0(x(Λn)),

eventually almost surely as n →∞.

Proof. The claimed inequality is analogous to (3.7) in the proof of Proposition

3.10, the roles of Γ ⊃ Γ0 there played by Γ ∪ Ψ0 ⊃ (Γ ∩ Γ0) ∪ Ψ0. Its proof is

the same as that of (3.7), using Lemma 3.12 instead of Proposition 3.7. Indeed,

the basic neighborhood property of Γ0 was used in that proof only to show that

PLΓ0(x(Λn), QΓ0) = PLΓ(x(Λn), QΓ). The analogue of this identity, namely

PL(Γ∩Γ0)∪Ψ0(x(Λn), Q(Γ∩Γ0)∪Ψ0) = PLΓ∪Ψ0(x(Λn), QΓ∪Ψ0),

follows from Lemma 3.16 in the Appendix, with ∆ = Γ0 ∪ {0} and Ψ = Ψ0.

For the next lemma, we introduce some further notation.

The set of all probability distributions on AZd
, equipped with the weak topol-

ogy, is a compact Polish space; let d denote a metric that metrizes it. Let QG

denote the (compact) set of Gibbs distributions with the one-point specification

QΓ0 .



60 CHAPTER 3. MARKOV FIELD NEIGHBORHOOD ESTIMATION

For a sample x(Λn), define the empirical distribution on AZd
by

Rx,n =
1∣∣Λ̄n

∣∣ ∑
i∈Λ̄n

δxi
n
,

where xn ∈ AZd
is the extension of the sample x(Λn) to the whole lattice with

xn(j) equal to a constant a ∈ A for j ∈ Zd\Λn, xi
n denotes the translate of xn

when 0 is translated to i, and δx is the Dirac mass at x ∈ AZd
.

Lemma 3.14. With probability 1, d
(
Rx,n,QG

)
→ 0.

Proof. Fix a realization x(Zd) for which Proposition 3.7 holds.

It suffices to show that for any subsequence nk such that Rx,nk
converges, its

limit Rx,0 belongs to QG.

Let Γ′ be any neighborhood. For n sufficiently large, the (Γ′ ∪ {0})-marginal

of Rx,n is equal to {
Nn(a(Γ′, 0))∣∣Λ̄n

∣∣ , a(Γ′, 0) ∈ AΓ′∪{0})

}
,

hence Rx,nk
→ Rx,0 implies

(3.9)
Nnk

(a(Γ′, 0))∣∣Λ̄nk

∣∣ −→ Rx,0(a(Γ′, 0))

for all a(Γ′, 0) ∈ AΓ′∪{0}. This and summation for a(0) ∈ A, imply

Nnk
(a(Γ′, 0))

Nnk
(a(Γ′))

−→ Rx,0(a(0)| a(Γ′)).

As Proposition 3.7 holds for the realization x(Zd), it follows that if Γ′ is a Markov

neighborhood then

Rx,0(a(0)| a(Γ′)) = Q(a(0)| a(Γ′)) = QΓ0(a(0)| a(Γ0)).

For any finite region ∆ ⊃ Γ0 with 0 6∈ ∆, the last equation for a neighborhood

Γ′ ⊃ ∆ implies that

Rx,0(a(0)| a(∆)) = QΓ0(a(0)| a(Γ0)) if ∆ ⊃ Γ0, 0 6∈ ∆.

To prove Rx,0 ∈ QG it remains to show that, in addition, Rx,0(a(i)| a(∆i)) =

QΓ0(a(i)| a(Γi
0)). Actually, we show that Rx,0 is translation invariant. Indeed,

given a finite region ∆ ⊂ Zd and its translate ∆i, take a neighborhood Γ′ with

∆∪∆i ⊆ Γ′ ∪ {0}, and consider the sum of the counts Nn(a(Γ′, 0)) for all blocks

a(Γ′, 0) = { a(j) : j ∈ Γ′ ∪ {0} } with { a(j) : j ∈ ∆ } equal to a fixed |∆|-tuple

and the similar sum with { a(j) : j ∈ ∆i } equal to the same |∆|-tuple. If

‖i‖ < log1/(2d)
∣∣Λ̄n

∣∣, the difference of these sums is at most |Λn| −
∣∣Λ̄n

∣∣, hence the

translation invariance of Rx,0 follows by (3.9).
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Lemma 3.15. Uniformly for all neighborhoods Γ not containing Γ0,

− log MPL(Γ∩Γ0)∪Ψ0(x(Λn)) > − log MPLΓ0(x(Λn)) + c
∣∣Λ̄n

∣∣ ,
eventually almost surely as n →∞, where c > 0 is a constant.

Proof. Given a realization x ∈ AZd
with the property in Lemma 3.14, there exists

a sequence Qx,n in QG with

d (Rx,n, Qx,n) → 0,

and consequently

(3.10)
Nn(a(∆))∣∣Λ̄n

∣∣ −Qx,n(a(∆)) −→ 0

for each finite region ∆ ⊂ Zd and a(∆) ∈ A∆.

Next, let Γ be a neighborhood with Γ 6⊇ Γ0. By (3.3),

− 1∣∣Λ̄n

∣∣ log MPL(Γ∩Γ0)∪Ψ0(x(Λn))

= − 1∣∣Λ̄n

∣∣ ∑
a((Γ∩Γ0)∪Ψ0,0)∈x(Λn)

Nn(a((Γ ∩ Γ0) ∪Ψ0, 0)) log
Nn(a((Γ ∩ Γ0) ∪Ψ0, 0))

Nn(a((Γ ∩ Γ0) ∪Ψ0))
.

Applying (3.10) to ∆ = (Γ ∩ Γ0) ∪ Ψ0 ∪ {0}, it follows that the last expression

is arbitrary close to

−
∑

a((Γ∩Γ0)∪Ψ0∪{0})

Qx,n(a((Γ ∩ Γ0) ∪Ψ0, 0)) log Qx,n(a(0)| a((Γ ∩ Γ0) ∪Ψ0))

= HQx,n(X(0)|X((Γ ∩ Γ0) ∪Ψ0)),

if n is sufficiently large, where HQx,n( · | · ) denotes conditional entropy, when

the underlying distribution is Qx,n. Similarly, −
(
1/
∣∣Λ̄n

∣∣) log MPLΓ0(x(Λn)) is

arbitrary close to HQx,n(X(0)|X(Γ0)), that equals HQx,n(X(0)|X(Γ0∪Ψ0)) since

Γ0 is a Markov neighborhood.

It is known that HQ′(X(0)|X((Γ ∩ Γ0) ∪ Ψ0)) ≥ HQ′(X(0)|X(Γ0 ∪ Ψ0)) for

any distribution Q′. The proof of the Lemma will be complete if we show that,

in addition, there exists a constant ξ > 0 (depending on Γ ∩ Γ0) such that for

every Gibbs distribution QG ∈ QG

HQG(X(0)|X((Γ ∩ Γ0) ∪Ψ0))−HQG(X(0)|X(Γ0 ∪Ψ0)) > ξ.

The indirect assumption that the left hand side goes to 0 for some sequence of

Gibbs distributions in QG implies, using the compactness of QG, that

HQG
0
(X(0)|X((Γ ∩ Γ0) ∪Ψ0)) = HQG

0
(X(0)|X(Γ0 ∪Ψ0)),
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for the limit QG
0 ∈ QG of a convergent subsequence. This equality implies

QG
0 (a(0)| a((Γ ∩ Γ0) ∪Ψ0)) = QG

0 (a(0)| a(Γ0 ∪Ψ0))

for all a(0) ∈ A, a(Γ0 ∪ Ψ0) ∈ AΓ0∪Ψ0 . By Lemma 3.16 in the Appendix, these

conditional probabilities are uniquely determined by the one-point specification

QΓ0 , and the last equality implies

Q(a(i)| a((Γ ∩ Γ0)
i ∪Ψi

0)) = Q(a(i)| a(Γi
0 ∪Ψi

0)) = QΓ0(a(i)| a(Γi
0)).

According to Lemma 3.17 in the Appendix, this would imply (Γ ∩ Γ0) ∪ Ψ0 is a

Markov neighborhood too, which is a contradiction, as (Γ ∩ Γ0) ∪Ψ0 6⊇ Γ0.

This completes the proof of the Lemma, because there is only a finite number

of possible intersections Γ ∩ Γ0.

Proof of Proposition 3.11. We have to show that

(3.11) PICΓ(x(Λn)) > PICΓ0(x(Λn)),

eventually almost surely as n →∞, for all neighborhoods Γ with r(Γ) ≤ Rn that

do not contain Γ0.

Note that Γ1 ⊇ Γ2 implies MPLΓ1(x(Λn)) ≥ MPLΓ2(x(Λn)), since MPLΓ(x(Λn))

is the maximizer in Q′
Γ of PLΓ(x(Λn), Q′

Γ), see (3.2). Hence

− log MPLΓ(x(Λn)) ≥ − log MPLΓ∪Ψ0(x(Λn)),

for any neighborhood Γ.

Thus

PICΓ(x(Λn)) = − log MPLΓ(x(Λn)) + |A||Γ| log |Λn|

≥ PICΓ∪Ψ0(x(Λn))−
(
|A||Γ∪Ψ0| − |A||Γ|

)
log |Λn| .

Using Lemma 3.13 and the obvious bound |Γ ∪ Ψ0| ≤ |Γ| + |Ψ0|, it follows that,

eventually almost surely as n →∞ for all Γ 6⊇ Γ0 with r(Γ) ≤ Rn,

PICΓ(x(Λn)) > PIC(Γ∩Γ0)∪Ψ0(x(Λn))− |A||Γ|
(
|A||Ψ0| − 1

)
log |Λn| .

Here, by Lemma 3.15,

PIC(Γ∩Γ0)∪Ψ0(x(Λn))

> − log MPL(Γ∩Γ0)∪Ψ0(x(Λn)) > − log MPLΓ0(x(Λn)) + c
∣∣Λ̄n

∣∣ ,
eventually almost surely as n → ∞ for all Γ as above. This completes the

proof, since the conditions r(Γ) ≤ Rn and |Λn|
/∣∣Λ̄n

∣∣ → 1 imply |A||Γ| log |Λn| =
o
(∣∣Λ̄n

∣∣).
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3.6 Discussion

A modification of the Bayesian Information Criterion (BIC) called PIC has been

introduced for estimating the basic neighborhood of a Markov random field on

Zd, with finite alphabet A. In this criterion, the maximum pseudo-likelihood

is used instead of the maximum likelihood, with penalty term |A||Γ| log |Λn| for

a candidate neighborhood Γ, where Λn is the sample region. The minimizer of

PIC over candidate neighborhoods, with radius allowed to grow as o(log
1
2d |Λn|),

has been proved to equal the basic neighborhood eventually almost surely, not

requiring any prior bound on the size of the latter. This result is unaffected by

phase transition and even by non-stationarity of the joint distribution. The same

result holds if the penalty term is multiplied by any c > 0; the no underestimation

part (Proposition 3.11) holds also if log |Λn| in the penalty term is replaced by

any function of the sample size |Λn| that goes to infinity as o(|Λn|).
PIC estimation of the basic neighborhood of a Markov random field is to a

certain extent similar to BIC estimation of the order of a Markov chain, and

of the context tree of a tree source, also called variable length Markov chain.

For context tree estimation via another method see Weinberger, Rissanen and

Feder (1995), Bühlmann and Wyner (1999), and via BIC, see Csiszár and Talata

(2004). There are, however, also substantial differences. The martingale tech-

niques in Csiszár and Shields (2000) and Csiszár (2002) do not appear to carry

over to Markov random fields, and the lack of an analogue of the Krichevsky –

Trofimov distribution used in these references is another obstacle. We also note

that the “large” boundaries of multidimensional sample regions cause side effects

not present in the one dimensional case; to overcome those, we have defined the

pseudo-likelihood function based on a window Λ̄n slightly smaller than the whole

sample region Λn.

For Markov order and context tree estimation via BIC, consistency has been

proved by Csiszár and Shields (2000) admitting, for sample size n, all k ≤ n

as candidate orders, see also Csiszár (2002), respectively by Csiszár and Talata

(2004) admitting trees of depth o(log n) as candidate context trees. In our main

result Theorem 3.4, the PIC estimator of the basic neighborhood is defined ad-

mitting candidate neighborhoods of radius o(log
1
2d |Λn|) thus of size o(log1/2 |Λn|).

The mentioned one-dimensional results suggest that this bound on the radius

might be relaxed to o(log1/d |Λn|), or perhaps dropped completely. This question

remains open, even for the case d = 1. A positive answer apparently depends

on the possibility of strengthening our typicality result Proposition 3.7 to similar

strength as the conditional typicality results for Markov chains in Csiszár (2002).
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More important than a possible mathematical sharpening of Theorem 3.4, as

above, would be to find an algorithm to determine the PIC estimator without

actually computing and comparing the PIC values of all candidate neighborhoods.

The analogous problem for BIC context tree estimation has been solved: Csiszár

and Talata (2004) showed that this BIC estimator can be computed in linear

time via an analogue of the “context tree maximizing algorithm” of Willems,

Shtarkov, and Tjalkens (1993, 2000). Unfortunately, a similar algorithm for the

present problem appears elusive, and it remains open whether our estimator can

be computed in a “clever” way.

Finally, we emphasize that the goal of this work was to provide a consistent

estimator of the basic neighborhood of a Markov random field. Of course, consis-

tency is only one of the desirable properties of an estimator. To assess the practi-

cal performance of this estimator requires further research, such as studying finite

sample size properties, robustness against noisy observations, and computability

with acceptable complexity.

3.A Appendix

First we indicate how the well-known facts stated in Lemma 3.1 can be formally

derived from results in Georgii (1988), using the concepts defined there.

Proof of Lemma 3.1. By Theorem 1.33, the positive one-point specification uniquely

determines the specification, which is positive and local on account of the locality

of the one-point specification. By Theorem 2.30, this positive local specification

determines a unique “gas” potential (if an element of A is distinguished as the

zero element). Due to Corollary 2.32, this is a nearest-neighbor potential for a

graph with vertex set Zd defined there, and Γi
0 is the same as B(i)\{i} in that

Corollary.

The following lemma is a consequence of the global Markov property.

Lemma 3.16. Let ∆ ⊂ Zd be a finite region with 0 ∈ ∆, and Ψ = (∪j∈∆Γj
0) \∆.

Then for any neighborhood Γ, the conditional probabilities Q(a(i)| a(Γi∪Ψi)) and

Q(a(i)| a((Γi ∩∆i) ∪Ψi)) are equal and translation invariant.

Proof. Since ∆ and Ψ are disjoint, we have

Q(a(i)| a(Γi ∪Ψi)) = Q
(
a(i)

∣∣ a((Γ ∩∆)i ∪ (Ψ ∪ (Γ\∆))i
)

=
Q (a({i} ∪ (Γ ∩∆)i)| a((Ψ ∪ (Γ\∆))i)

Q (a((Γ ∩∆)i)| a((Ψ ∪ (Γ\∆))i)
,
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and similarly

Q
(
a(i)| a((Γi ∩∆i) ∪Ψi)

)
=

Q (a({i} ∪ (Γ ∩∆)i)| a(Ψi))

Q (a((Γ ∩∆)i)| a(Ψi))
.

By the global Markov property, see Lemma 3.1, both the numerators and denom-

inators of these two quotients are equal, and translation invariant.

The lemma below follows from the definition of Markov neighborhood.

Lemma 3.17. For a Markov random field with basic neighborhood Γ0, if a neigh-

borhood Γ satisfies

Q(a(i)| a(Γi)) = QΓ0(a(i)| a(Γi
0))

for all i ∈ Zd, then Γ is a Markov neighborhood.

Proof. We have to show that for any ∆ ⊃ Γ

(3.12) Q(a(i)| a(∆i)) = Q(a(i)| a(Γi)).

Since Γ0 is a Markov neighborhood, the condition of the Lemma implies

Q(a(i)| a(Γi)) = Q(a(i)| a(Γi
0)) = Q(a(i)| a((Γ0 ∪∆)i)).

Hence (3.12) follows, because Γ ⊆ ∆ ⊆ Γ0 ∪∆.

Next, we state two simple probability bounds.

Lemma 3.18. Let Z1, Z2, . . . be {0, 1}-valued random variables such that

Prob {Zj = 1 | Z1, . . . Zj−1 } ≥ p∗ > 0, j ≥ 1,

with probability 1. Then for any 0 < ν < 1

Prob

{
1

m

m∑
j=1

Zj < νp∗

}
≤ e−m p∗

4
(1−ν)2 .

Proof. This is a direct consequence of Lemmas 2 and 3 in the Appendix of Csiszár

(2002).

Lemma 3.19. Let Z1, Z2, . . . , Zn be i.i.d. random variables with expectation 0

and variance D2. Then the partial sums

Sk = Z1 + Z2 + · · ·+ Zk

satisfy

Prob

{
max
1≤k≤n

Sk ≥ D
√

n (µ + 2)

}
≤ 4

3
Prob

{
Sn ≥ D

√
n µ
}

,
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moreover if the random variables are bounded, |Zi| ≤ K, then

Prob
{

Sn ≥ D
√

n µ
}
≤ 2 exp

− µ2

2
(
1 + µK

2D
√

n

)2

 ,

where µ < D
√

n/K.

Proof. See, for example, in Rényi (1970) Lemma VI.9.1 and Theorem VI.4.1.

The following three lemmas are of technical nature.

Lemma 3.20. For disjoint finite regions Φ ⊂ Zd and ∆ ⊂ Zd, we have

Q(a(∆)| a(Φ)) ≥ q
|∆|
min.

Proof. By induction on |∆|.
For ∆ = {i}, Ξ = Γi

0 \ Φ, we have

Q(a(i)| a(Φ)) =
∑

a(Ξ)∈AΞ

Q(a(i)| a(Φ ∪ Ξ)) Q(a(Ξ)| a(Φ))

=
∑

a(Ξ)∈AΞ

Q(a(i)| a(Γi
0)) Q(a(Ξ)| a(Φ)) ≥ qmin.

Supposing Q(a(∆)| a(Φ)) ≥ q
|∆|
min holds for some ∆, for {i} ∪ ∆, with Ξ =

Γi
0 \ (Φ ∪∆), we have

Q(a({i} ∪∆)| a(Φ))) =
∑

a(Ξ)∈AΞ

Q(a({i} ∪∆ ∪ Ξ)| a(Φ))

=
∑

a(Ξ)∈AΞ

Q(a(i)| a(∆ ∪ Ξ ∪ Φ)) Q(a(∆ ∪ Ξ)| a(Φ))

Since Q(a(i)| a(∆ ∪ Ξ ∪ Φ)) = Q(a(i)| a(Γi
0)) ≥ qmin, we can continue as

≥ qmin Q(a(∆)| a(Φ)) ≥ q
|∆|+1
min .

Lemma 3.21. The number of all possible blocks appearing in a site and its neigh-

borhood with radius not exceeding R, can be upper bounded as follows:∣∣{ a(Γ, 0) ∈ AΓ∪{0} : r(Γ) ≤ R
}∣∣ ≤ (|A|2 + 1)(2R+1)d/2.
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Proof. The number of the neighborhoods with cardinality m ≥ 1 and radius

r(Γ) ≤ R is ((
(2R + 1)d − 1

)
/2

m

)
,

because the neighborhoods are symmetric. Hence, the number in the proposition

is

|A|+ |A| ·
((2R+1)d−1)/2∑

m=1

((
(2R + 1)d − 1

)
/2

m

)
|A|2m

= |A|
((2R+1)d−1)/2∑

m=0

((
(2R + 1)d − 1

)
/2

m

)(
|A|2

)m
1((2R+1)d−1)/2−m.

Now, using the binomial theorem, the assertion follows.

Lemma 3.22. Let P and Q be probability distributions on A such that

max
a∈A

|P (a)−Q(a)| ≤
min
a∈A

Q(a)

2
.

Then ∑
a∈A

P (a) log
P (a)

Q(a)
≤ 1

min
a∈A

Q(a)

∑
a∈A

(P (a)−Q(a))2 .

Proof. This follows from Lemma 4 in the Appendix of Csiszár (2002).



68 CHAPTER 3. MARKOV FIELD NEIGHBORHOOD ESTIMATION



Bibliography

Akaike, H. (1970). Statistical predictor identification. Ann. Inst. Statist. Math.

22 203–217.

Akaike, H. (1972). Information theory and an extension of the maximum like-

lihood principle. In Proceedings of the 2nd International Symposium on

Information Theory, Supplement to Problems of Control and Information
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