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I. Introduction

This thesis is about the estimation of probabilities according to multivariate dis-

tributions and its applications. Approximation of multivariate probability integral is

a hard problem in general. However, if the domain of probability integral is the mul-

tidimensional interval, then the problem reduces to the approximation of multivariate

probability distribution function values. The evaluation of probabilities according to

multivariate distribution is an important problem in many applications of statistics and

related fields. Over the years, several methods have been proposed for the computation

of probabilities according to multivariate distributions which can be classified into broad

categories, numerical integration, numerical approximations, bounding techniques and

simulation. Only a few paper is dealing with the computation of Dirichlet probabilities.

Yassaee ([48], [49], [50]) computes the probability integral of Dirichlet distribution by

computing the probability integral of inverted Dirichlet distribution, Szántai ([44], [45]),

used variance reduction simulation techniques to estimate the probability of Dirichlet

distribution.

The Dirichlet distribution is one of the important multivariate distributions that ap-

pears in many applications, in order statistics, probabilistic constrained programming

models, delivery problems. Such applications may be found in Prékopa and Kelle ([33]),

Prékopa ([35]), Tiao and Guttman ([46]), Johnson ([20]), Sobel and Uppuluri ([43]),

Phillips ([32]), Fabius ([11]), James ([19]), Chotikapanich and Griffiths ([5]) and Good-

man and Nguyen ([13]). Another application is the modeling of consumer purchasing

behavior for non durable items such as foods and toiletries (Narayanan ([31]) and Chat-

field and Goodhardt ([3])). A model for multibrand purchasing behavior is given for the

use of multivariate beta distribution for the independent case. Suppose this is a product

field with k brands and let the random variables Zi represent the average rate of purchase

of brand i let W =
∑k

i=1 Zi represent a consumer’s rate of buying of the product field as

a whole. Then the joint distribution of (X1, X2, ..., Xk−1) follows a Dirichlet distribution

where Xi =
Zi

W
represents the proportion of a consumer’s total purchases devoted to

brand i. Another application would be modeling the activity times in a PERT (Pro-

gram Evaluation and Review Technique) network. A PERT network has a collection
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of activities and each activity is usually modeled as a random variable following a beta

distribution. A Dirichlet distribution for the entire network follows directly since each

marginal distribution of Dirichlet is a beta. Using the properties of the Dirichlet dis-

tribution we can see that any subnetwork will follow a Dirichlet distribution. Monhor

([28], [29]) uses the Dirichlet distribution for modeling the activity times of a PERT net-

work and derive’s an upper bound for the completion time of the project. More details

about the applications of Dirichlet distribution can be found in Kotz, Balakrishnan and

Johnson ([23]).

Stochastic simulation has proven itself in practice; it is commonly used for accurate

estimations in many problems. However, there are some limitations to the standard

stochastic simulation method in many cases. An important class of problems that cannot

be efficiently solved using standard simulation is that involving rare events. Since these

rare events occur so seldom in a standard simulation the simplest method to estimate the

rare event probability is the Crude Monte-Carlo (CMC) simulation method but it needs

a very large sample size, what need too much CPU time. This is why different methods

and techniques have been developed to estimate rare event probabilities starting at the

last decade. Lieber, Rubinstein and Elmakis ([26]) developed the Cross Entropy (CE)

method as an adaptive technique for the estimation of reference parameters applied in

Importance Sampling (IS) method.

The rare event probability estimation problem is hard to do with CMC simulation

when the desired probability, which we will call, is extremely small. In this case the CMC

simulation method is very inefficient and simulation takes a very long time. The CMC

method consists of simulating the system without making any changes to its stochastic

behavior; as a consequence, very few samples will actually hit the rare event. Let we

have a sample of size n (X1, . . . , Xn), say, random observations in which the rare event

A may occur; let P (A) = l and the value of a random variable Xi equals one when the

rare event is seen in the i-th attempt, and equals zero otherwise. The CMC estimator

is simply l̂ =
1

n

n∑
i=1

Xi, and the variance of a CMC estimator using n samples is equal to

V ar
(
l̂
)

=
l (1 − l)

n
.
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Importance sampling is typically presented as a method for reducing the variance of

the estimate of an expectation by carefully choosing a sampling distribution (Rubinstein

([37])). For example, the most direct method for evaluating Eg[f(η)] =
∫

f (x) g (x) dx

is to sample independent identical distribution xi ∼ g (x) and use
1

n

∑
i f (xi) as the

estimate. However, by choosing a different distribution q(x) which has higher density in

the places where |f(x)| is larger, we can get a new estimate which is still unbiased and has

lower variance. In particular, we can draw xi ∼ q (x) and use
1

n

∑
i f (xi)

g (xi)

q (xi)
which is

like approximating
∫

f (x)
g (x)

q (x)
q (x) dx with samples drawn from q(x). If q(x) is chosen

properly, our new estimate has lower variance. It is always unbiased provided that the

support of g(x) and q(x) are the same. In this thesis we always have the same support.

The density function q(x) will be choosen from the parametric family of g(x) and q(x)

to reduce variance, the CE method will be used to estimate the reference parameters of

q(x) which will achieve minimal variance.

Rubinstein ([38]) and Lieber, Rubinstein and Elmakis ([26]) developed the CE method

as an adaptive technique for the estimation of reference parameters applied in IS vari-

ance reduction technique. The CE method can be viewed as a model-based optimization

technique, which involves two phases. (1) Generation of a sample of random vectors

according to a specified random mechanism. (2) Updating the parameters of the ran-

dom mechanism, on the basis of the data, in order to produce a better sample in the

next iteration. The significance of the CE method is that it defines a precise mathe-

matical framework for deriving fast, and in some sense ”optimal” updating rules, based

on advanced simulation theory. Estimation of the probability of rare events is essential

for guaranteeing that the performance of engineering systems is adequate. For example,

consider a telecommunication system that accepts calls from many customers. Under

normal operating conditions each client may be rejected with a very small probability.

In order to estimate this small probability the system should be simulated under normal

operating conditions for a long time. A better way to estimate this probability is to

use IS, in which the system is simulated under a different set of parameters, so as to

make the occurrence of the rare event more likely. A major drawback of the IS technique

is that the optimal reference parameters to be used in IS are usually very difficult to
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obtain. The advantage of the CE method is that it provides a simple adaptive procedure

for estimating the near optimal reference parameters, and the CE method enables sim-

ulating the system under irregular conditions and estimating the rejection probability

for normal conditions. Moreover, the CE method also enjoys asymptotic convergence

properties.

The original PERT technique, developed by Malcolm et al. ([27]), is a technique

to approximate the expected duration of the project. PERT networks have been used

extensively in the business world. Analysis of PERT networks, also known as stochastic

activity networks, has received considerable attention in the literature (Elmaghraby, [9]).

PERT is based on the concept that a project is divided into a number of activities which

are arranged in some order according to the job requirements. A PERT network consists

of a set of nodes and arcs, where a node represents the beginning or completion of one or

more activities and an activity is represented by an arc (arrow) connecting two nodes in

activity-on-arrow (AOA) representation. Activity-on-node (AON) representations have

also been used. We use the AOA representation in this thesis. The project starts at the

initial node and ends at the terminal node. A path is a set of nodes connected by arrows

which begin at the initial node and end at the terminal node. This collection of arcs,

nodes and paths is collectively called an activity network. A project is deemed complete

if work along all paths is complete. After the development of the network, the next

major planning step is the estimation of activity and project times. Typical methods

for estimating activity times have been to use point estimates or some sort of ranges

or distributions. The type of method used depends on the situation facing the project

manager. Hershauer and Nabielsky ([16]) categorize the situations into three major cat-

egories, viz., certainty, risk and uncertainty. They further subdivide these categories

based on availability of knowledge regarding the mode, range and distribution on the

time estimates. They then map the situation and estimations to the appropriate methods

to be adopted. If activity times are deterministic, the duration of the project completion

time is determined by the length of the longest path in the network. For a stochastic ac-

tivity network, Kulkami and Adlakha ([25]) have identified three important measures of

performance: (a)Distribution of the project completion time. (b) The probability that a
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given path is critical, also known as the "path criticality index". (c) The probability that

a given activity belongs to a critical path, also known as the "activity criticality index".

Performance measures derived from (a) are the most commonly used; measures and most

studies have concentrated on the properties of the completion time of the project Dodin

and Sirvanci ([7]), Kamburowski ([21]), Sculli ([39]) among others. Determination of the

exact distribution of the completion time of the project is complicated by the fact that

different paths are correlated and also because of the need to find the maximum of a

set of random variables, as we shall see later. Hence one cannot easily determine the

exact distribution of the completion time of the project. The research has branched off

primarily in three directions: (1) Exact methods, Martin ([30]), Dodin ([6]), Fisher et al.

([12]), Hagstrom ([15]) and Kulkami and Adlakha ([25]) are some of the papers that deal

with these methods. Most of their results are limited in that they make quite restrictive

assumptions. For example Martin ([30]) assumes that the arc duration density functions

are polynomial. Hagstrom ([15]) assumes task durations have discrete distributions. (2)

Approximating and bounding approaches. These have been the most abundant in the

literature. Malcolm et al. ([27]). Sculli ([39]) Golenko-Ginzburg [14]), Dodin ([8]), Sculli

and Wong ([40]), and Dodin and Sirvanci ([7]) determine approximations for the distri-

bution and moments of the completion time of the project. Kamburowski ([22]), Shogan

([41]), Kleindorfer ([24]) and Robillard and Trahan ([36]), on the other hand, try to find

upper and lower bounds for the distributions and moments of the completion time of the

project and Prékopa, Long and Szántai ([34]) describe new bounds and approximations

for the probability distribution of the length of the critical path. (3) Simulation meth-

ods. These methods have been discussed in the literature by Van Slyke ([47]), Burt and

Garman ([2]) and Sigal et al.([42]). Simulation provides a powerful methodology to ob-

tain desired statistics for any network with specified distribution of activities. To obtain

reliable results, however, it may be necessary to repeat the experiments several times.

Main drawback of the traditional PERT modeling is that the probabilistic characteristics

determined for the finishing time of the project are only valid when it is supposed that

any activity can be started promptly after finishing all of its predecessor activities. This

is possible in the case of scheduling computer tasks, however it is impossible in the case
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of architectural project planning what is the most important application area of PERT

modeling. We shall introduce a new PERT modeling technique to solve this problem.

The aim of the thesis is to compute the cumulative distribution function values of

Dirichlet distribution by using several algorithms and estimate the probability in network

models via cross entropy method and completion time estimation in PERT network.

II. Estimation of Probabilities According to Dirichlet Distribution.

The main numerical difficulty in probabilistic constrained stochastic programming

problems is the calculation of the probability values according to the underlying mul-

tivariate probability distributions. From point of view of the nonlinear programming

algorithms to be applied it is preferable to be able to calculate the first and second order

partial derivatives of these probability functions according to the decision variables. In

this thesis there will be given a solution to the above problems in the case of Dirich-

let distribution. The estimation of probabilities according to Dirichlet distribution will

be described. A recursive algorithm for the calculation of Dirichlet probability distri-

bution function values up to 7 dimensions will be developed. This procedure is based

on a generalization of Szántai’s result published in his dissertation for candidate degree

of HAS and the Lauricella series expansion. This gives the possibility of application

all algorithms for bounding and estimating multivariate normal probability distribution

function values developed before by J. Bukszár, A. Prékopa and T. Szántai. In stochas-

tic programming applications one need the gradient vector and Hessian matrix of the

multivariate probability distribution function, too. A new algorithm for the Hessian

matrix calculation will be given. All these estimations are most effective when the esti-

mated probability value is close to one. However many times one need to estimate small

probability values, too. These are called rare event probabilities in the literature, the Se-

quential Conditioned Sampling (SCS) and Sequential Conditioned Importance Sampling

(SCIS) algorithms will be developed to estimate the rare event probabilities of Dirichlet

distribution. On the base of an interesting property of the Dirichlet distribution new

versions of the SCS and SCIS algorithms will be developed, called SCSA, SCSB, SCISA

and SCISB, respectively and modified algorithms need more CPU time but they result

6



significant variance reduction. Their resultant efficiency will be compared to the simple "

hit-or-miss Monte Carlo" simulation method with conventional sampling of the Dirichlet

distributed random vectors what we call Crude Monte Carlo (CMC) simulation method.

III. Probability Estimation in Network Models

In the first part, we describe the estimation of rare event probabilities in stochastic

networks. The well known variance reduction technique, called Importance Sampling(IS)

is an effective tool for doing this. The main idea of IS is to simulate the random system

under a modified set of parameters, so as to make the occurrence of the rare event more

likely. The major problem of the IS technique is that the optimal modified parameters,

called reference parameters to be used in IS are usually very difficult to obtain. Rubin-

stein ([38]) developed the CE method for the solution of this problem of IS technique

and then he and his collaborators applied this for estimation of rare event probabili-

ties in stochastic networks with exponential distribution (see De Boer, Kroese, Mannor

and Rubinstein ([1]) . In this thesis we test this simulation technique also for medium

sized stochastic networks and compare its effectiveness to the simple crude Monte Carlo

(CMC) simulation. The effectiveness of a variance reduction simulation algorithm is

measured in the following way. We calculate the product of the necessary CPU time

and the estimated variance of the estimation. This product is compared to the same

for the simple Crude Monte Carlo simulation. This was originally used for comparison

of different variance reduction techniques by Hammersley and Handscombe ([17]). The

main result of the first part is the extension of CE method for estimation of rare event

probabilities in stochastic networks with normal and beta distributions. In the second

case the calculation of reference parameters of the importance sampling distribution re-

quires numerical solution of a nonlinear equation system. This is done by applying a

Newton–Raphson iteration scheme. In this case the CPU time spent for calculation of

the reference parameter values can not be neglected. The basic CE algorithm will be

specialized for the shortest path problem with exponential, beta and normal distributed

activity duration times. We will discuss two modifications of the basic CE algorithm for

rare event simulation. The first modification is new result, the second was published by
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Homem-de Mello and Rubinstein ([18]). Numerical results will also be presented.

In the second part, a stochastic programming based PERT modeling will be intro-

duced. This modeling will produce deterministic earliest starting times for the activities

of the project. These deterministic starting times will be attainable with prescribed

probability. So we also get an estimated finishing time of the project what is realizable

with the same prescribed probability. As the random activity duration times in PERT

are supposed to be independent and beta distributed, the application of the multivariate

Dirichlet distribution is plausible in this context. The code developed for Dirichlet prob-

ability calculations can be incorporated into the AMPL modeling language environment.

Moderate sized numerical examples will be given for comparing the traditional and the

newly introduced PERT modeling techniques.

IV. New scientific results in the thesis

1. A recursive algorithm for the calculation of Dirichlet probability distribution func-

tion values up to 7 dimensions was developed.

2. The hypermultitree bounding algorithm and a variance reduction simulation pro-

cedure based on these bounds for the calculation of higher dimensions of Dirichlet

probability distribution function values was developed.

3. A new algorithm to calculate the Hessian matrix of Dirichlet probability distribu-

tion function values and the formulae for the calculation of the first and second

order partial derivatives were developed.

4. New sampling techniques as Sequential Conditioned Sampling (SCS), the Sequen-

tial Conditioned Importance Sampling (SCIS) algorithms and modified versions

called SCSA, SCSB, SCISA and SCISB algorithms to calculate of Dirichlet prob-

ability distribution function values were introduced.

5. The application of the basic CE algorithm for the shortest path problem with

normal and beta distributed activity duration times was developed.

6. Development of a modification of the basic CE algorithm for rare event simulation.
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7. A new stochastic programming approach and the application of the multivariate

Dirichlet distribution to PERT modeling was developed.

8. The traditional and the newly developed PERT modeling techniques were com-

pared on larger sized numerical examples than it was published before.
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