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Introduction

During the last decades, considerable attention has been paid to the stabilization problem of nonlinear
systems. Among the solution methods for this problem, receding horizon control (RHC) strategies, also
known as model predictive control (MPC), have become quite popular (see e.g. [2], [3], [5], [6], [7], [9],
[10], [11]). Owing to the use of computers in the implementation of the controllers, the investigation of
sampled-data control systems has become an important area of control science. An overview and analysis
of existing approaches for the stabilization of sampled-data systems can be found in ([12], [13]).

One way to design a digital controller is to design a continuous-time controller based on the continuous-
time plant model and then discretize it using fast sampling for digital implementation. However, some
difficulty may arise during the application of this method: 1) because of hardware limitations, it may be
impossible to reduce the sampling period to a sufficiently small value that ensures the desired performance
of the system; 2) the exact solution of the nonlinear continuous-time model is typically unknown, therefore
an approximation procedure is unavoidable; 3) it may be difficult to implement an arbitrarily time-varying
control function.

The second way to design a digital controller is to discretize the continuous-time plant model and
design a controller on the basis of the discrete-time model. While for linear systems we can in principle
compute the exact discrete-time model of the plant, this is not the case for nonlinear systems. As a result,
the controller design can be carried out by means of an approximate discrete-time model. In [12] and [13]
a systematic investigation of the connection between the exact and approximate discrete-time models is
carried out. Moreover, results in [12] and [13] present a set of sufficient conditions which guarantee that the
same family of controllers that stabilizes the approximate discrete-time model also practically stabilizes
the exact discrete-time model of the plant. Results in ([12], [13]) provide a framework for controller
design via approximate discrete-time models, but they did not explain how the actual controller design
can be carried out within this framework.

There are several ways to design controllers satisfying the conditions given in ([12], [13]). In [4],
optimization-based methods are studied; the design is carried out either via an infinite horizon optimiza-
tion problem or via an optimization problem over a finite horizon with varying length. To relax the
computational burden needed in the case of infinite horizon optimization and in the case of optimization
over a varying time interval, the application of the RHC method offers good vistas. The RHC method
obtains the feedback control by solving a finite horizon optimal control problem at each time instant using
the current state of the plant as the initial state for the optimization and applying ”the first part” of the
optimal control. The present work studies the conditions under which the stabilizing RHC computed for
the approximate discrete-time model also stabilizes the exact discrete-time system both in the cases when
the sampling period T is fixed, but the integration parameter h used in obtaining the approximate model
can be chosen to be arbitrarily small and when these two parameters coincide, but can be adjusted.

All of this investigations deal with the case when the sampling rates of the control function and the
state measurement coincide i.e. a single-rate approach is presented. Moreover, the measurement result
and the corresponding controller are assumed to be available instantaneously. The latter assumption
is of course unrealistic and may be considered as one of the reasons why different rates of control and
measurement samplings have to be taken into account. Besides the measurement and computational
delay, the nature of the problem may involve different measurement and control sampling rates. The
notion of multirate sampled-data feedback (which was introduced to the best of our knowledge by [14])
is used in the this thesis in this sense. Polushin and Marquez address the design of multirate controllers
based on the knowledge of a continuous-time stabilizing feedback for the exact model as well as on
that of a discrete-time stabilizing feedback for the approximate model under the assumption of ”low
measurement rate” and in the presence of measurement delay. In this thesis we drive a multirate version
of the RHC algorithm based on discrete-time approximate models of the plant, and establish sufficient
conditions which guarantee that the proposed control stabilizes the original exact model in the presence
of measurement and computational delays.

One of the very important applications of the optimal control theory is to determine optimal treat-
ment schedules of Acquired Immune Deficiency Syndrome (AIDS). One way to design optimal treatment
is to design an open-loop optimal controller by using Pontryagin’s Maximum Principle (see [1] and [8]).
However, some drawbacks may arise during the application of this method: 1) the optimization is per-
formed over a finite time horizon, and no care is taken over the evolution of the process behind this time
horizon; 2) the optimal controller is obtained as a continuous-time controller, in spite of the fact that
continuous variation of the drug dose seems hard to apply in the real treatment of patients; 3) the optimal
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controller is given in an open-loop form and it does not deal with the changes that may happen in the
system during the treatment. To overcome these drawbacks, the application of the RHC methods based
on the discrete-time model seems to be obvious. We applied our theoretical results to two HIV/AIDS
models.

Problem statement

Consider the nonlinear control system described by

ẋ(t) = f (x(t), u(t)) , x(0) = x0 (1)

where x(t) ∈ Rn, u(t) ∈ U ⊂ Rm, f : Rn × U → Rn, with f(0, 0) = 0, U is closed and 0 ∈ U . Let Γ⊂ Rn
be a given compact set containing the origin and consisting of all initial states to be taken into account.
The system is to be controlled digitally using piecewise constant control functions

u(t) = u(kT ) =: uk, if t ∈ [kT, (k + 1)T ), k ∈ N,
where T > 0 is the sampling period. Let t ∈ [0, T ] 7−→ φ(t, x0, u) denote the solution of (1) with u(t) = u
and φ(0, x0, u) = x0.

The exact discrete-time model of system (1) can be defined as

xk+1 = FET (xk, uk), (2)

where FET (x, u) := φE(T, x, u). We emphasize that FET in (2) is not known in most cases, therefore the
controller design can be carried out by means of an approximate discrete-time model

xk+1 = FAT,h (xk, uk) , (3)

where parameter h is a modelling parameter, which is typically the step size of the underlying numerical
method.

The problem is to define a state-feedback controller

vAT,h : Γ̃→ U (4)

using the approximate model (3) which stabilizes the origin for the exact model (2) in an appropriate
sense, where Γ̃ ⊃ Γ.

One may think that this is a simple question if we have a convergent numerical method. To show that
this is not the case we have presented three examples for which a family of receding horizon control law is
designed to stabilize the family of approximate models, but the exact discrete-time model is destabilized
by the same family of controllers.

New Scientific Results

Results on stabilizing receding horizon control of sampled-data nonlinear systems via their approxi-
mate discrete-time models have been presented. We have investigated both situations when the sampling
period T is fixed and the integration parameter h can be chosen to be arbitrarily small, and when these
two parameters coincide but can be adjusted arbitrary. Both single rate and multirate versions of the
receding horizon algorithm for the stabilization of sampled-data nonlinear systems has been investigated.
In the later case ”low measurement rate” is assumed, and the presence of measurement and computa-
tional delays are taken into account. Sufficient conditions have been established which guarantee that
the controller that renders the origin to be asymptotically stable for the approximate model also stabi-
lizes the exact discrete-time model for sufficiently small integration and/or sampling parameters. These
conditions concern directly the data of the problem and the design parameters of the method, but not
the results of the design procedure.

Our Theoretical results have been applied to recently developed models of the interaction of the HIV
virus and the immune system of the human body.

Thesis 1: The necessary and sufficient condition for the existence of a stabilizing state-
feedback controller has been presented.

Since we want to find a state-feedback controller, it seems to be reasonable to investigate when it does
exist. We have formulated a necessary and sufficient condition for the existence of such a controller in
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the following theorem. Let Γ ⊂ Rn be a given compact set, containing a neighborhood of the origin and
let ∆ > 0 be such that Γ ⊂ B∆.

Theorem 1 System (2) is practically asymptotically stabilizable (PAS) with a parameterized family
of feedbacks in Γ about the origin if and only if it is practically asymptotically controllable (PAC) with
a parameterized family of control functions from Γ to the origin.

Thesis 2: A suitable version of the receding horizon control method has been chosen and
several properties of the method has been established which are important to establish the
closed-loop stability of the exact discrete-time model.

We have described a version of the RHC method suitable in connection with the stabilization problem
of the exact discrete-time systems via their approximate discrete-time model. In order to define a receding
horizon feedback controller, let (3) be subject to the cost function

JT,h(N, x,u) =
N−1∑

k=0

T lh(xAk , uk) + g(xAN ), (5)

where 0 < N ∈ N and u = {u0, u1, ..., uN−1} and xAk = φAk (x,u), k = 0, 1, ..., N , denote the solution of
(3), and lh and g are given functions satisfying some assumptions (see Chapter 2).

Consider the optimization problem

PAT,h(N, x) : min {JT,h(N, x,u) : uk ∈ U∆1} . (6)

Let u∗(x)=
{
u∗0(x), u∗1(x), ..., u∗N−1(x)

}
denote the solution of (6) then its first element, i.e. u∗0(x) is

applied at the state x. Since the optimal solution of PAT,h(N, x) naturally depends on x, in this way a
feedback has been defined on the basis of the approximate discrete-time model i.e.

vAT,h(x) := u∗0(x).

For any x ∈ Rn, let
VN (x) = inf {JT,h(N,x,u) : uk ∈ U∆1} ,

The optimal value function VN (.) has been used as a Lyapunov function to establish the stability of the
approximate discrete-time model with the receding horizon control.

We have formulated some properties of the RHC method which depend on the consistency between
the exact and the approximate model: as an auxiliary result we showed a control sequence that steers the
trajectory of the approximate system to the terminal set, while this trajectory remain uniformly bounded.
As a consequence, we obtained that the approximate model is asymptotically controllable from Γ to the
origin. Moreover, we derived a uniform upper bound for VN and a criterion for the horizon length (in
terms of the real continuous-time) ensuring that the optimal trajectory ends in the terminal set.

Thesis 3: Local practical asymptotic stability of the closed-loop exact discrete-time model
has been proven in the case of fixed sampling parameter T .

We have discussed the case when the sampling parameter T is fixed and the discretization parameter
h can be assigned arbitrarily and independently of T .

We have shown that the value function has the following properties
1) VN (.) is continuous in B∆ uniformly in small h.
2) ∃σ1, σ2 ∈ K∞ and a positive definite function σ3 such that

σ1(‖x‖) ≤ VN (x) ≤ σ2(‖x‖), (7)

VN (FAT,h(x, vAT,h(x)))− VN (x) ≤ −Tσ3(‖x‖), (8)

for all x ∈ B∆. On the basis of the consistency between the exact and approximate models we have proven
that the family (FET , v

A
T,h) is locally practically asymptotically stable about the origin. The effectiveness

of the method has been illustrated by simulation example.

Thesis 4: Semiglobal practical asymptotic stability of the closed-loop exact discrete-time
model has been proven in the case of varying sampling rate T = h.

In the case of T = h we have stated conditions that guarantee that the receding horizon controller
defined for the approximate discrete-time model with T = h results in a sampled-data system which is
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practically asymptotically stable about the origin with the prescribed basin of attraction Γ. The main
difficulty in this case is to derive a class-K∞ lower bound for VN which is independent of T . In fact,
we can only determine a uniform lower bound outside an arbitrary small ball around the origin. The
effectiveness of the method has been illustrated by simulation example.

Thesis 5: An algorithm for multirate sampled-data systems with delays has been proposed
and the stability of the closed-loop system has been proven.

We have addressed the problem of state feedback stabilization of (2) under ”low measurement rate”
in the presence of measurement and computational delays. Here we considered the case of T 6= h.

We assume that state measurements can be performed at the time instants jTm, j = 0, 1, ... :

yj := x(jTm), j = 0, 1, ... ,

where Tm is the measurement sampling period. In this case, different measurement and control sampling
rates are used.

The result of the measurement yj becomes available for the computation of the controller at jTm+τ1(>
jTm), while the computation requires τ2 > 0 length of time i.e. the (re)computed controller is available
at T ∗j := jTm + τ1 + τ2, j = 0, 1, ... . We assume that τ1 = `1T, τ2 = `2T and Tm = `T for some integers
`1 ≥ 0, `2 ≥ 0 and ` ≥ `1 + `2 =: `.

Because of the measurement and computational delays, on the time interval [0, τ1 +τ2) a precomputed
control function uc can only be used. It is reasonable to assume that the initial states can be kept within
the PAC domain of the exact system with such a precomputed controller.

Furthermore, a ”new” controller computed according to the measurement yj = x(jTm) will only be
available at jTm+`T , so in the time interval [jTm, jTm+`T ), the ”old” controller has to be applied. Since
the corresponding exact trajectory is unknown, an approximation ζAj to the exact state x

(
jTm + `T

)
can

only be used which can be defined as follows. Assume that a control sequence
{
u0

(
ζAj−1

)
, ..., u`−1

(
ζAj−1

)}
has been defined for j ≥ 1. Let

vp
(
ζAj−1

)
=
{
u`−`

(
ζAj−1

)
, ..., u`−1

(
ζAj−1

)}
,

and define ζAj by
ζAj = FA

`

(
yj ,vp

(
ζAj−1

))
, ζA0 = φA

`
(x,uc),

where FA
`

(
y, {u0, ..., u`−1}

)
= FAT,h

(
...FAT,h

(
FAT,h (y, u0) , u1

)
..., u`−1

)
.

The `-step exact discrete-time model is given by:

ξEj+1 = FE` (ξEj ,v
(j)), ξE0 = φE

`
(x,uc),

where FE` (ξEj ,v) = φE` (ξEj ,v), and v(j) =
{
u

(j)
0 , ..., u

(j)
`−1

}
.

Our aim is to solve the following problem: for given T , Tm, τ1 and τ2 find a control strategy

v`,h(x) = {u0(x), ..., u`−1(x)} ,

using the approximate model (3) which stabilizes the origin for the exact system (2) in an appropriate
sense.

We have established sufficient conditions which guarantee that the proposed control stabilizes the
original exact model in the presence of measurement and computational delays. We have illustrated that,
if the occurring delays are not taken into account, then instability of the closed-loop may occur.

Thesis 6: The theoretical results have successfully been applied to two kinds of HIV/AIDS
models.

In the second part of the work, we have applied the theoretical results for two kinds HIV/AIDS
models. The first model takes into account the latently infected cells (such cells contain the virus but are
not producing it) and the actively infected cells (such cells are producing the virus). The second model
considers both infectious virions and non-infectious virions.

The system has two steady states which we call uninfected E0 and infected E+. In the real situation
and when there is no treatment, E0 is usually unstable for the AIDS patients. The drug dose is considered
as control input and the goal is to determine a control strategy which stabilizes this unstable equilibrium.
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In order to apply our theoretical results, we have verified all the required conditions. We have used
both the one-step and the `−step versions of the receding horizon control method to determine the
treatment schedules.
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