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1 Introduction

The Turing bifurcation is the basic bifurcation generating spatial pattern, wherein an
equilibrium of a nonlinear system is asymptotically stable in the absence of diffusion but
unstable in the presence of diffusion. This lies at the heart of almost all mathematical
models for patterning in ecology, embryology and elsewhere in biology and chemistry.

The classical approach to modeling ecological systems (Volterra 1931, Lotka 1924)
simplifies by ignoring space completely and in essence assumes that the per capita growth
rates of the participating species are linear functions of the quantities (densities) of the
species.

The classical Lotka-Volterra model takes the form:

·
u1 = u1(r1 − a11u1 − a12u2), ·

u2 = u2(−r2 + a21u1 − a22u2), (1)

where ri > 0 is the growth or death rate, aii is the coefficient of intra-specific competition,
aij(i 6= j) is the coefficient of inter-specific competition.
A predator-prey model has received great attention in the last forty years in mathe-

matical ecology due to its universal existence and importance.

A predator-prey model in which the predator consumes the prey with Holling type
functional response (or ratio-dependent) take the form.

·
u1 = u1(r1 − a11u1 − u2

a+ u1
),

·
u2 = u2(−r2 + bu1

a+ u1
− a22u2). (2)

where r1 > 0 and −r2 < 0 are the intrinsic growth rate and intrinsic mortality of the
respective species, a11 > 0 and a22 > 0 represent the strength of the intraspecific com-
petition (the competition within the species, r1

a11
is the carrying capacity for the prey),

b > 0, a > 0 are the maximum birth rate and the half saturation constant of the predator,
respectively. The meaning of the half saturation constant is that at u1 = a the specific
growth rate bu1

a+u1
(called also a Holling type functional response) of the predator is equal

to half its maximum b. The Holling type terms are more realistic than those in a Lotka-
Volterra system because they increase with u1 but do not tend to infinity and are concave
down.

A predator-prey system of Cavani-Farkas type takes the form:

·
u1 = εu1(1− u1

K
)− βu1u2

β + u1
,
·
u2 = −u2(γ + δu2)

1 + u2
+

βu1u2
β + u1

, (3)

where ε > 0 is the specific growth rate of the prey in the absence of predation and without
environmental limitation, β > 0, K > 0 are the conversion rate and carrying capacity
with respect to the prey, respectively, γ > 0 and δ > 0 are the minimal mortality and
the limiting mortality of the predator, respectively (the natural assumption is γ < δ).
The advantage of this model over the more often used models is that here the predator
mortality is neither a constant nor an unbounded function, still, it is increasing with the
predator abundance.
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2 The Aims and The Strategy

Because the relation between the organisms and the space seems to be essential to
stability of an ecological system, the effect of diffusion on the possibility of species coex-
istence in an ecological community has been an important subject in population biology.
The effects of self and cross-diffusion, Turing bifurcation and pattern formation are the
subjects of this thesis.
One of the fundamental issues in spatial ecology is how explicit considerations of space

alter the prediction of population models. Classical theories, such as diffusion-driven in-
stability and meta-population dynamics which are developed via simple spatial popula-
tion models, have profoundly increased our understanding of the issue. In this thesis I
scrutinize these theories by considering more complicated processes of spatial interaction
of populations. For this purpose I consider spatio-temporal models as systems of ODE
which describe two-identical patch-two-species systems linked by migration, where the
phenomenon of the Turing bifurcation occurs. In the models it is assumed that either the
migration rate of each species is influenced only by its own density (self-diffusion) or that
not only by its own but also by the other one’s density (cross diffusion). I show that
the equilibrium of a standard (self-diffusion) system may be either stable or unstable,
a cross-diffusion response can stabilize an unstable equilibrium of standard system and
destabilize a stable equilibrium of standard system. For the models I show that at a
critical value of the bifurcation parameter the system undergoes a Turing bifurcation and
numerical studies show that if the bifurcation parameter is increased through a critical
value the spatially homogeneous equilibrium loses its stability and two new stable equi-
libria emerge. I conclude that the cross migration response is an important factor that
should not be ignored when pattern emerges.

3 Main Results of My Work

I have checked how the strength and the type of the self-and cross-diffusion response
affect the stability of these three type of interactions.

3.1 The Effect of a Self-Diffusion Response

I have considered a two-species model in a habitat of two identical patches linked by
migration in which the migration rate of each species is influenced only by its own density,
i.e. there is no response to the density of the other one described by the equations:
Let ui(t, j) := density of species i in patch j at time t, i = 1, 2; j = 1, 2; t ∈ R

·
u1(t, 1) = u1(t, 1)f1(u1(t, 1), u2(t, 1)) + d1(u1(t, 2)− u1(t, 1)),
·
u2(t, 1) = u2(t, 1)f2(u1(t, 1), u2(t, 1)) + d2(u2(t, 2)− u2(t, 1)),
·
u1(t, 2) = u1(t, 2)f1(u1(t, 2), u2(t, 2)) + d1(u1(t, 1)− u1(t, 2)),
·
u2(t, 2) = u2(t, 2)f2(u1(t, 2), u2(t, 2)) + d2(u2(t, 1)− u2(t, 2)),

(4)

where fi(i = 1, 2) is continuously differentiable, di > 0(i = 1, 2) is a constant charac-
terizing the rate of migration when individuals of species i migrate from a certain patch
according to Fick’s law.
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Lotka-Volterra system:

I have shown that instability of a uniform state can not arise via the well known Turing
mechanism of diffusion driven instability.

Predator-prey model with Holling type II functional response:

Theorem 3.1.1: If

Θ1 − 2d1 > 0 and d2 > d2crit = (Θ2Θ3 −Θ1Θ4 + 2d1Θ4)

2(Θ1 − 2d1) , (5)

then Turing instability occurs.
Remark 3.1.1: If

Θ1 − 2d1 < 0, (6)

then self-diffusion never destabilizes the equilibrium (u1, u2, u1, u2).
Where

Θ1 =
u1

a11(a+ u1)
[(
r1
a11
− a)− 2u1],Θ2 =

u1
a+ u1

, Θ3 =
abu2

(a+ u1)2
, Θ4 = a22u2. (7)

A predator-prey system of Cavani-Farkas type:

Theorem 3.1.2: If

Φ1 − 2d1 > 0 and d2 > d2crit = (Φ2Φ3 − Φ1Φ4 + 2d1Φ4)

2(Φ1 − 2d1) , (8)

then Turing instability occurs.
Remark 3.1.2: If

Φ1 − 2d1 < 0, (9)

then self-diffusion never destabilizes the equilibrium (u1, u2, u1, u2).
Where

Φ1 =
εu1(K − β − 2u1)

K(β + u1)
, Φ2 =

βu1
β + u1

,Φ3 =
β2u2

(β + u1)2
, Φ4 =

(δ − γ)u2
(1 + u2)2

. (10)

3.2 The Effect of a Cross-Diffusion Response

I have considered a two-species models in a habitat of two identical patches linked by
migration in which the per capita migration rate of each species is influenced not only by
its own but also by the other one’s density, i.e. there is cross diffusion present described
by the equations:
Let ui(t, j) := density of species i in patch j at time t, i = 1, 2; j = 1, 2; t ∈ R.
·
u1(t, 1) = u1(t, 1)f1(u1(t, 1), u2(t, 1)) + d1(ρ1(u2(t, 2))u1(t, 2)− ρ1(u2(t, 1))u1(t, 1)),·
u2(t, 1) = u2(t, 1)f2(u1(t, 1), u2(t, 1)) + d2(ρ2(u1(t, 2))u2(t, 2)− ρ2(u1(t, 1))u2(t, 1)),·
u1(t, 2) = u1(t, 2)f1(u1(t, 2), u2(t, 2)) + d1(ρ1(u2(t, 1))u1(t, 1)− ρ1(u2(t, 2))u1(t, 2)),·
u2(t, 2) = u2(t, 2)f2(u1(t, 2), u2(t, 2)) + d2(ρ2(u1(t, 1))u2(t, 1)− ρ2(u1(t, 2))u2(t, 2)),

(11)
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where fi(i = 1, 2) is continuously differentiable, di > 0(i = 1, 2) is a constant charac-
terizing the rate of migration when individuals of species i migrate from a certain patch
according to Fick’s law, ρi(u)(i = 1, 2) is a positive function of u characterizing the
decrease or the increase of the rate of migration if it depends on the densities of the
species.

Lotka-Volterra system:

Theorem 3.2.1: For competitive (or cooperative) type interaction: the equilibrium point
(u1, u2, u1, u2) is asymptotically stable if

ρ01
ρ1
,
ρ02
ρ2
,
ρ01ρ

0
2

ρ1ρ2
, d1 and d2 are sufficiently small; if

ρ01
ρ1
,
ρ02
ρ2
,
ρ01ρ

0
2

ρ1ρ2
and either d1 or d2 are sufficiently large the (u1, u2, u1, u2) loses its stability

by a Turing bifurcation.

Predator-prey model with Holling type II functional response:

Theorem 3.2.2: If

Θ1 − 2d1ρ1 > 0, (12)

and ρ2(u1) is sufficiently large then Turing instability occurs.
Remark 3.2.1: As I have mentioned in section 3.1, if Θ1−2d1 < 0, holds and there is

no cross-diffusion then the equilibrium remains stable for any d2 > 0. Still Θ1−2d1ρ1 > 0
may hold, i.e. in this case only the cross-diffusion effect may destabilize the equilibrium.

A predator-prey system of Cavani-Farkas type:

Theorem 3.2.3: If

Φ1 − 2d1ρ1 > 0, (13)

and ρ2(u1) is sufficiently large then Turing instability occurs.
Remark 3.2.2: As I have mentioned in section 3.1, if Φ1−2d1 < 0, holds and there is

no cross-diffusion then the equilibrium remains stable for any d2 > 0. Still Φ1−2d1ρ1 > 0
may hold, i.e. in this case only the cross-diffusion effect may destabilize the equilibrium.

4 Conclusions
• I have considered spatio-temporal models as systems of ODE which describe two-
identical patch-two-species systems linked by migration, where the phenomenon of
the Turing bifurcation occurs.

• I have presented a simple and straightforward way of deducing the characteristic
polynomial of matrix in a form that can be applied to calculate the all eigenvalues
analytical to determine the stability.

• I have shown that the equilibrium of a standard (self-diffusion) system may be either
stable or unstable, a cross-diffusion response can stabilize an unstable equilibrium
of standard system and destabilize a stable equilibrium of standard system. For
the models I show that at a critical value of the bifurcation parameter the system
undergoes a Turing bifurcation and numerical studies show that if the bifurcation
parameter is increased through a critical value the spatially homogeneous equilib-
rium loses its stability and two new stable equilibria emerge, i.e. a cross migration
response is an important factor that should not be ignored when pattern emerges.
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