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Introduction

Random matrices are matrix valued random variables or in other words matrices whose
entries are random variables. There are different kind of random matrices depending
on the size, the distribution of the elements, and the correlation between the elements.

Wishart was the first who studied random matrices in 1928 ([46]), and he was moti-
vated by multivariate statistics. He considered n pieces of m dimensional independent
identically distributed random vectors. The covariance matrix of these random vari-
ables is the expectation of an m x m positive random matrix, what we call Wishart
matrix if the components of the random vectors are normally distributed random vari-
ables.

Another point of view was given by physics. Wigner obtained some properties of
the eigenvalues of complex selfadjoint or real symmetric random matrices in the papers
[43, 44, 45]. He used large symmetric random matrices in order to have a model of the
energy levels of nuclei.

After finding these motivations to study random matrices, in [11, 12, 13] Dyson
established the mathematical foundations of random matrix theory. He made a classi-
fication of the random matrices according to their invariancy properties.

The main question was the behaviour of the eigenvalues of the random matrices.
The set of eigenvalues in the above cases, when the matrix self-adjoint consist of n
identically distributed but not independent real valued random variables. If we have
the joint eigenvalue density, then we have all the information about the eigenvalues,
but for this we need to know the joint density of the entries, and the invariance of
the distribution of the random matrix under unitary conjugation. Therefore, though
Wigner in [44] gave the joint eigenvalue density of the selfadjoint random matrices if
the entries are Gaussian, but in the general case he studied the mean distribution of
the eigenvalues. This means, that he defined the random function for an n x n random

matrix A,
n

F,(x):=

We can find the limit of the expectation of the empirical eigenvalue distribution ([43])
or the convergence of the empirical eigenvalue distribution in probability or almost
surely ([1, 27, 32]). Also we can study the rate of convergence in each case ([2, 3, 20]).
Others found not only the limit of the empirical eigenvalue distribution but that there
is no eigenvalue outside the support of the limit measure with probability 1, i.e. the
almos sure limit of the smallest and the largest eigenvalue of the random matrix is the
infimum or the supremum of the support respectively.

There are theorems which are valid only in the case of Gaussian matrices and there
are some universal theorems, when we need only some properties of the entries. For
example the exponential rate of the convergence with some rate function (the so-called
large deviation principle, see [6, 19, 23]) holds only for random matrices, where the



joint density of the eigenvalues are known. But there are universal theorems, which
are independent from the density of the entries. For example for the convergence of the
empirical eigenvalue distribution function we need only the finiteness of some moments
of the entries, and also the convergence of the smallest and the largest eigenvalues can
be proven in similar ways as in the case of Gaussian matrices.

The question of non-selfadjoint matrices is also interesting. For example if all the
entries are independent, identically distributed random variables, the we get a random
matrix whose eigenvalues are not real. This random matrix defines a whole family of
random matrices, if we take any linear combination of the matrix and its adjoint. In
the Gaussian case the linear combination is also Gaussian, so it is possible to obtain the
joint eigenvalue density, and the rate function for the exponential rate of convergence is
found ([33]), but the same universal theorem holds as in the case of selfadjoint random
matrices, i.e. the empirical eigenvalue distribution measure of the matrix (which is
now a random measure on the complex plane) converges to a determonistic measure,
if th forth moment of the entries is finite (see [15, 16, 17, 18]).

The other very important type of random matrices is the unitary random matrices.
The construction of a random unitary matrix is different from the above random ma-
trices, since we cannot take independent entries. The set of n X n unitary matrices
is not a subspace of the set of n X n matrices, as in the previous examples, but it
is a group with respect to the matrix multiplication. Therefore the matrix density is
considered with respect to the translation invariant measure, the so-called Haar mea-
sure of this group, not with respect to the Lebesgue measure. The matrix which is
distributed according to this measure, i.e. has uniform distribution on the set of n x n
unitary matrices, is called Haar unitary random matrix. Here the eigenvalues are not
real, but they are on the unit circle. By the definition of the Haar unitary, since it is
invariant under multiplication by a unitary matrix, clearly it is invariant under unitary
conjugation. Therefore it is possible to obtain the joint eigenvalue density function,
and the convergence of the empirical eigenvalue distribution. The joint density of the
eigenvalues is known, so we can prove the exponential convergence with some rate
function. The correlation between the entries converges to zero, as the matrix size goes
to infinity, so some kind of central limit theorems can be proven. For example the
trace of any power of a Haar unitary is asymptotically normally distributed ([10, 34]),
and after standardization the random variable which gives numbers of eigenvalues on
a specified arc again converges to the standard normal random variable in distribution
as the matrix size goes to infinity ([42]).

Random matrix theory was first used to solve statistical and physical problems,
as we mentioned above. Now it play important role in number theory since strong
correlation was found between the zeros of Riemann ¢ function and the eigenvalues of
random unitary matrices ([28]). Random matrices are useful in the noncommutative
probability, since every noncommutative random variable can be approximated by a
sequence of large random matrices as the matrix size goes to infinity ([39]).

There are still other random matrices to study. For example now we will deal with



the m x m truncation of an n x n Haar unitary random matrix, which is a random
contraction, so the eigenvalues are lying on the unit disc ([34, 35, 48]). Other family of
random matrices comes from the modification of Gaussian random matrices, they are
the so-called ¢ deformed Gaussian random matrices ([37]), where the random matrix
and its adjoint fulfil some commutation relations depending on 0 < ¢ < 1.

In this dissertation we will study most of the above topics in the following order.

In Section 1 we give an overview of different kind of random matrices. In the case of
independent normally distributed entries, it is easy to determine the joint distribution
of the entries. As we can see, this joint distribution can be described by the eigen-
values, so if we find the Jacobian of the transformation which transforms the entries
into the eigenvalues and some independent parameters, we get the joint density of the
eigenvalues. We will show a more detailed version of this calculations, which was first
given by Wigner [44] and Mehta [31] in the case of selfadjoint and non-selfadjoint ran-
dom matrices. Since these matrices are invariant under unitary conjugation, the joint
density of the eigenvalues contains all the information about the random matrices. The
other important question concerning the random matrices is the limit distribution of
the sequence of the empirical eigenvalue distribution as the matrix size goes to infinity.
We will consider first the random matrices with independent normally distributed en-
tries, and then we note that some methods work in the case of not normally distributed
entries too.

In Section 2 we give an introduction into the large deviation theory. This theory
is related to the sequence of random variables with non-random limits, for example
in the case of law of large numbers. After recalling the first large deviation theorem
of Cramer, we define the large deviation principle for random matrices. The large
deviation theorem for the different kind of Gaussian random matrices mentioned in
the Section 1 are also here, as the theorem of Ben Arous and Guionnet [5], and the
theorems of Hiai and Petz. Since the rate function in the case of random matrices is
some weighted logarithmic energy, and the limit distribution is the so-called equilibrium
measure of this functional, we have an overview of the basic notions of potential theory,
and some theorems in order to obtain the equilibrium measures of the logarithmic
energy with different rate functions.

In Section 3 we give the construction of the so called Haar unitary random matrix,
which is a unitary matrix valued random variable with the distribution according to the
Haar measure on the set of n x n unitary matrices. We collect the main properties of
this random matrix, as the distribution of the entries, the correlation between any two
entries, and the joint eigenvalue density function. We have an elementary proof of the
theorem of Diaconis and Shahshahani, which claims that the trace of different powers
of the Haar unitary random matrices are asymptotically independent and normally
distributed as the matrix size goes to infinity. From this we deduce, that the empirical
eigenvalue distribution tends to the uniform distribution on the unit circle. We also
prove this for the Haar distributed orthogonal random matrices with the same method.
Finally we recall the theorem of Hiai and Petz [25], which proves the large deviation



theorem for unitary random matrices.

In Section 4 we consider a new kind of random matrix, the m x m truncation of
an n x n Haar unitary random matrix. We give a more detailed proof of the theorem
of Zyczkowski and Sommers which gives the joint eigenvalue density of these random
matrices, and then we give the normalization constant [34]. The joint eigenvalue density
then helps us to get the main result of the dissertation, which is the large deviation
theorem for the empirical eigenvalue distribution of the truncation, as the matrix size
goes to infinity, and m/n converges to a constant A. After minimizing the rate function
of this large deviation we get the limit of the empirical eigenvalue distribution.

Finally in Section 5 we point to the connection of the free probability and the random
matrix theory. We define the noncommutative probability space, the noncommutative
random variables, and random matrix models of different noncommutative random
variables, using the random matrices mentioned in the previous sections. We define the
Brown measure of a noncommutative random variable, and we study he relationship
between the Brown measures of the random variables and the empirical eigenvalue
distribution of their random matrix model.



1 Random matrices and their eigenvalues

Random variables which are situated in this special way allows us to examine the
behaviour of matrix quantities such as eigenvalues, determinant and trace, or the as-
ymptotic behaviour of the entries and the above quantities as the matrix size n — oo.
Since the trace and the determinant are given as the sum and the product of the eigen-
values, the most important thing is to examine the eigenvalues. In the case of random
matrices, the eigenvalues are random variables too, and we can get all the information
if we have the joint eigenvalue density of the eigenvalues.

The aim of this section is to give an overview of several kind of random matrices.

1.1 The standard complex normal variable

In this thesis we mainly study random matrices with Gaussian entries, or random
matrices constructed from Gaussian random matrices, so now we will mention some
properties of the so-called standard complex normal variable

Definition 1.1 Let £ be a complez-valued random variable. If Re& and Imé& are in-
dependent and normally distributed according to N(0,1/2), then we call £ a standard
complex normal variable.

The terminology is justified by the properties E(¢) = 0 and E (|¢]?]) = E(&€) = 1.

Lemma 1.2 Assume that R > 0 and R? has exponential distribution with parameter
1, 9 is uniform on the interval [0, 27|, and assume that R and ¥ are independent. Then
¢ = Re” is a standard complex normal random variable and

E(65E) = k! (kL€ Zy)

Proof. Let X and Y be real-valued random variables and assume that X + Y is
standard complex normal. For » > 0 and 0 < ¢ < 27 set

Srae = {pe!’ 0 < p<r,0 < < W},
then

P(X +iY € Spg,) = l// e (") dsdt
R {(s,):s+it€ S, 9, }

1 Yo r
== / dip / pe="dp
™ Jo 0

_ %190 (1-e7) =P(g €S-
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This proves the first part which makes easy to compute the moments:
4 i9(k—

E(gk& ) . o) (Rk-i-Z) E (6 Ik Z)) _ 5kZE(R2k)7

so we need the moments of the exponential distribution. We have by partial integration
/ e dr = — [xke_ﬂgo + k‘/ 2" le ™ dy = k:/ e te " dx

0 0 0
= k(k— 1)/ e dy = = k!/ e dr = k! (1)

0 0

which completes the proof of the lemma. OJ

Lemma 1.3 Let & and n be independent identically distributed random variables with
zero mean and finite variance. Suppose that the distribution of (€ +1)/v/2 coincides
with the distribution of &. Then & and n are normally distributed.

Proof. We can assume, that the variance of £ is 1. If ¢(t) is the Fourier transform of
¢ and ¢, i.e.

p(0) =B () = [ o) = [ eeara),

where F; and F), are the distributions of { and 7 respectively. Then ¢(0) = 1,

S0) =i / wdF(x) = E(€) = 0,

and
©"(0) = 12/$2dF5(:E) =iE (&%) = -1.

If we have the joint distribution Fi¢,)(z,y) = Fe(x)F,(y) of £ and ¢ then the Fourier
transform of (€ 4+1n)/v/2 is ¢, because it has the same distribution. On the other hand

. 1 i 1
/elt(x—’_y)/ﬁdF(f,Tl) — /eltx/\/ing(l’) /61ty/\/§an(y) = 902 (E) ’

¢ (55) =0 )

If o(t) = 0 for some t, then ¢ (t/2") = 0, which is impossible, since ¢ is continuous
and ¢(0) = 1. For ¥(t) := log ¢(t), clearly ¥(0) = 0,

SO

and




We have from (2), that

so for all positive n

2 2
t (572)
We have that for all ¢ .
V) _ )
t2 s—0 82

so 1 (t) = ct?, and since ¥"(0) = —1, ¢ = —1/2, so
plt) = e "7,

so ¢ is the Fourier transform of the standard normal distribution. The Fourier trans-
form of a distribution is unique, so £ is normally distributed. O

1.2 Selfadjoint Gaussian random matrices

Apart from the trivial example of diagonal random matrix with independent entries,
the simplest example for random matrix is the following selfadjoint random matrix,
which is called standard selfadjoint Gaussian matriz. Consider the n x n random
matrix A,, with entries A;;

e ReA;; and Im A;; are independent N (0, ﬁ) distributed random variables, if
1<i<j<n;

o A, are N (0, %) distributed random variables if 1 < i < n;
e the entries on and above the diagonal are independent;

o A=A forall1<j<i<n.

The above matrix is selfadjoint so its eigenvalues are real.

We can obtain a standard selfadjoint Gaussian matrix in the following way. Let X,
be the so called n x n standard non-selfadjoint Gaussian matriz X,, = (X;j)1<i j<n such
that

e Re X;;,Im X;; are independent identically distributed random variables with dis-
tribution N(0,1/2n) for 1 <i,j <mn;

e all the entries are independent.

10



For this matrix
B X+ X

A, = 3
7 (3)
is a standard selfadjoint Gaussian matrix. Clearly A, is selfadjoint, and the distribu-

tion of the entries is normal as the linear combination of normal distributed random

variables. Note that the
B X, — X

5 (@)

is a standard selfadjoint Gaussian matrix too. A, and A/ are independent, so if we
have two independent n x n standard selfadjoint Gaussian matrices A, and A}, then

A, tidl
V2

is a standard non-selfadjoint Gaussian random matrix.

Al

X, : (5)

The standard non selfadjoint Gaussian random matrices are invariant under the
multiplication by a non-random unitary matrix, so we get the following lemma.

Lemma 1.4 The distribution of A, 1is invariant under unitary conjugation, i.e. if
U, = wi; is an n X n non-random unitary matriz, then A, and U, A, U} have the same
distribution.

Proof.  From (3) it is enough to prove, that X, and U,X,, has the same distribution
where X, is an n X n standard non-selfadjoint Gaussian random matrix. The entries
&i; of U, X, are the same as the entries of X,,. Indeed,

n
fij = E uilej
=1

is normal, since any linear combination of independent normally distributed random
variables are normal. But this is not enough, because we need that the joint density
of the entries is the same. Indeed, the joint density of the entries of X, is

an n
2 2
—an exp | —n g :L"Z-j+yij
ij=1

n? n?

= n_2 exp (—nTr X} X,,) = n_2 exp (—nTr (X, U,)* X, Uy) .
" "

Since

V2 V2 V2 ’

which by (3) has clearly the same distribution as A,,.

11



The standard non selfadjoint Gaussian matrix consists of n? independent real valued
normally distributed random variables (n in the diagonal, and n(n — 1) above the
diagonal if we consider the real and imaginary parts separately). The joint density of
the entries with respect to the Lebesgue measure on R™ is the joint density of the
above random variables, so can be written in the form

)

2%71-% 1<)
7L2
2 2
= :l — exp (—ﬁTrAi) = :l 7 €XP ——Z)\z (6)
2912 2 2912
Here A, ..., )\, are the eigenvalues of A, so the joint density can be expressed by the

eigenvalues. This easily comes from the fact that the distribution of A, is invariant
under unitary conjugation.

In the sequel we will give the joint eigenvalue density of A,, with the transformation
of the variables. If we change the variables z;;,y;; into A;,...\,, and n(n — 1)/2
parameters p,, then using the fact that for any normal matrix A there exists a U
unitary matrix, and D := diag(Aq, ..., \,), such that

A=U"DU.
U is unitary so U*U = I, and therefore
ou* ou
U+U* =0
opy ap,
forall 1 <v <n(n—1)/2, so we use the notation
ou oU*
ds¥) =U"—— = - 7
opy Opy @)
U does not depend on the eigenvalues, so
0A oD
—=U"—U
O\, o\,
for all 1 < p < n, so for the entries
OAR — oD,
UkZUl_] — = 52']'5@';“
~ o\, o\,
and if we separate the real and imaginary parts, we have that since A is selfadjoint, so
the diagonal elements are real, and Re Ay = Re Ay and Im Ay, = —Im Ay, so
~ DA dRe A _ _
a;k Re Uy, Us; + o, " (Re (UgUyy) + Re (UuUsy))
k=1 # k<l
8Im A
—Z % (tm (UgUsy) — Tm (UUsy)) = 815050, (8)

k<l

12



and

02k L1y UrUr; + ORe Ay (Im (UwiUy) + Im (U Usy))
Y o\,
o k<l
Ay _
ag; 2 (Re (Uily;) — Re (TU;)) =0,
k<l "

for 1 < p < n. Now since D does not depend on p,,, we have

0A  oU . oU*
op, 0puDU U Ipy
SO
v 24y~ aswp - p S,
Ipy
and which means for the entries
> %UMUU = dSY (N — Ny,

so by separating the real and imaginary parts we get

"L 0A ORe A — —
Z " Re UriUkj + Z C (Re (Uy;Uy;) + Re (U;Uy;y))

k=1 Opy k<l Opu

Im A = U
B Z Olm Ay (Im (Uy;Uyj) — Im (UUp;y)) = dRe S¥ (X —

and

" 0A ORe A _ _
> I ULUs, + " (m (U Uyy) + Tm (T,Usy))
k=1 Opy k<l Opy

Olm A — _
+Z m Ay (Re (UriUyj) — Re (UiUs;)) = dIm S%(X; —

k<l Opy

We need the determinant of the n? x n? matrix

N, O\, O\,

dp,  Op, Ipy

(9)
(10)

Ay
(11)

Aj)-

Here 0A;;/O\, is an n x n matrix, ORe A;;/0\, and 0lm A;; /0N, are n x n(n — 1)/2
matrices, and we order the columns by lexicographic order of the (i, j) pairs, 0A;;/Op,

13



is an n(n—1) x n matrix, finally ORe A;;/0p, and 0lm A;;/0p, are n(n—1) xn(n—1)/2
matrices. Now let

Re U7,Us, Im Uy, Uy,
Vo= Re (U]“Ul]) + Re (U[,Uk]) Im (U]“Ul]) + Im (U[,Uk]) ,
Im (U[,Uk]) — Im (U]“Ul]) Re (U]“Ulj) — Re (UlZUk)j)

Here Re U};Uy; and Im U}, Uy,; are n xn(n—1)/2 matrices, where k is fixed in a row, and
the pairs (i, j) are ordered lexicographically. The submatrices Re (U;Uy;)+Re (U;Us;),
Im (U]“Ulj) + Im (UliUkj), Im (UlZUk)j) —Im (U]ﬂUl]) and Re (U]“Ulj) — Re (UlZUk)j) are
n(n—1)/2 x n(n—1)/2 matrices, so V is again an n? x n? matrix, and by the previous
equations

JV — 5ij5iu 0

where the (4, ) pair is fixed in one row, so we have for the determinants of the above
matrices

5:i5: 0
p— o — - 2 ZJ Z“
det Jdet V =T\ = \) det( dReSY  dlm S )

i<j
From this we get the Jacobian

CTI =A% (12)

i<j
for some constant C, since the matrix on the right hand side of the above equation,
and the matrix V' does not depend on the eigenvalues.

Finally we got the joint density of the eigenvalues

O3 exp <—g Z A?) TTw —A)? (13)

1<j

with the normalization constant

o B — ) (14)

Now consider the asymptotic behaviour of the empirical eigenvalue distribution
which is defined by

1
Fo(z) = =#{\ N\ <z}, (15)
n
so this is a random distribution function.

In fact Wigner studied more general random matrices, the so-called Wigner matrices,
which are selfadjoint random matrices with independent, identically distributed entries

14



on and above the diagonal, where all the moments of the entries are finite. The first
theorem of Wigner about the empirical eigenvalue distribution concerned only the
expectation of F),, and found that this sequence of distribution functions converges to
the so-called semicircle distribution. which has the density

1
w(x) = %\/4 — 22X [-2,2]- (16)

This is the Wigner semicircle law, since the first form of this theorem, which concerned

only the expectation of the empirical eigenvalue distribution was proven by Wigner in
[43].

The almost sure weak convergence of the sequence of random distribution functions
was proven by Arnold in[1]. He proved the almost sure convergence for general Wigner
matrices, with the assumption that some moments of the entries are finite.

Wigner’s and Arnold’s proofs are based on the fact, that the moments of F}, converge
to the ap moments of the semicircle distribution. These are the so-called Catalan

numbers
0, if k=2m+1

ap =
#<2m), i k=2m
m+1\m

By the Carleman criterion (in VII. 3 of [14]) for a real valued random variable the
moments 7, determine the distribution uniquely if

_1
[ —

Z Yok

keN

This holds for the Catalan numbers, so it is enough to prove, that
/ a*dF, (x Z)\k = —Tr (AR) =% @

This trace is a sum of products of matrix element, and we have to take the summation
over the terms, which are not asymptotically small. The number of this terms can be
obtained by combinatorial methods.

Wigner proved that for an A,, sequence of n x n Wigner matrices

lim ETr A* =

n—oo

Arnold’s proof contained more about the convergence. By the Chebyshev inequality
he obtained ,
P(TrAf —ETr A¥| > ¢) <O (n_§> :

so by the Borel-Cantelli lemma it implies the almost sure convergence of F,. As we
mentioned, these proofs did not use the exact distribution of the entries. For standard

15



selfadjoint Gaussian matrix Haagerup and Thorbjgrnsen had another proof for the
convergence. Their method based on the fact, that the mean density of the eigenvalues
(i.e. the density of the arithmetic mean of the eigenvalues) is

where 2

pr(r) = e 7 Hy(),
with the kth Hermite polynomial Hy. In their paper [22] they proved moreover, that
there is no eigenvalue outside the interval [—1, 1] with probability one, i. e. if A, and

)\f:fl)n denote the largest and smallest eigenvalue of A,, respectively, then
Ax =3 2,
and

A g,

min
and the convergence is almost sure in both case.

The Wigner semicircle law holds for symmetric Gaussian random matrices with real
entries, where the distribution of the entries on and above the diagonal are independent
real N(0,1/n) distributed random variables. Here, the density of the matrix is with

(n+1)n
respect to the Lebesgue measure on R~ 2

Cy exp <—n (i x%)) = Chexp (—nTr A2) = Cyexp (—n i )\22) . (17)

i<j i=1

In this case of symmetric matrices the Jacobian will be

TT =0, (18)

i<j

similarly to the complex case, but here the imaginary parts are zero, so the size of
transformation matrix is smaller. Therefore the joint density of the eigenvalues will be

Clsymm €Xp (—n Z Af) H |Ai — Al (19)
i=1 i<j

The Wigner theorem can be proven for these matrices in the same way by means of
the method of moments.

16



1.3 Wishart type random matrices

The matrices defined below called Wishart matrices, since they were introduced by
Wishart in 1928 [46]. He used these matrices in multivariate statistics, so he studied
matrices with real entries. Suppose, that we have an X p x n Gaussian random matrix,
such that X;; independent random variables with distribution N(0,1/n) forall 1 <i <
p and 1 < j < n. Then the p x p matrix W, := X X* is the so called Wishart matriz.
It has very important role in the multivariate statistics. This matrix W, is not only
selfadjoint, but positive, so the eigenvalues lie on R™.

If p > n, then the rank of I, is at most p, so it has n —p zero eigenvalues. Moreover,
if A is a non-zero eigenvalue of W, then there exists an v € R? such that

Wyv = X X" = Av.

Then
X' XX*v =2 X 0,
so A is an eigenvalue of X*X too with eigenvector X*v. So all the non-zero eigenvalues

of W, coincide with the eigenvalues of X*X, therefore, it is enough to deal with the
p < n case.

The Jacobian of the transformation which maps the entries into the set of eigenvalues
is the same as in the case of symmetric Gaussian matrices, since the Wishart matrix
is symmetric too, so we can transform into a diagonal matrix by unitary conjugation.
Similarly to the case of Wigner matrices, the joint density of the eigenvalues can be
derived the joint density of the entries and the Jacobian in (18), and it can be written
in the form

n—p—1

i=1 i<j =1

supported on (RT)™. Again, this contains all the information about the matrix, since
it is invariant under unitary conjugation.

For the asymptotic behaviour of the empirical eigenvalue distribution we must find
some relation between the number of the rows and columns, so p := p(n) < n. If

p—(n> =AA>0

n
then we can state a similar to the Wigner semicircle law, i.e. the random measure
sequence of the empirical eigenvalue distribution has a non-random limit distribution
function, but the density of the function is different. The first form of the theorem
below was proven by Marchenko and Pastur in [30] and the distribution was named
after them. (It is also called free Poisson distribution, cf [23]).

17



Theorem 1.1 Denote F)(z) the empirical eigenvalue distribution of W,, and F*(x)
the so-called Marchenko-Pastur distribution, with density

VD@ A1)

@) 2T\T ’

supported on the interval [(1 — V)2 1+ \/X)2] . Then
F2 25 A

weakly with probability 1.

o
=
N4
w-
~n

Density of the Marchenko-Pastur distribution for A =1/3 and A =1

This theorem holds in a more general form, as we will see later.

Haagerup and Thorbjgrnsen in [22] studied Wishart matrices with complex entries.
They used p x n Gaussian matrices with independent complex normal entries with
zero mean and variance 1/n. In this case they proved the almost sure convergence of
the empirical eigenvalue distribution of the eigenvalues by using the fact that the joint

eigenvalue density is
n—1
> el (@),
k=0
(c)

where ¢, can be expressed in terms of Laguerre polynomials L,(f) in the following way

A ) = \/ e e L o)

18



With this method they proved the almost sure convergence of the largest and the
smallest eigenvalue, i.e.

Amax — (1+VA)? and  Apax — (1 — V)2

1.4 Non selfadjoint Gaussian matrices

The simplest non selfadjoint random matrix is the n x n standard non-selfadjoint
Gaussian matriz. As we could see, this matrix defines a standard selfadjoint Gaussian
random matrix too. Similarly it gives a whole family of random matrices in the fol-
lowing way.

Definition 1.5 Let u,v € R such that u* +v? = 1, then the we call the matriz
Y, =uX, +vX] (20)

an elliptic Gaussian matrix.

Note that in the case u =1/ V2'Y,, is the standard selfadjoint Gaussian matrix, and
for u = 1Y, is the standard non-selfadjoint Gaussian matrix.

If we have A,, and A, independent standard n x n selfadjoint random matrices, then
(5) we can construct an elliptic random matrix

A, +1A A, —iA u+w u—v
2 O n = A, + —1A], 21
\/5 v \/5 \/5 1A, ( )

V2
2 2
u+v u—v 9 9
— ) + (=) =P+ =1
(7)< ()
Since Y, is not selfadjoint we cannot transform it into a diagonal matrix in order to

get the joint eigenvalue density. Here we use the so-called Schur decomposition of the
matrix Y,,.

Y, =u

where again

Lemma 1.6 (Schur decomposition) For every matriz A € C"*" there exist an n x
n unitary matriz U, and an upper triangular matriz Z such that

A=UZU".

Proof.  We are looking for an orthonormal basis wuy,...,u, such that the matrix A
takes the upper-triangular form on this basis. We will prove the lemma by induction.
If n = 1, then we have a trivial case. Now suppose that n > 1, and let u; be an
eigenvector of A with eigenvalue )\, such that ||uy]| = 1. If V := wui, then V is
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invariant under (I —ujuj)A, and (I — uwyuj)Au; = 0. By the induction there exists a
basis us, .. . u,, such that (I — ujuj)A takes the desired form Z, ; on V. The n x n
unitary matrix U with column vectors uy, ..., u, gives the Schur decomposition of A,
since clearly

U*AU = U*(I — uyu)) AU + U uyuij AU,

where

(U = uiui) AU ) = ui (I — wyui) Auy,

which is zero, if either © = 1 or j = 1, and if 4,7 > 2 then it gives the matrix Z,,_;.
Moreover
(Ui AU),; = ujuguy Aug,

which is \; if i = 7 = 1, and zero if ¢ # 1, so we have that

* _ )\1 * o
rar= (% 2 Yez

O

We will use the Schur decomposition instead of the diagonalization in order to obtain
the joint eigenvalue density of the elliptic Gaussian matrix Y,,. There exists a unitary
matrix U and an upper triangular matrix A, such that

Y =U(D + AU,

where D = diag(A1,...,\,), where Aq,..., \, are the complex eigenvalues of Y), and
Ajj = 0,if ¢ > j. Again we transform the 2n® variables (Re Xi;)7;—;, (Im X3)P,_,

into the 2n variables (Re ;) ,, (Im ;) the n(n — 1) variables (ReA;;), (Im A;;),
(1 <i<j<n)andn(n—1)variables (p,), 1 <v <n(n—1). U is unitary so U*U = I,
and therefore

ou* oUu
U+Ur =0
o, + oy )
so we use the notation U U
dS(V) = lj”’< = — .
apy 8pl/

U does not depend on the eigenvalues, and A;;, so the equations, A and D does not
depend on p, for 1 <v <n(n—1), so
ou oU*

SV =U"— = ———U.
opy Opy

U does not depend on the eigenvalues, so

Y oD

ORe A\, - U@Re )\MU

and
oY oD

dlm A, Yo by

U*
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so for the entries

GYM — 8D,
UriUij = = 00,
~ ORe A, MEU T ORe A I
and ay, oD,
P
atm o, = B >\ = 1010,
and if we separate the real and imaginary parts,
OReYy = — omYy ——
iVij) — I Uis) = 0ij0uu,
< 9Re X, Re (Urily) < 9Re X, (Ukilhi) = 059
Olm Ykl — ORe Ykl —
7 j I i i) — Y,
l JRe )\“ Re (Uk Ul]) + l JRe )\u m (Uk Ulj) 0
and similarly
ORe Ykl — Olm Ykl —
) i) — I 7 i) — Y,
l 8Im>\uRe(Uk Ul]) l 8Im>\u m(Uk Ul]) 0
Olm Ykl ORe Ykl

Re (UUy;) + Z Im (U Uyj) = 656,
k,

z Olm A, - Olm A,

for 1 < pu <mn. Again D and A do not depend on p, for 1 <v < n(n—1), so

oy oU . U™
ap, 0puDU b Opy
SO
Y Z 4svp - pas®
Ipy
and which means for the entries
> ZY’“ Uil = dS (N — Ny),
=1

so by separating the real and imaginary parts we get

ORe Ykl Olm Ykl
Re (U;Uy5) Im (U U,
%l: apu e k l] %l: ap,/ m k l])

= dRe Sj;(Re \; — Re \j) — dIm S7;(Im A\; — Im )\;),

and

Olm Yi ORe}Y Kl -7
E Re (U Uy;) + E Im (U, Uy
7 ap, e (Ukill) 7 op, (Uills)

= dIm Sj;(Re \; — Re \;) + dRe S} (Im A\; — Im ;).
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Moreover, since U and D are independent from A, so

oY 0A
=U U
O0A; oA~
so for the entries 5y,
Kl
v UrilUi; =1,
kil 9Ai
" OReYy o (Twilly) — Ol Yy | (Twly) = 1
ORe Aij kil ORe Aij ML) 5
k.l kil
ORe Ykl — Olm Ykl -
I ) j 7 i) = Y,
SRen, ™ (Unills) + D o2 A, Re (Uwily;) =0
k,l k,l
ORe Yy, — Olm Yy, —
175 — I U.) =
8Im AZ] Re (UkZUl]) 0Im AU o (U]“Ulj) 07
Kkl k,l
ORe Yy Olm Yy,

Im (UkiUlj) +

Re (UmUl]) =1.

ol 811’11A2] %l 811’11A2]

We need the determinant of the 2n? x 2n? matrix

ORe Y;'j Olm }/;j
ORe), ORe),

OReY;; 0ImY;;
Olm A, 0OImA\,

OReY;; OlmYj;
aRe Af 8Re Af

ORe Y;'j Olm Y;'j
8Im Ag 8Im Ag

OReYy; OlmY;
Opy Opy

Here OReY;;/0Re A\, 0ImY;;/ORe A, OReY;;/0Im A\, and 0lm Y;;/0lm A, are an 2n x
n? matrices, ORe Y;;/0Re A, dlm Y;; /0Re A¢, Olm Y;;/0Re A¢ and OIm Y;;/0Im A, are
n(n —1)/2 x n? matrices and OReY;;/0p, and dlm Y;;/0p, are n(n — 1) X n?® matrices.

Now let _ _
( Re (UyUij)  Im (UkUy) )
V= ’

—Im (UrUi;) Re (UpiUiy)
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Here Re U};U; and Im U}, Uy; are n? x n? matrices, where k is fixed in a row, and the
pairs (i, j) are ordered lexicographically, so V' is now an 2n? x 2n? matrix, and by the
previous equations using the notation \;; := A\, — A;

6ij5iu 0
0 0ij0ip
0 0j0ig
dRe S}iRe (A\ij) — dIm SpIm (Ai;)  dIm SERe (Aij) + dRe SpjIm (A;;)

where the (i, j) pair is fixed in one row, so if we have for the determinants of the above
matrices

5,-j5m 0
O 52‘]'(5@'“
det JdetV =[] |A = Aj[Pdet | 00 0 :
1<j 0 52](SZ§

dRe Sy dIm Sy
since dRe S}, = —dRe S}, and dIm S}, = dIm S}; so we can apply

ar —by ay+br \ o 9 —r Yy
dt(am—l—by —ay—i—bx)_(a + 7 det Ty

for a =Re (A — Aj), b=Im (), — \;) and x = dRe S},

177

y = dlm S.

Finally we have that the joint eigenvalue density of the elliptic Gaussian matrix is

(Re(; (Im ¢
CfL”exp< Z(uj—<2; uniév ))HKZ GF

1<J

on the set C",where C! is the normalizing constat depending on u and v.

Again we have results about the empirical eigenvalue distribution, which now is
defined by the random measure on C:

=3 a(G)

where (1(Yy), ..., (u(Y,) are the eigenvalues of Y,,, and d(x) is the Dirac function con-
centrated at the point z. By the elliptic law of Girko in [15, 16, 17, 18], this sequence
of random measures converges to the uniform distribution on the set

R e R T

This theorem also true in a more general form as we can see in the next section.
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1.5 Random matrices with not normally distributed entries

In the case when the random matrix is not invariant under unitary conjugation, it is
much more difficult to give the joint density, but we can prove similar results for the
asymptotic behaviour of the empirical eigenvalue distribution.

Theorem 1.2 (Arnold) Suppose that A, = (Ay)},—, is an n X n random matriz,
where

o Ay are independent identically distributed random variables with E|Ay|* < oo,
1 <1< ny;
o A;; are independent identically distributed random variables such that EA;; = 0,

E‘AUP = 1/71 and E|Aw‘6 <oo, 1 <1<y <n;

o A=Ay, ifl<j<i<n

the entries on and above the diagonal are independent.

Then the sequence F, of the empirical eigenvalue distribution of A, weakly converges
to the semicircle distribution with probability 1 as n — oo.

Bai and Yin in [4] proved that if the above conditions hold, then

)\max(An) 72)O 2 and Amln(An) B —2.

The convergence of the empirical eigenvalue distribution is similar for the general-
ization of Wishart matrices, the so-called sample covariance matrices. The theorem of
Jonsson in [27] is the following.

Theorem 1.3 (Jonsson) Suppose that X, = (X;;)1<i<» is an p X n random matriz,
q<j<n

where the entries are independent identically distributed random variables such that
EX,;; = 0, E|X;;]* = 1/n and E|X,;;|® < oco. Then the F, sequence of the empiri-
cal eigenvalue distribution of X, X almost surely weakly converges to the Marchenko-
Pastur distribution with parameter A asn — oo and p/n — X € (0,1]. If p/n — A > 1
as n — 00, then the limit distribution is

1 1

where F is the Marchenko-Pastur distribution with parameter \.

24



The same theorem was proven in [32]. Moreover Bai, Yin and Krishnaiah proved in
[47] that if the fourth moment of the entries are finite, then the greatest and smallest
eigenvalues almost surely converges to (1 + v/A)? and (1 — v/A)?, respectively. The
proofs of the above theorems are based on the method of moments again.

For the elliptic matrices, i.e the matrices
Y, =uX, +vX,,

where X, is a matrix with independent identically distributed entries, and u?+v? = 1,
in [15, 17] Girko proved the following theorem

Theorem 1.4 Suppose that Y, = (Yi;)7 =, such that the pairs (YY) are indepen-
dent for different i < j, and EY;; = 0, E|Y;;]* = %, E(Y;;Y};) = =, and moreover there
exists a 6 > 0 such that

sup max E|/nYj|"™ < ¢ < oo,
n 1<ij<n

then the empirical eigenvalue distribution converges to the elliptic distribution in prob-
ability.

In the case of non normal matrices the method of moments does not work, since
we cannot check all the mixed moments. Girko used the V-transform of the empirical

eigenvalue distribution pu,, of Y,,, and Girko proved the almost sure convergence as well
in [16]

As we could see, the limit distribution does not depend on the distribution of the
entries, we only need he finiteness of some moments.

There are some results concerning the rate of the above convergence. For example,
Bai proved in [2] and [3] that the rate of convergence has the order of magnitude
O (n_i in the case of Wigner matrices and O (n‘ﬁ> in the case of sample covariance

matrices.

If the distribution of the entries has compact support, then the following theorem of
Guionnet and Zeitouni from [20] states that the rate of this convergence is exponential.

Theorem 1.5 (Guionnet, Zeitouni) Suppose that A, = (Ay)7 =, is an n X n self-
adjoint random matriz, where the distribution of A;; has a common compact support
K C C, and let f : R¥ — R be a Lipschitz function, i.e.

|f(z) = f(y)]

vyl =yl

Then there exists a sequence 6, and a number ¢ depending on the function f, the
diameter of the set K and the numbers EA;; (1 <1i,5 <n), such that

0<5n:0<l),
n
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and for all € > ¢,

IP’(‘ Tr f(A /f
—Tr /f ) dF,(

where F,, is the empirical eigenvalue distribution of A,,, and f(A,) is defined by the
usual function calculus of selfadjoint matrices. That is , if

8) < 4e—cn2(a—an)2 )

Here

A, = U, diag(Ay, ..., \)Up
for an n X n unitary matrix, then
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2 Large deviation principle

2.1 The concept of the large deviation
If we have a sequence of random variables with non-random limit, the large deviation
theorems state exponential rate of convergence.

The simplest example for a sequence of random variables with non-random limit is
given by the law of large numbers. Let X7, X5, ... asequence of real valued independent
identically distributed random variables, with mean m. Then the law of large numbers
claims that the sequence of the arithmetic means of (X,,) converges to the number m
as n — 00. In other words if u,, denotes the distribution of the random variable

then

where §,, is the Dirac-measure concentrated at the point m, i.e. for all H C R

1, if meH
5m(H>'_{O, if m¢H

This means that for any G C R set such that the closure of G does not contain m,
pn(G) = 0.

The large deviation principle (LDP) holds, if the rate of the above convergence is
exponential. More precisely, if there exists a lower semicontinuous function f : R —
R*, such that for all G C R

0lG) < ex (L) inf 1(0))
Te
then we say that the large deviation principle holds in the scale of ﬁ Here

L(n) > en,

for some constant c¢. Namely, the order of magnitude of the function L is given by the
degree of freedom of the random variables. The function f is called the rate function.

The first large deviation theorem was made by Cramer in 1938 for the sample
means of independent, identically distributed random variables. In the Cramer theorem
L(n) = n, and the rate function is the convex conjugate of the logarithmic moment
generating function of the random variables. The logarithmic momentum generator
function of a random variable is

A() = log (E (exp(AX,)))
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and for its convex conjugate
A (x) :=sup{Ax — A(N) : A e R}
and for all measurable I' C R

— inf A*(z) <liminf 1 log i, (I') < lim sup 1 log i (I') < — inf A*(z).

z€int T’ n—oo 1N n—oo N xecll

We can check for each independent identically distributed that A* is a convex function,
and it attains its minimum in the m, and A*(m) = 0, because, if m € G C R, then

/*’L’rL(G> 723 1 — eo — e inf{zec} A*(:E)

For example, if X7, X5, ... are standard normal random variables, then

1 o 22
A(N)  =log (— AT d:c)

1 A2 )\2
e 2 = —
oge 5
SO \2 )
T
A(z)=sup| \z —— | = —.
(@) Aeﬁ( 2) 2

This function attains its minimum in the point 0, which is the mean of the original
random variables.

The above theorem can be proven for vector valued independent, identically distrib-
uted random variables as well.

Now recall the definition of the large deviation principle from [8].

Definition 2.1 (LDP) Let X be a topological space, and P, a sequence of probability
measures on X. The large deviation principle holds in the scale L(n)~! if there erists
a lower semicontinuous function I : R — [0, 00| such that

o >
h}lr_l)g)lf L) log P,(G) > xllelgf(x)

for all open set G C X, and
lim sup N log P,(F) < — inf I(z)

n—o00 L(n) el

for all closed set F' C X. Then the function I is the so-called rate function.
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Clearly, in Cramer’s theorem the topological space X is R with the usual topology
on R. The function f is lower semicontinuous, since it is given as a supremum of
continuous functions.

There are still well known examples for random sequence with non-random limit.
A very important theorem of statistics implies that if we have the above sequence of
real independent identically distributed random variables, then if §(X;) denotes the
random measure concentrated to the point X;, then the random measure sequence of
the so-called empirical distribution of X7,..., X, defined by

Py =1 > 0(X) 24

converges to the distribution p of X;. It means, that if p, is the distribution of 18& ,
ie. for all G € M(R)

1 n
WG) =P — (X;) e G 25
fnl G) (n >odx) e ) (25)
which is a probability measure on
M(R) := {probability measures on R} (26)

converges to the 6, € M(R). The corresponding large deviation theorem was made by
Sanov. In his theorem the scale L(n) = n again, since again we have n independent
random variables, so the degree of freedom is again n. The topological space X is
M(R), and the topology is given in the following way. Let

/R F(o) d — /R F(z) dv <a}, (27)

where f is an element of the set Cj(R) of all bounded continuous functions, u € M(R),
and € > 0. These sets form the basis of the topology on M(R), which is the topology
of the weak convergence. This space is metrizable with the Lévy metric

L(p,v):=inf{e > 0: pu(F) <v(F.),v(F) < u(F.), for every closed F' C R}, (28)

Gfep: {V e M(R):

where

F. .= {:EGR:: inf|a7—y|<5}.

yeF
Let D(.||uo) : M(R) — [0, 0] is
i

[ £ o8 5@ duola), it g and =
R Ho (29)

D(pllpo) :=
+00, if K K Ho

for p € M(R). This function is the so-called relative entropy of p with respect to the
measure jip. The relative entropy is not a metric on M(R), because the symmetry does
not hold, but
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- D(v[lp) =0

- D(v||p) =0 if and only if v = p.

The relative entropy is a convex function because of the convexity of the function
xr — xloguz,

and it is lower semicontinuous. Then the following large deviation theorem holds

Theorem 2.1 (Sanov) For the sequence i, given by (25) the large deviation theorem
holds on the scale n, and with the rate function

I(v) == D(v|p).

The properties of the relative entropy imply, that I attains its minimum 0 at the point
L.

2.2 Large deviations for random matrices

When we talk about a large deviation theorem for random matrices, it concerns the
empirical eigenvalue density. It will be similar to the Sanov theorem, since the em-
pirical eigenvalue distribution of an n x n random matrix is the sample mean of the
Dirac measures concentrated in n random variables, which are the eigenvalues of the
matrix. In the simplest case, if we have diagonal matrix with independent, identically
distributed entries, then the Sanov theorem implies the large deviation theorem. But
in most cases random matrix consists of n? random variables, and the eigenvalues are
not independent.

Assume that T, (w) is a random nxn matrix with complex eigenvalues (; (w), . . ., (G, (w).
(If we want, we can fix an ordering of the eigenvalues, for example, regarding their
absolute values and phases, but that is not necessary.) The empirical eigenvalue dis-
tribution of T,,(w) is the random atomic measure

(G e+ 6Gw)

n

P,(w) :

Therefore P, is a random measure, or in other words a measure-valued random variable.
Now denote P, the distribution of P,, which means P, is a probability measure on

M(C).

The degree of freedom is n?, since a random matrix consists of n? random variables,
so L(n) = n?. The limit measure of the eigenvalue distribution is the unique minimizer
of the rate function.

For the matrices mentioned in the Section 1 we know, that the limit of this random
measure sequence is a non-random measure so there is a chance to prove the large
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deviation theorem for the rate of convergence of these sequences of random variables.
First consider the simplest example for random matrix.

Suppose that D,, is an n X n diagonal random matrix with independent identically
distributed real entries. Suppose moreover that the continuous density function f is
supported on the interval [a,b], and f(z) > 0 if a < 2 < b. Then the joint density of

the eigenvalues is
n

f)\l ----- )\n(l’la"wl’n) = Hf(xz)

i=1
n [a,b]”. This gives a measure v, on R". If X is compact and A is a base for the

topology, then the large deviation principle is equivalent to the following conditions
(Theorem 4.1.11. and 4.1.18 in [8]):

~I(z) = inf {hmsup—logP(G)}: inf {hmmf—logP(G)} (30)

zeG,GeA N—00 zeG,GeA n—oo N2

for all x € X. Now suppose that G C M(]a, b)) is a neighbourhood of p € M([a,b]),
and denote P, the distribution of the empirical eigenvalue distribution of D,,. Then if

1 n
Go = {()‘b'--a)‘n) € R" |y = _Z&i EG}’
i

then

Pn(G):un(Go):/.../GoeXp <Zlogf ) A ... dX,

=1

o[ e (n [ 10 i) < 0 (n% [ e @' @))

lim sup 1 log P,(G) < sup /log f(x) dux(z),

n—oo M1 weG

SO

so by the weak* continuity of y/ — [log f(x) dy'(x) we have

inf (nmsuphogpn(c:)) < / log f(x) dy(x).

G:peG n—oo N

For the other equality of (30) we suppose that the measure p has continuous density
g, since we can approximate with the measure with density function

b
/ oe( — ) du(y),

where ¢ is a C*° function supported on the interval [—¢, €], such that

/_}@):1.
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Moreover we can assume that § < g(z) < 6~! for = € [a,b] and for some § > 0, if we
have a convex combination of the normalized Lebesgue measure on [a, b] and p, and we
take the limit as the coefficient of 1 tends to 1. Then for all n consider the partition
of the interval

a=vy," <y§") < e <y7(1"_)1 <ylM =1,

n

such that

for 1 <i <n, then

Set

then for n large enough A, C Gg, so we have

- Vn GO (An)

/ / eXp (Zi: 10gf($i)> dry ... dz,

]_

lim —Z min log f(z) = /g(x) log f(x) dx = /log f(z) du(x)

PN oo, ")

SO since

n

thus

inf (hmmf logP(G)) > / log f(z) dp(x).

G:peG n—oo N
In this way we proved the Sanov theorem for the random variables with density f.

In Section 1 we could see, that for the convergence of the empirical eigenvalue distri-
bution there is no need to know the density of the entries. Again we will use the exact
form of the joint density of the eigenvalues as above, which is known only in the case
of random matrices which are invariant under unitary conjugation. So in this section
we will study only Gaussian random matrices.

The first large deviation theorem for random matrices was proven by Ben Arous and
Guionnet in [5], and it concerns the standard selfadjoint Gaussian matrices.

Theorem 2.2 (Ben Arous, Guionnet) Let P, is the empirical eigenvalue distrib-
ution of the standard selfadjoint Gaussian matrix A,, i.e. a random measure on R.
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Then the large deviation principle holds on the scale n=2 with rate function

zwwwz—/A;%u—ymmwdmm+34¢wmm—3, (31)

Where
3

1 1
By, = — lim — log C;* = —log2 + 3’

n—oo n2 4
and C3* is the normalization constant defines in (14).

In their paper they proved the large deviation theorem for real case as well. Moreover
they proved the large deviation for the sequence of matrices p(A,,), where p: R — R is
a bounded, positive diffeomorphism, and p(A,) is again defined by the usual function
calculus of selfadjoint matrices. In this case the topological space is again M(R) with
the topology of the weak convergence.

The next theorem was made by Hiai and Petz in [23] about the Wishart type random
matrices, when p/n —> X\ < 1.

Theorem 2.3 (Hiai, Petz) Let P, is the empirical eigenvalue distribution of the pxp
Wishart matriz, i.e. a random measure on R™. Then the large deviation principle holds
on the scale p~2 with rate function

. 1 1
1 () = =5 // log [z — y| du(z) du(y) + 5 /(ﬂf — (A= 1) logz) du(x) — Buish,
(R+)2 ®
(32)
Where
. 1 wis
Buish = — nh_)ngo P log Cn,ph
1
= 7 (3= Nlog A+ (1 - 1)’ log(1 — 1) (33)

In this paper Hiai and Petz proved more. They considered p x p positive matrices
with the joint eigenvalue density function

1 S T 25
o (-n3s00 | TV T1 -
i=1 i=1 1<i<j<p
where 3 > 0 fixed, and @) is a real continuous function such that for all € > 0

lim zexp (—eQ(x)) = 0. (34)

Then the large deviation principle hold if p/n === A > 1 and y(n)/n == v > 0.
We know the convergence for the case p/n > 1, and by the following lemma 2.3
proves the large deviation principle as well.
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Lemma 2.2 Forn € N et ﬁn be a random probability measure on a complete separable
metric space X. Let jig be a fized probability measure on X and 0 < a,, < 1 such that

n—oo

a, — «a € (0,1). Suppose that (P,) is exponentially tight, i.e. for all L > 0 there
exists a K, C X compact set, such that

1
limsup — log P,(K7) < —L, (35)
n

n—oo

where K} denotes the complement of K. If (ﬁn) satisfies the large deviation principle
at the scale L(n) with rate function I on M(X), then the sequence of random measures

(1 - an)MO + anPn

satisfies the same with good rate function

R T(ﬁ)v Zf n= (1 - O‘n):u() + anﬁ
I(n) = { 00,  otherwise.

If we apply the above lemma for «;,, = % and g = &g, we have that the large deviation
principle hold for the singular Wishart matrices as well, i.e. in the case when n < p.
Finally Hiai and Petz proved the following theorem in [33].
Theorem 2.4 (Hiai, Petz) Let P, is the empirical eigenvalue distribution of the nxn
Gaussian elliptic random matrix

Y, =uX, +vX,,

where u? +v? = 1. Then }A’n is a random measure on C. Then the large deviation
principle holds on the scale n=2 with rate function

10 = = [ [ ol = wlaute) )+ [ (L2 + U0 dute) - B
(30

Where 1 3
By = — nh_)ﬂolo 2 log szu = S

(37)

By the following theorem large deviations of the empirical eigenvalue distribution of
random matrices imply other large deviation theorems. (See Theorem 4.2.1 in [8])

Theorem 2.5 (Contraction principle) If the sequence p, € M(X) satisfies the
large deviation principle with rate function I and f : X — Y is a continuous function,
then the sequence v, defined by

va(B) = pn(f7H(B))

satisfies the large deviation principle with rate function

J(y) = inf{I(2)[f(z) = y}.
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For example for a continuous ¢ : C — C function consider f, : M(C) — C,
o) i= [ la) ).

This function is continuous in the weak™ topology, so if the large deviation theorem
holds for the distribution P, of the empirical eigenvalue distribution of the nxn random
matrix X, , then the distribution of

1 n
[ @ dmta) = £ 3 (X))
i=1
satisfies the large deviation theorem too. On the other hand the exact form of the rate

function
J(y) = inf { [ [ 1081z = wldutyauto)| [ o) dute) - y}

is rather difficult.

2.3 Potential theory and large deviations

Next we recall some definitions and theorems of potential theory [36].

Definition 2.3 For a signed measure v on a K compact subset of C

() = / /K log L () dvw) (38)

|2 — wl

is the so-called logarithmic energy of v.

Definition 2.4 For a signed measure v on a K compact subset of C

S(v) = / /K log|z — w|dv(z) dv(w) (39)

15 the so-called free entropy of v.

Since

S(v) = inf / /K max(log |2 — wl, @) dv (=) du(w),

a<0

this functional is upper semi-continuous. We want to show its concavity. The following
lemma is strongly related to the properties of the logarithmic kernel K (z, w) = log |z —
w| (cf. Theorem 1.16 in [29]).
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Lemma 2.5 Let v be a compactly supported signed measure on C such that v(C) = 0.
Then 3(v) <0, and X(v) = 0 if and only if v = 0.

From this lemma we can deduce strictly concavity of the functional ¥. First we prove
that - S
5 (m;uz) > (ul); (M2)’

for all uy, s € M(K), moreover the equality holds if and only if p; = ps. For this,
apply Lemma 2.5 for the signed measure v = puy — puy. We get in the case of py # po

(40)

0> S — pn) = S(u1) + Do) — 2 / /K g2 — ] dys(2) ds(w),

thus

S () —5 S(pa) _ / /K log|z — w] djur(2) dua(w),

and

_ Z(:ul) 1_ Z(MQ) + % //K2 10g|z . w| dﬁh(z) d'u2(w) = Z(:ul) _g 2(#2)

The concavity is the property
(Apa A+ (1= Ap2) = A (1) + (1 = A)X(pe) (41)

for an arbitrary A € [0,1]. If ¥(u1) = —oo0 or X(u2) = —oo, then this holds trivially.
Next assume that X(p;) > —oo and X(p2) > —oo. Then we have (41) for dyadic
rational A from the midpoint concavity (40). For an arbitrary A € [0, 1] we proceed by
approximation. For a fixed sequence ¢, > 0, g, — 0, there exist i(n), k(n) € N such

that , .
(560 =) S+ (A= 5505 ) S

By the midpoint concavity

< €.

() + (L= VS (m) e < gl + (1= 505 ) S
< =g+ (1 5 ) ).

i(n) i(n) S
ok(ny 11 + <1 - Qk(n)) 2 — A+ (1= A)pa,

Here
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and the upper semi-continuity of 3 implies

, i(n) i(n)
lim sup 3 (Qk(n)ul " (1 . W) m) < S0+ (1 - Apa),

n—oo

which gives the concavity (41) and the equality can hold only in the trivial case.

Since for all p € M(K)
I(p) = =% (),

the above properties of ¥ imply that the logarithmic energy is a convex, lower semi-
continuous function.

Definition 2.6 The quantity
cap(K) := eV

is called the logarithmic capacity of K, where
Vi=inf{l(p): p e M(K)}.
The logarithmic potential of i € M(K) is the function

Ub(z) = /K log ——— dpu(w) (42)

|2 = wl

defined on K.

Definition 2.7 Let F C C be a closed set, and Q : ' — (—00,00] be a lower semi-
continuous function. The integral

T = [ [ o ——du(z) duw) +2 [ QL) dn:) (43)

|2 = wl

15 called weighted energy.

The weight function is
w(z) = exp(=Q(z)) (44)
is admissible if it satisfies the following conditions
e w is upper semicontinuous;
o [y:={z€ F:w(z)> 0} has positive capacity;

e if F'is unbounded then |z|w(z) — 0 as |z| — o0, z € F.
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We can recognize, that the rate functions in the large deviation theorems are weighted
energy functionals with different rate functions. For example, in the case of selfadjoint
Gaussian matrices the weight function

vt oo ()

which is clearly an admissible weight function.

Now consider a theorem (cf. Theorem I.1.3 in [36]) about the minimizer of the
weighted energy.

Theorem 2.6 Let w = exp(—Q) be an admissible weight on a closed set 3, and let

Vo == 1inf{Ig(p) : p € M(F)}.

Then the following properties hold.

o Vp is finite.
o There exists a unique element g € M(F) such that
Io(pq) = V.
Moreover pg has finite logarithmic energy.
o S :=supp(ug) is compact, Sg C Fy, and has positive capacity.

Definition 2.8 The measure j1g ts called the equilibrium or extremal measure associ-
ated with w.

The following result tells about the minimizer of the weighted potential (cf. Theorem
1.3.3 in [36]).

Proposition 2.9 Let Q as above. Assume that 0 € M(K) has compact support,
E(0) < 0o and there exists a constant F' such that

U%(2) +Q(2) = F

if z € suppo, and
U%(2) + Qz) = F

if z € K. Then o is the measure in M(K) such that

Ig(o) = ot Io(p),

i.e., o is the so-called equilibrium measure associated with Q).
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The above proposition gives a very useful hint to find the equilibrium measure of a
weighted energy. For example its corollary is the following theorem, which helps us to
prove that the rate function of the large deviation principle for the selfadjoint Gaussian
matrices has the Wigner semicircle distribution as the unique minimizer, since it can

be written in the form
2

_1/ — 12 = Ldu’
27T It| vuz — 2

1/ 2 2u 1 [“logl|z —t|
-Uzx) = — log | — ¢ ——dudt = — = ——— dtdu.
(@) =5 [ o = 3=/

Here by t = ucos v we have

1 [“logl|x —t 1 /’T 1
- ——dt = —— log ———— d9.
T J_u Vu2 —12 2 J_ . 8 |z — ucos |

If we apply the so-called Joukowski transformation (See [36] Example 3.5)

U 1
r=3(cg)

then
T+ Vaz—u? .
sgn(;{:)— if |$‘ >u
¢ = u
sgn(x)ivu? — x? if 0<|z]<uw
Then since
U _ i i u i _
|x—ucos79|:‘§((+C D — (e +e ﬂ)‘:§|c_€ﬂHC !
and by
1 [ —logr, if|z| <7
— log ————dp = . =
27 J, ©8 |z — rei?| 4 { —log|z|, if [z| >, ~
thus

_/ \:c—ucoszﬂ di
/ {logQ— 2 —w?l, it x| >u
T o |C—tH§1 t| log 2 — log u, if |z| < w.
Then if —2<ax <2

1 [2 1 [l
—U(x) :—10g2—|—§/ ulogudu—|-§/ ulog |z + vVa? —u?| du
| 0

z|

2

w?logu  u?]? o1y
—log 2 - — —1 d
og +2[ 5 4]|z|+/0 2og\x| u

2 2
—l—%/ vlog |1 + V1 —v?|dv = — ——I—%
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since

2

1 1 v v
vlog |1 + V1 — v? dv:/ . dv
/0 8| | 0o 1+vV1—02 V1—22

[ [ (-}

If |x| > 2, then by the symmetry we can suppose that x > 2, and with similar
calculations

1 2
U(x) =log2 — 5/ ulog |z + vVa? —u?|du
0

2
1
:—10g2—%—log(afj—l—\/ﬁ—4)—1—%\/x2—4—i-§7

and since here the weight function

2
Q(x) :== 1
SO )

Ule) + Q) =5 it |z[ <2,

and .
Ulx) + Q) 2 5 i [a] > 2,

so the semicircular distribution is equilibrium measure of the weighted energy, i.e. the
unique minimizer of rate function I,,.

Proposition 2.9 can be used to prove that the unique minimizer of [,;s, is the
Marchenko-Pastur distribution, and the minimizer of I.; is the uniform distribution
on the corresponding ellipse. Later we will use this Proposition to find the equilibrium
measure of a weighted energy.

We could see, that the rate function of the large deviation theorem for random
matrices is a weighted logarithmic energy, which has a unique equilibrium measure p,
so we can write the rate function in the following form

I(p) = Zg(p) — Zo(o),

so we can consider the rate function [ again as a relative entropy with respect to the
minimizer .
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3 Haar unitaries

Apart from the selfadjoint random matrices there is an other important set of normal
random matrices, the unitary random matrices. We already used non-random unitary
matrices in the previous sections, but now we recall the definition, since in the sequel
we will study random unitary matrices.

A unitary matrix U = (U;;) is a matrix with complex entries and UU* = U*U = I.
In terms the entries these relations mean that

DU =) |Uy1P =1 forall 1 <i,j <n, (45)
j=1 i=1
Y UnUy=0forall 1<i,j<n, i#j. (46)

=1

In other words an n X n matrix is unitary if the columns (or rows) are pairwise orthog-
onal unit vectors.

The set U(n) of n X n unitary matrices forms a compact topological group with
respect to the matrix multiplication and the usual topology, therefore there exists a
unique (up to the scalar multiplication) translation invariant measure on U(n), the
so-called Haar measure. We will consider a random variable U, which maps from a
probability space to U(n), and take its values uniformly from U(n), i.e. ift H C U(n),
then

P(Un € H) =~(H),

where 7 is the normalized Haar measure on U(n). We call this random variable a Haar
unitary random variable, or shortly Haar unitary.

Although the distribution of the entries cannot be normal, since the absolute values
must lie on the interval [0, 1], some properties of the normal variables play important
role in the construction of the Haar unitary random matrices.

3.1 Construction of a Haar unitary

Next we recall how to get a Haar unitary from a Gaussian matrix with independent
entries by the Gram-Schmidt orthogonalization procedure on the column vectors. Sup-
pose that we have a complex random matrix Z whose entries Z;; are mutually inde-
pendent standard complex normal random variables. We perform the Gram-Schmidt

orthogonalization procedure on the column vectors Z; (i = 1,2,...,n), i.e.
Z
Ul = —17
1]
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and

U; = = : (47)

where

Lemma 3.1 The above column vectors U; constitute a unitary matriz U = (U;),_,
Moreover, for all V € U(n) the distributions of U and VU are the same.

Proof.  From the proof of Lemma 1.4, we know, that the distributions of Z and VZ
are the same. The ith column of VU is exactly VU; and we have

i—1 i—1

VZi= Y (2, U)VU  VZ—=> (VZ, VUV,
VU, = =l = = (48)

i—1 i—1
Zi = {2, U)U, VZi= > (VZ,VU)VU,

=1 =1

which is the Gram-Schmidt orthogonalization of the vectors V' Z;. Since we showed
above that Z and V' Z are identically distributed, we conclude that U and VU are
identically distributed as well. Since the left invariance characterizes the Haar measure
on a compact group, the above constructed U is Haar distributed and its distribution
is right invariant as well. 0]

The column vectors of a unitary matrix are pairwise orthogonal unit vectors. On
the bases of this fact we can determine a Haar unitary in a slightly different way. The
complex unit vectors form a compact space on which the unitary group acts transitively.
Therefore, there exist a unique probability measure invariant under the action. Let us
call this measure uniform. To determine a Haar unitary, we choose the first column
vector U; uniformly from the space of n-vectors. Us should be taken from the n — 1
dimensional subspace orthogonal to U; and choose it uniformly again. In general, if
already U;,Us,...,U; is chosen, we take U;;; from the n — j dimensional subspace
orthogonal to U;, Us, . . ., U;, again uniformly. The column vectors constitute a unitary
matrix and we check that its distribution is left invariant. Let V be a fixed unitary.
We show that the vectors VU, VU,,...,VU, are produced by the above described
procedure. They are obviously pairwise orthogonal unit vectors. VU is uniformly
distributed by the invariance property of the distribution of U;. Let V(1) be such a
unitary that V(1)VU,; = VU,. Then V=1V (1)VU; = U; and the choice of U, gives that
VW (1)VU, ~ U,. It follows that V(1)VUy, ~ VU,. Since V(1) was arbitrary VU,
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is uniformly distributed in the subspace orthogonal to VU;. Similar argument works
for VUs, ..., VU,. The Gram-Schmidt orthogonalization of the columns of a Gaussian
matrix gives a concrete realization of this procedure. Now suppose that A is a random
matrix with independent identically distributed entries, where the distribution of the
entries has finite mean. Then if the distribution of the entries is absolutely continuous
with respect to the Lebesgue measure, then we can construct a random unitary matrix
with the above methods. This unitary random matrix is not translation invariant,
because the only unitary invariant distribution according to Theorem 1.3 is the normal
distribution. If the distribution is not continuous, then A can be singular with positive
probability, so the Gram-Schmidt orthogonalization does not work almost surely.

3.2 (General properties of Haar unitaries

The entries of a Haar unitary random matrix are clearly not independent, since for
example the sum of the square of the absolute values of the entries in the same row or
column must be 1. It is difficult to find the joint density of the entries, but now from
the translation invariance of the Haar measure and from the construction we can state
several facts about the entries.

For example since permutation matrices are in U(n), and by multiplying with an
appropriate permutation matrix every row and column can be transformed to any
other row or column, so the translation invariance of a Haar unitary U implies that all
the entries have the same distribution.

Theorem 3.1 From the construction of a Haar unitary one can deduce easily the

distribution of the entries:
n—1

(1-— 7’2)"_27" dr dv,

s

Proof. We know from the construction and from Lemma 1.2, that

Z Rt
U = nll 5 ln 5 (49)
Vi Zh o VY R
where Z;; = R;elVi, R? ..., R? are independent exponentially distributed random vari-
ables with parameter 1, and 94, ..., 1, are independent uniformly distributed random

variables on the interval [0, 27]. Clearly the phase of U;; depends only on ¥4, and it is
independent from the absolute value of the entry, and uniform on the interval [0, 27].
For the absolute value, we know, that the density function of the sum k independent
identically distributed exponential random variables with parameter \ is

Akzk—le—Ax

i) = =y (50)
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on x € R, so

=1-(1-r)""!
=2(n— 1)/0 p(1—p)" 2 dp,

since from (1) we know the kth moment the exponential random variable. U

Lemma 3.2 The joint distribution of Uyy, ..., U,—11 is uniform on the set
{(xl,...,xn_l) : fo < 1} :
i=1

Proof.  Suppose that X;,..., X, are independent exponentially distributed random
variables with parameter 1, then

X.
Unl* = ==,
Zi:l X;
so the joint distribution of |Uy|%,. .., |U,_11]? is same as the joint distribution of
Xl Xn—l

Z?:1Xi7.“72?:1Xi.

The joint density of Xy,...X,, is

on (R*)™ so if we use the transformation

(xlw"uxn)H fl PRI x:_l 7in )
D i Ti D i Ti i—1
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and we integrate with respect of the last variable, then we have the density. The
Jacobian of the transformation has the determinant

YT — T —1 —1 —
2 2 2 2
(Z?—l ;) (2?—1 ;) (2?—1 ;) (2?—1 ;)
—Z2 Z?:l Ti — T2 ) —Z2

det
—Tp-1 —Tnp-1 Z?—l &£ Tp—1 —Tn-1
n 2 n 2 n 2 n 2
(Zz—l zl) (Zz—l x'l) (Zz—l x'l) (Zz—l x'l)
1 1 - 1 1

i=1

n | 2 0 0 n —(n=1)

With (51) we have that the joint density function of the new random variables depends
only ", z;. If we integrate with respect to this variable, then we get, that the joint
density of the other n — 1 random variables is constant. We obtained that the joint

density of |Ui1]%,. .., |Uy—1,1]? is uniform on the set {(z1,...,2n-1) 1 D1y @ < 1}, so
since the phase of Uy; are independent uniformly distributed on [0, 27| we proved the
lemma. [

Since we know the density of the entries we can compute the even moments of their
absolute value. For every k € ZT,

E (|Uy*") = <n+k_1)_l (52)

n—1

for all 1 < 4,5 <n. This can be easily computed from the density function as follows
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1

E (\Uij\%) =(n—-1) [ P21 =" 2dr

— 1) <_ {T%(l ; i2>1n_1}: + - ﬁ : /01 P — )t dr)

_ 1
b 1/ r2 31— )" dr
0
k!

n
1
— 1 2 \n+k-2 —
n...(n+k:—2)/0 rd=r)
_(n+k-—1 !
n n—1
Clearly the entries are not independent, and the entries in the same row or column

are more correlated then the others. The correlation coefficients can be computed as
follows. Since

ElUn|* =E (Z |U11\2|U1j|2) = (n = DE (|0 *|012?) + E (|Un]"),
j=1

S~

SO
1 1 2 1

B P) = 5 (= ) v

so the correlation coefficient is
E (|UnP|U)’) —ElULPEU* 1
E (|Uil*) = (E (JU[?)) n—1

For the entries in different row and column, we can use the fact

n
> UG P Us]* = U]
=1

to calculate

E (|U11‘2U22‘2) = % (% - n(nl—i— 1)) = n21— 1T
therefore the correlation coefficient here is
E (|Un?|Ux[*) — E[UuPE[U2[* _ 1
E (|Un|*) — (E (U [?)* (n—1)*

(see p. 139 in [26]).

Theorem 3.2 Since
z

PV, P > 2)= (1- )" e

n
VnU;j converges to a standard complex normal variable.
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3.3 Joint eigenvalue density

Let U be a Haar distributed n x n unitary matrix with eigenvalues A\, A1, ..., A,. The
eigenvalues are random variables with values in T :={z € C: |z| = 1}.

The joint density of the eigenvalues was obtained by Weyl [41],

1 0, i, |2
Wi — eV 53
o) H | — "] (53)
1<)
with respect to 91 ... dv¥,. Now we write down a shortened form of the proof (see p.

135 in [26]).
At any point of U € U(n) the matrix
dU*U +U*dU = d(U'U) =0,

SO
dL := —iU*dU

is an infinitesimal Hermitian matrix. Since the Haar measure v, on U(n) is invariant
under multiplication by a unitary matrix we have

yu(dU) = C [ dLu [ [ dLi; dL3;.
i=1 i<j
For every U € U(n) there exist V € U(n) and a D diagonal matrix, such that
U=VDV*,

where the non-zero entries of D are the eigenvalues of U, so D can be written in the
form D := diag (ewl, . ew"), since the eigenvalues are on the unit circle. The matrices
V and D are not unique, so we can assume, that for the infinitesimal Hermitian matrix
dM = —iV*dV the entries in the diagonal are zero, so dM;; = 0 for 1 < i <n. Since

dL = —iVD*V*d(VDV*)
— —iVD*V* (dVDV* + V dDV* + VD dV*)
— V(D*dMD —iD*dD — dM) V"

since D*D = I. For the element of the matrix V*DV we get
(V*dLV); = —ie i de' = dv;,
and for i < j

(V*dLV)y; = W= dM;; — dM;; = e (e — €%7) dM;.
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Finally we have

H dLi; || dLydLy; =[] |7 — & }H d9; [ | dMi; dba;.

1<j 1<j 1<j

The normalization constant can be computed in several ways. We use here the
properties of complex contour integral as follows

2w 2w
/ / H |6119 119J | dﬁl

1<J
- (—i)"% 2t H(z —2)(Zi — Zj)dz . .. dz,
{lz|=1}" i<j
= (—i)"% 2t _1H zi — 2;)( zj_l)dzl...dzn
{|Z|:1}n Z<j
:(—i)"% 2tz det [zf_}l det[ G- 1)}” dz...dz, =
{lzl=13" ? wi=1
= (—1>nf Azt (=177 x
{lzl=13" TESn
> H ZZT(Z)—l Z (_1)J(p) H —(p(3) 1)d2’ dz,
=1 pPESH =1

Since by the theorem of residue those terms of the above sum vanish, where there exists
a z; on the power different from —1. So in the above sum it is enough to consider the

case when
(i) = p(i)

for all 1 < i < n. Therefore we take the summation over the n! elements of S,,. Again
by the theorem of residue

% otz dy . dz, = (2707,
{lzl=13"

which gives the normalization constant.

From this we have the joint eigenvalue density function of any powers of Haar unitary
random matrices. In [34] we used the above method of complex contour integral in
order to prove the following theorem.

Theorem 3.3 For m > n the random variables ', \T*, ..., A", are independent and
uniformly distributed on T.
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Proof. Since the Fourier transform determines the joint distribution measure of

AYL AT, -, A uniquely, it suffices to show that
/ ghomgkim ko um H |zi — 2i)* dzodzy . .. dz,y =0 (54)
[0,27]™ i<j

if at least one k; € Z is different from 0, where dz; = dy; /27 for z; = el¥i. We use the
following notation for the above Vandermonde determinant.

A(z0, 215+ - vy Zp1) = H(Z, —zj) = det[ ]O<z<n 1,0<k<n—1° (55)

1<j

(What we have here is the so-called Vandermonde determinant.) Then one can write
(54) as the complex contour integral on the unit circle as follows

kom _kim kp—1m -1 -1
/ 20"t 2 T A (o ey 2nm1) A2y ey 2 2q) dzodzy . dzp
[0,27]™
_ kom _kim kp—1m -1 -1 -1 -1
= 7{ 200" 2 2 A (20 e 2ne1) A2y ey 21) %0 e 21 20 Az
{lzl=13"
o kom—1 k1m 1 kp—1m—1 o(n) m(0) m(n—1)
{lz1=1}" =
—p(0 —p(n—1
X E "(p p() zn_p(ln )dzo...dzn_l.
pESh

By the theorem of residue, we get nonzero terms only in the case, where the exponent
of z; is —1 for all 0 < i < n — 1. This means, that we need the permutations where

km4 () —p(j) —1=-1  (0<j<n-—1),
kym = p(j) — n(j).

Here [p(j) — 7(j)] < n—1, and |k;m| > m > n, if k; # 0, so if at least one k; € Z is
different from 0, then there exists no solution. This proves the theorem. U

3.4 Asymptotics of the trace of polynomials of the Haar uni-
tary

In this section we give a more elementary proof of the theorem of Diaconis and Shahsha-
hani in [10]. We used the method of moments in [34] in order to obtain the same
theorem.

Let U,, = (Ui;)1<i j<n be a Haar distributed unitary random matrix. In this section
we are interested in the convergence of Tr U,, as n — oo. Since the correlation between
the diagonal entries decreases with n, one expects on the basis of the central limit
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theorem, that the limit of the trace has complex normal distribution. In the proof we
need the following technical lemma which tells us that the expectation of most of the
product of the entries are vanishing.

Lemma 3.3 ([26]) Let i1,...,in,j1,---Jn € {1,...,n} and ky,... kp,mq,...,my be
positive integers for some h € N. If

Z(l{:r—mr)#O for some 1<u<n

or
Z(kr —m,) #0 for some 1<v<n,
Jr=v

then

11J1 thjh = thIh

E ((U.’“ Ty (U T )) —0.

Proof. Suppose that ¢t := >, _ (k. —m,) # 0. The translation invariance of U implies
that multiplying this matrix by V = Diag(1,...,1,e"”,1,...,1) € U(n) from the left
we get

11J1 thjn ~ thih 11J1 thjn ~ thih

E (U8, T (U, T3 ) = B (R T70,) . (U, T ) ).
for all ¥ € R. O

Theorem 3.4 Let U, be a sequence of n X n Haar unitary random matrices. Then
TrU, converges in distribution to a standard complex normal random variable as n —
00.

Proof.  For the sake of simplicity we write U instead of U,. First we study the
asymptotic of the moments

n n

B (00 (3 0) (X 0))

i=1 J=1
= | Z Z E(Uilil e UikikUj1j1 . 'Ujkjk>7

k € Z*. By Lemma 3.3 parts of the above sum are zero, we need to consider only
those sets of indices {i1,...,it} and {ji,...,jx} which coincide (with multiplicities).

Consider a summand E(|U;,;, |** ... |U;,.[*r), where Y, k; = k. From the Holder

inequality

E(|U ) |2k1 |U ) |2k7-) < f[ 2l /E(|U . |2'2”91) — f[ n —+ 2lk’1 -1 - -0 (n—k)
1J1 te rlr — o uJi - 21kl -1 :
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The number of those sets of indices, where among the numbers i1, ..., 4 there are at
least two equal is at most
k
k! <2>nk_1 = O(n*F1).

By (56) the order of magnitude of these factors is O(n"), so this part of the sum tends

to zero as n — oco. Next we assume that i1, ..., 4 are different. Since by translation
invariance any row or column can be replaced by any other, we have
E(|Uiil*- - Ui ) = E(|Un]? ... [U[?) = M. (57)

It is enough to determine this quantity and to count how many of these terms are in
the trace. The length of the row vectors of the unitary matrix is 1, hence

D E(Unl . Uiil?) = 1. (58)
i1=1 =1
We divide the sum into two parts: the number of terms with different indices is
n!/(n —k)!, and again the translation invariance implies that each of them equals
to M}, and we denote by €} the sum of the other terms. Therefore

n! k
en=1——o M<K )On*) —0
and .
L (L= =)l
B n! '
Now we can count how many expectations of value M;' are there in the sum (56). We
can fix the indices i1,...,i; in n!/(n — k)! ways, and we can permute them in k! ways

to get the indices ji,...,jx. The obtained equation

lim E ((Tr Un)k(TUn)k) — lim n! k!(l — e (n—k)!

= k!

finishes the proof. For the mixed moments we have by Lemma 3.3
E(TtU)"TxU,)™) =0 (k#m),

and we have proven the convergence of all moments. The only thing is left to conclude
the convergence in distribution is to show that the moments determine uniquely the
limiting distribution ( VIII. 6 in [14]). Although we have complex random variables, the
distribution of the phase is uniform, and we can consider them as real valued random
variables. The Stirling formula implies that

_1
2\ T e 1
D"k > — == — = 00.
Sort= Y (%)) -5
keN k>M k> M

for a large M € N, since v2km < 2%, if k > 2. O
The convergence for the higher powers was done also by Diaconis and Shashahani in

[10]. Here we use elementary methods.
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Theorem 3.5 Let Z be standard complex normal distributed random variable, then for
the sequence of U, n x n Haar unitary random matrices TrU. — \/1Z in distribution.

Proof. We use the method of moments again. Lemma 3.3 implies that we only have

__ \k
to take into consideration E ((Tr U,i)k (Tr UTlL) ), for all k € Z+.
Nk ()
E <(Tr v (TeTy) )
k _ _ _ _ k
=K < Z UiriaUigiy - - - Uil—lilUilil) ( Z J1j2 Uj2j3 T Ujlfljl szj1>

(AP ] Jlseessdl

<

= E E <Ui1i2 s Uizil Uil+1iz+2 s Ui2liz+1 s Uil(k—1)+1il(k—1)+2 s Uiklil(k—1)+1

X Ujle s szjl Ujl+1jl+2 cee Uj2ljl+1 cee Ujl(k71)+1jl(k71)+2 cee Ujkljz(kﬂ)ﬂ) )
where the indices i1, ..., J1, - - -, jw Tun from 1 to n, and by Lemma 3.3 if the sets
{i1,...,ix} and {j1, ..., jr} are different, then the expectation of the product is zero.

It follows from the Cauchy and Hélder inequalities, and (56), that

’E (Uiliz s Uiklil(k—1)+1 Uj1j2 cee Ujkljl(kﬂ)ﬂ) ’
Ui, ... U

<E iklil(k—l)JrlUjl]é U (59)

JklJi(k—1)+1

< \/E (|Ui1i2|2 s |Uiklil(k71)+1 |2|Uj1j2|2 ce |Ujkljl(k71)+1 |2> <0 (n_kl) :

Again the number of the set of indices, where there exist at least two equal indices is at
most O(n*~1), so the sum of the corresponding expectations tends to zero as n — oo.
Suppose that all the indices are different. There exist nf—;d),(kl)‘ = O(nk!) of these
kinds of index sets, and now we will prove, that most o% the corresponding products
have order of magnitude less than n~*~1. Consider for any 0 < r < ki

N(r) = E (|[Un|Us* .. U PUrs1ps2 - - Uni—1aUktrs1U 2041 - Urgi ) -

Note that N (kl) = N (kl — 1) = M}, and if {iy,...i} = {j1,.-.,Jru}, and all the
indices are different, then the corresponding term equals to N}!(r) for some 0 < r < ki.
Using the orthogonality of the rows for 0 < r < kl — 2

I (Z \Ura2|Uas|? .. |\ Uni PUrs1 a2 - - Unic1,5Uktrs 1 Urargn - - -Ur—i-l,j) =0. (60)
)

If 7 > kI, then the permutation invariance implies, that

E (|IVJ*12|2|U23|2 e ‘Ur1|2Ur+1,r+2 e Ukl—l,jUkl,r+1Ur+2,r+1 . -Ur—i-l,j) = Np(r),
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so we can write from (60)

(n — kDN (r)

kil
=k (Z |U12‘2|U23|2 oo ‘Ur1|2Ur+1,r+2 cee Ukl—l,jUkl,r+1Ur+2,r+1 cee Ur—i—l,j) .

i=1

On the right side there is a sum of kI numbers which are less than O(n~*) because of
(59), so this equation holds only if N2 (r) < O(n="-1).

We have to compute the sum of the expectations

E <|Ui1i2|2 s |Uizi1|2 s |Ui(1@71)1+1i(;@71)1+2|2 s |Uikli(k71)l+1|2) = Ml?l

Now we count the number of these summands, so first we fix the set of se-
quences of length I Iy = {(iu-1)i+1,-- -, %), 1 <u <k}, and we try to find the set
Jie = {Gu—1i415 - - - Ju), 1 <u <k}, which gives M. If the product contains U 5, ,,
then it has to contain Uim +1» 80 if 4, and 7,1, are in the same sequence of I, then

Js = i and j; = 1,41 have to be in the same sequence of J;, and t = s + 1 modulo [.

iy o Ji_ Je On the picture we have two
i S i Ji y s directed graphs corresponding
T I : T I : the indices in one term of the
) Y p T sum. The white vertices are
LT\ e JI=IN e the I indices, with directed
O0O<—0 [P m— —_— .
, , , , edges (iy,1y), if there is U;,;,
Zéﬂfol”. A JiL Qi+ 2 occurs in the product, and
l2lo/ \Oll+3 J2l /S N Ji+3 the black vertices denotes the
T l : T l: J indices with directed edges
: : é . . T
° . (Jus Jv), if there is U,,;, oc-

Zzl_‘i\«_o/ 9213\1\“_./ curs in the product. The cal-
o culations above showed, that
the two graph has the same

vertices and the same edges,

U(k—1)14+1 L(k—1)142 J(k—1)141 J(k—1)142 _
. /O—’O\Z. . /'—"\ . so the permutation of the [
L, o (h=D)i+3 Ty JU=DE3 4 dices holds the components
T l : T l : and the order of the vertices in
. ° ¢ ¢ a component.
lkl:i\o O/ ]kl:\l\. ./ P
This means, that for all 1 < u < k there exists a sequence (i(u—1)l+1, ceyiy) € iy
and a cyclic permutation 7 of the numbers {(v — 1)l + 1,...,vl} such that
(Ju—1)i415 - - > Jur) = (in(w=1)i41)> - - - » Ix(ut)). We conclude, that for each I;j, there are

k% sets Jyj,since we can permute the sets of I;; in k! ways, and in all sets there are [
cyclic permutations.
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Clearly there are (=1 k i sets I 1, so

: e (V) L ge(L—ep)(n — kDY oy
JirgoE ((Tr Uy) (Tr Un> ) nh—{go (= /{:l) k! . k",
and as in the proof of Theorem 3.4 this is the kth moment of (v12)(V12). O

Finally we prove that the limits of the trace of different powers are independent.
The method of computation is the same as in the previous sections.

Theorem 3.6 Let U, be a sequence of Haar unitary random matrices as above. Then
TrU,, TrU?, ..., TrU are asymptotically independent.

Proof. We will show, that the joint moments of Tr U,,, Tr U2, ... Tr U} converge to the
joint moments of Zy,v2Z,,...,\1Z,, where Zi,Z,...Z, are independent standard
complex normal random variables. The latter joint moments are

o (1 22) -1 () - Tl

so we will prove that

From Lemma 3.3, if Zé:l ia; # Zé:l ib;, then the moment

E <1§ (Tr i)™ ﬁ (Tr U;)bi) = 0.

This implies, that it is enough to consider the case, when > ia; = > ib;. We have
to take the summation over n> set of indices, since again if the indices in the first
product does dot coincides with the ones from the second product (with multiplicity),
then the expectation is zero according to Lemma 3.3. The order of magnitude of each
summand is at most

O (n~T)

as above, so if not all the indices are different, then the sum of these expectations
tends to zero, as n — oo. The same way as in the proof of the previous theorem, those
summands where there is a U, ;, +1U iries r11 7 s in the product are small. So now we
have to sum the expectations Mg, .
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If we fix the set of first indices I, then again the sequences of the appropriate .J, have

to be cyclic permutations of the sequences
corresponding to the two sets of indices, we

of I. So again if we consider the graphs
can permute the vertices by components.

This means that the number of the sequences of length 7 in [ is the same as in J, which

means a; = b; for all 1 < ¢ < [. The number of the I sets is

(1-et,) (0= a1

oSS SO we have
BY

arrived to
I N
lim E <H (Teus)™ (T )
i=1
n! ﬁ
—lim T 6 si%a!
n—oo (n — 3 da;)! -

n!

=[] 6a.m.aiti.
=1

O

Diaconis and Evans in [9] generalized the result for infinite series of Haar unitary
random matrices. Their result is the following.

Theorem 3.7 Consider an array of complex numbers a,;, where n,j € N. Suppose

there exists o such that

oo

lim Z |an;]? min(j,n) = o,
n—oo

=1
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Suppose also that there exist a sequence of positive integers {m,, : n € N} such that

.My
lim — =0,
n—oo M
and
o
. 2 . .
lim g |ay;|” min(j,n) = 0.
n—oo
j=mp+1
Then

Z an; Tr (U)) == 0Z
j=1
in distribution, where Z is a standard complex normal random variable.

For the polynomials of random matrices the theorem can be proven by the same
methods as before. The proof of Diaconis and Evans based on the fact that for any
J,keN

E (Tr UgTU;;) = 5 min(j, k).

Diaconis and Shahshahani mentioned a very important consequence of their theorem,
namely that it implies the convergence of the empirical eigenvalue distribution to the
uniform distribution on the circle, since the Fourier transform of a € M(T) is given
by the sequence

/zk du(z), keZ.
T

Now if 7 is the uniform distribution on T, then

1 [ 1, if k=0
k _ ike — )
/Tz dv(z)—%T/O e dyp {O, i k£ 0

If the eigenvalues of the n x n Haar unitary U, are (1, ..., (,, then

/T *d (% ;6«;)) (2) = %Z ¢k = 2T Uk

By the Chebyshev inequality for k& # 0

E (Tr UFTy (U
>e):P(‘TrUf‘>n8)§ ( >:O<i),

n2e?

~Tr UF
n

p(l

SO o
1
Z P (‘ ~TrU!
n=1 n

which means by the Borel-Cantelli lemma, that

>€)<oo,

1 n—oo
~TrUF =% 0,
n
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with probability 1. If £ = 0, then

1 1
—TrUF = —Tr 1, =1,
n n

where [, is the n x n identity matrix. Thus the limit Fourier transform coincides with
the Fourier transform of the uniform distribution, therefore by the unicity of the Fourier
transform, the limit of the empirical eigenvalue distribution is the uniform distribution
on T.

3.5 Orthogonal random matrices

The set of n x n orthogonal random matrices is again a compact topological group,
so we can define a Haar distributed orthogonal random matrix. The construction is
similar, but we start from a matrix with real valued standard normal random variables.
Applying the Gram-Schmidt orthogonalization gives the random matrix O,,.

The permutation invariance of the matrix implies that the entries of O,, have the same
distribution, and by the construction, the square of the entries has beta distribution

with parameters (%, "T_l), so it has the density

]P)(Oij<1') :%+%P(ij<$2)
1 1 TI'(3) /xz ! ns
=4 t72(1—t) 2 dt
2Ty r@m S, LY
! ) / 225
= — + — 1—y 2
2 e s Y

Similarly to Theorem 3.2 we have the limit distribution of the normalized entries.

Theorem 3.8 The density of \/nO;; is on the interval [—/n, /1

3

r(3) (1_.@_)%;—
N CO IO RN Vor

so it converges to a standard normal variable in distribution.
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We need only the convergence of the constant. Since

['(n) = (n—1)! and

() O C)-

V7 (2n)!

22
by the Stirling formula we have that for n = 2k
rE I (k) _ (k= 1)222¢-
I (%2 ) Tk-HTE)  72k-1)

J920k=1)or ( — 1)

s (@)2%_1) VAr(k—1)

7

so we arrived to

The moments of O;; can be computed from the density, which are important, if
we want to prove a theorem which is similar to the Theorem 3.6. The proof of that
theorem showed, that it is enough to know the second moment of the entries, and the
order of magnitude of the other ones. The odd moments are clearly 0. The 2kth even

moment M, can be computed by partial integration, i.e.

_ T (%) ' 226 (1 — 42 ns
o= e gy 7 )

_ 2k—1 T (%) /1 220=1) (1 _ Ig)”gl _ 2k —1

=T VAT (550
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By induction
k

B 2k —20+1 Lk
and )
My, = —.
n

Clearly the limit distribution of the trace cannot be complex valued, since the entries
are real. We use the method of moments again, so we need the moments of the standard
normal variable. It is well known, that for an n ~ N(0,1)

B = UM i n=2k
0, if n=2k+1

We need the analogue of Lemma 3.3 for orthogonal matrices.

Lemma 3.4 Letiy,...,in,j1,---Jn €{1,...,n} and kq, ..., ky, be positive integers for
some h € N. If 37, _ k. is odd for some 1 < u < n, or >, _ k. is odd for some
1 <wv<n, then
k k _
E(0k, ..ok, ) =0.
The proof goes similarly to the proof of Lemma 3.3, but we can use it only in the
) = 7 case, since the entries are real.

From this, the following theorem holds.

Theorem 3.9 Let O,, be a sequence of Haar unitary random matrices as above. Then
TrO, == N(0,1).

Proof.  The proof of this convergence is similar to the Theorem 3.4, so we use the
method of moments, and we consider for k£ € N

E(Tr0,)" = Z E (04111 Oigiy - - - Oiyiy,) -

1,0

Now we can use Lemma 3.4 to show that it is enough to sum the terms, where in
the corresponding sequence of indices contains each index with even multiplicity. This
implies, that if k£ is odd, then the kth moment of the trace vanishes as n — oo.
If £ = 2m, then from Cauchy inequality we have that each term has the order of
magnitude O (n™), so it is enough to consider the sum of the terms where each index
occurs exactly twice. We can choose the m indices in (:L) ways, and then we choose

the places where we put the same indices in % ways, and then we order the indices
in m! ways. So
2m)!
lim E (Tr O, 2m:( ,
n—00 ( ) 2mm)
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which is exactly the 2mth moment of the standard normal variable. U

The above theorem is not true for higher powers of O,,. For example with combina-
torial methods we get that
E(TrO2) == 1.

Using the Fourier transform one can easily check, that the limit of the empirical eigen-
value distribution of O,, as n — o0 is again the uniform distribution on the unit circle.

3.6 Large deviation theorem for unitary random matrix

We know that the limit of the empirical eigenvalue distribution of the Haar unitary
random matrix is the uniform distribution on the unit circle T := {z : |z| = 1}. For
the rate of the convergence the large deviation theorem was proven by Hiai and Petz.
The theorem concerns not only the Haar unitary random matrices but the unitary
random matrices whose distribution is exponential with respect to the Haar measure.
So suppose that 7, is the Haar measure on the U(n) set of n X n unitary matrices,
and () : T — R is a continuous function. Now for each n € N take the measure

vn € M(U(n)) as

= - exp(=nTe Q(U)) da(U),

where Z,, is the normalizing constant. Then the joint eigenvalue density is

Ziexp (—nZQ(Q)) [Tl -l
n i=1

i<j

Now consider a sequence of n x n unitary matrices with distribution v,,, and denote
P, the sequence of the distribution of empirical eigenvalue distribution of the matrices.
Then each P, is a measure on M(T), and the following theorem holds.

Theorem 3.10 (Hiai, Petz) There exists the finite limit

B := lim log Z,,

n—oo

-2

and the sequence (P,) satisfies the large deviation principle in the scale n=* with rate

function
/ / log du ) du(n / Q) du(¢
T2 IC -

Furthermore there exists a unique po € M(T) such that I(p) = 0.

The case () = 0 gives the large deviation for the sequence of Haar unitary random
matrices, and in this case the minimizing measure is the uniform distribution on T,
but generally it is difficult to find the limit of the empirical eigenvalue distribution.
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4 Truncations of Haar unitaries

Let U be an n x n Haar distributed unitary matrix. By truncating n — m bottom
rows and n — m last columns, we get an m X m matrix Up,,,. The distribution of the
entries is clearly the same as in the case of Haar unitaries. By the construction, the
distribution of U, ,, is invariant under conjugation, and multiplying by any V' € U(m).

4.1 Joint eigenvalue density

The truncated matrix is not unitary but it is a contraction, because suppose, that there
exists an x = (x1,...,x,) € C™, ||z|| = 1 such that

||U[n7m]x]|2 = x*U[’:L,m}U[n,m}x > 1,

then for 2’ = (z1,...,2m,,0...0) € C" and for the matrix C' = (Uj;) n-m+1<i<n

1<js<m
1U2|1* = [Upmjzll* + IC=]* > |Upnml* > 1.

So we proved, that Up, m is a contraction, so ||Up,m|| < 1, and therefore the eigenvalues
21,29,y Zm € D™ where D = {z € C : |z| < 1} is the unit disc. According to [48]
the joint probability density of the eigenvalues is
C[n,m} H |<z - Cj|2 H(]' - |Ci|2)n_m_l
i<j i=1
on D™. Now we sketch the proof of this result. Let U,, be an m x m Haar unitary
matrix and write it in the block-matrix form

(¢5)

where Aisannxn, Bisnx (m—n), C'is (m—n)xnand D is an (m—n) X (m—n)
matrix. The space of n x n (complex) matrices is easily identified with R2" and the
push forward of the usual Lebesgue measure is denoted by A,. It was obtained in [7]
that for m > 2n, the distribution measure of the n x n matrix A is absolute continuous
with respect to A, and the density is

C(n, m) det(l — A*A)m_%lHA”Sld)\n(A) . (61)
To determine the joint distribution of the eigenvalues (i, (s,...,(, of A, we need

only the matrices A and C, and by a unitary transformation we transform A to an
upper triangular form

G Ap Az oo A,
0 G Az ... Ay,
. ) o . , (62)
0 0 0 ... ¢
c, Cy O3 ... G,
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where C4,Cy,...,C, are the column vectors of the matrix C'. First we consider the
case m = 1. In this case the eigenvalue of the 1 x 1 matrix is the first entry of the first
row, so it has the density (1 — |z|*)"~1.

For m > 2 we get by the Schur decomposition that
A=T(z+ AT,

where 7' is an appropriate unitary matrix, Z = diag(z1, ..., 2n), and A = (Aj)1<icj<m—1
is a strictly upper triangular matrix. The matrix dL = —iT~*dT is Hermitian and the
we can assume, that dL;; = 0 for 1 <i < m. Then from Mehta

m

dA = H ‘Zi — Zj|2 HdZZ HdAZJdEJ
1<j i=1 1<j

By the orthogonality of the rows for i < j

k<i
SO
1 -
k<i
and the columns are unit vectors so
CrCi+ Y |Al? + a2 = 1. (64)

k<i

So since the entries of the matrix A are determined by the matrices C' and Z, we
get the joint density if we integrate the joint density of Z + A and C with respect the
elements of C'. First we integrate with respect to the last column, because all the other
columns can be constructed without the last one.

From (63) we get, that since

thus any modification of z; modify Ay, by 1/|z]?,

density function.

which gives a []._.1/|z]? in the

<m
There exists (n —m) x (n — m) matrices X such that

1 )

Z

Since Ay = —%CTCJ», XM =T, If we know XM, . X0

1 * *
A = _ici Cij+ Y Crx®

k<i
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SO

XO =143 x® Gl xaw

k<i

Then o
CrCi+ Y Auly = Cr XY,
k<i

so the vectors C; must satisfy the equations
C: XD =1 — %)% (65)

so Chi, ..., Ch_m—1, lies inside the ellipsoid given by X (). By Lemma 3.2 we need the
integral of the uniform density on this ellipsoid, i.e. the volume of this set defined in
(65). In order to obtain the volume it is enough to know the determinant of X ®.

X0 =1 + ZX(k) CkCI:X(k) — x -1 + X (=) Ci1C7 X(i—l)7
2 Ty [zl
SO oo
det X@ = det XV det <I - %x“-”) .
Zi—1
Here
Ci1C} i Cr,Cii+>. i |Ak7i_1|2 1
|Zz—l| |Zz—l| |Zz—1|
so the matrix
I + Ci_lCZ—l X(i—l)
|2i1]?

Now we integrate with respect to the first column. For fixed Ay, ... A, _1,, the
distribution of C ,, ..., Cy—m—1,m is uniform on the set

‘Cl,m|2 + -+ ‘C'n—m—l,m‘2 S 11— |Zm‘2 - |A1,m‘2 o ‘Am—l,mPv

i.e. inside the ellipsoid defined by (65). The volume of this n —m — 1 dimensional
complex ellipsoid is

(L= lzm)" ™" -
qerxo = (= laal) [T 1=

<m
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so the form the last column we get (1 — |z,[*)" ™. Since only the last column
depends on z,,, and the joint density function of the eigenvalues must be symmetric in

Z1,. .., Zm, SO the joint density function of the eigenvalues is given by
m
—m—1
[[ la-=PTa—1aP)"""
1<i<j<m i=1

Since the normalizing constant Cf,,, was not given in [48], we computed it by
integration in [34]. To do this, we write (; = r;e'¥ and d¢; = r; dr; dp;. Then

nm] - / H L Zj|2 H(l - |Zi|2)n_m_1 dz

1<i<j<m i=1
m m
— Lo 0|2 _ e2\n—m—1 )
_/ / H e — e’ H(l ) ri dedr.
[01]™ J0.27]™ 1 < i<im i=1 i=1

Next we integrate with respect to dp = dp;dps... dp,, by transformation into
complex contour integral what we evaluate by means of the residue theorem.

/ H 1€t — 1je'? 12 dyp
[0 n T

27" 1 <ici<m
2
/ ” |rizi — 1i%j] ”
Tn

1<i<j<m
m
= (=)™ (rizi —1i2) (razy b =iz ) | | 27t dz
= iz — Tjzi)\Tiz i%j i
T 1<i<j<m i=1
1 1 o1
m
. - 12, T9Zs cee TmZp,
= (=)™ sz Ydet | . ) X
n 1 * N
ri 121” ! Ty 1z§” L pm—lym=1
1 1 |
7’121_1 7“222_1 . rmz;ll
x det | . . ) dz
—(m—1 —(m—1 _1_—(m-1
T{n lzl( ) gn 122(m ) T:?nz 1Z (m—1)
m m
S 1 ERD ST | D ISR | (e Ay
TESm i=1 pPESm =1

We have to find the coefficient of [~
the integral is

ie1 % ~! this gives that only p = 7 contribute and

Y Lo

pPESH i=1
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So we have

C[;’lm}:(%r)m/ ZHTZQ(p 1)1_[1—7“ "mlﬂr,dr
[0,1]™

pESH 1=1
2i— 1 n m—1
(2m)™m]! H / dr;

and the rest is done by integration by parts:

1 1
k
/ ,,,,2k+1(1 _ T2)n—m—1 dr = / ,,,,2](2—1(1 _ ,,,,2)n—m dr
0 n—m.Jo
!

k 1
= . ) / ’/’(1 o T2)n—m+k—1 dr
0

m=—m)...n—m+k—1

(n—m+k-1\"" 1
B k 20n—m+k)’

n—m+k-—1 1
- — | [
C’ m] ﬂmH< i ) — (66)

Therefore

4.2 Limit distribution of the truncation

In this section we study the limit of Uy, ,,) when n — oo and m is fixed. Clearly here
we need some normalization, otherwise the entries and the eigenvalues vanish as the
matrix size goes to infinity.

Now we consider /n/mUp, . Its joint probability density of the eigenvalues is
simply derived from the above density of U}, ) by the transformation

(Cla“'aCm)’_)(\/g(la---a\/ggm)a
TV V)
z<] i=1

ke — mm+1)/2
=Wn3m'H(" e e ()

< [T16- <j|2H< uld )m

1<j

and it is given as

C[n,m
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Now consider the asymptotic behaviour of the density.

2 m n—m-—1
mym™ [m [m m|¢;|?
Chnym) <E> g z@ — zgj 1:[ (1 - )
LT oM (14 o(1) gy mlmn) 3 mm o
= ot 11 k! ( ) HIQ Gl H( )
k=0 1<j
mm(m+1)/2 m‘g|2 n—m—1
=———(1+0(1 G — G2 (1— ) )
o VL <>>g\ il H -
The limit of the above as n — oo is
m(m+1)/2 ) ) o
ooy exp mZ|<2| HKZ CJ| (67)
ﬂ- H 1<J

which is exactly the joint eigenvalue density of the standard m x m non-selfadjoint
Gaussian matrix.

4.3 Large deviation theorem for truncations

In the case of selfadjoint Gaussian random matrices, Wishart matrices and elliptic
Gaussian random matrices the limit of the empirical eigenvalue distribution was known,
and from the joint eigenvalue density we could get the rate function, and we found
that the unique minimizer of the rate function is the limit of the empirical eigenvalue
distribution. Now we have different kind of random matrices, and we don’t know the
limit of the empirical eigenvalue distribution, but we have the joint eigenvalue density.
So now we will prove the large deviation theorem with the rate function which we get
from the joint eigenvalue density, and then we try to find the unique minimizer of the
rate function with the tools of potential theory mentioned in the Section 2 in order to
get the limit distribution.

The following theorem, which is the main result of the dissertation was published in
[35].

Theorem 4.1 [Petz, Réffy] Let Uy, be the n x n truncation of an m x m Haar
unitary random matriz and let 1 < XA < oo. If m/n — X as n — oo, then the sequence
of empirical eigenvalue distributions P, = Py, ) satisfies the large deviation principle
in the scale 1/n? with rate function

- / /D log 2 — w]du(=) du(w) — (A~ 1) /D log(1 — |2?) du(z) + B.

for p € M(D), where

A?log A N AMlog(A—1) log(A—1) N A — 1.

B = - —
2 2 2 2
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Furthermore, there exists a unique py € M(D) given by the density

on {z: |z| <1/V/A} such that I(po) = 0.

Set
A—1
F(zw) = —log| — w| — % (log(1 ~ |2P") + log(1 ~ u)

and
F.(z,w) := min(F(z,w), a),

for @ > 0. Since F,(z,w) is bounded and continuous

peM@) = [ [ Fuleow)due) dutw)

is continuous in the weak™ topology, when the support of u is restricted to a compact
set. The functional [ is written as

) = [ [ P dutw) + B
—sup | /D Fu(e,w) dp() dp(w) + B

a>0

hence [ is lower semi-continuous.

We can write [ in the form

I(n) = —S(u) — (A~ 1) /D log(1 — [2?) du(z) + B.

Here the first part —X(u) is strictly convex (as it was established in the previous
section) and the second part is affine in . Therefore I is a strictly convex functional.
If X is compact and A is a base for the topology, then the large deviation principle is
equivalent to the following conditions (Theorem 4.1.11 and 4.1.18 in [8]):

—I(z) = inf {limsup%log PH(G)} = inf {liminfi2 loan(G)}

zeG,GeA n—00 z€G,GEA | n—oo N

for all x € X. We apply this result in the case X = M(D), and we choose

/z’“z’“? du'(2) —/ 2Rk dp(2)
D D

{M'EM(D): <5fork:1—|—k:2§m}.
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to be G(u;m,e). For u € M(D) the sets G(u; m,e) form a neighbourhood base of u
for the weak™® topology of M(D), where m € N and £ > 0. To obtain the theorem, we
have to prove that

—I(p) > igf {hm sup 5 log P, (G)}

n—oo

and

—fﬂﬂ)ﬁinf{hnunf——bgf’ﬁn}

G n—oo n2

where G runs over neighbourhoods of . The large deviation theorem implies the
almost sure weak convergence.

Theorem 4.2 Let Uy ), Py and po as in Theorem 4.1. Then

n—00

Po(w) = o

weakly with probability 1.

Proof. For fixed f : D — C bounded and continuous function and € > 0 we define the

sets
Qn:{ 25}

for all n € N. Then
z) dp(z / f(2) dpo(z

z) du(z /f ) dpo(z >5}

lim sup — logP (F) < —inf I(u).

N—00 LEF

2)dP,(w, z) — /Df(z) dpig(2)

Prob (w € Q,) = <u e M(D

EDE

The set
F .= {/L e M(D

is closed, so Theorem 4.1 implies that

Because of lower semi-continuity of I, the sets {y : I(u) > ¢} are open in M(D) for
all ¢ € R. Since F' is compact, and

FclJ{w:1(n) >},

c>0

there exists a v > 0, such that I(p) > « for all u € F. The large deviation theorem
above implies, that

1
lim SUp — 5 log P (F) < —,

n—oo
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so for all 0 < § < 7, there exists N € N, such that if n > N, then
P,(F) < e ™09,
We get for n large enough, that
Prob (w € Q) = P,(F) < e 079,

thus .
ZProb (we Q) < oo,

n=1

for all € > 0, so the Borel-Cantelli lemma implies that

/D F(2)dPy(w, 2) =3 / F(2)duo(z)  as.

Since this is true for all bounded and continuous function on D, the weak convergence
follows. O

Now we prove Theorem 4.1. Our method is again based on the explicit form of the
joint eigenvalue density. First we compute the limit of the normalizing constant (66).
Compute as follows.

1
B =: lim — log Cn

n— oo ’)’1,2

— —1 1
ZJLIEozlog(” "'H( " ) Tﬂ)
n—1 .
o1 m—n+j—1
=i s S (M)

j=1
:_,}Lnoloﬁnzlil Llﬂ

=1 i=1
:—Jingoég(n—l—i)logw
RETEDELTEE

=1

Here the limit of a Riemannian sum can be recognized and this gives an integral:

! A—1
B :—/ (1 —xz)log (ﬂ) dx
0 T
MlogA  MNlog(A—1 log(A —1 A—1
_Nlogh  Mlog(A—1) log(r—1) _

2 2 2 2

The lower and upper estimates are stated in the form of lemmas.
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Lemma 4.1 For every p € M(D),

i {hi“foﬂp L 1og P >} < [ [ PG duts) dutw) -

where G runs over a neighbourhood base of .

Proof.

For ¢ = ((i,...,(,) € D™ set a measure

1 n
H¢ = n 25(@)-
i=1

Moreover for any neighbourhood G of u € M(D) put

Go={CeD":p. € Gy CD"

Then we get
= Vn G(]
1
_ exp ((n—1)3 log (1 - [¢) ) G~ GG dG,
Zn/ /C;o ( Z ) ISZ];I]STL 1
1
— exp QC;)) d¢y ... dGy
Zn/ /C;o < 1<i<j<n '
1
</ [ /GoeXp( [ [ Rt digte) diclo >+na) & ... de,
1
:Z_n <nuné1;//pz (z,w)du'( )d,u()—i—noz).
Therefore

1 1
hmsup—logP ) < — inf // (z,w) dp'(2) dp' (w) — hm — 10g Cln. -
D2 oo n

n—oo weG

Thanks to the weak™ continuity of

i [ [ Fuleiw) i) dyt )

we obtain

irGlf {hm sup — 1 5 log P( )} < - // Fo(z,w)du(z) du(w) + B
n—oo D2

Finally, letting o — o0 yields inequality.

70



Lemma 4.2 For every p € M(D),

igf{hggfnilogP )} > / /D F(z,w) dp(2) du(w) -

where G runs over a neighbourhood base of .

[ e du) dutw

is infinite, then we have a trivial case. Therefore we may assume that this double
integral is finite. Since F'(z,w) = oo on the boundary of the unit circle, we assume,
that the support of the measure p is distinct from the boundary, since

//Dz F(z,w) du(z) dp(w) =

in this case. Since F'(z,w) is bounded from below, we have

// (z,w) dp(z) du(w hm// (z,w) dpg(2) dpg(w)
D2 k—oo D2

with the conditional measure

Proof. 1f

1(B N Dy)
1(Dy)

Dk::{z:|z\§1—%}.

So it suffices to assume, that the support of u is contained in Dy, for some k£ € N. Next
we regularize the measure pu. For any 1/k(k + 1) > ¢ > 0, let p. be a nonnegative
C*-function supported in the disc {z : |z| < €} such that

/D%(Z) dz =1,

and @, * pu be the convolution of y with .. This means that ¢, * p has the density

x(B) =

for all Borel set B, where

/D (= — w) du(w)

on Dy, 1. Thanks to concavity and upper semi-continuity of X restricted on probability
measures with uniformly bounded supports, it is easy to see that

(e * p) > X(p).
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Also
iy [ 1o (1= J2)? dep. ) () = [ tog (1= [2P) due),
e~vJp D

since log (1 — |z|?) is bounded on Dy, 1. Hence we may assume that u has a continuous
density on the unit disc. Now let v be the uniform distribution on the unit disc. Then
it suffices to show the required inequality for (1 —d)u + 0 (0 < d < 1), since again by
the concavity of ¥ we have

S((1=0)p+0y) = (1 —6)E(n).

After all we may assume that p has a continuous density f on the unit disc D, and
0 < f(z) for some 6 > 0. Next let k = [\/n], and choose

Ozré")grln)§---§r,@1§r$):1

Y

such that )
v ({z =re¥:re [Tff)l,ri(")]}) =z for 1<i<k.

(We have partitioned the disc into annuli of equal measure.) Note that
k> <n <k(k+2),

and there exists a sequence ly,...,[l; such that k < ; < k+ 2, for 1 < ¢ < k, and
Ele [; = n. For fixed i let

0= <o <o <M <™ = 2r,

such that
p({z=reirerle e oo} ) = — for 1< <
In this way we divided D into n pieces, an), .., 8™ Here
S1—2) I 14
—— < — = dz < — < L 68
n _kh(émz_k%_ no (©3)

where ¢, =2/(y/n+2) — 0and e, =1/(y/n—1) — 0 as n — oco. We can suppose,
that

lim (max diam (SZ(")>) =0. (69)

n—oo \ 1<i<n

In each part 5™ we take a smaller one D™ similarly to 5™ by dividing the radial
and phase intervals above into three equal parts, and selecting the middle ones, so that

(1 —ep) 1+¢
— < < n
In - /ng dz = 9Ind (70)
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1
A division for u with density 2—7’(2 + rcos?) in case of n = 20.
0

The white parts denote the sets SZ-(") the grey ones the set D§n).

We set

For any neighbourhood G of u
A, C{(eD": p G}
for every n large enough. Then

P.(G) >7,(A

:_/ / exp<n—1 Zzn;@—l)log(l_|§i|2)>

< I l6=¢Pda.. . d,

1<i<j<n

Zinexp<(n—1 —1me log (1 — [¢| ))

= 1<€D

< 1 min ¢ —nf* | ¥(A)
1<i<j<n ¢ceD{™ nep™

2%(%) exp((n—l —IZmlnlog 1—|(|)>

— ¢eD”

X H ( min  |( — 7]|2> .
() )
1<i<j<n \SED;"meD;"
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Here for the first part of the sum

(n—l)

lim Z II11I1 log (1-1¢]?)
n—00 = 1CED
)\_12 II11I1 log(1—|C| )
n—00 - 1CED

—(A-1) /D log (1 — [CP?) (C) d.

because (69) implies, that the sum is the Riemannian sum of the above integral. So it
remains to prove that

2
lim inf — E log min  |[( — 7|
n—oo N 1<i<j<n CED(R) ﬁED(n)

>/ / F(Q)F(n) o |¢ — ] dC dn. (71)

We have

[ r@rmusicnacans> S [ () log|C —al dCdn, (72)

( )
1<i<j<n Sn

since in the sum we left the terms where we integrate on the SZ-("), which are negative
if n is large enough, since then diamSi(") <1, s0

log|¢ —n| < 0,if ¢,pes™.

For the rest of the summands we have

> > [ o 1)) 1081 =l dC

1<i<j<n

<2 Y 1og( max |C—n|> [ O [ sy

1<i<j<n ces;™ mes;”

21+ £,)?
S%Zlog< max |<—nl)-

i<j Cesl(n)’nesj(n)

Since the construction of S{™ and D™ yields

21 +¢,)2 mMax. g w [¢ =)
i 252 5 (s D)

2
n—oo n min -
1<i<j<n ¢en{™ men{™ €=l

we obtain (71). Here the equality does not hold because of (72). O
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4.4 The limit of the empirical eigenvalue distribution

The following lemma is the specialization of Proposition 2.9 to a radially symmetric
function @ : D — (—o0, 0], i. e., Q(z) = Q(|z|). We assume that @ is differentiable on
(0,1) with absolute continuous derivative bounded below, moreover rQ)’(r) increasing
on (0,1) and

lim rQ'(r) = co.

Let 9 > 0 be the smallest number for which Q'(r) > 0 for all > ry, and we set Ry
be the smallest solution of RyQ)'(Rg) = 1. Clearly 0 < ry < Ry < 1.

Lemma 4.3 If the above conditions hold, then the functional Ig attains its minimum
at a measure [ig supported on the annulus

So ={z:10 < 2] < Ry},

and the density of jig is given by
1 .
dug(z) = 5 (rQ'(r)) drde, — z=re*.

Proof. The proof is similar to the one of Theorem IV. 6. 1 in [36]. Using the formula

1 [ 1 o { —logr, ifl|z|<r

— log—d )
2w Jo 08 |z—rel$9| —10g|z|, 1f|Z’>T‘,

we get that

1 Ro , , 2w 1
Uﬂ(z) = %/‘ (TQ (7’)) /0 lOgmdgﬁdT
o
|z Ro

= loglel [ Q@) dr— / (M@ (1)) log r dr

ro |z|

= —log|z|(|2|Q'(|2]) — r0Q'(70))
—RoQ'(Ro) log Ro + |2]Q'(]2]) log |2] + Q(Ro) — Q(2)
= Q(Ro) —log Ry — Q(2),

for z € Sg, since o = 0 or Q'(ry) = 0. We have
UM(Z) + Q(Z) = Q(Ro) — IOg Ro,

which is clearly a constant. Let |z| < 9. Then

Ur(z) = — / "(H(Q (1)) logrdr

= —RyQ'(Ry)log Ry + Tli_glo rQ'(r)logr + Q(Ry) — Q(ro)
= —log Ry + Q(Ro) — Q(r0),
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since lim, o rlogr =0, and Q(rg) = 0 if rg # 0. So
U'(2) + Q(2) = Q(Ro) — log Ry — Q(ro) + Q(z) > Q(Ry) — log Ry,

due to definition of 7y and the monotonicity of Q' (r) implies Q(z) > Q(rg) for |z| < ro.
Let |z] > Ry Then

Ry
U (z) = —log|z] / (M@ ()Y dr = —log|z].
So
U(2) + Q(2) = Q(z) — log |2 < Q(Ro) — log Ro.

since for |z| > 1/\/y, [2|Q'(|z]) = 1, so Q(z) = log|z| is increasing. Therefore 1
satisfies conditions of Theorem 2.9 and it must be the minimizer.

Density of po in case of A =1/2

The last step is to minimize /. Now we apply Lemma 4.3 for
A—1
Q) =~ log (1 - [4f?)

on D. This function satisfies the conditions of the lemma. Hence the support of the
limit measure g is the disc

e {ro= )

and the density is given by

1 .
duo = —(r@Q'(r)) drdp = ——=drdp, z=re¥.
™ r



For this pg again
I( )—}Q L D >\+ Q( )dpo(2) + B
Ho) = 5 N5 2 g Ho

:—)\Qllog()\—l)jtilog)\ / /frlogl ”d dy

2\

A—1 A—1
= log()\—l)—l—ﬁlog)\—T()\log( )\ )—i—l)—l—B 0.

The uniqueness of 1 satisfying (1) = 0 follows from the strict convexity of I. So we
have the limit of the empirical eigenvalue distribution.

Density of po for A\ =15 and A =1/5

If A =1, then the proof goes on the same line, until the point of the upper limit. In
that case we cannot assume, that the support of u is distinct from the boundary of D,
since F(z,w) in finite on the boundary.

D

Let @,, be an m x m projection matrix of rank n, and let U,, be an m x m Haar
unitary. Then the matrix Q,,U,, @y, has the same non-zero eigenvalues as Uy, ), but
it has m — n zero eigenvalues, similarly to the case of the Wishart matrices. There for
we can use the 2.2 for the sequence of empirical eigenvalue distributions, and the large
deviation result for Ujy, ) is easily modified to have the following.

Theorem 4.3 Let 1 < A < oo and Q,, Uy, as above. If m/n — X as n — oo, then the
sequence of empirical eigenvalue distributions Q.,,Un,Qm satisfies the large deviation
principle in the scale 1/n* with rate function

I(p), if B=(1-=X"1d0)+A"p,
+00, otherwise

7



Furthermore, the measure
fio = (1= A"1)8(0) + A" pg

is the unique minimizer of I, and I(Jig) = 0.
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5 Some connection to free probability

Let A C B(H). Ais called a unital C* algebra, if A is a x-algebra, (with the adjoint as
the involution x), A is unital (i.e. Iy € A), and A is closed with respect to the norm
topology.

A linear functional ¢ : A — C is called state, if p(I) = 1, and p(a*a) > 0 for every
ac A

Definition 5.1 If A is a unital C* algebra, and ¢ : A — C is a state, then we call
the pair (A, ) a non-commutative probability space, and an element of A is a non-
commutative random variable.

For example, if H := C", then B(H) is the set M, (C) of n x n matrices with complex
entries endowed with the state

1 1 &
p(A) = —Tr A = 5;&@-

is a noncommutative probability space. This is a unital algebra with the n x n identity
matrix as the unit, and the involution maps the matrix into its adjoint. The normalized
trace is a linear, unit preserving map, since the trace of the n x n identity matrix is n.

The state ¢ is tracial, if
p(ab) = ¢(ba) (73)
for all a,b € A. The state ¢ is faithful, if

p(a*a) >0 (74)

forall 0 #a € A.

It is easy to check, that the normalized trace on the noncommutative probability
space of matrices is tracial and faithful. In the following we will assume that we have a
noncommutative probability space (A, ¢) with a faithful tracial state ¢. The following
definition is from Voiculescu ([40]).

Definition 5.2 Let (A, ») a noncommutative probability space, and let A; be subalge-
bras of A. We say that the family (A;)ier is in free relation if for every n € N, and
11,...,1, € I, where

217&227&7&2n—17&ln7&zla
if ap € Ay, and p(ag) =0 for 1 <k <n, then

elaras .. .a,) =0.
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Definition 5.3 The setaq,...,a, of non-commutative random variables are free, if the
generated subalgebras are free, i.e. for any set of polynomials with two non commuting
variables p1, ..., p, such that
¢(pj(ai;,a;)) =0
forall1 < 5 <mn, the
¢ (p1(ai,,a}) .. pulas,.a;)) =0,
where

Zl#h##%z—l%ln%ll

The following definition gives other important quantities of noncommutative random
variables (see [38]).

Definition 5.4 The Fuglede-Kadison determinant of a noncommutative random vari-
able a is defined by

A(a) == exp (¢ (log|al)) -

The Brown measure of a noncommutative random variable a is

1 [0 o _
Ha = 75— <@ + W) log A (a — (x + yi))

i distribution sense.

Consider M, (C) with the normalized trace. If we have an n x n matrix B, such
that \;(B,) > 0 (1 < i <mn) are the eigenvalues of the B,,, then

exp (Tr log B,) = exp (Z )\Z-(Bn)> = [[2i(B.) = det B,..
=1

1=1

Then for any n x n matrix A,
A(Ap) = exp (%Tr (log(AnA:)%)) = {/det(A,Az)2 = /| det A,

Now in order to obtain the Brown measure of A,, we use that the solution of the
Laplacian equation

1 /0> 0 ,
— <W + W) E(x + yi) = do,

where ¢y is the Dirac delta dlstrlbutlon, is the function
E(z + yi) :=log |z + vi| .

This means that
0 . )
—/f:c—irly ( a2>log|)\—(m—|—y1)|d(a:+y1):f(>\);
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SO

/ f(x +iy) dpa,
C

2

2mz/f"7+ly < aa_) log |\i(An) — (z + yi)| d(z +yi)
=;Zf<x A

where A\ (A,), ..., A\ (A,) are the eigenvalues of A,,, so
1 n
== 5(n(A
[

As we could see, the space of n x n matrices with the normalized trace is a noncom-
mutative probability space in which the above definitions can be treated easily. This
is why we use matrices to approximate the noncommutative random variables by a se-
quence of matrices as the matrix size increases. This approximation can be useful, if we
know some ,,continuity” of the above properties. Unfortunately, the Fuglede-Kadison
determinant is not continuous, since it is not bounded if the eigenvalues are small. If
we have random matrix approximation then the probability of the small eigenvalues
vanishes, so we will use random matrices.

Definition 5.5 Let a be a noncommutative random variable, and A,, is a sequence of
n X n random matrices, such that

LR (Tr(P(4,, 43)) 5 o (Pla,a")) (75)

for all noncommutative polynomial P with two variables, the we say that A,, is a random
matriz model of a. ([24].) In this case we say that (a,a*) is the limit in distribution

of (An, AL). Let ay, ..., a; be noncommutative random variables and AS), o A® pe
n X n random matrices. The latter form a random matriz model for aq, ..., ay if

1 n—oo
—ETrP (AD, ..., AW AL AR 2% o(Play, . .. ak,af, ... a)))
n

for all polynomials P of 2k non commuting variables.

We can define the random matrix model of k£ noncommutative random variables in
the following way.

For example we call a a semicircular element, if a = a*, and

L(””), i k=2m
m+1\m

0, it k odd.

p(a*) =

81



The random matrix model of the semicircular element is the sequence of n x n Wigner
matrices. It is easy to check all the mixed moments, since the Wigner matrices are
selfadjoint.

Like in (21) if we have two semicircular element in free relation, then
Yy = ua + vb,

where
Wt =1

is the so-called elliptic element. It is more difficult to prove that the random matrix
model of the elliptic element is the sequence of elliptic random matrices, since we need
all the joint moments.

We call a u € A a Haar unitary, if it is unitary, i.e.
uu® = utu = Iy,
and its moments
(uF) = 0, if k=0
PAWT=N 1, if k#£0.
These two properties gives that
¢ (P(u,u")) = ap,

where «q is the coefficient of the constant term in P. For a U,, sequence of n x n Haar
distributed unitary random matrices it is we have that from Theorem 3.6 that

1

—ETr U* == 0, (76)
n

if k # 0, so this sequence can be a random matrix model of u.

The Brown measures of the above mentioned noncommutative random variables
(i.e. the semicircular, elliptic and Haar unitary elements) are the limit distribution
of the empirical eigenvalue distributions of the corresponding random matrix models
(see [21]). Tt is reasonable since the Brown measure can be considered as the density
function of the noncommutative random variables. Since the convergence of the em-
pirical eigenvalue distribution is fast (the large deviation principle holds in each cases),
therefore the derivatives, that is the ,,densities” converge to the corresponding density
function.

We proved the large deviation theorem for the truncations of the Haar unitary ran-
dom matrices in Section 4, and it implied the large deviation theorem for the ran-
dom matrices Q,U,Q,, where @),, is an n x n non-random projection (Q: = @,, and
Q? = Q,) with rank m, and

!

> =

S |3
I
2



Now we try to find a noncommutative random variable for this random matrix model,
and check if the Brown measure of this random variable coincides with the obtained
limit distribution.

We now that a random matrix model for a Haar unitary element is the sequence of
Haar unitary random matrices. It is easy to see, that (), is a random matrix model
for a projection q € A, (i.e. ¢> = ¢ and ¢* = ¢), such that

Since (), and ¢ are selfadjoint, so it is enough to check that

1 1 M oo 1
“ETrQ* = —ETrQ, = — =% < = o(q) = o(¢").
n n n A

So we have the ¢ and v limit of @),, and U,,, we want to know their relationship. For
this we have the following definition from Voiculescu.

Definition 5.6 Let ai(n),...ax(n) be noncommutative random variables in the prob-
ability space (A, pn). They are asymptotically free if there are free noncommutative
random variables ay, ..., ay in the noncommutative probability space (A, @) such that

©on (P (ai(n),...,ax(n),a1(n)*, ... ax(n)*)) = ¢, (P (ay,...,ax,aj,...,a;))

for every polynomial P of 2k non-commuting variables.

We will use the following theorem in order to have that the limits u and ¢ are in free

relation. The following theorem was again proven by Voiculescu (see Theorem 4.3.1 of
[26]).

Theorem 5.1 Let S,T be sets of indices, and (U,(s))ses an independent family of
n X n Haar unitary random matrices. Let (D, (t))ier be a family of n x n non-random
matrices such that

sup D (0)] < o0

forallt € T (here || .|| denotes the operator norm), and (D, (t), D (t)),cr has the limit.
Then the family

{(Un(s)a Un(5>*)s€S ; (Dn(2), Dn(t)*)teT}

s asymptotically free.

Now we will apply the theorem only for index sets with one element, and the non-

random matrices D,, := @,. As we proved above, if m/n —= 1/X, then the sequence
@2, has the limit q. Then we get that the matrices

{(Un, U3) 5 (@n, @)}
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are asymptotically free, so the limits, ¢ and u are in free relation.

So now we have t that Q),,U,Q, is the random matrix model for noncommutative
random variable qugq, where u is a Haar unitary, ¢ is a projection with rank 1/, and
they are in free relation.

In [21] Haagerup and Larsen found that the radial density of the Brown measure of
this noncommutative random variable is

1-5 =1
(1 —s2)2  Ar(1 — s2)2

fau(s) =

on the interval [0, %], and

1
fqu({0}) =1 — \
If a,b € A are noncommutative random variables, then the Brown measure of ab and
ba is the same, so

Haug = Hq2u = Hqu-

Again we got that the limit of the empirical eigenvalue distribution of the random
matrix model is the Brown measure /i, of the noncommutative random variable.
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Nyilatkozat

Alulirott Réffy Julia kijelentem, hogy ezt a doktori értekezést magam készitettem és
abban csak a megadott forrasokat hasznédltam fel. Minden olyan részt, amelyet sz6 sze-
rint, vagy azonos tartalomban, de atfogalmazva mas forrasbol atvettem, egyértelmiien,
a forras megadasaval megjeloltem.

Budapest, 2005. majus 10.

Réfly Jilia
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