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Introduction

Random matrices are matrix valued random variables or in other words matrices whose
entries are random variables. There are different kind of random matrices depending
on the size, the distribution of the elements, and the correlation between the elements.

Wishart was the first who studied random matrices in 1928 ([46]), and he was moti-
vated by multivariate statistics. He considered n pieces of m dimensional independent
identically distributed random vectors. The covariance matrix of these random vari-
ables is the expectation of an m × m positive random matrix, what we call Wishart
matrix if the components of the random vectors are normally distributed random vari-
ables.

Another point of view was given by physics. Wigner obtained some properties of
the eigenvalues of complex selfadjoint or real symmetric random matrices in the papers
[43, 44, 45]. He used large symmetric random matrices in order to have a model of the
energy levels of nuclei.

After finding these motivations to study random matrices, in [11, 12, 13] Dyson
established the mathematical foundations of random matrix theory. He made a classi-
fication of the random matrices according to their invariancy properties.

The main question was the behaviour of the eigenvalues of the random matrices.
The set of eigenvalues in the above cases, when the matrix self-adjoint consist of n
identically distributed but not independent real valued random variables. If we have
the joint eigenvalue density, then we have all the information about the eigenvalues,
but for this we need to know the joint density of the entries, and the invariance of
the distribution of the random matrix under unitary conjugation. Therefore, though
Wigner in [44] gave the joint eigenvalue density of the selfadjoint random matrices if
the entries are Gaussian, but in the general case he studied the mean distribution of
the eigenvalues. This means, that he defined the random function for an n×n random
matrix An

Fn(x) :=
#{i : λi(An) < x}

n

We can find the limit of the expectation of the empirical eigenvalue distribution ([43])
or the convergence of the empirical eigenvalue distribution in probability or almost
surely ([1, 27, 32]). Also we can study the rate of convergence in each case ([2, 3, 20]).
Others found not only the limit of the empirical eigenvalue distribution but that there
is no eigenvalue outside the support of the limit measure with probability 1, i.e. the
almos sure limit of the smallest and the largest eigenvalue of the random matrix is the
infimum or the supremum of the support respectively.

There are theorems which are valid only in the case of Gaussian matrices and there
are some universal theorems, when we need only some properties of the entries. For
example the exponential rate of the convergence with some rate function (the so-called
large deviation principle, see [6, 19, 23]) holds only for random matrices, where the
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joint density of the eigenvalues are known. But there are universal theorems, which
are independent from the density of the entries. For example for the convergence of the
empirical eigenvalue distribution function we need only the finiteness of some moments
of the entries, and also the convergence of the smallest and the largest eigenvalues can
be proven in similar ways as in the case of Gaussian matrices.

The question of non-selfadjoint matrices is also interesting. For example if all the
entries are independent, identically distributed random variables, the we get a random
matrix whose eigenvalues are not real. This random matrix defines a whole family of
random matrices, if we take any linear combination of the matrix and its adjoint. In
the Gaussian case the linear combination is also Gaussian, so it is possible to obtain the
joint eigenvalue density, and the rate function for the exponential rate of convergence is
found ([33]), but the same universal theorem holds as in the case of selfadjoint random
matrices, i.e. the empirical eigenvalue distribution measure of the matrix (which is
now a random measure on the complex plane) converges to a determonistic measure,
if th forth moment of the entries is finite (see [15, 16, 17, 18]).

The other very important type of random matrices is the unitary random matrices.
The construction of a random unitary matrix is different from the above random ma-
trices, since we cannot take independent entries. The set of n × n unitary matrices
is not a subspace of the set of n × n matrices, as in the previous examples, but it
is a group with respect to the matrix multiplication. Therefore the matrix density is
considered with respect to the translation invariant measure, the so-called Haar mea-
sure of this group, not with respect to the Lebesgue measure. The matrix which is
distributed according to this measure, i.e. has uniform distribution on the set of n× n
unitary matrices, is called Haar unitary random matrix. Here the eigenvalues are not
real, but they are on the unit circle. By the definition of the Haar unitary, since it is
invariant under multiplication by a unitary matrix, clearly it is invariant under unitary
conjugation. Therefore it is possible to obtain the joint eigenvalue density function,
and the convergence of the empirical eigenvalue distribution. The joint density of the
eigenvalues is known, so we can prove the exponential convergence with some rate
function. The correlation between the entries converges to zero, as the matrix size goes
to infinity, so some kind of central limit theorems can be proven. For example the
trace of any power of a Haar unitary is asymptotically normally distributed ([10, 34]),
and after standardization the random variable which gives numbers of eigenvalues on
a specified arc again converges to the standard normal random variable in distribution
as the matrix size goes to infinity ([42]).

Random matrix theory was first used to solve statistical and physical problems,
as we mentioned above. Now it play important role in number theory since strong
correlation was found between the zeros of Riemann ζ function and the eigenvalues of
random unitary matrices ([28]). Random matrices are useful in the noncommutative
probability, since every noncommutative random variable can be approximated by a
sequence of large random matrices as the matrix size goes to infinity ([39]).

There are still other random matrices to study. For example now we will deal with
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the m × m truncation of an n × n Haar unitary random matrix, which is a random
contraction, so the eigenvalues are lying on the unit disc ([34, 35, 48]). Other family of
random matrices comes from the modification of Gaussian random matrices, they are
the so-called q deformed Gaussian random matrices ([37]), where the random matrix
and its adjoint fulfil some commutation relations depending on 0 < q < 1.

In this dissertation we will study most of the above topics in the following order.

In Section 1 we give an overview of different kind of random matrices. In the case of
independent normally distributed entries, it is easy to determine the joint distribution
of the entries. As we can see, this joint distribution can be described by the eigen-
values, so if we find the Jacobian of the transformation which transforms the entries
into the eigenvalues and some independent parameters, we get the joint density of the
eigenvalues. We will show a more detailed version of this calculations, which was first
given by Wigner [44] and Mehta [31] in the case of selfadjoint and non-selfadjoint ran-
dom matrices. Since these matrices are invariant under unitary conjugation, the joint
density of the eigenvalues contains all the information about the random matrices. The
other important question concerning the random matrices is the limit distribution of
the sequence of the empirical eigenvalue distribution as the matrix size goes to infinity.
We will consider first the random matrices with independent normally distributed en-
tries, and then we note that some methods work in the case of not normally distributed
entries too.

In Section 2 we give an introduction into the large deviation theory. This theory
is related to the sequence of random variables with non-random limits, for example
in the case of law of large numbers. After recalling the first large deviation theorem
of Cramèr, we define the large deviation principle for random matrices. The large
deviation theorem for the different kind of Gaussian random matrices mentioned in
the Section 1 are also here, as the theorem of Ben Arous and Guionnet [5], and the
theorems of Hiai and Petz. Since the rate function in the case of random matrices is
some weighted logarithmic energy, and the limit distribution is the so-called equilibrium
measure of this functional, we have an overview of the basic notions of potential theory,
and some theorems in order to obtain the equilibrium measures of the logarithmic
energy with different rate functions.

In Section 3 we give the construction of the so called Haar unitary random matrix,
which is a unitary matrix valued random variable with the distribution according to the
Haar measure on the set of n× n unitary matrices. We collect the main properties of
this random matrix, as the distribution of the entries, the correlation between any two
entries, and the joint eigenvalue density function. We have an elementary proof of the
theorem of Diaconis and Shahshahani, which claims that the trace of different powers
of the Haar unitary random matrices are asymptotically independent and normally
distributed as the matrix size goes to infinity. From this we deduce, that the empirical
eigenvalue distribution tends to the uniform distribution on the unit circle. We also
prove this for the Haar distributed orthogonal random matrices with the same method.
Finally we recall the theorem of Hiai and Petz [25], which proves the large deviation
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theorem for unitary random matrices.

In Section 4 we consider a new kind of random matrix, the m × m truncation of
an n× n Haar unitary random matrix. We give a more detailed proof of the theorem
of Życzkowski and Sommers which gives the joint eigenvalue density of these random
matrices, and then we give the normalization constant [34]. The joint eigenvalue density
then helps us to get the main result of the dissertation, which is the large deviation
theorem for the empirical eigenvalue distribution of the truncation, as the matrix size
goes to infinity, and m/n converges to a constant λ. After minimizing the rate function
of this large deviation we get the limit of the empirical eigenvalue distribution.

Finally in Section 5 we point to the connection of the free probability and the random
matrix theory. We define the noncommutative probability space, the noncommutative
random variables, and random matrix models of different noncommutative random
variables, using the random matrices mentioned in the previous sections. We define the
Brown measure of a noncommutative random variable, and we study he relationship
between the Brown measures of the random variables and the empirical eigenvalue
distribution of their random matrix model.
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1 Random matrices and their eigenvalues

Random variables which are situated in this special way allows us to examine the
behaviour of matrix quantities such as eigenvalues, determinant and trace, or the as-
ymptotic behaviour of the entries and the above quantities as the matrix size n→ ∞.
Since the trace and the determinant are given as the sum and the product of the eigen-
values, the most important thing is to examine the eigenvalues. In the case of random
matrices, the eigenvalues are random variables too, and we can get all the information
if we have the joint eigenvalue density of the eigenvalues.

The aim of this section is to give an overview of several kind of random matrices.

1.1 The standard complex normal variable

In this thesis we mainly study random matrices with Gaussian entries, or random
matrices constructed from Gaussian random matrices, so now we will mention some
properties of the so-called standard complex normal variable

Definition 1.1 Let ξ be a complex-valued random variable. If Re ξ and Im ξ are in-
dependent and normally distributed according to N(0, 1/2), then we call ξ a standard
complex normal variable.

The terminology is justified by the properties E(ξ) = 0 and E (|ξ|2|) = E(ξξ) = 1.

Lemma 1.2 Assume that R ≥ 0 and R2 has exponential distribution with parameter
1, ϑ is uniform on the interval [0, 2π], and assume that R and ϑ are independent. Then
ξ = Reiϑ is a standard complex normal random variable and

E(ξkξ
`
) = δk`k! (k, ` ∈ Z+)

Proof. Let X and Y be real-valued random variables and assume that X + iY is
standard complex normal. For r > 0 and 0 ≤ ϑ0 ≤ 2π set

Sr,ϑ0 := {ρeiψ : 0 ≤ ρ ≤ r, 0 ≤ ψ ≤ ϑ0},

then

P (X + iY ∈ Sr,ϑ0) =
1

π

∫ ∫

{(s,t):s+it∈Sr,ϑ0
}
e−(s2+t2)dsdt

=
1

π

∫ ϑ0

0

dψ

∫ r

0

ρe−ρ
2

dρ

=
1

2π
ϑ0

(
1 − e−r

2
)

= P (ξ ∈ Sr,ϑ0) .
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This proves the first part which makes easy to compute the moments:

E(ξkξ
`
) = E

(
Rk+`

)
E
(
eiϑ(k−`)) = δk`E(R2k),

so we need the moments of the exponential distribution. We have by partial integration
∫ ∞

0

xke−x dx = −
[
xke−x

]∞
0

+ k

∫ ∞

0

xk−1e−x dx = k

∫ ∞

0

xk−1e−x dx

= k(k − 1)

∫ ∞

0

xk−2e−x dx = · · · = k!

∫ ∞

0

e−x dx = k! (1)

which completes the proof of the lemma. �

Lemma 1.3 Let ξ and η be independent identically distributed random variables with
zero mean and finite variance. Suppose that the distribution of (ξ + η)/

√
2 coincides

with the distribution of ξ. Then ξ and η are normally distributed.

Proof. We can assume, that the variance of ξ is 1. If ϕ(t) is the Fourier transform of
ξ and ϕ, i.e.

ϕ(t) := E
(
eiξt
)

=

∫
eitxdFξ(x) =

∫
eitxdFη(x),

where Fξ and Fη are the distributions of ξ and η respectively. Then ϕ(0) = 1,

ϕ′(0) = i

∫
xdFξ(x) = iE(ξ) = 0,

and

ϕ′′(0) = i2
∫
x2dFξ(x) = iE

(
ξ2
)

= −1.

If we have the joint distribution F(ξ,η)(x, y) = Fξ(x)Fη(y) of ξ and ϕ then the Fourier

transform of (ξ+ η)/
√

2 is ϕ, because it has the same distribution. On the other hand

∫
eit(x+y)/

√
2dF(ξ,η) =

∫
eitx/

√
2dFξ(x)

∫
eity/

√
2dFη(y) = ϕ2

(
1√
2

)
,

so

ϕ2

(
t√
2

)
= ϕ(t). (2)

If ϕ(t) = 0 for some t, then ϕ (t/2n) = 0, which is impossible, since ϕ is continuous
and ϕ(0) = 1. For ψ(t) := logϕ(t), clearly ψ(0) = 0,

ψ′(0) =
ϕ′(0)

ϕ(0)
= 0,

and

ψ′′(0) =
ϕ(0)ϕ′′(0) − (ϕ′(0))2

(ϕ(0))2
= −1.
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We have from (2), that

ψ(t) = 2ψ

(
t√
2

)
,

so for all positive n
ψ(t)

t2
=
ψ
(

t
2n/2

)
(

t
2n/2

)2 .

We have that for all t
ψ(t)

t2
= lim

s→0

ψ(s)

s2
= c,

so ψ(t) = ct2, and since ψ′′(0) = −1, c = −1/2, so

ϕ(t) = e−t
2/2,

so ϕ is the Fourier transform of the standard normal distribution. The Fourier trans-
form of a distribution is unique, so ξ is normally distributed. �

1.2 Selfadjoint Gaussian random matrices

Apart from the trivial example of diagonal random matrix with independent entries,
the simplest example for random matrix is the following selfadjoint random matrix,
which is called standard selfadjoint Gaussian matrix. Consider the n × n random
matrix An with entries Aij

• ReAij and ImAij are independent N
(
0, 1

2n

)
distributed random variables, if

1 ≤ i < j ≤ n;

• Aii are N
(
0, 1

n

)
distributed random variables if 1 ≤ i ≤ n;

• the entries on and above the diagonal are independent;

• Aij = Aji, for all 1 ≤ j < i ≤ n.

The above matrix is selfadjoint so its eigenvalues are real.

We can obtain a standard selfadjoint Gaussian matrix in the following way. Let Xn

be the so called n×n standard non-selfadjoint Gaussian matrix Xn = (Xij)1≤i,j≤n such
that

• ReXij, ImXij are independent identically distributed random variables with dis-
tribution N(0, 1/2n) for 1 ≤ i, j ≤ n;

• all the entries are independent.
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For this matrix

An :=
Xn +X∗

n√
2

(3)

is a standard selfadjoint Gaussian matrix. Clearly An is selfadjoint, and the distribu-
tion of the entries is normal as the linear combination of normal distributed random
variables. Note that the

A′
n :=

Xn −X∗
n√

2i
(4)

is a standard selfadjoint Gaussian matrix too. An and A′
n are independent, so if we

have two independent n× n standard selfadjoint Gaussian matrices An and A′
n, then

Xn :=
An + iA′

n√
2

(5)

is a standard non-selfadjoint Gaussian random matrix.

The standard non selfadjoint Gaussian random matrices are invariant under the
multiplication by a non-random unitary matrix, so we get the following lemma.

Lemma 1.4 The distribution of An is invariant under unitary conjugation, i.e. if
Un = uij is an n× n non-random unitary matrix, then An and UnAnU

∗
n have the same

distribution.

Proof. From (3) it is enough to prove, that Xn and UnXn has the same distribution
where Xn is an n × n standard non-selfadjoint Gaussian random matrix. The entries
ξij of UnXn are the same as the entries of Xn. Indeed,

ξij =

n∑

l=1

uilXlj

is normal, since any linear combination of independent normally distributed random
variables are normal. But this is not enough, because we need that the joint density
of the entries is the same. Indeed, the joint density of the entries of Xn is

nn
2

πn2 exp

(
−n

n∑

i,j=1

x2
ij + y2

ij

)

=
nn

2

πn2 exp (−nTrX∗
nXn) =

nn
2

πn2 exp (−nTr (XnUn)
∗XnUn) .

Since

UnAnU
∗
n = Un

(
Xn +X∗

n√
2

)∗
=
UnXnU

∗
n + UnX

∗
nU

∗
n√

2
=
UnXnU

∗
n + (UnXnU

∗
n)

∗
√

2
,

which by (3) has clearly the same distribution as An.
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The standard non selfadjoint Gaussian matrix consists of n2 independent real valued
normally distributed random variables (n in the diagonal, and n(n − 1) above the
diagonal if we consider the real and imaginary parts separately). The joint density of
the entries with respect to the Lebesgue measure on Rn2

is the joint density of the
above random variables, so can be written in the form

n
n2

2

2
n
2 π

n2

2

exp

(
−n

2

(
n∑

i=1

x2
ii + 2

∑

i<j

(
x2
ij + y2

ij

)
))

=
n

n2

2

2
n
2 π

n2

2

exp
(
−n

2
TrA2

n

)
=

n
n2

2

2
n
2 π

n2

2

exp

(
−n

2

n∑

i=1

λ2
i

)
. (6)

Here λ1, . . . , λn are the eigenvalues of An, so the joint density can be expressed by the
eigenvalues. This easily comes from the fact that the distribution of An is invariant
under unitary conjugation.

In the sequel we will give the joint eigenvalue density of An with the transformation
of the variables. If we change the variables xij, yij into λi, . . . λn, and n(n − 1)/2
parameters pν, then using the fact that for any normal matrix A there exists a U
unitary matrix, and D := diag(λ1, . . . , λn), such that

A = U∗DU.

U is unitary so U ∗U = I, and therefore

∂U∗

∂pν
U + U∗ ∂U

∂pν
= 0,

for all 1 ≤ ν ≤ n(n− 1)/2, so we use the notation

dS(ν) := U∗ ∂U

∂pν
= −∂U

∗

∂pν
U. (7)

U does not depend on the eigenvalues, so

∂A

∂λµ
= U∗ ∂D

∂λµ
U

for all 1 ≤ µ ≤ n, so for the entries

∑

kl

∂Akl
∂λµ

UkiUlj =
∂Dij

∂λµ
= δijδiµ,

and if we separate the real and imaginary parts, we have that since A is selfadjoint, so
the diagonal elements are real, and ReAkl = ReAkl and ImAkl = −ImAkl so

n∑

k=1

∂Akk
∂λµ

ReU∗
kiUkj +

∑

k<l

∂ReAkl

∂λµ

(
Re (UkiUlj) + Re (U liUkj)

)

−
∑

k<l

∂ImAkl
∂λµ

(
Im (UkiUlj) − Im (U liUkj)

)
= δijδiµ, (8)
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and

n∑

k=1

∂Akk
∂λµ

ImU∗
kiUkj +

∑

k<l

∂ReAkl

∂λµ

(
Im (U kiUlj) + Im (U liUkj)

)

+
∑

k<l

∂ImAkl
∂λµ

(
Re (U kiUlj) − Re (U liUkj)

)
= 0, (9)

for 1 ≤ µ ≤ n. Now since D does not depend on pν, we have

∂A

∂pν
=
∂U

∂pν
DU∗ + UD

∂U∗

∂pν

so

U∗ ∂A

∂pν
U = dS(ν)D −DdS(ν),

and which means for the entries

n∑

k,l=1

∂Akl
∂pν

UkiUlj = dS
(ν)
ij (λi − λj),

so by separating the real and imaginary parts we get

n∑

k=1

∂Akk
∂pν

ReU∗
kiUkj +

∑

k<l

∂ReAkl

∂pν

(
Re (UkiUlj) + Re (U liUkj)

)
(10)

−
∑

k<l

∂ImAkl
∂pν

(
Im (UkiUlj) − Im (U liUkj)

)
= dReSνij(λi − λj),

and

n∑

k=1

∂Akk
∂pν

ImU∗
kiUkj +

∑

k<l

∂ReAkl

∂pν

(
Im (U kiUlj) + Im (U liUkj)

)
(11)

+
∑

k<l

∂ImAkl
∂pν

(
Re (U kiUlj) − Re (U liUkj)

)
= dImSνij(λi − λj).

We need the determinant of the n2 × n2 matrix

J :=




∂Aii
∂λµ

∂ReAij

∂λµ

∂ImAij
∂λµ

∂Aii
∂pν

∂ReAij

∂pν

∂ImAij
∂pν


 .

Here ∂Aii/∂λµ is an n × n matrix, ∂ReAij/∂λµ and ∂ImAij/∂λµ are n × n(n − 1)/2
matrices, and we order the columns by lexicographic order of the (i, j) pairs, ∂Aii/∂pν
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is an n(n−1)×n matrix, finally ∂ReAij/∂pν and ∂ImAij/∂pν are n(n−1)×n(n−1)/2
matrices. Now let

V :=




ReU∗
kiUkj ImU∗

kiUkj

Re (U kiUlj) + Re (U liUkj) Im (U kiUlj) + Im (U liUkj)

Im (U liUkj) − Im (U kiUlj) Re (UkiUlj) − Re (U liUkj)



,

Here ReU∗
kiUkj and ImU∗

kiUkj are n×n(n−1)/2 matrices, where k is fixed in a row, and
the pairs (i, j) are ordered lexicographically. The submatrices Re (U kiUlj)+Re (U liUkj),
Im (U kiUlj) + Im (U liUkj), Im (U liUkj) − Im (UkiUlj) and Re (UkiUlj) − Re (U liUkj) are
n(n− 1)/2×n(n− 1)/2 matrices, so V is again an n2 ×n2 matrix, and by the previous
equations

JV =

(
δijδiµ 0
dReSνij(λi − λj) dImSνij(λi − λj)

)

where the (i, j) pair is fixed in one row, so we have for the determinants of the above
matrices

det J detV =
∏

i<j

(λi − λj)
2 det

(
δijδiµ 0
dReSνij dImSνij

)

From this we get the Jacobian

C
∏

i<j

(λi − λj)
2, (12)

for some constant C, since the matrix on the right hand side of the above equation,
and the matrix V does not depend on the eigenvalues.

Finally we got the joint density of the eigenvalues

Csa
n exp

(
−n

2

n∑

i=1

λ2
i

)
∏

i<j

(λi − λj)
2 (13)

with the normalization constant

Csa
n := C

n
n2

2

2
n
2 π

n2

2

=
n

n2

2

(2π)
n
2

∏n
j=1 j!

. (14)

Now consider the asymptotic behaviour of the empirical eigenvalue distribution
which is defined by

Fn(x) :=
1

n
# {λi : λi ≤ x} , (15)

so this is a random distribution function.

In fact Wigner studied more general random matrices, the so-called Wigner matrices,
which are selfadjoint random matrices with independent, identically distributed entries
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on and above the diagonal, where all the moments of the entries are finite. The first
theorem of Wigner about the empirical eigenvalue distribution concerned only the
expectation of Fn, and found that this sequence of distribution functions converges to
the so-called semicircle distribution. which has the density

w(x) :=
1

2π

√
4 − x2χ[−2,2]. (16)

This is the Wigner semicircle law, since the first form of this theorem, which concerned
only the expectation of the empirical eigenvalue distribution was proven by Wigner in
[43].

The almost sure weak convergence of the sequence of random distribution functions
was proven by Arnold in[1]. He proved the almost sure convergence for general Wigner
matrices, with the assumption that some moments of the entries are finite.

Wigner’s and Arnold’s proofs are based on the fact, that the moments of Fn converge
to the αk moments of the semicircle distribution. These are the so-called Catalan
numbers

αk :=





0, if k = 2m+ 1

1

m+ 1

(
2m

m

)
, if k = 2m

By the Carleman criterion (in VII. 3 of [14]) for a real valued random variable the
moments γk determine the distribution uniquely if

∑

k∈N

γ
− 1

k
2k = ∞.

This holds for the Catalan numbers, so it is enough to prove, that

∫
xkdFn(x) =

1

n

n∑

i=1

λki =
1

n
Tr (Akn)

n→∞−→ αk.

This trace is a sum of products of matrix element, and we have to take the summation
over the terms, which are not asymptotically small. The number of this terms can be
obtained by combinatorial methods.

Wigner proved that for an An sequence of n× n Wigner matrices

lim
n→∞

ETrAkn = αk.

Arnold’s proof contained more about the convergence. By the Chebyshev inequality
he obtained

P
(
|TrAkn − ETrAk

n| > ε
)
≤ O

(
n− 3

2

)
,

so by the Borel-Cantelli lemma it implies the almost sure convergence of Fn. As we
mentioned, these proofs did not use the exact distribution of the entries. For standard
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selfadjoint Gaussian matrix Haagerup and Thorbjørnsen had another proof for the
convergence. Their method based on the fact, that the mean density of the eigenvalues
(i.e. the density of the arithmetic mean of the eigenvalues) is

1

n

n−1∑

k=0

ϕk(x)
2,

where

ϕk(x) := e−
x2

2 Hk(x),

with the kth Hermite polynomial Hk. In their paper [22] they proved moreover, that

there is no eigenvalue outside the interval [−1, 1] with probability one, i. e. if λ
(n)
max and

λ
(n)
min denote the largest and smallest eigenvalue of An respectively, then

λ(n)
max

n→∞−→ 2,

and
λ

(n)
min

n→∞−→ −2,

and the convergence is almost sure in both case.

The Wigner semicircle law holds for symmetric Gaussian random matrices with real
entries, where the distribution of the entries on and above the diagonal are independent
real N(0, 1/n) distributed random variables. Here, the density of the matrix is with

respect to the Lebesgue measure on R
(n+1)n

2

C1 exp

(
−n
(

n∑

i≤j
x2
ij

))
= C1 exp

(
−nTrA2

n

)
= C1 exp

(
−n

n∑

i=1

λ2
i

)
, (17)

In this case of symmetric matrices the Jacobian will be

∏

i<j

|λi − λj|, (18)

similarly to the complex case, but here the imaginary parts are zero, so the size of
transformation matrix is smaller. Therefore the joint density of the eigenvalues will be

Csymm exp

(
−n

n∑

i=1

λ2
i

)
∏

i<j

|λi − λj|. (19)

The Wigner theorem can be proven for these matrices in the same way by means of
the method of moments.
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1.3 Wishart type random matrices

The matrices defined below called Wishart matrices, since they were introduced by
Wishart in 1928 [46]. He used these matrices in multivariate statistics, so he studied
matrices with real entries. Suppose, that we have an X p×n Gaussian random matrix,
such that Xij independent random variables with distribution N(0, 1/n) for all 1 ≤ i ≤
p and 1 ≤ j ≤ n. Then the p× p matrix Wp := XX∗ is the so called Wishart matrix.
It has very important role in the multivariate statistics. This matrix Wp is not only
selfadjoint, but positive, so the eigenvalues lie on R+.

If p > n, then the rank of Wp is at most p, so it has n−p zero eigenvalues. Moreover,
if λ is a non-zero eigenvalue of Wp, then there exists an v ∈ Rp such that

Wpv = XX∗v = λv.

Then
X∗XX∗v = λX∗v,

so λ is an eigenvalue of X∗X too with eigenvector X∗v. So all the non-zero eigenvalues
of Wp coincide with the eigenvalues of X∗X, therefore, it is enough to deal with the
p ≤ n case.

The Jacobian of the transformation which maps the entries into the set of eigenvalues
is the same as in the case of symmetric Gaussian matrices, since the Wishart matrix
is symmetric too, so we can transform into a diagonal matrix by unitary conjugation.
Similarly to the case of Wigner matrices, the joint density of the eigenvalues can be
derived the joint density of the entries and the Jacobian in (18), and it can be written
in the form

Cwish
n,p

(
p∏

i=1

λi

)n−p−1
2
(
∏

i<j

|λi − λj|
)

exp

(
−1

2

p∑

i=1

λi

)
,

supported on (R+)n. Again, this contains all the information about the matrix, since
it is invariant under unitary conjugation.

For the asymptotic behaviour of the empirical eigenvalue distribution we must find
some relation between the number of the rows and columns, so p := p(n) ≤ n. If

p(n)

n

n→∞−→ λ > 0,

then we can state a similar to the Wigner semicircle law, i.e. the random measure
sequence of the empirical eigenvalue distribution has a non-random limit distribution
function, but the density of the function is different. The first form of the theorem
below was proven by Marchenko and Pastur in [30] and the distribution was named
after them. (It is also called free Poisson distribution, cf [23]).
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Theorem 1.1 Denote F λ
n (x) the empirical eigenvalue distribution of Wp, and F λ(x)

the so-called Marchenko-Pastur distribution, with density

fλ(x) :=

√
4λ− (x− λ− 1)2

2πλx
,

supported on the interval
[
(1 −

√
λ)2, (1 +

√
λ)2
]
. Then

F λ
n

n→∞−→ F λ

weakly with probability 1.

0,5

0

x

1,51 20,5

0

0.5

1

1.5

2

2.5

3

1 2 3 4
x

Density of the Marchenko-Pastur distribution for λ = 1/3 and λ = 1

This theorem holds in a more general form, as we will see later.

Haagerup and Thorbjørnsen in [22] studied Wishart matrices with complex entries.
They used p × n Gaussian matrices with independent complex normal entries with
zero mean and variance 1/n. In this case they proved the almost sure convergence of
the empirical eigenvalue distribution of the eigenvalues by using the fact that the joint
eigenvalue density is

n−1∑

k=0

ϕ
(m−n)
k (x)2,

where ϕ
(α)
k can be expressed in terms of Laguerre polynomials L

(α)
k in the following way

ϕ
(α)
k (x) =

√
k!

Γ(k + α + 1)
xα exp(−x)L(α)

k (x).
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With this method they proved the almost sure convergence of the largest and the
smallest eigenvalue, i.e.

λmax
n→∞−→ (1 +

√
λ)2 and λmax

n→∞−→ (1 −
√
λ)2.

1.4 Non selfadjoint Gaussian matrices

The simplest non selfadjoint random matrix is the n × n standard non-selfadjoint
Gaussian matrix. As we could see, this matrix defines a standard selfadjoint Gaussian
random matrix too. Similarly it gives a whole family of random matrices in the fol-
lowing way.

Definition 1.5 Let u, v ∈ R such that u2 + v2 = 1, then the we call the matrix

Yn := uXn + vX∗
n (20)

an elliptic Gaussian matrix.

Note that in the case u = 1/
√

2 Yn is the standard selfadjoint Gaussian matrix, and
for u = 1 Yn is the standard non-selfadjoint Gaussian matrix.

If we have An and A′
n independent standard n×n selfadjoint random matrices, then

(5) we can construct an elliptic random matrix

Yn = u
An + iA′

n√
2

+ v
An − iA′

n√
2

=
u+ v√

2
An +

u− v√
2

iA′
n, (21)

where again (
u+ v√

2

)2

+

(
u− v√

2

)2

= u2 + v2 = 1.

Since Yn is not selfadjoint we cannot transform it into a diagonal matrix in order to
get the joint eigenvalue density. Here we use the so-called Schur decomposition of the
matrix Yn.

Lemma 1.6 (Schur decomposition) For every matrix A ∈ Cn×n there exist an n×
n unitary matrix U , and an upper triangular matrix Z such that

A = UZU∗.

Proof. We are looking for an orthonormal basis u1, . . . , un such that the matrix A
takes the upper-triangular form on this basis. We will prove the lemma by induction.
If n = 1, then we have a trivial case. Now suppose that n > 1, and let u1 be an
eigenvector of A with eigenvalue λ1, such that ‖u1‖ = 1. If V := u⊥1 , then V is
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invariant under (I − u1u
∗
1)A, and (I − u1u

∗
1)Au1 = 0. By the induction there exists a

basis u2, . . . un, such that (I − u1u
∗
1)A takes the desired form Zn−1 on V . The n × n

unitary matrix U with column vectors u1, . . . , un gives the Schur decomposition of A,
since clearly

U∗AU = U∗(I − u1u
∗
1)AU + U∗u1u

∗
1AU,

where
(U∗(I − u1u

∗
1)AU)ij = u∗i (I − u1u

∗
1)Auj,

which is zero, if either i = 1 or j = 1, and if i, j ≥ 2 then it gives the matrix Zn−1.
Moreover

(U∗u1u
∗
1AU)ij = u∗iu1u

∗
1Auj,

which is λ1 if i = j = 1, and zero if i 6= 1, so we have that

U∗AU =

(
λ1 ∗
0 Zn−1

)
= Z.

�

We will use the Schur decomposition instead of the diagonalization in order to obtain
the joint eigenvalue density of the elliptic Gaussian matrix Yn. There exists a unitary
matrix U and an upper triangular matrix ∆, such that

Y = U(D + ∆)U∗,

where D = diag(λ1, . . . , λn), where λ1, . . . , λn are the complex eigenvalues of Y), and
∆ij = 0, if i ≥ j. Again we transform the 2n2 variables (ReXij)

n
i,j=1, (ImXij)

n
i,j=1

into the 2n variables (Reλi)
n
i=1, (Imλi)

n
i=1 the n(n − 1) variables (Re ∆ij), (Im ∆ij),

(1 ≤ i < j ≤ n) and n(n−1) variables (pν), 1 ≤ ν ≤ n(n−1). U is unitary so U ∗U = I,
and therefore

∂U∗

∂pν
U + U∗ ∂U

∂pν
= 0,

so we use the notation

dS(ν) := U∗ ∂U

∂pν
= −∂U

∗

∂pν
U.

U does not depend on the eigenvalues, and ∆ij, so the equations, ∆ and D does not
depend on pν for 1 ≤ ν ≤ n(n− 1), so

dS(ν) := U∗ ∂U

∂pν
= −∂U

∗

∂pν
U.

U does not depend on the eigenvalues, so

∂Y

∂Re λµ
= U

∂D

∂Re λµ
U∗

and
∂Y

∂Im λµ
= U

∂D

∂Im λµ
U∗
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so for the entries ∑

kl

∂Ykl
∂Reλµ

UkiUlj =
∂Dij

∂Re λµ
= δijδiµ,

and ∑

kl

∂Ykl
∂Im λµ

UkiUlj =
∂Dij

∂Im λµ
= iδijδiµ,

and if we separate the real and imaginary parts,

∑

k,l

∂ReYkl
∂Reλµ

Re (U kiUlj) −
∑

k,l

∂Im Ykl
∂Re λµ

Im (U kiUlj) = δijδiµ,

∑

k,l

∂Im Ykl
∂Re λµ

Re (UkiUlj) +
∑

k,l

∂Re Ykl
∂Re λµ

Im (UkiUlj) = 0,

and similarly

∑

k,l

∂Re Ykl
∂Im λµ

Re (U kiUlj) −
∑

k,l

∂Im Ykl
∂Imλµ

Im (UkiUlj) = 0,

∑

k,l

∂Im Ykl
∂Im λµ

Re (U kiUlj) +
∑

k,l

∂ReYkl
∂Im λµ

Im (U kiUlj) = δijδiµ,

for 1 ≤ µ ≤ n. Again D and ∆ do not depend on pν for 1 ≤ ν ≤ n(n− 1), so

∂Y

∂pν
=
∂U

∂pν
DU∗ + UD

∂U∗

∂pν

so

U∗ ∂Y

∂pν
U = dS(ν)D −DdS(ν),

and which means for the entries
n∑

k,l=1

∂Ykl
∂pν

UkiUlj = dS
(ν)
ij (λi − λj),

so by separating the real and imaginary parts we get

∑

k,l

∂Re Ykl
∂pν

Re (UkiUlj) −
∑

k,l

∂Im Ykl
∂pν

Im (UkiUlj)

= dReSνij(Reλi − Reλj) − dImSνij(Imλi − Imλj), (22)

and
∑

k,l

∂Im Ykl
∂pν

Re (UkiUlj) +
∑

k,l

∂Re Ykl
∂pν

Im (U kiUlj)

= dImSνij(Reλi − Reλj) + dReSνij(Imλi − Imλj). (23)
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Moreover, since U and D are independent from ∆, so

∂Y

∂∆ij
= U

∂∆

∂∆ij
U∗,

so for the entries ∑

k,l

∂Ykl
∂∆ij

UkiUlj = 1,

so ∑

k,l

∂Re Ykl
∂Re ∆ij

Re
(
UkiUlj

)
−
∑

k,l

∂Im Ykl
∂Re ∆ij

Im
(
U kiUlj

)
= 1,

∑

k,l

∂Re Ykl
∂Re ∆ij

Im
(
UkiUlj

)
+
∑

k,l

∂Im Ykl
∂Re ∆ij

Re
(
UkiUlj

)
= 0,

∑

k,l

∂ReYkl
∂Im ∆ij

Re
(
UkiUlj

)
−
∑

k,l

∂Im Ykl
∂Im ∆ij

Im
(
UkiUlj

)
= 0,

∑

k,l

∂Re Ykl
∂Im ∆ij

Im
(
UkiUlj

)
+
∑

k,l

∂Im Ykl
∂Im ∆ij

Re
(
UkiUlj

)
= 1.

We need the determinant of the 2n2 × 2n2 matrix

J :=




∂Re Yij
∂Re λµ

∂Im Yij
∂Re λµ

∂Re Yij
∂Im λµ

∂Im Yij
∂Im λµ

∂Re Yij
∂Re ∆ξ

∂Im Yij
∂Re ∆ξ

∂Re Yij
∂Im ∆ξ

∂Im Yij
∂Im ∆ξ

∂Re Yij
∂pν

∂Im Yij
∂pν




.

Here ∂ReYij/∂Re λµ, ∂Im Yij/∂Reλµ, ∂Re Yij/∂Im λµ and ∂Im Yij/∂Im λµ are an 2n×
n2 matrices, ∂ReYij/∂Re ∆µ, ∂Im Yij/∂Re ∆ξ, ∂Im Yij/∂Re ∆ξ and ∂Im Yij/∂Im ∆µ are
n(n− 1)/2× n2 matrices and ∂ReYij/∂pν and ∂Im Yij/∂pν are n(n− 1)× n2 matrices.
Now let

V :=




Re (U kiUlj) Im (U kiUlj)

−Im (U kiUlj) Re (UkiUlj)


 ,
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Here ReU∗
kiUlj and ImU∗

kiUlj are n2 × n2 matrices, where k is fixed in a row, and the
pairs (i, j) are ordered lexicographically, so V is now an 2n2 × 2n2 matrix, and by the
previous equations using the notation λij := λi − λj

JV =




δijδiµ 0
0 δijδiµ

δijδiξ 0
0 δijδiξ

dReSνijRe (λij) − dImSνijIm (λij) dImSνijRe (λij) + dReSνijIm (λij)




where the (i, j) pair is fixed in one row, so if we have for the determinants of the above
matrices

det J detV =
∏

i<j

|λi − λj|2 det




δijδiµ 0
0 δijδiµ
δijδiξ 0
0 δijδiξ
dReSνij dImSνij



,

since dReSνij = − dReSνji and dImSνij = dImSνji so we can apply

det

(
ax− by ay + bx
ax + by −ay + bx

)
=
(
a2 + b2

)
det

(
−x y
x y

)

for a = Re (λi − λj), b = Im (λi − λj) and x = dReSνij, y = dImSνij.

Finally we have that the joint eigenvalue density of the elliptic Gaussian matrix is

Cell
n exp

(
−n

n∑

i=1

(
(Re ζi)

2

(u+ v)2
+

(Im ζi)
2

(u− v)2

))∏

i<j

|ζi − ζj|2,

on the set Cn,where Cell
n is the normalizing constat depending on u and v.

Again we have results about the empirical eigenvalue distribution, which now is
defined by the random measure on C:

1

n

n∑

i=1

δ(ζi(Yn)),

where ζ1(Yn), . . . , ζn(Yn) are the eigenvalues of Yn, and δ(x) is the Dirac function con-
centrated at the point x. By the elliptic law of Girko in [15, 16, 17, 18], this sequence
of random measures converges to the uniform distribution on the set

{
z ∈ C :=

(Re z)2

(u+ v)2
+

(Im z)2

(u− v)2
= 1

}
,

This theorem also true in a more general form as we can see in the next section.
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1.5 Random matrices with not normally distributed entries

In the case when the random matrix is not invariant under unitary conjugation, it is
much more difficult to give the joint density, but we can prove similar results for the
asymptotic behaviour of the empirical eigenvalue distribution.

Theorem 1.2 (Arnold) Suppose that An = (Aij)
n
i,j=1 is an n × n random matrix,

where

• Aii are independent identically distributed random variables with E|Aii|4 <∞,
1 ≤ i ≤ n;

• Aij are independent identically distributed random variables such that EAij = 0,
E|Aij|2 = 1/n and E|Aij|6 <∞, 1 ≤ i < j ≤ n;

• Aij = Aji, if 1 ≤ j < i ≤ n;

• the entries on and above the diagonal are independent.

Then the sequence Fn of the empirical eigenvalue distribution of An weakly converges
to the semicircle distribution with probability 1 as n→ ∞.

Bai and Yin in [4] proved that if the above conditions hold, then

λmax(An)
n→∞−→ 2 and λmin(An)

n→∞−→ −2.

The convergence of the empirical eigenvalue distribution is similar for the general-
ization of Wishart matrices, the so-called sample covariance matrices. The theorem of
Jonsson in [27] is the following.

Theorem 1.3 (Jonsson) Suppose that Xp = (Xij) 1≤i≤p
q≤j≤n

is an p × n random matrix,

where the entries are independent identically distributed random variables such that
EXij = 0, E|Xij|2 = 1/n and E|Xij|6 < ∞. Then the Fp sequence of the empiri-
cal eigenvalue distribution of XpX

∗
p almost surely weakly converges to the Marchenko-

Pastur distribution with parameter λ as n→ ∞ and p/n→ λ ∈ (0, 1]. If p/n→ λ > 1
as n→ ∞, then the limit distribution is

(
1 − 1

λ

)
δ0 +

1

λ
Fλ,

where Fλ is the Marchenko-Pastur distribution with parameter λ.
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The same theorem was proven in [32]. Moreover Bai, Yin and Krishnaiah proved in
[47] that if the fourth moment of the entries are finite, then the greatest and smallest
eigenvalues almost surely converges to (1 +

√
λ)2 and (1 −

√
λ)2, respectively. The

proofs of the above theorems are based on the method of moments again.

For the elliptic matrices, i.e the matrices

Yn = uXn + vX∗
n,

where Xn is a matrix with independent identically distributed entries, and u2 +v2 = 1,
in [15, 17] Girko proved the following theorem

Theorem 1.4 Suppose that Yn = (Yij)
n
i,j=1 such that the pairs (Yij, Yji) are indepen-

dent for different i ≤ j, and EYij = 0, E|Yij|2 = 1
n
, E(YijYji) = τ

n
, and moreover there

exists a δ > 0 such that

sup
n

max
1≤i,j≤n

E|
√
nYij|4+δ ≤ c <∞,

then the empirical eigenvalue distribution converges to the elliptic distribution in prob-
ability.

In the case of non normal matrices the method of moments does not work, since
we cannot check all the mixed moments. Girko used the V -transform of the empirical
eigenvalue distribution µn of Yn, and Girko proved the almost sure convergence as well
in [16]

As we could see, the limit distribution does not depend on the distribution of the
entries, we only need he finiteness of some moments.

There are some results concerning the rate of the above convergence. For example,
Bai proved in [2] and [3] that the rate of convergence has the order of magnitude

O
(
n− 1

4

)
in the case of Wigner matrices and O

(
n− 5

48

)
in the case of sample covariance

matrices.

If the distribution of the entries has compact support, then the following theorem of
Guionnet and Zeitouni from [20] states that the rate of this convergence is exponential.

Theorem 1.5 (Guionnet, Zeitouni) Suppose that An = (Aij)
n
i,j=1 is an n× n self-

adjoint random matrix, where the distribution of Aij has a common compact support
K ⊂ C, and let f : Rk → R be a Lipschitz function, i.e.

sup
x,y

|f(x) − f(y)|
‖x− y‖ <∞.

Then there exists a sequence δn and a number c depending on the function f , the
diameter of the set K and the numbers EAij (1 ≤ i, j ≤ n), such that

0 < δn = O

(
1

n

)
,
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and for all ε > εn

P

(∣∣∣∣
1

n
Tr f(An) −

∫ 2

−2

f(x)w(x) dx

∣∣∣∣ ≥ ε

)
≤ 4e−cn

2(ε−εn)2 .

Here
1

n
Tr f(An) =

∫
f(x) dFn(x),

where Fn is the empirical eigenvalue distribution of An, and f(An) is defined by the
usual function calculus of selfadjoint matrices. That is , if

An = U∗
n diag(λ1, . . . , λn)Un

for an n× n unitary matrix, then

f(An) := U∗
n diag(f(λ1), . . . , f(λn))Un.
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2 Large deviation principle

2.1 The concept of the large deviation

If we have a sequence of random variables with non-random limit, the large deviation
theorems state exponential rate of convergence.

The simplest example for a sequence of random variables with non-random limit is
given by the law of large numbers. LetX1, X2, . . . a sequence of real valued independent
identically distributed random variables, with mean m. Then the law of large numbers
claims that the sequence of the arithmetic means of (Xn) converges to the number m
as n→ ∞. In other words if µn denotes the distribution of the random variable

Yn :=
1

n

n∑

i=1

Xi,

then
µn

n→∞−→ δm,

where δm is the Dirac-measure concentrated at the point m, i.e. for all H ⊂ R

δm(H) :=

{
1, if m ∈ H
0, if m /∈ H

This means that for any G ⊂ R set such that the closure of G does not contain m,

µn(G)
n→∞−→ 0.

The large deviation principle (LDP) holds, if the rate of the above convergence is
exponential. More precisely, if there exists a lower semicontinuous function f : R →
R+, such that for all G ⊂ R

µn(G) ≈ exp

(
−L(n) inf

x∈G
f(x)

)

then we say that the large deviation principle holds in the scale of 1
L(n)

. Here

L(n) ≥ cn,

for some constant c. Namely, the order of magnitude of the function L is given by the
degree of freedom of the random variables. The function f is called the rate function.

The first large deviation theorem was made by Cramèr in 1938 for the sample
means of independent, identically distributed random variables. In the Cramèr theorem
L(n) = n, and the rate function is the convex conjugate of the logarithmic moment
generating function of the random variables. The logarithmic momentum generator
function of a random variable is

Λ(λ) := log (E (exp(λXi))) ,
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and for its convex conjugate

Λ∗(x) := sup {λx− Λ(λ) : λ ∈ R}

and for all measurable Γ ⊂ R

− inf
x∈int Γ

Λ∗(x) ≤ lim inf
n→∞

1

n
log µn(Γ) ≤ lim sup

n→∞

1

n
logµn(Γ) ≤ − inf

x∈cl Γ
Λ∗(x).

We can check for each independent identically distributed that Λ∗ is a convex function,
and it attains its minimum in the m, and Λ∗(m) = 0, because, if m ∈ G ⊂ R, then

µn(G)
n→∞−→ 1 = e0 = e− inf{x∈G} Λ∗(x).

For example, if X1, X2, . . . are standard normal random variables, then

Λ(λ) = log

(
1√
2π

∫ ∞

−∞
eλx−

x2

2 dx

)

= log

(
e

λ2

2

√
2π

∫ ∞

−∞
e−

(x−λ)2

2 dx

)

= log e
λ2

2 =
λ2

2
,

so

Λ∗(x) = sup
λ∈R

(
λx− λ2

2

)
=
x2

2
.

This function attains its minimum in the point 0, which is the mean of the original
random variables.

The above theorem can be proven for vector valued independent, identically distrib-
uted random variables as well.

Now recall the definition of the large deviation principle from [8].

Definition 2.1 (LDP) Let X be a topological space, and Pn a sequence of probability
measures on X . The large deviation principle holds in the scale L(n)−1 if there exists
a lower semicontinuous function I : R → [0,∞] such that

lim inf
n→∞

1

L(n)
logPn(G) ≥ − inf

x∈G
I(x)

for all open set G ⊂ X, and

lim sup
n→∞

1

L(n)
logPn(F ) ≤ − inf

x∈F
I(x)

for all closed set F ⊂ X. Then the function I is the so-called rate function.
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Clearly, in Cramèr’s theorem the topological space X is R with the usual topology
on R. The function f is lower semicontinuous, since it is given as a supremum of
continuous functions.

There are still well known examples for random sequence with non-random limit.
A very important theorem of statistics implies that if we have the above sequence of
real independent identically distributed random variables, then if δ(Xi) denotes the
random measure concentrated to the point Xi, then the random measure sequence of
the so-called empirical distribution of X1, . . . , Xn defined by

P̂X =
1

n

n∑

i=1

δ(Xi) (24)

converges to the distribution µ0 of Xi. It means, that if µn is the distribution of P̂X ,
i.e. for all G ⊂ M(R)

µn(G) = P

(
1

n

n∑

i=1

δ(Xi) ∈ G

)
(25)

which is a probability measure on

M(R) := {probability measures on R} (26)

converges to the δµ ∈ M(R). The corresponding large deviation theorem was made by
Sanov. In his theorem the scale L(n) = n again, since again we have n independent
random variables, so the degree of freedom is again n. The topological space X is
M(R), and the topology is given in the following way. Let

Gf,ε,µ :

{
ν ∈ M(R) :

∣∣∣∣
∫

R

f(x) dµ−
∫

R

f(x) dν

∣∣∣∣ < ε

}
, (27)

where f is an element of the set Cb(R) of all bounded continuous functions, µ ∈ M(R),
and ε > 0. These sets form the basis of the topology on M(R), which is the topology
of the weak convergence. This space is metrizable with the Lévy metric

L(µ, ν) := inf {ε > 0 : µ(F ) ≤ ν(Fε), ν(F ) ≤ µ(Fε), for every closed F ⊂ R} , (28)

where

Fε :=

{
x ∈ R := inf

y∈F
|x− y| < ε

}
.

Let D( . ‖µ0) : M(R) → [0,∞] is

D(µ‖µ0) :=





∫

R

f(x) log f(x) dµ0(x), if µ� µ0 and f =
dµ

dµ0

+∞, if µ 6� µ0

(29)

for µ ∈ M(R). This function is the so-called relative entropy of µ with respect to the
measure µ0. The relative entropy is not a metric on M(R), because the symmetry does
not hold, but
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- D(ν‖µ) ≥ 0

- D(ν‖µ) = 0 if and only if ν = µ.

The relative entropy is a convex function because of the convexity of the function

x→ x log x,

and it is lower semicontinuous. Then the following large deviation theorem holds

Theorem 2.1 (Sanov) For the sequence µn given by (25) the large deviation theorem
holds on the scale n, and with the rate function

I(ν) := D(ν‖µ).

The properties of the relative entropy imply, that I attains its minimum 0 at the point
µ.

2.2 Large deviations for random matrices

When we talk about a large deviation theorem for random matrices, it concerns the
empirical eigenvalue density. It will be similar to the Sanov theorem, since the em-
pirical eigenvalue distribution of an n × n random matrix is the sample mean of the
Dirac measures concentrated in n random variables, which are the eigenvalues of the
matrix. In the simplest case, if we have diagonal matrix with independent, identically
distributed entries, then the Sanov theorem implies the large deviation theorem. But
in most cases random matrix consists of n2 random variables, and the eigenvalues are
not independent.

Assume that Tn(ω) is a random n×nmatrix with complex eigenvalues ζ1(ω), . . . , ζn(ω).
(If we want, we can fix an ordering of the eigenvalues, for example, regarding their
absolute values and phases, but that is not necessary.) The empirical eigenvalue dis-
tribution of Tn(ω) is the random atomic measure

P̂n(ω) :=
δ(ζ1(ω)) + · · ·+ δ(ζn(ω))

n
.

Therefore P̂n is a random measure, or in other words a measure-valued random variable.
Now denote Pn the distribution of P̂n, which means Pn is a probability measure on
M(C).

The degree of freedom is n2, since a random matrix consists of n2 random variables,
so L(n) = n2. The limit measure of the eigenvalue distribution is the unique minimizer
of the rate function.

For the matrices mentioned in the Section 1 we know, that the limit of this random
measure sequence is a non-random measure so there is a chance to prove the large
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deviation theorem for the rate of convergence of these sequences of random variables.
First consider the simplest example for random matrix.

Suppose that Dn is an n× n diagonal random matrix with independent identically
distributed real entries. Suppose moreover that the continuous density function f is
supported on the interval [a, b], and f(x) > 0 if a < x < b. Then the joint density of
the eigenvalues is

fλ1,...,λn(x1, . . . , xn) =

n∏

i=1

f(xi)

on [a, b]n. This gives a measure νn on R
n. If X is compact and A is a base for the

topology, then the large deviation principle is equivalent to the following conditions
(Theorem 4.1.11. and 4.1.18 in [8]):

−I(x) = inf
x∈G,G∈A

{
lim sup
n→∞

1

n2
logPn(G)

}
= inf

x∈G,G∈A

{
lim inf
n→∞

1

n2
logPn(G)

}
(30)

for all x ∈ X. Now suppose that G ⊂ M([a, b]) is a neighbourhood of µ ∈ M([a, b]),
and denote Pn the distribution of the empirical eigenvalue distribution of Dn. Then if

G0 :=

{
(λ1, . . . , λn) ∈ R

n
∣∣µλ :=

1

n

n∑

i=1

δλi
∈ G

}
,

then

Pn(G) = νn(G0) =

∫
. . .

∫

G0

exp

(
n∑

i=1

log f(λi)

)
dλ1 . . . dλn

=

∫
. . .

∫

G0

exp

(
n

∫
log f(x) dµλ(x)

)
≤ exp

(
n sup
µ′∈G

∫
log f(x) dµ′(x)

)
,

so

lim sup
n→∞

1

n
logPn(G) ≤ sup

µ′∈G

∫
log f(x) dµλ(x),

so by the weak* continuity of µ′ 7→
∫

log f(x) dµ′(x) we have

inf
G:µ∈G

(
lim sup
n→∞

1

n
logPn(G)

)
≤
∫

log f(x) dµ(x).

For the other equality of (30) we suppose that the measure µ has continuous density
g, since we can approximate with the measure with density function

∫ b

a

ϕε(x− y) dµ(y),

where ϕ is a C∞ function supported on the interval [−ε, ε], such that
∫ ε

−ε
ϕ(x) = 1.
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Moreover we can assume that δ < g(x) < δ−1 for x ∈ [a, b] and for some δ > 0, if we
have a convex combination of the normalized Lebesgue measure on [a, b] and µ, and we
take the limit as the coefficient of µ tends to 1. Then for all n consider the partition
of the interval

a = y
(n)
0 < y

(n)
1 < · · · < y

(n)
n−1 < y(n)

n = b,

such that ∫ y
(n)
i

y
(n)
i−1

g(x) dx =
1

n
,

for 1 ≤ i ≤ n, then
δ

n
≤ x

(n)
i − x

(n)
i−1 ≤

1

nδ
.

Set
∆n =

{
(λ1, . . . , λn)

∣∣x(n)
i−1 < λi < x

(n)
i

}
,

then for n large enough ∆n ⊂ G0, so we have

Pn(G) = νn(G0) ≥ νn(∆n)

≥
∫
. . .

∫

∆n

exp

(
n∑

i=1

log f(xi)

)
dx1 . . . dxn

≥
(
δ

n

)n
exp

(
n∑

i=1

min
x∈[x

(n)
i−1,x

(n)
i ]

log f(x)

)
,

so since

lim
n→∞

1

n

n∑

i=1

min
x∈[x

(n)
i−1,x

(n)
i ]

log f(x) =

∫
g(x) log f(x) dx =

∫
log f(x) dµ(x)

thus

inf
G:µ∈G

(
lim inf
n→∞

1

n
logPn(G)

)
≥
∫

log f(x) dµ(x).

In this way we proved the Sanov theorem for the random variables with density f .

In Section 1 we could see, that for the convergence of the empirical eigenvalue distri-
bution there is no need to know the density of the entries. Again we will use the exact
form of the joint density of the eigenvalues as above, which is known only in the case
of random matrices which are invariant under unitary conjugation. So in this section
we will study only Gaussian random matrices.

The first large deviation theorem for random matrices was proven by Ben Arous and
Guionnet in [5], and it concerns the standard selfadjoint Gaussian matrices.

Theorem 2.2 (Ben Arous, Guionnet) Let P̂n is the empirical eigenvalue distrib-
ution of the standard selfadjoint Gaussian matrix An, i.e. a random measure on R.
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Then the large deviation principle holds on the scale n−2 with rate function

Isa(µ) := −
∫ ∫

R2

log |x− y| dµ(x) dµ(y) +
1

2

∫

R

x2 dµ(x) −B, (31)

Where

Bsa = − lim
n→∞

1

n2
logCsa

n =
1

4
log 2 +

3

8
,

and Csa
n is the normalization constant defines in (14).

In their paper they proved the large deviation theorem for real case as well. Moreover
they proved the large deviation for the sequence of matrices p(An), where p : R → R is
a bounded, positive diffeomorphism, and p(An) is again defined by the usual function
calculus of selfadjoint matrices. In this case the topological space is again M(R) with
the topology of the weak convergence.

The next theorem was made by Hiai and Petz in [23] about the Wishart type random
matrices, when p/n

n→∞−→ λ < 1.

Theorem 2.3 (Hiai, Petz) Let P̂n is the empirical eigenvalue distribution of the p×p
Wishart matrix, i.e. a random measure on R+. Then the large deviation principle holds
on the scale p−2 with rate function

Iwish(µ) := −1

2

∫ ∫

(R+)2
log |x− y| dµ(x) dµ(y) +

1

2

∫

R

(x− (λ− 1) log x) dµ(x) − Bwish,

(32)
Where

Bwish = − lim
n→∞

1

p2
logCwish

n,p

=
1

4

(
3λ− λ2 logλ+ (1 − λ)2 log(1 − λ)

)
(33)

In this paper Hiai and Petz proved more. They considered p × p positive matrices
with the joint eigenvalue density function

1

Zn
exp

(
−n

p∑

i=1

Q(λi)

)
n∏

i=1

λ
γ(n)
i

∏

1≤i<j≤p
|λi − λj|2β,

where β > 0 fixed, and Q is a real continuous function such that for all ε > 0

lim
x→∞

x exp (−εQ(x)) = 0. (34)

Then the large deviation principle hold if p/n
n→∞−→ λ > 1 and γ(n)/n

n→∞−→ γ > 0.

We know the convergence for the case p/n ≥ 1, and by the following lemma 2.3
proves the large deviation principle as well.
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Lemma 2.2 For n ∈ N let P̃n be a random probability measure on a complete separable
metric space X . Let µ0 be a fixed probability measure on X and 0 < αn < 1 such that
αn

n→∞−→ α ∈ (0, 1). Suppose that (P̃n) is exponentially tight, i.e. for all L ≥ 0 there
exists a KL ⊂ X compact set, such that

lim sup
n→∞

1

n2
logPn(K

c
L) ≤ −L, (35)

where Kc
L denotes the complement of KL. If (P̃n) satisfies the large deviation principle

at the scale L(n) with rate function Ĩ on M(X ), then the sequence of random measures

(1 − αn)µ0 + αnP̃n

satisfies the same with good rate function

I(µ) :=

{
Ĩ(µ̃), if µ = (1 − αn)µ0 + αnµ̃
∞, otherwise.

If we apply the above lemma for αn = n
p

and µ0 = δ0, we have that the large deviation
principle hold for the singular Wishart matrices as well, i.e. in the case when n < p.

Finally Hiai and Petz proved the following theorem in [33].

Theorem 2.4 (Hiai, Petz) Let P̂n is the empirical eigenvalue distribution of the n×n
Gaussian elliptic random matrix

Yn := uXn + vX∗
n,

where u2 + v2 = 1. Then P̂n is a random measure on C. Then the large deviation
principle holds on the scale n−2 with rate function

Iell(µ) := −
∫ ∫

C2

log |z − w| dµ(z) dµ(w) +

∫

C

(
Re z2

(u+ v)2
+

Im z2

(u− v)2

)
dµ(z) − Bell,

(36)
Where

Bell = − lim
n→∞

1

n2
logCell

n =
3

4
. (37)

By the following theorem large deviations of the empirical eigenvalue distribution of
random matrices imply other large deviation theorems. (See Theorem 4.2.1 in [8])

Theorem 2.5 (Contraction principle) If the sequence µn ∈ M(X ) satisfies the
large deviation principle with rate function I and f : X → Y is a continuous function,
then the sequence νn defined by

νn(B) := µn(f
−1(B))

satisfies the large deviation principle with rate function

J(y) := inf{I(x)
∣∣f(x) = y}.
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For example for a continuous ϕ : C → C function consider fϕ : M(C) → C,

fϕ(µ) :=

∫
ϕ(x) dµ(x).

This function is continuous in the weak* topology, so if the large deviation theorem
holds for the distribution Pn of the empirical eigenvalue distribution of the n×n random
matrix Xn , then the distribution of

∫
ϕ(x) dµn(x) =

1

n

n∑

i=1

ϕ(λi(Xn))

satisfies the large deviation theorem too. On the other hand the exact form of the rate
function

J(y) := inf

{∫ ∫
log |z − w| dµ(z) dµ(w)

∣∣∣
∫
ϕ(z) dµ(z) = y

}

is rather difficult.

2.3 Potential theory and large deviations

Next we recall some definitions and theorems of potential theory [36].

Definition 2.3 For a signed measure ν on a K compact subset of C

I(ν) :=

∫ ∫

K2

log
1

|z − w| dν(z) dν(w) (38)

is the so-called logarithmic energy of ν.

Definition 2.4 For a signed measure ν on a K compact subset of C

Σ(ν) :=

∫ ∫

K2

log |z − w| dν(z) dν(w) (39)

is the so-called free entropy of ν.

Since

Σ(ν) = inf
α<0

∫ ∫

K2

max(log |z − w|, α) dν(z) dν(w),

this functional is upper semi-continuous. We want to show its concavity. The following
lemma is strongly related to the properties of the logarithmic kernel K(z, w) = log |z−
w| (cf. Theorem 1.16 in [29]).
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Lemma 2.5 Let ν be a compactly supported signed measure on C such that ν(C) = 0.
Then Σ(ν) ≤ 0, and Σ(ν) = 0 if and only if ν = 0.

From this lemma we can deduce strictly concavity of the functional Σ. First we prove
that

Σ

(
µ1 + µ2

2

)
≥ Σ(µ1) + Σ(µ2)

2
, (40)

for all µ1, µ2 ∈ M(K), moreover the equality holds if and only if µ1 = µ2. For this,
apply Lemma 2.5 for the signed measure ν = µ1 − µ2. We get in the case of µ1 6= µ2

0 > Σ(µ1 − µ2) = Σ(µ1) + Σ(µ2) − 2

∫ ∫

K2

log |z − w| dµ1(z) dµ2(w),

thus
Σ(µ1) + Σ(µ2)

2
<

∫ ∫

K2

log |z − w| dµ1(z) dµ2(w),

and

Σ

(
µ1 + µ2

2

)

=
Σ(µ1) + Σ(µ2)

4
+

1

2

∫ ∫

K2

log |z − w| dµ1(z) dµ2(w) >
Σ(µ1) + Σ(µ2)

2
.

The concavity is the property

Σ(λµ1 + (1 − λ)µ2) ≥ λΣ(µ1) + (1 − λ)Σ(µ2) (41)

for an arbitrary λ ∈ [0, 1]. If Σ(µ1) = −∞ or Σ(µ2) = −∞, then this holds trivially.
Next assume that Σ(µ1) > −∞ and Σ(µ2) > −∞. Then we have (41) for dyadic
rational λ from the midpoint concavity (40). For an arbitrary λ ∈ [0, 1] we proceed by
approximation. For a fixed sequence εn > 0, εn → 0, there exist i(n), k(n) ∈ N such
that ∣∣∣∣

(
i(n)

2k(n)
− λ

)
Σ(µ1) +

(
λ− i(n)

2k(n)

)
Σ(µ2)

∣∣∣∣ < ε.

By the midpoint concavity

λΣ(µ1) + (1 − λ)Σ(µ2) − εn <
i(n)

2k(n)
Σ(µ1) +

(
1 − i(n)

2k(n)

)
Σ(µ2)

≤ Σ

(
i(n)

2k(n)
µ1 +

(
1 − i(n)

2k(n)

)
µ2

)
.

Here
i(n)

2k(n)
µ1 +

(
1 − i(n)

2k(n)

)
µ2

n→∞−→ λµ1 + (1 − λ)µ2,

36



and the upper semi-continuity of Σ implies

lim sup
n→∞

Σ

(
i(n)

2k(n)
µ1 +

(
1 − i(n)

2k(n)

)
µ2

)
≤ Σ(λµ1 + (1 − λ)µ2),

which gives the concavity (41) and the equality can hold only in the trivial case.

Since for all µ ∈ M(K)
I(µ) = −Σ(µ),

the above properties of Σ imply that the logarithmic energy is a convex, lower semi-
continuous function.

Definition 2.6 The quantity
cap(K) := e−V

is called the logarithmic capacity of K, where

V := inf{I(µ) : µ ∈ M(K)}.

The logarithmic potential of µ ∈ M(K) is the function

Uµ(z) :=

∫

K

log
1

|z − w| dµ(w) (42)

defined on K.

Definition 2.7 Let F ⊂ C be a closed set, and Q : F → (−∞,∞] be a lower semi-
continuous function. The integral

IQ(µ) :=

∫ ∫

F 2

log
1

|z − w| dµ(z) dµ(w) + 2

∫

F

Q(z) dµ(z) (43)

is called weighted energy.

The weight function is
w(z) := exp(−Q(z)) (44)

is admissible if it satisfies the following conditions

• w is upper semicontinuous;

• F0 := {z ∈ F : w(z) > 0} has positive capacity;

• if F is unbounded then |z|w(z) → 0 as |z| → ∞, z ∈ F .
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We can recognize, that the rate functions in the large deviation theorems are weighted
energy functionals with different rate functions. For example, in the case of selfadjoint
Gaussian matrices the weight function

wsa(x) = exp

(
−x

2

4

)

which is clearly an admissible weight function.

Now consider a theorem (cf. Theorem I.1.3 in [36]) about the minimizer of the
weighted energy.

Theorem 2.6 Let w = exp(−Q) be an admissible weight on a closed set Σ, and let

VQ := inf{IQ(µ) : µ ∈ M(F )}.

Then the following properties hold.

• VQ is finite.

• There exists a unique element µQ ∈ M(F ) such that

IQ(µQ) = VQ.

Moreover µQ has finite logarithmic energy.

• SQ := supp(µQ) is compact, SQ ⊂ F0, and has positive capacity.

Definition 2.8 The measure µQ is called the equilibrium or extremal measure associ-
ated with w.

The following result tells about the minimizer of the weighted potential (cf. Theorem
I.3.3 in [36]).

Proposition 2.9 Let Q as above. Assume that σ ∈ M(K) has compact support,
E(σ) <∞ and there exists a constant F such that

Uσ(z) +Q(z) = F

if z ∈ supp σ, and
Uσ(z) +Q(z) ≥ F

if z ∈ K. Then σ is the measure in M(K) such that

IQ(σ) = inf
µ∈M(K)

IQ(µ),

i.e., σ is the so-called equilibrium measure associated with Q.

38



The above proposition gives a very useful hint to find the equilibrium measure of a
weighted energy. For example its corollary is the following theorem, which helps us to
prove that the rate function of the large deviation principle for the selfadjoint Gaussian
matrices has the Wigner semicircle distribution as the unique minimizer, since it can
be written in the form

1

2π

√
4 − t2 =

1

2π

∫ 2

|t|

u√
u2 − t2

du,

on [−2, 2], so

−U(x) =
1

2π

∫ 2

−2

log |x− t|
∫ 2

|t|

u√
u2 − t2

du dt =

∫ 2

0

u

2
· 1

π

∫ u

−u

log |x− t|√
u2 − t2

dt du.

Here by t = u cosϑ we have

1

π

∫ u

−u

log |x− t|√
u2 − t2

dt = − 1

2π

∫ π

−π
log

1

|x− u cosϑ| dϑ.

If we apply the so-called Joukowski transformation (See [36] Example 3.5)

x =
u

2

(
ζ +

1

ζ

)
,

then

ζ =





sgn(x)
x +

√
x2 − u2

u
if |x| > u

sgn(x)i
√
u2 − x2 if 0 ≤ |x| ≤ u

Then since

|x− u cosϑ| =
∣∣∣u
2
(ζ + ζ−1) − (eiϑ + e−iϑ)

∣∣∣ = u

2
|ζ − eiϑ||ζ−1 − eiϑ|,

and by
1

2π

∫ 2π

0

log
1

|z − reiϕ| dϕ =

{
− log r, if |z| ≤ r
− log |z|, if |z| > r,

,

thus

1

2π

∫ π

−π
log

1

|x− u cosϑ| dϑ

=
1

2π

∫ π

−π
log

2

|ζ − t||ζ−1 − t| =

{
log 2 − log

∣∣x+
√
x2 − u2

∣∣ , if |x| > u
log 2 − log u, if |x| ≤ u.

Then if −2 ≤ x ≤ 2

−U(x) = − log 2 +
1

2

∫ 2

|x|
u log u du+

1

2

∫ |x|

0

u log |x+
√
x2 − u2| du

= − log 2 +
1

2

[
u2 log u

2
− u2

4

]2

|x|
+

∫ |x|

0

u

2
log |x| du

+
|x|2
2

∫ 1

0

v log |1 +
√

1 − v2| dv = −1

2
+

|x|2
4
,
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since
∫ 1

0

v log |1 +
√

1 − v2| dv =

∫ 1

0

v

1 +
√

1 − v2
· v2

√
1 − v2

dv

=

∫ 1

0

v(1 −
√

1 − v2)(1 +
√

1 − v2)

(1 +
√

1 − v2)
√

1 − v2
dv =

∫ 1

0

(
v√

1 − v2
− v

)
dv =

1

2
.

If |x| > 2, then by the symmetry we can suppose that x > 2, and with similar
calculations

U(x) = log 2 − 1

2

∫ 2

0

u log |x+
√
x2 − u2| du

= − log 2 − x2

4
− log(x+

√
x2 − 4) +

x

4

√
x2 − 4 +

1

2
,

and since here the weight function

Q(x) :=
x2

4
,

so

U(x) +Q(x) =
1

2
if |x| ≤ 2,

and

U(x) +Q(x) ≥ 1

2
if |x| > 2,

so the semicircular distribution is equilibrium measure of the weighted energy, i.e. the
unique minimizer of rate function Iwig.

Proposition 2.9 can be used to prove that the unique minimizer of Iwish is the
Marchenko-Pastur distribution, and the minimizer of Iell is the uniform distribution
on the corresponding ellipse. Later we will use this Proposition to find the equilibrium
measure of a weighted energy.

We could see, that the rate function of the large deviation theorem for random
matrices is a weighted logarithmic energy, which has a unique equilibrium measure µ0,
so we can write the rate function in the following form

I(µ) = IQ(µ) − IQ(µ0),

so we can consider the rate function I again as a relative entropy with respect to the
minimizer µ0.
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3 Haar unitaries

Apart from the selfadjoint random matrices there is an other important set of normal
random matrices, the unitary random matrices. We already used non-random unitary
matrices in the previous sections, but now we recall the definition, since in the sequel
we will study random unitary matrices.

A unitary matrix U = (Uij) is a matrix with complex entries and UU ∗ = U∗U = I.
In terms the entries these relations mean that

n∑

j=1

|Uij|2 =
n∑

i=1

|Uij|2 = 1, for all 1 ≤ i, j ≤ n, (45)

n∑

l=1

UilU lj = 0, for all 1 ≤ i, j ≤ n, i 6= j. (46)

In other words an n×n matrix is unitary if the columns (or rows) are pairwise orthog-
onal unit vectors.

The set U(n) of n × n unitary matrices forms a compact topological group with
respect to the matrix multiplication and the usual topology, therefore there exists a
unique (up to the scalar multiplication) translation invariant measure on U(n), the
so-called Haar measure. We will consider a random variable Un which maps from a
probability space to U(n), and take its values uniformly from U(n), i.e. if H ⊂ U(n),
then

P(Un ∈ H) = γ(H),

where γ is the normalized Haar measure on U(n). We call this random variable a Haar
unitary random variable, or shortly Haar unitary.

Although the distribution of the entries cannot be normal, since the absolute values
must lie on the interval [0, 1], some properties of the normal variables play important
role in the construction of the Haar unitary random matrices.

3.1 Construction of a Haar unitary

Next we recall how to get a Haar unitary from a Gaussian matrix with independent
entries by the Gram-Schmidt orthogonalization procedure on the column vectors. Sup-
pose that we have a complex random matrix Z whose entries Zij are mutually inde-
pendent standard complex normal random variables. We perform the Gram-Schmidt
orthogonalization procedure on the column vectors Zi (i = 1, 2, . . . , n), i.e.

U1 =
Z1

‖Z1‖
,
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and

Ui =

Zi −
i−1∑

l=1

〈Zi, Ul〉Ul
∥∥∥∥∥Zi −

i−1∑

l=1

〈Zi, Ul〉Ul

∥∥∥∥∥

, (47)

where

‖(X1, X2, . . . , Xn)‖ =

√√√√
n∑

k=1

|Xk|2 .

Lemma 3.1 The above column vectors Ui constitute a unitary matrix U = (Ui)i=1,...,n.
Moreover, for all V ∈ U(n) the distributions of U and V U are the same.

Proof. From the proof of Lemma 1.4, we know, that the distributions of Z and V Z
are the same. The ith column of V U is exactly V Ui and we have

V Ui =

V Zi −
i−1∑

l=1

〈Zi, Ul〉V Ul
∥∥∥∥∥Zi −

i−1∑

l=1

〈Zi, Ul〉Ul

∥∥∥∥∥

=

V Zi −
i−1∑

l=1

〈V Zi, V Ul〉V Ul
∥∥∥∥∥V Zi −

i−1∑

l=1

〈V Zi, V Ul〉V Ul

∥∥∥∥∥

(48)

which is the Gram-Schmidt orthogonalization of the vectors V Zi. Since we showed
above that Z and V Z are identically distributed, we conclude that U and V U are
identically distributed as well. Since the left invariance characterizes the Haar measure
on a compact group, the above constructed U is Haar distributed and its distribution
is right invariant as well. �

The column vectors of a unitary matrix are pairwise orthogonal unit vectors. On
the bases of this fact we can determine a Haar unitary in a slightly different way. The
complex unit vectors form a compact space on which the unitary group acts transitively.
Therefore, there exist a unique probability measure invariant under the action. Let us
call this measure uniform. To determine a Haar unitary, we choose the first column
vector U1 uniformly from the space of n-vectors. U2 should be taken from the n − 1
dimensional subspace orthogonal to U1 and choose it uniformly again. In general, if
already U1, U2, . . . , Uj is chosen, we take Uj+1 from the n − j dimensional subspace
orthogonal to U1, U2, . . . , Uj, again uniformly. The column vectors constitute a unitary
matrix and we check that its distribution is left invariant. Let V be a fixed unitary.
We show that the vectors V U1, V U2, . . . , V Un are produced by the above described
procedure. They are obviously pairwise orthogonal unit vectors. V U1 is uniformly
distributed by the invariance property of the distribution of U1. Let V (1) be such a
unitary that V (1)V U1 = V U1. Then V −1V (1)V U1 = U1 and the choice of U2 gives that
V −1V (1)V U2 ∼ U2. It follows that V (1)V U2 ∼ V U2. Since V (1) was arbitrary V U2
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is uniformly distributed in the subspace orthogonal to V U1. Similar argument works
for V U3, . . . , V Un. The Gram-Schmidt orthogonalization of the columns of a Gaussian
matrix gives a concrete realization of this procedure. Now suppose that A is a random
matrix with independent identically distributed entries, where the distribution of the
entries has finite mean. Then if the distribution of the entries is absolutely continuous
with respect to the Lebesgue measure, then we can construct a random unitary matrix
with the above methods. This unitary random matrix is not translation invariant,
because the only unitary invariant distribution according to Theorem 1.3 is the normal
distribution. If the distribution is not continuous, then A can be singular with positive
probability, so the Gram-Schmidt orthogonalization does not work almost surely.

3.2 General properties of Haar unitaries

The entries of a Haar unitary random matrix are clearly not independent, since for
example the sum of the square of the absolute values of the entries in the same row or
column must be 1. It is difficult to find the joint density of the entries, but now from
the translation invariance of the Haar measure and from the construction we can state
several facts about the entries.

For example since permutation matrices are in U(n), and by multiplying with an
appropriate permutation matrix every row and column can be transformed to any
other row or column, so the translation invariance of a Haar unitary U implies that all
the entries have the same distribution.

Theorem 3.1 From the construction of a Haar unitary one can deduce easily the
distribution of the entries:

n− 1

π
(1 − r2)n−2r dr dϑ,

Proof. We know from the construction and from Lemma 1.2, that

U11 =
Z11√∑n
i=1 Z

2
i1

=
R1e

iϑ1

√∑n
i=1R

2
i

, (49)

where Zi1 = Rie
iϑi, R2

1, . . . , R
2
n are independent exponentially distributed random vari-

ables with parameter 1, and ϑ1, . . . , ϑn are independent uniformly distributed random
variables on the interval [0, 2π]. Clearly the phase of U11 depends only on ϑ1, and it is
independent from the absolute value of the entry, and uniform on the interval [0, 2π].
For the absolute value, we know, that the density function of the sum k independent
identically distributed exponential random variables with parameter λ is

fk(x) =
λkxk−1e−λx

(k − 1)!
(50)
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on x ∈ R+, so

P(|U11| ≤ r) = P

(
R1√∑n
i=1R

2
i

< r

)

= P

(
R2

1 <
r2
∑n

i=2R
2
i

1 − r2

)

=

∫ ∞

0

∫ r2

1−r2 y

0

e−x
yn−2e−y

(n− 2)!
dx dy

=
1

(n− 1)!

∫ ∞

0

(
1 − e

r2

1−r2 y

)
yn−2e−y dy

=
1

(n− 2)!

(∫ ∞

0

yn−2e−y dy −
∫ ∞

0

yn−2e
− y

1−r2 dy

)

= 1 − (1 − r2)n−1

= 2(n− 1)

∫ r

0

ρ(1 − ρ)n−2 dρ,

since from (1) we know the kth moment the exponential random variable. �

Lemma 3.2 The joint distribution of U11, . . . , Un−1,1 is uniform on the set

{
(x1, . . . , xn−1) :

n∑

i=1

x2
i ≤ 1

}
.

Proof. Suppose that X1, . . . , Xn are independent exponentially distributed random
variables with parameter 1, then

|Uj1|2 =
Xj∑n
i=1Xi

,

so the joint distribution of |U11|2, . . . , |Un−1,1|2 is same as the joint distribution of

X1∑n
i=1Xi

, . . . ,
Xn−1∑n
i=1Xi

.

The joint density of X1, . . .Xn is

fX1,...,Xn(x1, . . . , xn) := e−(x1+···+xn) (51)

on (R+)n, so if we use the transformation

(x1, . . . , xn) 7→
(

x1∑n
i=1 xi

, . . . ,
xn−1∑n
i=1 xi

,

n∑

i=1

xi

)
,
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and we integrate with respect of the last variable, then we have the density. The
Jacobian of the transformation has the determinant

det




∑n
i=1 xi − x1

(
∑n

i=1 xi)
2

−x1

(
∑n

i=1 xi)
2 . . .

−x1

(
∑n

i=1 xi)
2

−x1

(
∑n

i=1 xi)
2

−x2

(
∑n

i=1 xi)
2

∑n
i=1 xi − x2

(
∑n

i=1 xi)
2 . . .

−x2

(
∑n

i=1 xi)
2

−x2

(
∑n

i=1 xi)
2

...
. . .

...

−xn−1

(
∑n

i=1 xi)
2

−xn−1

(
∑n

i=1 xi)
2 . . .

∑n
i=1 xi − xn−1

(
∑n

i=1 xi)
2

−xn−1

(
∑n

i=1 xi)
2

1 1 . . . 1 1




= det




∑n
i=1 xi

(
∑n

i=1 xi)
2 0 . . . 0 0

0

∑n
i=1 xi

(
∑n

i=1 xi)
2 . . . 0 0

...
. . .

...

0 0 . . .

∑n
i=1 xi

(
∑n

i=1 xi)
2 0

0 0 . . . 0 1




=

(
n∑

i=1

xi

)−(n−1)

.

With (51) we have that the joint density function of the new random variables depends
only

∑n
i=1 xi. If we integrate with respect to this variable, then we get, that the joint

density of the other n − 1 random variables is constant. We obtained that the joint
density of |U11|2, . . . , |Un−1,1|2 is uniform on the set {(x1, . . . , xn−1) :

∑n
i=1 xi ≤ 1}, so

since the phase of U1i are independent uniformly distributed on [0, 2π] we proved the
lemma. �

Since we know the density of the entries we can compute the even moments of their
absolute value. For every k ∈ Z+,

E
(
|Uij|2k

)
=

(
n + k − 1

n− 1

)−1

(52)

for all 1 ≤ i, j ≤ n. This can be easily computed from the density function as follows
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E
(
|Uij|2k

)
= (n− 1)

∫ 1

0

r2k+1(1 − r2)n−2 dr

= (n− 1)

(
−
[
r2k (1 − r2)n−1

n− 1

]1

0

+
k

n− 1

∫ 1

0

r2k−1(1 − r2)n−1 dr

)

= k · k − 1

n

∫ 1

0

r2k−3(1 − r2)n dr

=
k!

n . . . (n+ k − 2)

∫ 1

0

r(1 − r2)n+k−2 =

=

(
n + k − 1

n− 1

)−1

Clearly the entries are not independent, and the entries in the same row or column
are more correlated then the others. The correlation coefficients can be computed as
follows. Since

E|U11|2 = E

(
n∑

j=1

|U11|2|U1j|2
)

= (n− 1)E
(
|U11|2|U12|2

)
+ E

(
|U11|4

)
,

so

E
(
|U11|2|U12|2

)
=

1

n− 1

(
1

n
− 2

(n+ 1)n

)
=

1

n(n+ 1)
,

so the correlation coefficient is

E (|U11|2|U12|2) − E|U11|2E|U12|2
E (|U11|4) − (E (|U11|2))2 = − 1

n− 1
.

For the entries in different row and column, we can use the fact
n∑

i=1

|U11|2|U2i|2 = |U11|2

to calculate

E
(
|U11|2U22|2

)
=

1

n− 1

(
1

n
− 1

n(n+ 1)

)
=

1

n2 − 1
,

therefore the correlation coefficient here is

E (|U11|2|U22|2) − E|U11|2E|U22|2
E (|U11|4) − (E (|U11|2))2 =

1

(n− 1)2
.

(see p. 139 in [26]).

Theorem 3.2 Since

P(|
√
nUij|2 ≥ x) =

(
1 − x

n

)n−1

→ e−x

√
nUij converges to a standard complex normal variable.

�
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3.3 Joint eigenvalue density

Let U be a Haar distributed n× n unitary matrix with eigenvalues λ1, λ1, . . . , λn. The
eigenvalues are random variables with values in T := {z ∈ C : |z| = 1}.

The joint density of the eigenvalues was obtained by Weyl [41],

1

(2π)nn!

∏

i<j

|eiϑi − eiϑj |2 (53)

with respect to ϑ1 . . . dϑn. Now we write down a shortened form of the proof (see p.
135 in [26]).

At any point of U ∈ U(n) the matrix

dU∗U + U∗ dU = d(U∗U) = 0,

so
dL := −iU∗ dU

is an infinitesimal Hermitian matrix. Since the Haar measure γn on U(n) is invariant
under multiplication by a unitary matrix we have

γn( dU) = C
n∏

i=1

dLii
∏

i<j

dLij dL
∗
ij.

For every U ∈ U(n) there exist V ∈ U(n) and a D diagonal matrix, such that

U = V DV ∗,

where the non-zero entries of D are the eigenvalues of U , so D can be written in the
form D := diag

(
eiϑ1, . . . eiϑn

)
, since the eigenvalues are on the unit circle. The matrices

V and D are not unique, so we can assume, that for the infinitesimal Hermitian matrix
dM := −iV ∗ dV the entries in the diagonal are zero, so dMii = 0 for 1 ≤ i ≤ n. Since

dL = −iV D∗V ∗ d (V DV ∗)

= −iV D∗V ∗ ( dV DV ∗ + V dDV ∗ + V D dV ∗)

= V (D∗ dMD − iD∗ dD − dM)V ∗

since D∗D = I. For the element of the matrix V ∗DV we get

(V ∗ dLV )ii = −ie−iϑi deiϑi = dϑi,

and for i < j

(V ∗ dLV )ij = ei(ϑj−ϑi) dMij − dMij = e−iϑi
(
eiϑj − eiϑj

)
dMij.

47



Finally we have

n∏

i=1

dLii
∏

i<j

dLij dL
∗
ij =

∏

i<j

∣∣eiϑi − eiϑj
∣∣

n∏

i=1

dϑi
∏

i<j

dMij dM
∗
ij.

The normalization constant can be computed in several ways. We use here the
properties of complex contour integral as follows

∫ 2π

0

. . .

∫ 2π

0

∏

i<j

|eiϑi − eiϑj |2dϑ1 . . . dϑn

= (−i)n
∮

{|z|=1}n

z−1
1 . . . z−1

n

∏

i<j

(zi − zj)(zi − zj)dz1 . . . dzn

= (−i)n
∮

{|z|=1}n

z−1
1 . . . z−1

n

∏

i<j

(zi − zj)(z
−1
i − z−1

j )dz1 . . . dzn

= (−i)n
∮

{|z|=1}n

z−1
1 . . . z−1

n det
[
zj−1
i

]n
i,j=1

det
[
z
−(j−1)
i

]n
i,j=1

dz1 . . . dzn =

= (−i)n
∮

{|z|=1}n

z−1
1 . . . z−1

n

∑

π∈Sn

(−1)σ(π) ×

×
n∏

i=1

z
π(i)−1
i

∑

ρ∈Sn

(−1)σ(ρ)
n∏

i=1

z
−(ρ(i)−1)
i dz1 . . . dzn

= n!(−i)n
∮

{|z|=1}n

z−1
1 . . . z−1

n dz1 . . . dzn

Since by the theorem of residue those terms of the above sum vanish, where there exists
a zi on the power different from −1. So in the above sum it is enough to consider the
case when

π(i) = ρ(i)

for all 1 ≤ i ≤ n. Therefore we take the summation over the n! elements of Sn. Again
by the theorem of residue

∮

{|z|=1}n

z−1
1 . . . z−1

n dz1 . . . dzn = (2πi)n,

which gives the normalization constant.

From this we have the joint eigenvalue density function of any powers of Haar unitary
random matrices. In [34] we used the above method of complex contour integral in
order to prove the following theorem.

Theorem 3.3 For m ≥ n the random variables λm0 , λ
m
1 , . . . , λ

m
n−1 are independent and

uniformly distributed on T.
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Proof. Since the Fourier transform determines the joint distribution measure of
λm0 , λ

m
1 , . . . , λ

m
n−1 uniquely, it suffices to show that

∫

[0,2π]n
zk0m0 zk1m1 . . . z

kn−1m
n−1

∏

i<j

|zi − zj|2 dz0dz1 . . . dzn−1 = 0 (54)

if at least one kj ∈ Z is different from 0, where dzi = dϕi/2π for zi = eiϕi . We use the
following notation for the above Vandermonde determinant.

∆(z0, z1, . . . , zn−1) :=
∏

i<j

(zi − zj) = det
[
zji
]
0≤i≤n−1, 0≤k≤n−1

. (55)

(What we have here is the so-called Vandermonde determinant.) Then one can write
(54) as the complex contour integral on the unit circle as follows
∫

[0,2π]n
zk0m0 zk1m1 . . . z

kn−1m
n−1 ∆(z0, . . . , zn−1)∆(z−1

0 , . . . , z−1
n−1) dz0dz1 . . . dzn−1

=

∮

{|z|=1}n

zk0m0 zk1m1 . . . z
kn−1m
n−1 ∆(z0, . . . , zn−1)∆(z−1

0 , . . . , z−1
n−1)z

−1
0 . . . z−1

n−1 dz0 . . . dzn−1

=

∮

{|z|=1}n

zk0m−1
0 zk1m−1

1 . . . z
kn−1m−1
n−1

∑

π∈Sn

(−1)σ(π)z
π(0)
0 . . . z

π(n−1)
n−1

×
∑

ρ∈Sn

(−1)σ(ρ)z
−ρ(0)
0 . . . z

−ρ(n−1)
n−1 dz0 . . . dzn−1.

By the theorem of residue, we get nonzero terms only in the case, where the exponent
of zi is −1 for all 0 ≤ i ≤ n− 1. This means, that we need the permutations where

kjm+ π(j) − ρ(j) − 1 = −1 (0 ≤ j ≤ n− 1),

so
kjm = ρ(j) − π(j).

Here |ρ(j) − π(j)| ≤ n− 1, and |kjm| ≥ m ≥ n, if kj 6= 0, so if at least one kj ∈ Z is
different from 0, then there exists no solution. This proves the theorem. �

3.4 Asymptotics of the trace of polynomials of the Haar uni-
tary

In this section we give a more elementary proof of the theorem of Diaconis and Shahsha-
hani in [10]. We used the method of moments in [34] in order to obtain the same
theorem.

Let Un = (Uij)1≤i,j≤n be a Haar distributed unitary random matrix. In this section
we are interested in the convergence of TrUn as n→ ∞. Since the correlation between
the diagonal entries decreases with n, one expects on the basis of the central limit
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theorem, that the limit of the trace has complex normal distribution. In the proof we
need the following technical lemma which tells us that the expectation of most of the
product of the entries are vanishing.

Lemma 3.3 ([26]) Let i1, . . . , ih, j1, . . . jh ∈ {1, . . . , n} and k1, . . . , kh, m1, . . . , mh be
positive integers for some h ∈ N. If

∑

ir=u

(kr −mr) 6= 0 for some 1 ≤ u ≤ n

or ∑

jr=v

(kr −mr) 6= 0 for some 1 ≤ v ≤ n,

then
E

(
(Uk1

i1j1
U
m1

i1j1
) . . . (Ukh

ihjh
U
mh

ihjh
)
)

= 0.

Proof. Suppose that t :=
∑

ir=u(kr−mr) 6= 0. The translation invariance of U implies
that multiplying this matrix by V = Diag(1, . . . , 1, eiϑ, 1, . . . , 1) ∈ U(n) from the left
we get

E

(
(Uk1

i1j1
U
m1

i1j1
) . . . (Ukh

ihjh
U
mh

ihjh
)
)

= eitϑE
(
(Uk1

i1j1
U
m1

i1j1
) . . . (Ukh

ihjh
U
mh

ihjh
)
)
,

for all ϑ ∈ R. �

Theorem 3.4 Let Un be a sequence of n × n Haar unitary random matrices. Then
TrUn converges in distribution to a standard complex normal random variable as n→
∞.

Proof. For the sake of simplicity we write U instead of Un. First we study the
asymptotic of the moments

E
(
(TrU)k(TrU)k

)
= E

(( n∑

i=1

Uii

)k( n∑

j=1

U jj

)k)

=

n∑

i1,...,ik=1

n∑

j1,...,jk=1

E(Ui1i1 . . . UikikU j1j1 . . . U jkjk),

k ∈ Z+. By Lemma 3.3 parts of the above sum are zero, we need to consider only
those sets of indices {i1, . . . , ik} and {j1, . . . , jk} which coincide (with multiplicities).
Consider a summand E(|Ui1i1|2k1 . . . |Uirir |2kr), where

∑r
l=1 kl = k. From the Hölder

inequality

E(|Ui1j1 |2k1 . . . |Uirjr |2kr) ≤
r∏

l=1

2l
√

E(|Uiljl|2·2
lkl) =

r∏

l=1

(
n+ 2lkl − 1

2lkl − 1

)−1/2l

= O
(
n−k) .

(56)
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The number of those sets of indices, where among the numbers i1, . . . , ik there are at
least two equal is at most

k!

(
k

2

)
nk−1 = O(nk−1).

By (56) the order of magnitude of these factors is O(n−k), so this part of the sum tends
to zero as n → ∞. Next we assume that i1, . . . , ik are different. Since by translation
invariance any row or column can be replaced by any other, we have

E(|Ui1i1 |2 . . . |Uikik |2) = E(|U11|2 . . . |Ukk|2)) =: Mn
k . (57)

It is enough to determine this quantity and to count how many of these terms are in
the trace. The length of the row vectors of the unitary matrix is 1, hence

n∑

i1=1

· · ·
n∑

ik=1

E
(
|Ui11|2 . . . |Uikk|2

)
= 1. (58)

We divide the sum into two parts: the number of terms with different indices is
n!/(n− k)!, and again the translation invariance implies that each of them equals
to Mn

k , and we denote by εnk the sum of the other terms. Therefore

εnk = 1 − n!

(n− k)!
Mn

k ≤ k!

(
k

2

)
O(n−k) → 0,

and

Mn
k =

(1 − εnk)(n− k)!

n!
.

Now we can count how many expectations of value Mn
k are there in the sum (56). We

can fix the indices i1, . . . , ik in n!/(n− k)! ways, and we can permute them in k! ways
to get the indices j1, . . . , jk. The obtained equation

lim
n→∞

E
(
(TrUn)

k(TrUn)
k
)

= lim
n→∞

n!

(n− k)!
k!

(1 − εnk)(n− k)!

n!
= k!

finishes the proof. For the mixed moments we have by Lemma 3.3

E
(
(TrUn)

k(TrUn)
m
)

= 0 (k 6= m),

and we have proven the convergence of all moments. The only thing is left to conclude
the convergence in distribution is to show that the moments determine uniquely the
limiting distribution ( VIII. 6 in [14]). Although we have complex random variables, the
distribution of the phase is uniform, and we can consider them as real valued random
variables. The Stirling formula implies that

∑

k∈N

(k!)−
1
k ≥

∑

k≥M

((
2k

e

)k)− 1
k

=
e

2

∑

k≥M

1

k
= ∞.

for a large M ∈ N, since
√

2kπ ≤ 2k, if k ≥ 2. �

The convergence for the higher powers was done also by Diaconis and Shashahani in
[10]. Here we use elementary methods.
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Theorem 3.5 Let Z be standard complex normal distributed random variable, then for
the sequence of Un n× n Haar unitary random matrices TrU l

n →
√
lZ in distribution.

Proof. We use the method of moments again. Lemma 3.3 implies that we only have

to take into consideration E

((
TrU l

n

)k (
TrU l

n

)k)
, for all k ∈ Z+.

E

((
TrU l

n

)k (
TrU l

n

)k)

= E

(( ∑

i1,...,il

Ui1i2Ui2i3 . . . Uil−1ilUili1

)k( ∑

j1,...,jl

U j1j2U j2j3 . . . U jl−1jlU jlj1

)k
)

=
∑

E

(
Ui1i2 . . . Uili1Uil+1il+2

. . . Ui2lil+1
. . . Uil(k−1)+1il(k−1)+2

. . . Uiklil(k−1)+1

× U j1j2 . . . U jlj1U jl+1jl+2
. . . U j2ljl+1

. . . U jl(k−1)+1jl(k−1)+2
. . . U jkljl(k−1)+1

)
,

where the indices i1, . . . , ikl, j1, . . . , jkl run from 1 to n, and by Lemma 3.3 if the sets
{i1, . . . , ikl} and {j1, . . . , jkl} are different, then the expectation of the product is zero.
It follows from the Cauchy and Hölder inequalities, and (56), that

∣∣∣E
(
Ui1i2 . . . Uiklil(k−1)+1

U j1j2 . . . U jkljl(k−1)+1

)∣∣∣

≤ E

∣∣∣Ui1i2 . . . Uiklil(k−1)+1
U j1j2 . . . U jkljl(k−1)+1

∣∣∣ (59)

≤
√

E

(
|Ui1i2 |2 . . . |Uiklil(k−1)+1

|2|U j1j2 |2 . . . |U jkljl(k−1)+1
|2
)
≤ O

(
n−kl) .

Again the number of the set of indices, where there exist at least two equal indices is at
most O(nkl−1), so the sum of the corresponding expectations tends to zero as n→ ∞.
Suppose that all the indices are different. There exist n!

(n−kl)!(kl)! = O(nkl) of these
kinds of index sets, and now we will prove, that most of the corresponding products
have order of magnitude less than n−kl−1. Consider for any 0 ≤ r ≤ kl

Nn
k (r) := E

(
|U12|2|U23|2 . . . |Ur1|2Ur+1,r+2 . . . Ukl−1,klUkl,r+1U r+2,r+1 . . . U r+1,kl

)
.

Note that Nn
k (kl) = Nn

k (kl − 1) = Mn
kl, and if {i1, . . . ikl} = {j1, . . . , jkl}, and all the

indices are different, then the corresponding term equals to Nn
k (r) for some 0 ≤ r ≤ kl.

Using the orthogonality of the rows for 0 ≤ r ≤ kl − 2

E

(
n∑

j=1

|U12|2|U23|2 . . . |Ur1|2Ur+1,r+2 . . . Ukl−1,jUkl,r+1U r+2,r+1 . . . U r+1,j

)
= 0. (60)

If j ≥ kl, then the permutation invariance implies, that

E
(
|U12|2|U23|2 . . . |Ur1|2Ur+1,r+2 . . . Ukl−1,jUkl,r+1U r+2,r+1 . . . U r+1,j

)
= Nn

k (r),
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so we can write from (60)

(n− kl)Nn
k (r)

= −E

(
kl∑

j=1

|U12|2|U23|2 . . . |Ur1|2Ur+1,r+2 . . . Ukl−1,jUkl,r+1U r+2,r+1 . . . U r+1,j

)
.

On the right side there is a sum of kl numbers which are less than O(n−kl) because of
(59), so this equation holds only if Nn

k (r) ≤ O(n−kl−1).

We have to compute the sum of the expectations

E

(
|Ui1i2 |2 . . . |Uili1 |2 . . . |Ui(k−1)l+1i(k−1)l+2

|2 . . . |Uikli(k−1)l+1
|2
)

= Mn
kl.

Now we count the number of these summands, so first we fix the set of se-
quences of length l Il,k = {(i(u−1)l+1, . . . , iul), 1 ≤ u ≤ k}, and we try to find the set
Jl,k = {(j(u−1)l+1, . . . , jul), 1 ≤ u ≤ k}, which gives Mn

kl. If the product contains Uirir+1,
then it has to contain U irir+1, so if ir and ir+1 are in the same sequence of Il,k, then
js = ir and jt = ir+1 have to be in the same sequence of Jl,k, and t = s+ 1 modulo l.
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. . .
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j1 j2

jl j3

jl−1

. . .

...

� 	I

6
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R

jl+1 jl+2

j2l jl+3

j2l−1

. . .

...
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� 	I

6
?

�
-

R

j(k−1)l+1 j(k−1)l+2

jkl j(k−1)l+3

jkl−1

. . .

...

On the picture we have two
directed graphs corresponding
the indices in one term of the
sum. The white vertices are
the I indices, with directed

edges
−−−−→
(iu, iv), if there is Uiuiv

occurs in the product, and
the black vertices denotes the
J indices with directed edges−−−−→
(ju, jv), if there is U jujv oc-
curs in the product. The cal-
culations above showed, that
the two graph has the same
vertices and the same edges,
so the permutation of the I
indices holds the components
and the order of the vertices in
a component.

This means, that for all 1 ≤ u ≤ k there exists a sequence (i(v−1)l+1, . . . , ivl) ∈ Ik,l
and a cyclic permutation π of the numbers {(v − 1)l + 1, . . . , vl} such that
(j(u−1)l+1, . . . , jul) = (iπ((v−1)l+1), . . . , iπ(vl)). We conclude, that for each Il,k there are
k!lk sets Jl,k,since we can permute the sets of Il,k in k! ways, and in all sets there are l
cyclic permutations.
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Clearly there are n!
(n−kl)! sets Il,k, so

lim
n→∞

E

((
TrU l

n

)k (
TrU l

n

)k)
= lim

n→∞

n!

(n− kl)!
k!lk

(1 − εnkl)(n− kl)!

n!
= k!lk,

and as in the proof of Theorem 3.4 this is the kth moment of (
√
lZ)(

√
lZ). �

Finally we prove that the limits of the trace of different powers are independent.
The method of computation is the same as in the previous sections.

Theorem 3.6 Let Un be a sequence of Haar unitary random matrices as above. Then
TrUn,TrU2

n, . . . ,TrU l
n are asymptotically independent.

Proof. We will show, that the joint moments of TrUn,TrU2
n, . . .TrU l

n converge to the
joint moments of Z1,

√
2Z2, . . . ,

√
lZl, where Z1, Z2, . . . Zl are independent standard

complex normal random variables. The latter joint moments are

E

(
l∏

i=1

i
ai+bi

2 Zai
i Z

bi
i

)
=

l∏

i=1

i
ai+bi

2 E

(
Zai
i Z

bi
i

)
=

l∏

i=1

δaibiai!i
ai ,

so we will prove that

E

(
l∏

i=1

(
TrU i

n

)ai
(
TrU i

n

)bi
)

=

l∏

i=1

δaibiai!i
ai .

From Lemma 3.3, if
∑l

i=1 iai 6=
∑l

i=1 ibi, then the moment

E

(
l∏

i=1

(
TrU i

n

)ai

l∏

i=1

(
TrU i

n

)bi
)

= 0.

This implies, that it is enough to consider the case, when
∑
iai =

∑
ibi. We have

to take the summation over n
�
iai set of indices, since again if the indices in the first

product does dot coincides with the ones from the second product (with multiplicity),
then the expectation is zero according to Lemma 3.3. The order of magnitude of each
summand is at most

O
(
n−

�
iai
)
,

as above, so if not all the indices are different, then the sum of these expectations
tends to zero, as n→ ∞. The same way as in the proof of the previous theorem, those
summands where there is a Uirir+1U iris, ir+1 6= is in the product are small. So now we
have to sum the expectations Mn

Σiai
.

54



. . .
i1 i2 ik1

- -. . .
ia1+1 ia1+2 ia1+2a2−1 ia1+2a2

-� � -. . .
ia1+2a2+1 ia1+2a2+2

ia1+2a2+3

ia1+2a2+3a3−1ia1+2a2+3a3−2

K K

ia1+2a2+3a3

. . .
j1 j2 jb1

- -. . .
jb1+1 jb1+2 jb1+2b2−1 jb1+2b2

-� � -. . .
jb1+2b2+1 jb1+2b2+2

jb1+2b2+3

jb1+2b2+3b3−1jb1+2b2+3b3−2

K K

jb1+2b2+3b3

...

�I

6

�
-

R

?

	

il−1
Σ

u=1
uau+1

il−1
Σ

u=1
uau+2

. . . �I

6

�
-

R

?

	

i l
Σ

u=1
uau

i l
Σ

u=1
uau−l+1

...

. . .

...
...

. . .

...

�I

6

�
-

R

?

	

jl−1
Σ

u=1
ubu+1

jl−1
Σ

u=1
ubu+2

. . . �I

6

�
-

R

?

	

j l
Σ

u=1
ubu

j l
Σ

u=1
ubu−l+1

...

. . .

...
...

. . .

If we fix the set of first indices I, then again the sequences of the appropriate J , have
to be cyclic permutations of the sequences of I. So again if we consider the graphs
corresponding to the two sets of indices, we can permute the vertices by components.
This means that the number of the sequences of length i in I is the same as in J , which
means ai = bi for all 1 ≤ i ≤ l. The number of the I sets is n!

(n− �
iai)!

, so we have
arrived to

lim
n→∞

E

(
l∏

i=1

(
TrU i

n

)ai
(
TrU i

n

)bi
)

= lim
n→∞

n!

(n−∑ iai)!

l∏

i=1

δai,bii
aiai!

(
1 − εn� iai

)
(n−

∑
iai)!

n!
=

l∏

i=1

δai,biai!i
ai .

�

Diaconis and Evans in [9] generalized the result for infinite series of Haar unitary
random matrices. Their result is the following.

Theorem 3.7 Consider an array of complex numbers anj, where n, j ∈ N. Suppose
there exists σ2 such that

lim
n→∞

∞∑

j=1

|anj|2 min(j, n) = σ2.
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Suppose also that there exist a sequence of positive integers {mn : n ∈ N} such that

lim
n→∞

mn

n
= 0,

and

lim
n→∞

∞∑

j=mn+1

|anj|2 min(j, n) = 0.

Then
n∑

j=1

anjTr
(
U j
n

)
n→∞−→ σZ

in distribution, where Z is a standard complex normal random variable.

For the polynomials of random matrices the theorem can be proven by the same
methods as before. The proof of Diaconis and Evans based on the fact that for any
j, k ∈ N

E

(
TrU j

nTrUk
n

)
= δjk min(j, k).

Diaconis and Shahshahani mentioned a very important consequence of their theorem,
namely that it implies the convergence of the empirical eigenvalue distribution to the
uniform distribution on the circle, since the Fourier transform of a µ ∈ M(T) is given
by the sequence ∫

T

zk dµ(z), k ∈ Z.

Now if γ is the uniform distribution on T, then
∫

T

zk dγ(z) =
1

2π

∫ 2π

0

eikϕ dϕ =

{
1, if k = 0
0, if k 6= 0

If the eigenvalues of the n× n Haar unitary Un are ζ1, . . . , ζn, then

∫

T

zk d

(
1

n

n∑

i=1

δ(ζi)

)
(z) =

1

n

n∑

i=1

ζki =
1

n
TrUk

n .

By the Chebyshev inequality for k 6= 0

P

(∣∣∣∣
1

n
TrUk

n

∣∣∣∣ > ε

)
= P

(∣∣TrUk
n

∣∣ > nε
)
≤

E

(
TrUk

nTr (U∗
n)
k
)

n2ε2
= O

(
1

n2

)
,

so ∞∑

n=1

P

(∣∣∣∣
1

n
TrU l

n

∣∣∣∣ > ε

)
<∞,

which means by the Borel-Cantelli lemma, that

1

n
TrUk

n
n→∞−→ 0,
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with probability 1. If k = 0, then

1

n
TrUk

n =
1

n
Tr In = 1,

where In is the n× n identity matrix. Thus the limit Fourier transform coincides with
the Fourier transform of the uniform distribution, therefore by the unicity of the Fourier
transform, the limit of the empirical eigenvalue distribution is the uniform distribution
on T.

3.5 Orthogonal random matrices

The set of n × n orthogonal random matrices is again a compact topological group,
so we can define a Haar distributed orthogonal random matrix. The construction is
similar, but we start from a matrix with real valued standard normal random variables.
Applying the Gram-Schmidt orthogonalization gives the random matrix On.

The permutation invariance of the matrix implies that the entries ofOn have the same
distribution, and by the construction, the square of the entries has beta distribution
with parameters

(
1
2
, n−1

2

)
, so it has the density

Γ
(
n
2

)

Γ
(
n−1

2

)
Γ
(

1
2

)x− 1
2 (1 − x)

n−3
2 ,

on the interval [0, 1]. Now using the symmetry of Oij we have that

P(Oij < x) =
1

2
+

1

2
P
(
O2
ij < x2

)

=
1

2
+

1

2

Γ
(
n
2

)

Γ
(
n−1

2

)
Γ
(

1
2

)
∫ x2

0

t−
1
2 (1 − t)

n−3
2 dt

=
1

2
+

Γ
(
n
2

)

Γ
(
n−1

2

)
Γ
(

1
2

)
∫ x

0

(
1 − y2

)n−3
2

=
Γ
(
n
2

)

Γ
(
n−1

2

)
Γ
(

1
2

)
∫ x

−1

(
1 − y2

)n−3
2

Similarly to Theorem 3.2 we have the limit distribution of the normalized entries.

Theorem 3.8 The density of
√
nOij is on the interval [−√

n,
√
n]

Γ
(
n
2

)
√
nΓ
(
n−1

2

)
Γ
(

1
2

)
(

1 − y2

n

)n−3
2

n→∞−→ 1√
2π
e−

y2

2 ,

so it converges to a standard normal variable in distribution.
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We need only the convergence of the constant. Since

Γ

(
1

2

)
=

√
π,

Γ(n) = (n− 1)! and

Γ

(
n+

1

2

)
= Γ

(
1

2

) n∏

i=1

(
n− i+

1

2

)
=

√
π(2n)!

22nn!
.

by the Stirling formula we have that for n = 2k

Γ
(
n
2

)

Γ
(
n−1

2

)
Γ
(

1
2

) =
Γ (k)

Γ
(
k − 1

2

)
Γ
(

1
2

) =
((k − 1)!)222(k−1)

π(2(k − 1))!

≈
(
k−1
e

)2(k−1)
22(k−1)2π(k − 1)

π
(

2(k−1)
e

)2(k−1)√
4π(k − 1)

=

√
k − 1√
π

=

√
n− 2√
2π

,

and for n = 2k + 1

Γ
(
n
2

)

Γ
(
n−1

2

)
Γ
(

1
2

) =
Γ
(
k + 1

2

)

Γ (k) Γ
(

1
2

) =
(2k)!

(k − 1)!22kk!

≈ k
(

2k
e

)2k√
4πk

(
k
e

)2k
2πk22k

=

√
k√
π

=

√
n− 1√
2π

,

so we arrived to
Γ
(
n
2

)
√
nΓ
(
n−1

2

)
Γ
(

1
2

) n→∞−→ 1√
2π
.

�

The moments of Oij can be computed from the density, which are important, if
we want to prove a theorem which is similar to the Theorem 3.6. The proof of that
theorem showed, that it is enough to know the second moment of the entries, and the
order of magnitude of the other ones. The odd moments are clearly 0. The 2kth even
moment Mk,n can be computed by partial integration, i.e.

Mk,n :=
Γ
(
n
2

)
√
πΓ
(
n−1

2

)
∫ 1

−1

x2k
(
1 − x2

)n−3
2

=
2k − 1

n− 1

Γ
(
n
2

)
√
πΓ
(
n−1

2

)
∫ 1

−1

x2(k−1)
(
1 − x2

)n−1
2 =

2k − 1

n
Mk−1,n+1,

because
Γ
(
n
2

)
Γ
(
n+1

2

)

Γ
(
n−1

2

)
Γ
(
n+2

2

) =
n− 1

n
.
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By induction

Mk,n =
k∏

i=1

2k − 2i+ 1

n + i− 1
= O

(
n−k) ,

and

M2,n =
1

n
.

Clearly the limit distribution of the trace cannot be complex valued, since the entries
are real. We use the method of moments again, so we need the moments of the standard
normal variable. It is well known, that for an η ∼ N(0, 1)

Eηn =

{
(2k)!
2kk!

, if n = 2k
0, if n = 2k + 1

We need the analogue of Lemma 3.3 for orthogonal matrices.

Lemma 3.4 Let i1, . . . , ih, j1, . . . jh ∈ {1, . . . , n} and k1, . . . , kh be positive integers for
some h ∈ N. If

∑
ir=u kr is odd for some 1 ≤ u ≤ n, or

∑
jr=v kr is odd for some

1 ≤ v ≤ n, then

E
(
Ok1
i1j1

. . . Okh
ihjh

)
= 0.

The proof goes similarly to the proof of Lemma 3.3, but we can use it only in the
ϑ = π case, since the entries are real.

From this, the following theorem holds.

Theorem 3.9 Let On be a sequence of Haar unitary random matrices as above. Then
TrOn

n→∞−→ N(0, 1).

Proof. The proof of this convergence is similar to the Theorem 3.4, so we use the
method of moments, and we consider for k ∈ N

E (TrOn)
k =

∑

i1,...ik

E (Oi1i1Oi2i2 . . . Oikik) .

Now we can use Lemma 3.4 to show that it is enough to sum the terms, where in
the corresponding sequence of indices contains each index with even multiplicity. This
implies, that if k is odd, then the kth moment of the trace vanishes as n → ∞.
If k = 2m, then from Cauchy inequality we have that each term has the order of
magnitude O (nm), so it is enough to consider the sum of the terms where each index
occurs exactly twice. We can choose the m indices in

(
n
m

)
ways, and then we choose

the places where we put the same indices in (2m)!
2mm!

ways, and then we order the indices
in m! ways. So

lim
n→∞

E (TrOn)
2m =

(2m)!

2mm!
,
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which is exactly the 2mth moment of the standard normal variable. �

The above theorem is not true for higher powers of On. For example with combina-
torial methods we get that

E
(
TrO2l

n

)
n→∞−→ 1.

Using the Fourier transform one can easily check, that the limit of the empirical eigen-
value distribution of On as n→ ∞ is again the uniform distribution on the unit circle.

3.6 Large deviation theorem for unitary random matrix

We know that the limit of the empirical eigenvalue distribution of the Haar unitary
random matrix is the uniform distribution on the unit circle T := {z : |z| = 1}. For
the rate of the convergence the large deviation theorem was proven by Hiai and Petz.
The theorem concerns not only the Haar unitary random matrices but the unitary
random matrices whose distribution is exponential with respect to the Haar measure.
So suppose that γn is the Haar measure on the U(n) set of n × n unitary matrices,
and Q : T → R is a continuous function. Now for each n ∈ N take the measure
νn ∈ M(U(n)) as

νn :=
1

Zn
exp(−nTrQ(U)) dγn(U),

where Zn is the normalizing constant. Then the joint eigenvalue density is

1

Zn
exp

(
−n

n∑

i=1

Q(ζi)

)
∏

i<j

|ζi − ζj|2.

Now consider a sequence of n× n unitary matrices with distribution νn, and denote
Pn the sequence of the distribution of empirical eigenvalue distribution of the matrices.
Then each Pn is a measure on M(T), and the following theorem holds.

Theorem 3.10 (Hiai, Petz) There exists the finite limit

B := lim
n→∞

logZn,

and the sequence (Pn) satisfies the large deviation principle in the scale n−2 with rate
function

I(µ) :=

∫ ∫

T2

log
1

|ζ − η| dµ(ζ) dµ(η) +

∫

T

Q(ζ) dµ(ζ) +B.

Furthermore there exists a unique µ0 ∈ M(T) such that I(µ0) = 0.

The case Q ≡ 0 gives the large deviation for the sequence of Haar unitary random
matrices, and in this case the minimizing measure is the uniform distribution on T,
but generally it is difficult to find the limit of the empirical eigenvalue distribution.
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4 Truncations of Haar unitaries

Let U be an n × n Haar distributed unitary matrix. By truncating n − m bottom
rows and n−m last columns, we get an m×m matrix U[n,m]. The distribution of the
entries is clearly the same as in the case of Haar unitaries. By the construction, the
distribution of Un,m is invariant under conjugation, and multiplying by any V ∈ U(m).

4.1 Joint eigenvalue density

The truncated matrix is not unitary but it is a contraction, because suppose, that there
exists an x = (x1, . . . , xm) ∈ Cm, ‖x‖ = 1 such that

‖U[n,m]x‖2 = x∗U∗
[n,m]U[n,m]x > 1,

then for x′ = (x1, . . . , xm, 0 . . . 0) ∈ C
n and for the matrix C = (Uij)n−m+1≤i≤n

1≤j≤m

‖Ux′‖2 = ‖U[n,m]x‖2 + ‖Cx‖2 ≥ ‖U[n,m]x‖2 > 1.

So we proved, that U[n,m] is a contraction, so ‖U[n,m]‖ ≤ 1, and therefore the eigenvalues
z1, z2, . . . , zm ∈ Dm, where D = {z ∈ C : |z| ≤ 1} is the unit disc. According to [48]
the joint probability density of the eigenvalues is

C[n,m]

∏

i<j

|ζi − ζj|2
m∏

i=1

(1 − |ζi|2)n−m−1

on Dm. Now we sketch the proof of this result. Let Um be an m × m Haar unitary
matrix and write it in the block-matrix form(

A B
C D

)
,

where A is an n×n, B is n× (m−n), C is (m−n)×n and D is an (m−n)× (m−n)
matrix. The space of n × n (complex) matrices is easily identified with R2n2

and the
push forward of the usual Lebesgue measure is denoted by λn. It was obtained in [7]
that for m ≥ 2n, the distribution measure of the n×n matrix A is absolute continuous
with respect to λn and the density is

C(n,m) det(1 − A∗A)m−2n1‖A‖≤1dλn(A) . (61)

To determine the joint distribution of the eigenvalues ζ1, ζ2, . . . , ζn of A, we need
only the matrices A and C, and by a unitary transformation we transform A to an
upper triangular form




ζ1 ∆1,2 ∆1,3 . . . ∆1,n

0 ζ2 ∆2,3 . . . ∆2,n

. . . . . . .
0 0 0 . . . ζn
C1 C2 C3 . . . Cn



, (62)
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where C1, C2, . . . , Cn are the column vectors of the matrix C. First we consider the
case m = 1. In this case the eigenvalue of the 1× 1 matrix is the first entry of the first
row, so it has the density (1 − |z|2)n−1.

For m ≥ 2 we get by the Schur decomposition that

A = T (z + ∆)T−1,

where T is an appropriate unitary matrix, Z = diag(z1, . . . , zm), and ∆ = (∆ij)1≤i<j≤m−1

is a strictly upper triangular matrix. The matrix dL = −iT−1dT is Hermitian and the
we can assume, that dLii = 0 for 1 ≤ i ≤ m. Then from Mehta

dA =
∏

i<j

|zi − zj|2
m∏

i=1

dzi
∏

i<j

d∆ijdTij.

By the orthogonality of the rows for i < j

zi∆ij + C∗
i Cj +

∑

k<i

∆ki∆kj = 0,

so

∆ij = − 1

zi

(
C∗
i Cj +

∑

k<i

∆ki∆kj

)
, (63)

and the columns are unit vectors so

C∗
i Cj +

∑

k<i

|∆ki|2 + |zi|2 = 1. (64)

So since the entries of the matrix ∆ are determined by the matrices C and Z, we
get the joint density if we integrate the joint density of Z + ∆ and C with respect the
elements of C. First we integrate with respect to the last column, because all the other
columns can be constructed without the last one.

From (63) we get, that since

d

(
−1

z

)
=

1

|z|2dz

thus any modification of zi modify ∆im by 1/|zi|2, which gives a
∏

i<m 1/|zi|2 in the
density function.

There exists (n−m) × (n−m) matrices X (i) such that

∆ij =
1

zi
C∗
iX

(i)Cj.

Since ∆1j = − 1
z1
C∗

1Cj, X
(1) = I. If we know X (1), . . . , X(i−1)

∆ij = − 1

zi
C∗
i Cj +

∑

k<i

C∗
iX

(k)CkC
∗
k

|zk|2
X(k)Cj,
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so

X(i) = I +
∑

k<i

X(k)CkC
∗
k

|zk|2
X(k).

Then
C∗
i Ci +

∑

k<i

∆ki∆ki = C∗
iX

(i)Ci,

so the vectors Ci must satisfy the equations

C∗
iX

(i)Ci = 1 − |zi|2, (65)

so C1i, . . . , Cn−m−1,i lies inside the ellipsoid given by X (i). By Lemma 3.2 we need the
integral of the uniform density on this ellipsoid, i.e. the volume of this set defined in
(65). In order to obtain the volume it is enough to know the determinant of X (i).

X(i) = I +
∑

k<i

X(k)CkC
∗
k

|zk|2
X(k) = X(i−1) +X(i−1)Ci−1C

∗
i−1

|zi−1|2
X(i−1),

so

detX (i) = detX (i−1) det

(
I +

Ci−1C
∗
i−1

|zi−1|2
X(i−1)

)
.

Here

Ci−1C
∗
i−1

|zi−1|2
X(i−1)Ci−1 =

C∗
i−1Ci−1 +

∑
k<i−1 |∆k,i−1|2

|zi−1|2
Ci−1 =

(
1

|zi−1|2
− 1

)
Ci−1,

so the matrix

I +
Ci−1C

∗
i−1

|zi−1|2
X(i−1)

has the eigenvalue 1/|zi−1|2 with multiplicity 1, and all the other eigenvalues are 1, so

detX (i) =
detX (i−1)

|zi−1|2
=
∏

j<i

1

|zj|2
.

Now we integrate with respect to the first column. For fixed ∆1,m . . .∆m−1,m the
distribution of C1,m, . . . , Cn−m−1,m is uniform on the set

|C1,m|2 + · · ·+ |Cn−m−1,m|2 ≤ 1 − |zm|2 − |∆1,m|2 . . . |∆m−1,m|2,

i.e. inside the ellipsoid defined by (65). The volume of this n − m − 1 dimensional
complex ellipsoid is

(1 − |zm|2)n−m−1

detX (m)
= (1 − |zm|2)n−m−1

∏

i<m

|zi|2,
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so the form the last column we get (1 − |zm|2)n−m−1. Since only the last column
depends on zm, and the joint density function of the eigenvalues must be symmetric in
z1, . . . , zm, so the joint density function of the eigenvalues is given by

∏

1≤i<j≤m
|zi − zj|2

m∏

i=1

(
1 − |zi|2

)n−m−1
.

Since the normalizing constant C[n,m] was not given in [48], we computed it by
integration in [34]. To do this, we write ζi = rie

iϕi and dζi = ri dri dϕi. Then

C−1
[n,m] =

∫

Dm

∏

1≤i<j≤m
|zi − zj|2

m∏

i=1

(1 − |zi|2)n−m−1 dz

=

∫

[0,1]m

∫

[0,2π]m

∏

1≤i<j≤m
|rieiϕi − rje

iϕj |2
m∏

i=1

(1 − r2
i )
n−m−1

m∏

i=1

ri dϕ dr.

Next we integrate with respect to dϕ = dϕ1 dϕ2 . . . dϕm by transformation into
complex contour integral what we evaluate by means of the residue theorem.
∫

[0,2π]n

∏

1≤i<j≤m
|rieiϕ1 − rje

iϕj |2 dϕ

= (−i)m
∫

Tn

∏

1≤i<j≤m
|rizi − rjzj|2

m∏

i=1

z−1
i dz

= (−i)m
∫

Tn

∏

1≤i<j≤m
(rizi − rjzj)(riz

−1
i − rjz

−1
j )

m∏

i=1

z−1
i dz

= (−i)m
∫

Tn

m∏

i=1

z−1
i det




1 1 . . . 1
r1z1 r2z2 . . . rmzm
...

. . .
...

rm−1
1 zm−1

1 rm−1
2 zm−1

2 . . . rm−1
m zm−1

m


×

× det




1 1 . . . 1
r1z

−1
1 r2z

−1
2 . . . rmz

−1
m

...
. . .

...

rm−1
1 z

−(m−1)
1 rm−1

2 z
−(m−1)
2 . . . rm−1

m z
−(m−1)
m


 dz

= (−i)m
∫

Tn

m∏

i=1

z−1
i

∑

π∈Sm

(−1)σ(π)
m∏

i=1

(rizi)
π(i)−1

∑

ρ∈Sm

(−1)σ(ρ)
m∏

i=1

(riz
−1
i )ρ(i)−1 dz .

We have to find the coefficient of
∏m

i=1 z
−1
i , this gives that only ρ = π contribute and

the integral is

(2π)m
∑

ρ∈Sm

m∏

i=1

(ri)
2(ρ(i)−1).
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So we have

C−1
[n,m] = (2π)m

∫

[0,1]m

∑

ρ∈Sm

m∏

i=1

(ri)
2(ρ(i)−1)

m∏

i=1

(1 − r2
i )
n−m−1

m∏

i=1

ri dr

= (2π)mm!

m∏

i=1

∫ 1

0

r2i−1
i (1 − r2

i )
n−m−1 dri

and the rest is done by integration by parts:

∫ 1

0

r2k+1(1 − r2)n−m−1 dr =
k

n−m

∫ 1

0

r2k−1(1 − r2)n−m dr

=
k!

(n−m) . . . (n−m+ k − 1)

∫ 1

0

r(1 − r2)n−m+k−1 dr

=

(
n−m + k − 1

k

)−1
1

2(n−m+ k)
.

Therefore

C−1
[n,m] = πmm!

m−1∏

k=0

(
n−m + k − 1

k

)−1
1

n−m+ k
. (66)

4.2 Limit distribution of the truncation

In this section we study the limit of U[n,m] when n → ∞ and m is fixed. Clearly here
we need some normalization, otherwise the entries and the eigenvalues vanish as the
matrix size goes to infinity.

Now we consider
√
n/mU[n,m]. Its joint probability density of the eigenvalues is

simply derived from the above density of U[n,m] by the transformation

(ζ1, . . . , ζm) 7→
(√

m

n
ζ1, . . . ,

√
m

n
ζm

)
,

and it is given as

C[n,m]

(m
n

)m∏

i<j

∣∣∣∣
√
m

n
ζi −

√
m

n
ζj

∣∣∣∣
2 m∏

i=1

(
1 − m|ζi|2

n

)n−m−1

=
1

πmm!

m−1∏

k=0

(
n−m+ k − 1

k

)
(n−m + k)

(m
n

)m(m+1)/2

×
∏

i<j

|ζi − ζj|2
m∏

i=1

(
1 − m|ζi|2

n

)n−m−1
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Now consider the asymptotic behaviour of the density.

C[n,m]

(m
n

)m∏

i<j

∣∣∣∣
√
m

n
ζi −

√
m

n
ζj

∣∣∣∣
2 m∏

i=1

(
1 − m|ζi|2

n

)n−m−1

=
1

πmm!

m−1∏

k=0

nk+1(1 + o(1))

k!

(m
n

)m(m+1)/2∏

i<j

|ζi − ζj|2
m∏

i=1

(
1 − m|ζi|2

n

)n−m−1

=
mm(m+1)/2

πm
∏m

k=1 k!
(1 + o(1))

∏

i<j

|ζi − ζj|2
m∏

i=1

(
1 − m|ζi|2

n

)n−m−1

.

The limit of the above as n→ ∞ is

mm(m+1)/2

πm
∏m

k=1 k!
exp

(
−m

m∑

i=1

|ζi|2
)
∏

i<j

|ζi − ζj|2, (67)

which is exactly the joint eigenvalue density of the standard m × m non-selfadjoint
Gaussian matrix.

4.3 Large deviation theorem for truncations

In the case of selfadjoint Gaussian random matrices, Wishart matrices and elliptic
Gaussian random matrices the limit of the empirical eigenvalue distribution was known,
and from the joint eigenvalue density we could get the rate function, and we found
that the unique minimizer of the rate function is the limit of the empirical eigenvalue
distribution. Now we have different kind of random matrices, and we don’t know the
limit of the empirical eigenvalue distribution, but we have the joint eigenvalue density.
So now we will prove the large deviation theorem with the rate function which we get
from the joint eigenvalue density, and then we try to find the unique minimizer of the
rate function with the tools of potential theory mentioned in the Section 2 in order to
get the limit distribution.

The following theorem, which is the main result of the dissertation was published in
[35].

Theorem 4.1 [Petz, Réffy] Let U[m,n] be the n × n truncation of an m × m Haar
unitary random matrix and let 1 < λ <∞. If m/n→ λ as n→ ∞, then the sequence
of empirical eigenvalue distributions Pn = P[m,n] satisfies the large deviation principle
in the scale 1/n2 with rate function

I(µ) := −
∫ ∫

D2

log |z − w| dµ(z) dµ(w)− (λ− 1)

∫

D
log(1 − |z|2) dµ(z) +B,

for µ ∈ M(D), where

B := −λ
2 log λ

2
+
λ2 log(λ− 1)

2
− log(λ− 1)

2
+
λ− 1

2
.
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Furthermore, there exists a unique µ0 ∈ M(D) given by the density

dµ0(z) =
(λ− 1)r

π (1 − r2)2 dr dϕ, z = reiϕ

on {z : |z| ≤ 1/
√
λ} such that I(µ0) = 0.

Set

F (z, w) := − log |z − w| − λ− 1

2

(
log(1 − |z|2) + log(1 − |w|2)

)
,

and
Fα(z, w) := min(F (z, w), α),

for α > 0. Since Fα(z, w) is bounded and continuous

µ ∈ M(D) 7→
∫ ∫

D2

Fα(z, w) dµ(z) dµ(w).

is continuous in the weak* topology, when the support of µ is restricted to a compact
set. The functional I is written as

I(µ) =

∫ ∫

D2

F (z, w) dµ(z) dµ(w) +B

= sup
α>0

∫ ∫

D2

Fα(z, w) dµ(z) dµ(w) +B ,

hence I is lower semi-continuous.

We can write I in the form

I(µ) = −Σ(µ) − (λ− 1)

∫

D
log(1 − |z|2) dµ(z) +B.

Here the first part −Σ(µ) is strictly convex (as it was established in the previous
section) and the second part is affine in µ. Therefore I is a strictly convex functional.
If X is compact and A is a base for the topology, then the large deviation principle is
equivalent to the following conditions (Theorem 4.1.11 and 4.1.18 in [8]):

−I(x) = inf
x∈G,G∈A

{
lim sup
n→∞

1

n2
logPn(G)

}
= inf

x∈G,G∈A

{
lim inf
n→∞

1

n2
logPn(G)

}

for all x ∈ X. We apply this result in the case X = M(D), and we choose

{
µ′ ∈ M(D) :

∣∣∣∣
∫

D
zk1zk2 dµ′(z) −

∫

D
zk1zk2 dµ(z)

∣∣∣∣ < ε for k1 + k2 ≤ m

}
.
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to be G(µ;m, ε). For µ ∈ M(D) the sets G(µ;m, ε) form a neighbourhood base of µ
for the weak* topology of M(D), where m ∈ N and ε > 0. To obtain the theorem, we
have to prove that

−I(µ) ≥ inf
G

{
lim sup
n→∞

1

n2
logPn(G)

}
,

and

−I(µ) ≤ inf
G

{
lim inf
n→∞

1

n2
logPn(G)

}
,

where G runs over neighbourhoods of µ. The large deviation theorem implies the
almost sure weak convergence.

Theorem 4.2 Let U[m,n], Pn and µ0 as in Theorem 4.1. Then

Pn(ω)
n→∞−→ µ0

weakly with probability 1.

Proof. For fixed f : D → C bounded and continuous function and ε > 0 we define the
sets

Ωn :=

{∣∣∣∣
∫

D
f(z) dPn(ω, z) −

∫

D
f(z) dµ0(z)

∣∣∣∣ ≥ ε

}

for all n ∈ N. Then

Prob (ω ∈ Ωn) = Pn

(
µ ∈ M(D) :

∣∣∣∣
∫

D
f(z) dµ(z) −

∫

D
f(z) dµ0(z)

∣∣∣∣ ≥ ε

)
.

The set

F :=

{
µ ∈ M(D) :

∣∣∣∣
∫

D
f(z) dµ(z) −

∫

D
f(z) dµ0(z)

∣∣∣∣ ≥ ε

}

is closed, so Theorem 4.1 implies that

lim sup
n→∞

1

n2
logPn(F ) ≤ − inf

µ∈F
I(µ).

Because of lower semi-continuity of I, the sets {µ : I(µ) > c} are open in M(D) for
all c ∈ R. Since F is compact, and

F ⊂
⋃

c>0

{µ : I(µ) > c} ,

there exists a γ > 0, such that I(µ) ≥ γ for all µ ∈ F . The large deviation theorem
above implies, that

lim sup
n→∞

1

n2
logPn(F ) ≤ −γ,
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so for all 0 < δ < γ, there exists N ∈ N, such that if n ≥ N , then

Pn(F ) ≤ e−n
2(γ−δ).

We get for n large enough, that

Prob (ω ∈ Ωn) = Pn(F ) ≤ e−n
2(γ−δ),

thus ∞∑

n=1

Prob (ω ∈ Ωn) <∞,

for all ε > 0, so the Borel-Cantelli lemma implies that
∫

D
f(z) dPn(ω, z)

n→∞−→
∫

D
f(z) dµ0(z) a.s.

Since this is true for all bounded and continuous function on D, the weak convergence
follows. �

Now we prove Theorem 4.1. Our method is again based on the explicit form of the
joint eigenvalue density. First we compute the limit of the normalizing constant (66).
Compute as follows.

B =: lim
n→∞

1

n2
logC[m,n]

= lim
n→∞

1

n2
log

(
πnn!

n−1∏

j=0

(
m− n + j − 1

j

)−1
1

m− n+ j

)

= − lim
n→∞

1

n2

n−1∑

j=1

log

(
m− n+ j − 1

j

)

= − lim
n→∞

1

n2

n−1∑

j=1

j∑

i=1

log
m− n− 1 + i

i

= − lim
n→∞

1

n2

n−1∑

i=1

(n− 1 − i) log
m− n− 1 + i

i

= − lim
n→∞

1

n− 1

n−1∑

i=1

n− 1 − i

n− 1
log

m− n− 1 + i

i
.

Here the limit of a Riemannian sum can be recognized and this gives an integral:

B = −
∫ 1

0

(1 − x) log

(
λ− 1 + x

x

)
dx

= −λ
2 log λ

2
+
λ2 log(λ− 1)

2
− log(λ− 1)

2
+
λ− 1

2
.

The lower and upper estimates are stated in the form of lemmas.
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Lemma 4.1 For every µ ∈ M(D),

inf
G

{
lim sup
n→∞

1

n2
logPn(G)

}
≤ −

∫ ∫

D2

F (z, w) dµ(z) dµ(w)−B

where G runs over a neighbourhood base of µ.

Proof. For ζ = (ζ1, . . . , ζn) ∈ Dn set a measure

µζ =
1

n

n∑

i=1

δ(ζi).

Moreover for any neighbourhood G of µ ∈ M(D) put

G0 = {ζ ∈ Dn : µζ ∈ G} ⊂ Dn.

Then we get

Pn(G) = νn(G0)

=
1

Zn

∫
. . .

∫

G0

exp

(
(n− 1)

n∑

i=1

log
(
1 − |ζi|2

)
)

∏

1≤i<j≤n
|ζi − ζj|2 dζ1 . . . dζn

=
1

Zn

∫
. . .

∫

G0

exp

(
−2

∑

1≤i<j≤n
F (ζi, ζj)

)
dζ1 . . . dζn

≤ 1

Zn

∫
. . .

∫

G0

exp

(
−n2

∫ ∫

D2

Fα(z, w) dµζ(z) dµζ(w) + nα

)
dζ1 . . . dζn

=
1

Zn
exp

(
−n2 inf

µ′∈G

∫ ∫

D2

Fα(z, w) dµ′(z) dµ′(w) + nα

)
.

Therefore

lim sup
n→∞

1

n2
logPn(G) ≤ − inf

µ′∈G

∫ ∫

D2

Fα(z, w) dµ′(z) dµ′(w) − lim
n→∞

1

n2
logC[m,n].

Thanks to the weak∗ continuity of

µ′ 7→
∫ ∫

Fα(z, w) dµ′(z) dµ′(w)

we obtain

inf
G

{
lim sup
n→∞

1

n2
logPn(G)

}
≤ −

∫ ∫

D2

Fα(z, w) dµ(z) dµ(w) +B.

Finally, letting α → ∞ yields inequality. �
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Lemma 4.2 For every µ ∈ M(D),

inf
G

{
lim inf
n→∞

1

n2
logPn(G)

}
≥ −

∫ ∫

D2

F (z, w) dµ(z) dµ(w)−B,

where G runs over a neighbourhood base of µ.

Proof. If ∫ ∫

D2

F (z, w) dµ(z) dµ(w)

is infinite, then we have a trivial case. Therefore we may assume that this double
integral is finite. Since F (z, w) = ∞ on the boundary of the unit circle, we assume,
that the support of the measure µ is distinct from the boundary, since

∫ ∫

D2

F (z, w) dµ(z) dµ(w) = ∞

in this case. Since F (z, w) is bounded from below, we have

∫ ∫

D2

F (z, w) dµ(z) dµ(w) = lim
k→∞

∫ ∫

D2

F (z, w) dµk(z) dµk(w)

with the conditional measure

µk(B) =
µ(B ∩ Dk)

µ(Dk)
,

for all Borel set B, where

Dk :=

{
z : |z| ≤ 1 − 1

k

}
.

So it suffices to assume, that the support of µ is contained in Dk for some k ∈ N. Next
we regularize the measure µ. For any 1/k(k + 1) > ε > 0, let ϕε be a nonnegative
C∞-function supported in the disc {z : |z| < ε} such that

∫

D
ϕε(z) dz = 1,

and ϕε ∗ µ be the convolution of µ with ϕε. This means that ϕε ∗ µ has the density

∫

D
ϕε(z − w) dµ(w)

on Dk+1. Thanks to concavity and upper semi-continuity of Σ restricted on probability
measures with uniformly bounded supports, it is easy to see that

Σ(ϕε ∗ µ) ≥ Σ(µ).
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Also

lim
ε→0

∫

D
log (1 − |z|)2 d(ϕε ∗ µ)(z) =

∫

D
log
(
1 − |z|2

)
dµ(z),

since log (1 − |z|2) is bounded on Dk+1. Hence we may assume that µ has a continuous
density on the unit disc. Now let γ be the uniform distribution on the unit disc. Then
it suffices to show the required inequality for (1− δ)µ+ δγ (0 < δ < 1), since again by
the concavity of Σ we have

Σ((1 − δ)µ+ δγ) ≥ (1 − δ)Σ(µ).

After all we may assume that µ has a continuous density f on the unit disc D, and
δ ≤ f(z) for some δ > 0. Next let k = [

√
n], and choose

0 = r
(n)
0 ≤ r

(n)
1 ≤ · · · ≤ r

(n)
k−1 ≤ r

(n)
k = 1,

such that

µ
({
z = reiϕ : r ∈ [r

(n)
i−1, r

(n)
i ]
})

=
1

k
for 1 ≤ i ≤ k.

(We have partitioned the disc into annuli of equal measure.) Note that

k2 ≤ n ≤ k(k + 2),

and there exists a sequence l1, . . . , lk such that k ≤ li ≤ k + 2, for 1 ≤ i ≤ k, and∑k
i=1 li = n. For fixed i let

0 = ϕ
(n)
0 ≤ ϕ

(n)
1 ≤ · · · ≤ ϕ

(n)
li−1 ≤ ϕ

(n)
li

= 2π,

such that

µ
({
z = reiϕ : r ∈ [r

(n)
i−1, r

(n)
i ], ϕ ∈ [ϕ

(n)
j−1, ϕ

(n)
j ]
})

=
1

kli
for 1 ≤ j ≤ li.

In this way we divided D into n pieces, S
(n)
1 , . . . , S

(n)
n . Here

δ(1 − εn)

n
≤ δ

kli
=

∫

S
(n)
i

dz ≤ 1

k2δ
≤ 1 + ε′n

nδ
, (68)

where εn = 2/(
√
n + 2) → 0 and ε′n = 1/(

√
n − 1) → 0 as n → ∞. We can suppose,

that

lim
n→∞

(
max
1≤i≤n

diam
(
S

(n)
i

))
= 0. (69)

In each part S
(n)
i we take a smaller one D

(n)
i , similarly to S

(n)
i by dividing the radial

and phase intervals above into three equal parts, and selecting the middle ones, so that

δ(1 − εn)

9n
≤
∫

D
(n)
i

dz ≤ 1 + ε′n
9nδ

. (70)

72



A division for µ with density
1

2π
r(2 + r cos ϑ) in case of n = 20.

The white parts denote the sets S
(n)
i the grey ones the set D

(n)
i .

We set
∆n :=

{
(ζ1, . . . , ζn) : ζi ∈ D

(n)
i , 1 ≤ i ≤ n

}
.

For any neighbourhood G of µ

∆n ⊂ {ζ ∈ Dn : µζ ∈ G}

for every n large enough. Then

Pn(G) ≥ νn(∆n)

=
1

Zn

∫
. . .

∫

∆n

exp

(
(n− 1)

n∑

i=1

(λ− 1) log
(
1 − |ζi|2

)
)

×
∏

1≤i<j≤n
|ζi − ζj|2 dζ1 . . . dζn

≥ 1

Zn
exp

(
(n− 1)(λ− 1)

n∑

i=1

min
ζ∈D(n)

i

log
(
1 − |ζ|2

)
)

×
∏

1≤i<j≤n

(
min

ζ∈D(n)
i ,η∈D(n)

j

|ζ − η|2
)
γ(∆n)

≥ 1

Zn

(
δ(1 − εn)

9n

)n2

exp

(
(n− 1)(λ− 1)

n∑

i=1

min
ζ∈D(n)

i

log
(
1 − |ζ|2

)
)

×
∏

1≤i<j≤n

(
min

ζ∈D(n)
i ,η∈D(n)

j

|ζ − η|2
)
.
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Here for the first part of the sum

lim
n→∞

(n− 1)(λ− 1)

n2

n∑

i=1

min
ζ∈D(n)

i

log
(
1 − |ζ|2

)

= lim
n→∞

λ− 1

n

n∑

i=1

min
ζ∈D(n)

i

log
(
1 − |ζ|2

)

= (λ− 1)

∫

D
log
(
1 − |ζ|2

)
f(ζ) dζ,

because (69) implies, that the sum is the Riemannian sum of the above integral. So it
remains to prove that

lim inf
n→∞

2

n2

∑

1≤i<j≤n
log

(
min

ζ∈D(n)
i ,η∈D(n)

j

|ζ − η|
)

≥
∫ ∫

D2

f(ζ)f(η) log |ζ − η| dζ dη. (71)

We have
∫ ∫

D2

f(ζ)f(η) log |ζ − η| dζ dη ≤ 2
∑

1≤i<j≤n

∫

S
(n)
i

∫

S
(n)
j

f(ζ)f(η) log |ζ − η| dζ dη, (72)

since in the sum we left the terms where we integrate on the S
(n)
i , which are negative

if n is large enough, since then diamS
(n)
i < 1, so

log |ζ − η| < 0, if ζ, η ∈ S
(n)
i .

For the rest of the summands we have

2
∑

1≤i<j≤n

∫

S
(n)
i

∫

S
(n)
j

f(ζ)f(η) log |ζ − η| dζ dη

≤ 2
∑

1≤i<j≤n
log

(
max

ζ∈S(n)
i ,η∈S(n)

j

|ζ − η|
)∫

S
(n)
i

f(ζ) dζ

∫

S
(n)
j

f(η) dη

≤ 2(1 + εn)
2

n2

∑

i<j

log

(
max

ζ∈S(n)
i ,η∈S(n)

j

|ζ − η|
)
.

Since the construction of S
(n)
i and D

(n)
i yields

lim
n→∞

2(1 + εn)
2

n2

∑

1≤i<j≤n
log

(
max

ζ∈S(n)
i ,η∈S(n)

j
|ζ − η|

min
ζ∈D(n)

i ,η∈D(n)
j

|ζ − η|

)
= 0,

we obtain (71). Here the equality does not hold because of (72). �
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4.4 The limit of the empirical eigenvalue distribution

The following lemma is the specialization of Proposition 2.9 to a radially symmetric
function Q : D → (−∞,∞], i. e., Q(z) = Q(|z|). We assume that Q is differentiable on
(0, 1) with absolute continuous derivative bounded below, moreover rQ′(r) increasing
on (0, 1) and

lim
r→1

rQ′(r) = ∞.

Let r0 ≥ 0 be the smallest number for which Q′(r) > 0 for all r > r0, and we set R0

be the smallest solution of R0Q
′(R0) = 1. Clearly 0 ≤ r0 < R0 < 1.

Lemma 4.3 If the above conditions hold, then the functional IQ attains its minimum
at a measure µQ supported on the annulus

SQ = {z : r0 ≤ |z| ≤ R0},

and the density of µQ is given by

dµQ(z) =
1

2π
(rQ′(r))′ dr dϕ, z = reiϕ.

Proof. The proof is similar to the one of Theorem IV. 6. 1 in [36]. Using the formula

1

2π

∫ 2π

0

log
1

|z − reiϕ| dϕ =

{
− log r, if |z| ≤ r
− log |z|, if |z| > r,

we get that

Uµ(z) =
1

2π

∫ R0

r0

(rQ′(r))′
∫ 2π

0

log
1

|z − reiϕ| dϕ dr

= − log |z|
∫ |z|

r0

(rQ′(r))′ dr −
∫ R0

|z|
(r(Q′(r))′ log r dr

= − log |z|(|z|Q′(|z|) − r0Q
′(r0))

−R0Q
′(R0) logR0 + |z|Q′(|z|) log |z| +Q(R0) −Q(z)

= Q(R0) − logR0 −Q(z),

for z ∈ SQ, since r0 = 0 or Q′(r0) = 0. We have

Uµ(z) +Q(z) = Q(R0) − logR0,

which is clearly a constant. Let |z| < r0. Then

Uµ(z) = −
∫ R0

r0

(r(Q′(r))′ log r dr

= −R0Q
′(R0) logR0 + lim

r→r0
rQ′(r) log r +Q(R0) −Q(r0)

= − logR0 +Q(R0) −Q(r0),
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since limr→0 r log r = 0, and Q(r0) = 0 if r0 6= 0. So

Uµ(z) +Q(z) = Q(R0) − logR0 −Q(r0) +Q(z) ≥ Q(R0) − logR0,

due to definition of r0 and the monotonicity of rQ′(r) implies Q(z) ≥ Q(r0) for |z| ≤ r0.
Let |z| > R0 Then

Uµ(z) = − log |z|
∫ R0

r0

(r(Q′(r))′ dr = − log |z|.

So
Uµ(z) +Q(z) = Q(z) − log |z| ≤ Q(R0) − logR0,

since for |z| > 1/
√
y, |z|Q′(|z|) ≥ 1, so Q(z) = log |z| is increasing. Therefore µQ

satisfies conditions of Theorem 2.9 and it must be the minimizer.
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1

Density of µ0 in case of λ = 1/2

The last step is to minimize I. Now we apply Lemma 4.3 for

Q(z) := −λ− 1

2
log
(
1 − |z|2

)

on D. This function satisfies the conditions of the lemma. Hence the support of the
limit measure µ0 is the disc

Sλ =

{
z : |z| ≤ 1√

λ

}
,

and the density is given by

dµ0 =
1

π
(rQ′(r))′ dr dϕ =

1

π

(λ− 1)r

(1 − r2)2 dr dϕ, z = reiϕ.
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For this µ0 again

I(µ0) =
1

2
Q

(
1√
λ

)
+

1

2
logλ+

1

2

∫

Sλ

Q(z)dµ0(z) +B

= −λ− 1

2
log(λ− 1) +

1

2λ
logλ− (λ− 1)2

2π

∫ 2π

0

∫ 1√
λ

0

r log(1 − r2)

(1 − r2)2
dr dϕ

= −λ− 1

2
log(λ− 1) +

1

2λ
logλ− λ− 1

2

(
λ log

(
λ− 1

λ

)
+ 1

)
+B = 0.

The uniqueness of µ0 satisfying I(µ0) = 0 follows from the strict convexity of I. So we
have the limit of the empirical eigenvalue distribution.
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Density of µ0 for λ = 5 and λ = 1/5

If λ = 1, then the proof goes on the same line, until the point of the upper limit. In
that case we cannot assume, that the support of µ is distinct from the boundary of D,
since F (z, w) in finite on the boundary.

�

Let Qm be an m × m projection matrix of rank n, and let Um be an m × m Haar
unitary. Then the matrix QmUmQm has the same non-zero eigenvalues as U[m,n], but
it has m− n zero eigenvalues, similarly to the case of the Wishart matrices. There for
we can use the 2.2 for the sequence of empirical eigenvalue distributions, and the large
deviation result for U[m,n] is easily modified to have the following.

Theorem 4.3 Let 1 < λ <∞ and Qm, Um as above. If m/n→ λ as n→ ∞, then the
sequence of empirical eigenvalue distributions QmUmQm satisfies the large deviation
principle in the scale 1/n2 with rate function

Ĩ(µ̃) :=





I(µ), if µ̃ = (1 − λ−1)δ(0) + λ−1µ,

+∞, otherwise
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Furthermore, the measure

µ̃0 = (1 − λ−1)δ(0) + λ−1µ0

is the unique minimizer of Ĩ, and Ĩ(µ̃0) = 0.
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5 Some connection to free probability

Let A ⊂ B(H). A is called a unital C∗ algebra, if A is a ∗-algebra, (with the adjoint as
the involution ∗), A is unital (i.e. IH ∈ A), and A is closed with respect to the norm
topology.

A linear functional ϕ : A → C is called state, if ϕ(IH) = 1, and ϕ(a∗a) ≥ 0 for every
a ∈ A.

Definition 5.1 If A is a unital C∗ algebra, and ϕ : A → C is a state, then we call
the pair (A, ϕ) a non-commutative probability space, and an element of A is a non-
commutative random variable.

For example, if H := Cn, then B(H) is the set Mn(C) of n×n matrices with complex
entries endowed with the state

ϕ(A) =
1

n
TrA =

1

n

n∑

i=1

Aii

is a noncommutative probability space. This is a unital algebra with the n×n identity
matrix as the unit, and the involution maps the matrix into its adjoint. The normalized
trace is a linear, unit preserving map, since the trace of the n× n identity matrix is n.

The state ϕ is tracial, if
ϕ(ab) = ϕ(ba) (73)

for all a, b ∈ A. The state ϕ is faithful, if

ϕ(a∗a) > 0 (74)

for all 0 6= a ∈ A.

It is easy to check, that the normalized trace on the noncommutative probability
space of matrices is tracial and faithful. In the following we will assume that we have a
noncommutative probability space (A, ϕ) with a faithful tracial state ϕ. The following
definition is from Voiculescu ([40]).

Definition 5.2 Let (A, ϕ) a noncommutative probability space, and let Ai be subalge-
bras of A. We say that the family (Ai)i∈I is in free relation if for every n ∈ N, and
i1, . . . , in ∈ I, where

i1 6= i2 6= · · · 6= in−1 6= in 6= i1,

if ak ∈ Aik, and ϕ(ak) = 0 for 1 ≤ k ≤ n, then

ϕ(a1a2 . . . an) = 0.
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Definition 5.3 The set a1, . . . , ak of non-commutative random variables are free, if the
generated subalgebras are free, i.e. for any set of polynomials with two non commuting
variables p1, . . . , pn such that

ϕ(pj(aij , a
∗
ij
)) = 0

for all 1 ≤ j ≤ n, the
ϕ
(
p1(ai1 , a

∗
i1
) . . . pn(ain , a

∗
in)
)

= 0,

where
i1 6= i2 6= · · · 6= in−1 6= in 6= i1.

The following definition gives other important quantities of noncommutative random
variables (see [38]).

Definition 5.4 The Fuglede-Kadison determinant of a noncommutative random vari-
able a is defined by

∆(a) := exp (ϕ (log |a|)) .
The Brown measure of a noncommutative random variable a is

µa =
1

2π

(
∂2

∂x2
+

∂2

∂y2

)
log ∆ (a− (x + yi))

in distribution sense.

Consider Mn(C) with the normalized trace. If we have an n × n matrix Bn, such
that λi(Bn) > 0 (1 ≤ i ≤ n) are the eigenvalues of the Bn, then

exp (Tr logBn) = exp

(
n∑

i=1

λi(Bn)

)
=

n∏

i=1

λi(Bn) = detBn.

Then for any n× n matrix An

∆(An) = exp

(
1

n
Tr
(
log(AnA

∗
n)

1
2

))
=

n

√
det(AnA∗

n)
1
2 = n

√
| detAn|.

Now in order to obtain the Brown measure of An, we use that the solution of the
Laplacian equation

1

2π

(
∂2

∂x2
+

∂2

∂y2

)
E(x + yi) = δ0,

where δ0 is the Dirac delta distribution, is the function

E(x + yi) := log |x+ yi| .

This means that

1

2π

∫

C

f(x+ iy)

(
∂2

∂x2
+

∂2

∂y2

)
log |λ− (x + yi)| d(x+ yi) = f(λ),
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so ∫

C

f(x+ iy) dµAn

=
1

2nπ

n∑

i=1

∫

C

f(x+ iy)

(
∂2

∂x2
+

∂2

∂y2

)
log |λi(An) − (x + yi)| d(x+ yi)

=
1

n

n∑

i=1

f(λi(An)),

where λ1(An), . . . , λn(An) are the eigenvalues of An, so

µAn =
1

n

n∑

i=1

δ(λi(An)).

As we could see, the space of n×n matrices with the normalized trace is a noncom-
mutative probability space in which the above definitions can be treated easily. This
is why we use matrices to approximate the noncommutative random variables by a se-
quence of matrices as the matrix size increases. This approximation can be useful, if we
know some ,,continuity” of the above properties. Unfortunately, the Fuglede-Kadison
determinant is not continuous, since it is not bounded if the eigenvalues are small. If
we have random matrix approximation then the probability of the small eigenvalues
vanishes, so we will use random matrices.

Definition 5.5 Let a be a noncommutative random variable, and An is a sequence of
n× n random matrices, such that

1

n
E (Tr (P (An, A

∗
n))

n→∞−→ ϕ (P (a, a∗)) (75)

for all noncommutative polynomial P with two variables, the we say that An is a random
matrix model of a. ([24].) In this case we say that (a, a∗) is the limit in distribution

of (An, A
∗
n). Let a1, . . . , ak be noncommutative random variables and A

(1)
n , . . . , A

(k)
n be

n× n random matrices. The latter form a random matrix model for a1, . . . , ak if

1

n
ETrP

(
A(1)
n , . . . , A(k)

n , A(1)∗
n , . . . , A(k)∗

n

) n→∞−→ ϕ(P (a1, . . . , ak, a
∗
1, . . . , a

∗
k))

for all polynomials P of 2k non commuting variables.

We can define the random matrix model of k noncommutative random variables in
the following way.

For example we call a a semicircular element, if a = a∗, and

ϕ(ak) =





1

m + 1

(
2m

m

)
, if k = 2m

0, if k odd.

81



The random matrix model of the semicircular element is the sequence of n×n Wigner
matrices. It is easy to check all the mixed moments, since the Wigner matrices are
selfadjoint.

Like in (21) if we have two semicircular element in free relation, then

y := ua+ vb,

where
u2 + v2 = 1

is the so-called elliptic element. It is more difficult to prove that the random matrix
model of the elliptic element is the sequence of elliptic random matrices, since we need
all the joint moments.

We call a u ∈ A a Haar unitary, if it is unitary, i.e.

uu∗ = u∗u = IH,

and its moments

ϕ(uk) =

{
0, if k = 0
1, if k 6= 0.

These two properties gives that

ϕ (P (u, u∗)) = α0,

where α0 is the coefficient of the constant term in P . For a Un sequence of n× n Haar
distributed unitary random matrices it is we have that from Theorem 3.6 that

1

n
ETrUk

n
n→∞−→ 0, (76)

if k 6= 0, so this sequence can be a random matrix model of u.

The Brown measures of the above mentioned noncommutative random variables
(i.e. the semicircular, elliptic and Haar unitary elements) are the limit distribution
of the empirical eigenvalue distributions of the corresponding random matrix models
(see [21]). It is reasonable since the Brown measure can be considered as the density
function of the noncommutative random variables. Since the convergence of the em-
pirical eigenvalue distribution is fast (the large deviation principle holds in each cases),
therefore the derivatives, that is the ,,densities” converge to the corresponding density
function.

We proved the large deviation theorem for the truncations of the Haar unitary ran-
dom matrices in Section 4, and it implied the large deviation theorem for the ran-
dom matrices QnUnQn, where Qn is an n × n non-random projection (Q∗

n = Qn, and
Q2
n = Qn) with rank m, and

m

n
n→∞−→ 1

λ
.
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Now we try to find a noncommutative random variable for this random matrix model,
and check if the Brown measure of this random variable coincides with the obtained
limit distribution.

We now that a random matrix model for a Haar unitary element is the sequence of
Haar unitary random matrices. It is easy to see, that Qn is a random matrix model
for a projection q ∈ A, (i.e. q2 = q and q∗ = q), such that

ϕ(q) =
1

λ
.

Since Qn and q are selfadjoint, so it is enough to check that

1

n
ETrQk

n =
1

n
ETrQn =

m

n

n→∞−→ 1

λ
= ϕ(q) = ϕ(qk).

So we have the q and u limit of Qn and Un, we want to know their relationship. For
this we have the following definition from Voiculescu.

Definition 5.6 Let a1(n), . . . ak(n) be noncommutative random variables in the prob-
ability space (An, ϕn). They are asymptotically free if there are free noncommutative
random variables a1, . . . , ak in the noncommutative probability space (A, ϕ) such that

ϕn (P (a1(n), . . . , ak(n), a1(n)∗, . . . , ak(n)∗))
n→∞−→ ϕn (P (a1, . . . , ak, a

∗
1, . . . , a

∗
k))

for every polynomial P of 2k non-commuting variables.

We will use the following theorem in order to have that the limits u and q are in free
relation. The following theorem was again proven by Voiculescu (see Theorem 4.3.1 of
[26]).

Theorem 5.1 Let S, T be sets of indices, and (Un(s))s∈S an independent family of
n× n Haar unitary random matrices. Let (Dn(t))t∈T be a family of n× n non-random
matrices such that

sup
n

‖Dn(t)‖ <∞

for all t ∈ T (here ‖ . ‖ denotes the operator norm), and (Dn(t), D
∗
n(t))t∈T has the limit.

Then the family {
(Un(s), Un(s)

∗)s∈S , (Dn(t), Dn(t)
∗)t∈T

}

is asymptotically free.

Now we will apply the theorem only for index sets with one element, and the non-
random matrices Dn := Qn. As we proved above, if m/n

n→∞−→ 1/λ, then the sequence
Qn has the limit q. Then we get that the matrices

{(Un, U∗
n) , (Qn, Q

∗
n)} ,
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are asymptotically free, so the limits, q and u are in free relation.

So now we have t that QnUnQn is the random matrix model for noncommutative
random variable quq, where u is a Haar unitary, q is a projection with rank 1/λ, and
they are in free relation.

In [21] Haagerup and Larsen found that the radial density of the Brown measure of
this noncommutative random variable is

fqu(s) =
1 − 1

λ

π(1 − s2)2
=

λ− 1

λπ(1 − s2)2

on the interval
[
0, 1√

λ

]
, and

µqu({0}) = 1 − 1

λ
.

If a, b ∈ A are noncommutative random variables, then the Brown measure of ab and
ba is the same, so

µquq = µq2u = µqu.

Again we got that the limit of the empirical eigenvalue distribution of the random
matrix model is the Brown measure µqu of the noncommutative random variable.
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Nyilatkozat

Aluĺırott Réffy Júlia kijelentem, hogy ezt a doktori értekezést magam késźıtettem és
abban csak a megadott forrásokat használtam fel. Minden olyan részt, amelyet szó sze-
rint, vagy azonos tartalomban, de átfogalmazva más forrásból átvettem, egyértelműen,
a forrás megadásával megjelöltem.

Budapest, 2005. május 10.
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