
Degree-Based Spanning Tree Optimization

Summary of PhD Thesis

Gábor Salamon

Department of Computer Science and Information Theory
Budapest University of Technology and Economics

Supervisor: András Recski

2010

1 Introduction

Design process, operation and maintenance of telecommunication networks are dy-
namically developing research areas. Graphs are often used as mathematical models
of these networks giving a special importance to the research of effective graph al-
gorithms. In most cases, the obtained mathematical models are too complex to be
solved optimally, thus the aim is to find a suboptimal approximate solution run-
ning in an acceptable time limit. In the thesis, we consider a design problem from
the world of optical telecommunication networks. We build a model yielding to a
spanning tree optimization problem. Our main goal is to present and build approxi-
mation algorithms for several related spanning tree optimization problems. We show
that our algorithms can be efficiently used for network design applications as they
perform well from both the theoretical and empirical point of view.

Our mathematical analysis has direct connection to the hamiltonicity theory,
therefore, beside algorithmic aspects, our results have their own theoretical impor-
tance as well.

Connection routing in DWDM networks

Dense Wavelength Division Multiplexing (DWDM) [26] is a technology widely used
in optical networks in order to increase the available bandwidth. The basic idea is
to use different light wavelengths within a single optical fiber enabling multiple data
connections at the same time. Switch devices in a DWDM network must be able to
deal with wavelength multiplexing in order to correctly route data connections.

Let us have two applications which want to communicate to each other over
our DWDM network. Their co-operation must be independent of the details of the
underlying network protocols and technologies. Therefore, they are using an appli-
cation layer to communicate. This application layer is built on the top of and is
served by a logical network layer which is responsible for building up and managing
the connection and for accessing the layers of physical transport. Logical network
layer sends the data to be transferred to the electronic (physical) layer which con-
verts it to an electronic signal. This signal now can be transported without dealing
with its logical meaning. Up to this point, we have the layers of a classical network.
However, optical networks transfer optical signals in optical fibers, thus they need
an additional layer under the above mentioned ones: the optical (physical) layer.
When the sender application generates a new connection demand, the electronic
physical layer creates an electronic signal to be sent through the network. This
electronic signal must be converted to an optical signal at the entry terminal of the
DWDM network. Thus the physical transfer itself happens in the optical layer. Sim-
ilarly, when the optical signal arrives to its destination, the end terminal converts
it back to an electronic signal and passes it to the electronic layer which forwards
it to the application. Each layer has its own responsibility. Its functionality can be
implemented without any knowledge on the details of other layers.

3

In transparent DWDM networks, the whole connection forwarding and routing is
handled by full optical devices: optical repeaters and optical cross connects (OXC’s).
Repeaters only forward the data stream without changing it. OXC’s, in contrast,
can route the connections and can execute wavelength multiplexing, demultiplex-
ing, and conversions. However, the elevated price of OXC’s makes their mass use
inefficient. Therefore, network designers tend to use cheaper devices for the same
task. These devices, called electronic cross connects (EXC’s), execute the routing
and wavelength manipulation functionalities in the electronic layer. They convert
the incoming optical signals to electronic ones, route connections, and then convert
back the electronic signals to optical ones. Though their cost is significantly lower,
they slow down the connection routing process and lose the transparency of the
optical layer.

DWDM networks using EXC’s for routing are called opaque DWDM networks.
In these networks, the data is transferred in the form of optical signals using optical
repeaters. However, all routing functionality is implemented in the electronic layer
with the help of EXC’s. We aim to build opaque networks where the routing is fully
implemented by EXC’s, but at the same time we want to use as few of these devices
as possible.

The design problem considered is the following. We have an existing infrastruc-
ture composed of network nodes connected by optical fibers. Some of these nodes
have a special role: they are connection terminals, that is, they input and output
user requests to and from the network. We also have a traffic matrix which shows the
estimated amount of data to be transferred between each pair of terminals. We have
to place EXC’s to the nodes and route all connections such that the estimated traffic
can be sent through the network without major congestion. One can come up with
different cost functions including the cost of devices and network links used, routing
delays, loss of transparency, etc. If a combination of these cost functions is present,
exact mathematical discussion becomes hardly possible though soft-computing tech-
niques can still perform well. In [C1] we present a genetic algorithm based approach
which deals with many of these cost functions at a time.

The thesis focuses on a more theoretical approach. We use a single cost function,
that is, we want to minimize the number of EXC’s used. As per our model we want
to build a network where every node can communicate to every other node and there
is no need to build protection paths to handle network failures. This means that we
must ensure the existence of a single path between each terminal pair.

Our mathematical model is based on graphs. Network nodes are represented
by the vertices of a graph G. The existing optical fiber links between nodes give
the edges of G. The requirement that each terminal pair must be connected is
satisfied by looking for a spanning tree T of G. We can suppose that we need
routing functionality and wavelength manipulation only in the network nodes which
communicate to at least three adjacent nodes. Therefore we have to put costly
switch devices only to these nodes. This means that our aim is to minimize the
number of at-least-3-degree vertices of T [C4, C7]. Figure 1 shows an example how

4

(a) (b) (c)

Figure 1: Eliminating EXC’s by connection redesign

to decrease the number of EXC’s needed in a communication network.

Mathematical Model

First we define what we consider to be an optimization problem.

Definition. [2] An optimization problem P is characterized by the following
quadruple of objects (IP , SOLP , mP , goalP), where:

1. IP is the set of instances of P;

2. SOLP is a function that associates to any input instance x ∈ IP the set of
feasible solutions of x;

3. mP is the measure function, defined for pairs (x, y) such that x ∈ IP and
y ∈ SOLP(x). For every such pair (x, y), mP(x, y) provides the value of the
feasible solution y. This value is also called cost in minimization problems
and utility in maximization problems;

4. goalP ∈ {MIN, MAX} specifies whether P is a minimization or a maximization
problem.

A spanning tree optimization problem is to find a spanning tree T of a given
undirected connected graph G which, depending on the problem, minimizes or max-
imizes a measure function m(.). To be more general we allow weights to be put on
the vertices and/or on the edges of G. If such weights are present, they can be taken
into consideration when calculating m(T). Examples for the spanning tree optimiza-
tion problems are the Minimum Weight Spanning Tree problem [6, 19, 24], or
the Minimum Diameter Spanning Tree problem [14, 15]. For a good survey
on spanning tree optimization problems, the reader is referred to [27].

A spanning tree optimization problem is degree-based if m(T) depends only on
the vertex-degree distribution of T . If G has weights on its vertices then m(T) can
also depend on these weights. More precisely, if dT (v) is the degree of a vertex v in T
and c(v) is the weight of vertex v then m(T) is determined by the pairs (dT (v); c(v)).

5

In the thesis, we restrict ourselves to the special case where m(T) can be written in
the form of

m(T) =

n−1
∑

i=1

fi

∑

{c(v) : dT (v) = i} , (1)

for some fi, with c(v) ≡ 1 used for the unweighted case.

Notation and Definitions

By a graph G = (V, E) we mean an undirected simple graph on vertex set V (G) = V
and edge set E(G) = E. We use n = |V (G)| to denote the number of vertices
and m = |E(G)| to denote the number of edges of G. Every graph in the thesis
is supposed to be connected unless explicitly stated otherwise. Let X and Y be
subsets of vertices of G. Then G[X] is the subgraph of G spanned by X, compG(X)
or simply comp(X) is the number of components of G[X].

A spanning tree T of a graph G is an acyclic connected subgraph of G containing
all of its vertices. Edges of G are called G-edges, edges of T are called T -edges or
tree-edges, elements of E(G) \ E(T) are called non-tree edges. Vertices u and v are
G-neighbors if they are adjacent in G, that is, (u, v) ∈ E(G), and T -neighbors if they
are adjacent in T , that is, (u, v) ∈ E(T). The G-degree (T -degree) of a vertex v is the
number of its G-neighbors (T -neighbors) and is denoted by dG(v) (dT (v)). When
it causes no confusion, we might leave the G out from these notions to abbreviate
G-neighbors of v as neighbors of v, or N(v), and G-degree of v as degree of v, or
d(v). A vertex v is called pendant if dG(v) = 1. The degree of the highest G-degree
vertex is denoted by ∆(G), or simply by ∆. The graph G is r-regular if all of its
vertices have G-degree r. A 3-regular graph is also called cubic. A vertex v is a leaf,
a forwarding vertex, or a branching of the spanning tree T , if its T -degree is 1, 2,
or at least 3, respectively. Forwarding vertices and branchings are called internal
vertices. We use L(T) and I(T) to denote the set of leaves and internal vertices of T ,
respectively. We denote by ml(G) the minimum number of leaves that a spanning
tree of G can have. A vertex set is said to be G-independent (or independent) if it
spans no edges of G. Similarly, a vertex set X is T -independent if it spans no edges
of T . Note that in this latter case X is still allowed to span non-tree edges. The
size of the highest cardinality G-independent set is denoted by α(G). The spanning
tree T of G is called an independence tree if its leaves are G-independent. The
notion of independence tree is crucial as it is used throughout the thesis to establish
approximation algorithms.

A Hamiltonian path of a graph is a simple path containing all vertices of the graph
and a Hamiltonian cycle is a cycle with the same property. If G has a Hamiltonian
path, it is called traceable. Kn is a complete graph and Cn is a cycle on n vertices,
while Kn1,n2

is the complete bipartite graph with color classes of size n1 and n2.
Particularly, K1,3 is called a claw. A graph is claw-free if it does not contain a K1,3

as an induced subgraph.

6

2 Research goals

The research presented in the thesis is motivated both by telecommunication network
design applications and by theoretical combinatorics. Our goal is to obtain results
which can be used in both areas: to build algorithms based on simple steps and
then to prove theoretical bounds on their goodness. Beside a mathematical analysis,
we also aim to implement some of our algorithms to investigate their behavior on
randomly generated inputs.

A part of our research is devoted to graph vulnerability parameters and their
connection to spanning tree leaves. This direction relates our work to vulnerability
and hamiltonicity theories and becomes a useful tool for proving approximation
ratios of our algorithms.

Let us give a formal definition of the degree-based spanning tree optimization
problems considered in the thesis. Their measure function is in the form of (1).

Problem: Minimum Branching Spanning Tree

Input: An undirected connected graph G.

Goal: Find a spanning tree T of G with a minimum number of (≥ 3)-degree
vertices (branchings), that is, minimize m(T) = |{v : dT (v) ≥ 3}|.

Problem: Minimum Leaf Spanning Tree

Input: An undirected connected graph G.
Goal: Find a spanning tree T of G with a minimum number of 1-degree vertices
(leaves), that is, minimize m(T) = |{v : dT (v) = 1}|.

Problem: Maximum Internal Spanning Tree

Input: An undirected connected graph G.

Goal: Find a spanning tree T of G with a maximum number of (≥ 2)-degree
vertices (internal vertices), that is, maximize m(T) = |{v : dT (v) ≥ 2}|.

Problem: Maximum Weighted Internal Spanning Tree

Input: An undirected connected graph G with a measure function c : V (G) � Q

on its vertices.
Goal: Find a spanning tree T of G with a maximum total weight of (≥ 2)-degree
vertices (internal vertices), that is, maximize m(T) =

∑

{c(v) : dT (v) ≥ 2}.

Observe that all of these problems can be viewed as a generalization of the
Hamiltonian Path problem, and so are NP-hard. Therefore, our aim is to explore
their approximability properties. We give efficient approximation algorithms for
some of them and negative approximability results for some others to show that no
such approximation exists, unless P=NP.

For the Minimum Branching Spanning Tree problem we show that there
is no efficient approximation algorithm for general graphs. Thus we aim to give an

7

approximation for a subclass of input graphs, namely for evenly dense graphs, and
also to find good heuristics for general graphs. These heuristics are based on the idea
of looking for a spanning tree with only a few 1-degree vertices. Though the number
of 1-degree vertices does not determine the number of branchings, decreasing their
number helps, in most cases, decreasing the number of branchings, too.

Therefore, we also deal with degree based spanning tree optimization problems
in a bit more general way. We consider the Minimum Leaf Spanning Tree

problem, where the task is to find a spanning tree with a minimum number of leaves.
Lu and Ravi [20] showed that this problem has no constant factor approximation
algorithm, unless P=NP. However, if we complement the measure function and we
count the non-leaves (internal vertices) instead of the leaves then the situation is
better. The obtained Maximum Internal Spanning Tree problem is trivially
equivalent to the Minimum Leaf Spanning Tree problem as long as we focus
on the set of optimal solutions. From an approximation point of view, however, the
two problems behave differently. Our aim is to explore the approximability of the
Maximum Internal Spanning Tree problem. By giving efficient approximation
algorithms we obtain good heuristics both for the Minimum Leaf Spanning Tree

and for the Minimum Branching Spanning Tree problems.
We also aim to provide results in the field of vulnerability theory. Vulnerability

parameters measure how much damage can be caused to a graph by removing some
of its “important” parts. These parameters have strong connection to hamiltonicity
theory and, as we show in the thesis, to the number of leaves of spanning trees.

3 Overview of Research Methods and Results

In the thesis, we consider several degree-based spanning tree optimization problems
all being a generalization of the Hamiltonian Path problem. Our results are
organized in four groups of theses.

Thesis group 1: Chapter 3 deals with the Minimum Branching Spanning

Tree problem. We obtain both positive and negative approximability results.
Namely, on one hand we present Algorithm MinBST which yields a spanning tree

having at most 3
⌈

log 1

1−c

n
⌉

+ 1 branchings for evenly dense graphs (of which every

vertex has a degree of at least cn), see Theorem 3.3.1. On the other hand, we
show that this approximation ratio is very likely the best possible. We give an
approximation ratio preserving reduction from the Minimum Set Cover problem
to the Minimum Branching Spanning Tree problem thus proving that any
ratio better than Ω(log n) implies P=NP, see Theorem 3.2.3. Our results discussed
in Chapter 3 have originally been published in [C4].

Thesis group 2: Chapter 4 is focusing on our work on the connection of span-
ning tree leaves and two graph vulnerability parameters: scattering number [17, 28],

8

and cut-asymmetry (Definition 4.3.1). Some of these results are then used in Chapter
5 to build our approximation algorithms for the Maximum Internal Spanning

Tree problem. In Section 4.1 we generalize the well-known necessary condition
of traceability by proving that every spanning tree of a graph G has at least one
more leaf than its scattering number sc(G) (Theorem 4.1.5). If the graph itself is a
tree, its scattering number can be used to upper bound the number of leaves (The-
orem 4.1.7). In Section 4.3 we first provide some basic properties of cut-asymmetry
ca(G) of a graph G. Namely, we show that ca(G) = 0 if and only if G is either
a complete graph or a cycle (Theorem 4.3.2). We also prove that ca(G) ≤ 1 is a
sufficient condition for the existence of a Hamiltonian path in G (Theorem 4.3.6).
Unfortunately, even a graph with a Hamiltonian path can have a big cut-asymmetry,
as shown in Theorem 4.3.7. Later in Section 4.3, we define leaf-independence li(G)
as the maximum number of independent leaves in a spanning tree of G. It turns out
that this measure can be considered as an equivalent definition of cut-asymmetry,
since li(G) = ca(G) + 1 always holds (Theorem 4.3.10). Corollary 4.3.13 shows that
leaf-independence and the cardinality of a minimum connected vertex cover sums up
to n and thus proves that both cut-asymmetry and leaf-independence are NP-hard
to compute (Theorem 4.3.14). Our results presented in Chapter 4 have originally
been published in [J3], in [J4], and in [C5].

Thesis group 3: Chapter 5 is about the Maximum Internal Spanning

Tree problem. First we present Algorithm ILST that yields a spanning tree with
independent leaves, and then we prove that such a spanning tree always forms a 2-
approximation for the Maximum Internal Spanning Tree problem (Theorem
5.2.2). In Section 5.2 we provide three different proofs for this fact, one direct proof,
one based on the results of Chapter 4, and one based on primal-dual linear pro-
gramming techniques. Algorithm RDFS, a refined version of Algorithm ILST, has
even better approximation properties when applied on special graph classes. It is
a 3/2-approximation for claw-free graphs (Theorem 5.4.2) and a 6/5-approximation
for cubic graphs (Theorem 5.4.4). In Section 5.5, we develop Algorithm LOST, and
using an improved version of the above mentioned linear programming approach, we
prove that it is a 7/4-approximation for the Maximum Internal Spanning Tree

problem in graphs with no pendant vertices (Theorem 5.5.2). Section 5.6 deals with
the case when vertices are weighted and we have to maximize the weighted sum of the
internal vertices of the obtained spanning tree (Maximum Weighted Internal

Spanning Tree problem). To solve this problem (in graphs with no pendant ver-
tices), we present Algorithm WLOST which yields a (2∆−3)-approximation (Theo-
rem 5.6.2). We then further improve this algorithm obtaining Algorithm RWLOST
which is a 2-approximation if the input graph is claw-free (Theorem 5.6.6). In Sec-
tion 5.7 we consider the Maximum Internal Spanning Tree problem from
another point of view: instead of looking for a spanning tree with few leaves, we try
to cover as many vertices as possible with a ≤ q-leaf subtree. This approach is a
generalization of searching for a long path in graphs, see Theorem 5.7.4. In Section

9

5.8, we show that if any (q + 1)-element independent set of a claw-free graph (on n
vertices) has a degree-sum of at least n− q, then the graph has a spanning tree with
at most q leaves (Theorem 5.8.1). Our results discussed in Chapter 5 have originally
been published in [C4], in [C6], in [J3], in [J4], and in [J5].

Thesis group 4: Section 5.9 discusses the results of our experimental analy-
sis on our algorithms paying a particular attention to compare different traversal
algorithms for obtaining the initial spanning tree.

4 New Results

Thesis group 1: Minimum Branching Spanning Tree problem

In Chapter 3 we investigate the Minimum Branching Spanning Tree problem
which aims to find a spanning tree T of a given input graph G such that T has a
minimum number of branchings among all spanning trees of G. As spanning trees
with no branchings are exactly the Hamiltonian paths of G, we cannot expect exact
polynomial-time solution for this problem. Instead, we explore the approximability
of the problem. The Minimum Branching Spanning Tree problem was first
considered by Gargano et al. [11] as a degree-based generalization of the Hamilto-

nian Path problem. They have proved that it is NP-complete to decide whether
a spanning tree with at most k branchings exists (for any fixed k). They have also
given an algorithm [10] that finds a single-branching spanning tree (a so called span-
ning spider) if each 3-element independent set of the input graph G has a degree
sum of at least |V (G)| − 1. The case when the input graph is bipartite is discussed
in [9]. Flandrin et al. [8] considered the problem of finding a spanning spider having
its branching fixed in advance. They proved that a graph G has a spanning spider
whenever the sum of its minimum and maximum vertex degree is at least |V (G)|.

Our main negative approximability result on the Minimum Branching Span-

ning Tree problem is based on an approximation ratio preserving reduction from
the Minimum Set Cover problem. Recall the following definition [16]:

Problem: Minimum Set Cover

Input: A ground set S and a set Σ = {Sj}
s

j=1
of its subsets.

Goal: Find a minimum number of subsets of Σ whose union contains each
element of S.

Alon et al. [1] proved that the Minimum Set Cover problem is not approx-
imable better than a multiplicative ratio of Ω (log |S|), unless P=NP, that is, the
Minimum Set Cover problem is not in APX (which is the class of constant factor
approximable problems). Based on their result our reduction yields to

10

Thesis 1.1. [C4] The Minimum Branching Spanning Tree prob-
lem is not in APX. Moreover, it is not approximable better than a mul-
tiplicative ratio of Ω (log |V (G)|), unless P=NP.

We then present a positive approximability result on the Minimum Branching

Spanning Tree problem. We provide Algorithm MinBST, the first approximation
algorithm which achieves the approximation ratio of O(log n) whenever the input
graph is non-traceable and all of its vertices have a degree of Ω(n). More precisely,
in evenly dense graphs Algorithm MinBST produces a spanning tree with O(log n)
branchings.

Thesis 1.2. [C4] Let G be a connected graph on n vertices and m edges.
If the G-degree of each vertex is at least cn (for some number c ∈ R) then

Algorithm MinBST yields a spanning tree with at most 3
⌈

log 1

1−c

n
⌉

+ 1

branchings in O (m + n log n) time.

The basic idea of Algorithm MinBST is the following. Given an input graph
G, our approximation algorithm starts with an empty graph H = (V, ∅). Then it
subsequently adds G-edges to H , until H becomes a spanning forest without isolated
vertices. In each iteration of this spanning forest building process, we greedily select
a vertex v such that there is a maximum number of isolated vertices of H among
the G-neighbors of v. Then we add to H all G-edges which connects v to an isolated
vertex of H . When H has no more isolated vertices, some additional G-edges are
used to connect the components of H forming the output spanning tree.

Thesis group 2: Spanning Tree Leaves and Vulnerability

In Chapter 4 we focus on graph vulnerability parameters. They are used to measure
how much structural damage can be caused in a graph by removing some “impor-
tant parts” of it [3, 4, 12, 13, 28]. Both hamiltonicity theory and network design
applications widely use these parameters to describe the structure of graphs. Our
work fits into both of these categories. We first prove some theoretical results on the
connection between the number of spanning tree leaves and vulnerability parame-
ters. Then, in Chapter 5, we use these results to build an approximation algorithm
for the Maximum Internal Spanning Tree problem. Besides, our framework
yields a new 2-approximation algorithm for the Minimum Connected Vertex

Cover problem, too.
The first connection between hamiltonicity and vulnerability was given in a well-

known theorem of basic graph theory stating that if a graph is traceable then it can-
not be split to more than k + 1 components by removing at most k of its vertices.
This theorem, giving only a necessary condition of traceability, is based on a vulner-
ability property of the graph. Therefore, it is worth investigating how vulnerability
parameters can provide sufficient conditions of traceability. A considerable amount
of research followed this approach [4].

11

In our work, we use two closely related vulnerability parameters: scattering
number and cut-asymmetry. Scattering number shows how many components we
can get by removing a few vertices [17, 18, 28]. Cut-asymmetry does the same when
a few connected subgraphs are removed [J3, J4]. We use scattering number to lower
bound the number of leaves in a spanning tree, and cut-asymmetry to upper bound
the number of G-independent leaves of a spanning tree.

Jung defined the scattering number of a graph as follows:

Definition. [17] The scattering number of a non-complete graph G = (V, E) is

sc(G) = max
X⊂V,X 6=∅

{comp(G[V \ X]) − |X| : comp(G[V \ X]) ≥ 2} .

By definition, the scattering number of the complete graph Kn is sc(Kn) = −∞.

We introduce cut-asymmetry in a similar way. However, we count the connected
subgraphs (instead of individual vertices) to be removed. The definition takes the
maximum over all non-trivial cuts of G. Cut-asymmetry counts how much the two
sides of a cut can differ in terms of the number of components.

Definition. [J3] The cut-asymmetry of a graph G = (V, E) is

ca(G) = max
X⊂V,X 6=∅

{comp(G[V \ X]) − comp(G[X])} .

The above theorem can be reformulated by means of scattering number: if a
graph is traceable then its scattering number is at most one, that is, the scattering
number provides a necessary condition of traceability. Investigating the properties
of cut-asymmetry, we show that it gives a sufficient condition for the existence of a
Hamiltonian path, namely, if its value is at most one then the graph is traceable.
Unfortunately, cut-asymmetry of a traceable graph can be greater than 1. These
are our main hamiltonicity related results.

Thesis 2.1. [J3, J4, C5] Basic properties of cut-asymmetry:

• ca(G) = 0 if and only if G is either a complete graph or a cycle;

• ca(G) ≤ 1 implies that G is traceable;

• if G is a traceable graph on n vertices then ca(G) ≤ ⌊n−1

2
⌋;

• if k is an arbitrary integer such that 0 ≤ k ≤ ⌊n−1

2
⌋ then there exists

a traceable graph G on n vertices for which ca(G) = k;

• if Z is a maximum size independent vertex set of G for which G[V \
Z] is connected then |Z| = ca(G) + 1;

• ca(G) is NP-hard to compute.

12

Chapter 4 contains our results regarding the connection of vulnerability param-
eters and the number of leaves of spanning trees.

We show that the scattering number of a q-leaf tree on at least 3 vertices is
between q/2 and q − 1, that is, these measures determine each other up to a mul-
tiplicative factor of 2. Contrary, the cut-asymmetry of a tree exactly determines
the number of its leaves. A joint result with Gábor Wiener proves that the cut-
asymmetry of a q-leaf tree is q − 1.

In the thesis, we show that the leaves of any minimum leaf spanning tree which
is not a Hamiltonian path are G-independent. This fact inspires us to examine how
many G-independent leaves a spanning tree can have. For this reason we define
leaf-independence of a graph as follows.

Definition. [J3] Let G be any connected graph and T be a spanning tree of G. The
leaf-independence of T in G, denoted by liG(T), is the cardinality of a maximum G-
independent subset of L(T). The leaf independence li(G) of the graph G is the
maximum of liG(T) over all spanning trees of G.

The notion of leaf-independence has a strong relation to cut-asymmetry and to
connected vertex covers. The following thesis is about these relations. Besides, it
establishes the computational complexity of leaf-independence. Let cvc(G) denote
the minimum size connected vertex set of G which covers all G-edges.

Thesis 2.2. [J3, J4, C5] For the leaf-independence of an n-vertex
connected graph G, the followings hold:

• li(G) = ca(G) + 1;

• if G is not complete and not a cycle then li(G) ≥ ml(G);

• li(G) = n − cvc(G);

• li(G) is NP-hard to compute.

The main results of Chapter 4 can be summarized in the following series of
inequalities. They directly prove that any spanning tree with independent leaves
is a 2-approximation for the Maximum Internal Spanning Tree problem and
that the internal vertices of such a spanning tree form a 2-approximation for the
Minimum Connected Vertex Cover problem. This latter was first proved by
Savage [25].

Thesis 2.3. [J3, J4, C5] Let G be a connected graph on n vertices. If
G is not complete and not a cycle then

n − sc(G) − 1 ≥ n − ml(G) ≥ n − li(G) = cvc(G)

= n − ca(G) − 1 ≥ n − α(G) ≥
1

2
(n − sc(G)).

13

This directly implies that any independence tree is a 2-approximation for
the Maximum Internal Spanning Tree problem, and that the inter-
nal vertices of such a tree provide a 2-approximation for the Minimum

Connected Vertex Cover problem.

Thesis group 3: Maximum Internal Spanning Tree problem

Chapter 5 deals with the Maximum Internal Spanning Tree problem which
was already considered in the literature from different points of view. Fernau et
al. [7] gave exponential-time exact algorithms to solve it. Prieto and Sloper proved
that it is fixed parameter tractable [22, 23], that is, a spanning tree with at least k
internal vertices can be found in f(k)O(nc) time whenever it exists. Our work uses
the approach of approximation algorithms, we aim to find suboptimal solutions in
polynomial time. We consider general input graphs, as well as some special input
graph classes.

Given an input graph G, we provide Algorithm ILST (Independent Leaves Span-
ning Tree), a modified version of Depth First Search, which yields a spanning tree
with G-independent leaves. Then we prove that Algorithm ILST is a 2-approximation
algorithm for the Maximum Internal Spanning Tree problem. We give three
different proofs for the approximation ratio. The first one is based on vulnerability
parameters and uses the results of Chapter 4. The second one is a direct proof, while
the third one is a linear programming based approach which is further enhanced in
Section 5.5 where we give a 7/4-approximation algorithm for the Maximum In-

ternal Spanning Tree problem for graphs with no pendant vertices. We also
consider the case when we run Algorithm ILST in r-regular graphs.

Thesis 3.1. [J3, C4] Algorithm ILST is an O(m)-time 2-approximation
algorithm for the Maximum Internal Spanning Tree problem.
Moreover, it provides an r+1

3
-approximation for r-regular graphs. In

particular, the approximation factor is 4/3 for cubic graphs and 5/3 for
4-regular graphs.

As a result of a joint work with Gábor Wiener we give Algorithm RDFS (Refined
DFS) in which we specify how to choose the next vertex of the traversal in the cases
when Algorithm DFS itself would choose arbitrarily from several candidates. The
main idea is to select the vertex that has the minimum number of non-visited neigh-
bors. We prove that for the Maximum Internal Spanning Tree problem, Al-
gorithm RDFS is a 3/2-approximation for claw-free graphs and a 6/5-approximation
for 3-regular graphs.

The main result of Chapter 5 is Algorithm LOST (Locally Optimal Spanning
Tree). It starts by building a spanning tree then it successively executes local changes
(defined by improvement rules) as far as possible. When no more rule can be exe-
cuted we obtain a locally optimal spanning tree (LOST).

14

The proof of the approximation ratio is based on a primal-dual technique of
linear programming: we build a primal program such that each of its integer so-
lutions is composed of the characteristic vector of a spanning tree and its internal
vertices. Thus, an optimum solution T ∗ of the Maximum Internal Spanning

Tree problem defines a feasible integer primal solution with a value of |I(T ∗)|.
Then we use dual solutions to upper bound this quantity by means of |I(T)|, where
T is the LOST that our algorithm outputs. Finally, the upper bounds are used to
prove the approximation ratio.

Thesis 3.2. [J5, C6] Algorithm LOST is an O(|V |4)-time 7/4-approximation
for the Maximum Internal Spanning Tree problem in graphs that
have no pendant vertices.

We also consider the Maximum Weighted Internal Spanning Tree prob-
lem and give two algorithms, both based on local improvement steps.

Thesis 3.3. [J5, C6] There exists an O(|V |4)-time (2∆−3)-approximation
for the Maximum Weighted Internal Spanning Tree problem in
graphs with no pendant vertices.

There exists an O(|V |4)-time 2-approximation for the Maximum Weighted

Internal Spanning Tree problem for claw-free graphs that have no
pendant vertices.

Apart from focusing on spanning trees with few leaves we also follow the opposite
approach. We fix the number of leaves to q and examine how many vertices can
be spanned by an ≤ q-leaf subtree. This approach is a generalization of finding a
longest path in a graph.

Let G be a graph on n vertices and let σq(G) denote the minimum degree-sum of a
q-element independent subset of V (G). Ore’s theorem [21] states that if σ2(G) ≥ n
then G has a Hamiltonian path. Bermond [5] showed that if G is 2-connected
then it has a path of length min {n, σ2(G)}. Broersma and Tuinstra proved that if
σ2(G) ≥ n − q + 1, for some integer 2 ≤ q ≤ n − 1, then G has a q-leaf spanning
tree.

Our research on ≤ q-leaf subtrees fits into these series of results. To formulate
our statement on subtrees we use the following notation. Let Sq be a q-element
independent set and let x1, x2 be the two highest degree vertices of Sq. Then we
denote by ρq,2(G) the minimum minSq

{d(x1) + d(x2)}, where the minimum is taken
over all q-element independent sets. Our results on ≤ q-leaf subtrees are summarized
in the following thesis.

15

Thesis 3.4. [J4, T2]

• Let G be a connected graph on n vertices and let 2 ≤ q < α(G) be
an integer. Then G has a subtree with at most q leaves that spans
at least min {ρq,2(G) + q − 1, n} vertices of G. Such a subtree can
be found algorithmically.

As a corollary, if q′ ≥ 2 is an integer such that q′ ≥ α(G) or
ρq′,2(G) ≥ n − q′ + 1 then G has a spanning tree with at most q′

leaves.

• Let G be a connected claw-free graph on n vertices. For any integer
2 ≤ q, if σq+1(G) ≥ n − q then G has a spanning tree with at most
q leaves.

• Let T be a tree having more than q leaves. Let Tq be a maximum
size q-leaf subtree of T . Then there exists a (q +1)-leaf subtree Tq+1

of T such that Tq is a subtree of Tq+1, and Tq+1 has a maximum
number of vertices among all (q + 1)-leaf subtrees of T . Moreover,
Tq+1 can be obtained by adding to Tq a longest path of E(T)−E(Tq)
that has one of its ends in Tq.

Thesis group 4: Experimental analysis

Section 5.9 presents the results of our experimental analysis on the Maximum In-

ternal Spanning Tree problem. We compare the performance of different
traversal algorithms used for obtaining the initial spanning tree. We consider four
algorithms. Each starts with the construction of an initial spanning tree and then
applies some local improvement rules of Algorithm LOST as long as possible. The
difference among the four algorithms is the way of finding the initial spanning tree:
Algorithm 1 creates a random spanning tree; Algorithm 2 creates a DFS-tree; Algo-
rithm 3 creates a so called FIFO-DFS-tree (see Section 2.2); Algorithm 4 creates a
so called RDFS-tree (see Section 5.4). To create the set of input graphs, we use two
different graph generation methods. Both of these methods start with the creation
of a simple path and then add extra edges randomly. As a result, we can test our
algorithms on traceable graphs where the value of the optimum solution is known.

Thesis 4.1. [T2] We performed an experimental analysis in order to
compare different methods for creating an initial spanning tree for Al-
gorithm LOST. We examined how local improvement rules enhance the
quality of solutions for each initial tree. The tests were done on sev-
eral randomly generated traceable graphs having 100, 300, 500 vertices.

16

The results showed that the theoretical approximation factors are over-
performed and so our algorithms can be efficiently used in practical appli-
cations to solve the Maximum Internal Spanning Tree , the Mini-

mum Leaf Spanning Tree , or the Minimum Branching Spanning

Tree problems. Our main observations are summarized below.

• There is a strong connection between the average degree of the input graph
and the average number of leaves of the output spanning tree. Our algorithms
performs the best on dense graphs. This is somewhat we expect, as in these
graphs the traversals themselves need to step back much more rarely and the
local improvement rules can be executed for more subgraphs. On the other
hand, if the average degree of the input graph is very close to 2 then we find
a good enough solution with high probability since the number of edges and
so the number of spanning trees is low. The most interesting part is when the
average degree is between these two extremities. Observe that even in this
range, there is no significant difference in the results obtained using the two
different input graph generation methods.

• The algorithm using Algorithm RDFS for finding the initial spanning tree
overperforms the others for every input graph. Moreover, not considering
the small and sparse graphs, this is true even if we do not execute any local
improvement rule on the initial RDFS-tree. This surprising fact shows that
in many situations we can gain more by the appropriate choice of the initial
traversal than by the application of the more and more sophisticated local
improvements. Algorithm RDFS provides a good approximation factor for
claw-free and cubic graphs. As our experiments show, it can be used effectively
for general graphs, as well.

• The ranking of the four algorithms based on their average performance is the
same for almost all considered input graphs. If we compare the number of
leaves after the local improvement steps then we find the RDFS-tree approach
being the best choice, followed by random tree, FIFO-DFS-tree, and DFS-tree
approaches, respectively. The fact that the random-based approach yields bet-
ter results than the DFS-tree and the FIFO-DFS-tree ones shows the power of
the applied local improvement technique. It is important to see that the the-
oretical approximation factor of 7/4 for the Maximum Internal Spanning

Tree problem is highly overperformed in terms of the average behavior of
our algorithms for the considered input graphs.

• Algorithm RDFS has the weakest performance for input graphs with an aver-
age degree of about 3.5–4, while this measure is about 4–4.5 for the other 3
algorithms. Algorithm RDFS gives a solution being close to the optimum for
most of the cases where this average degree is at least 10. From this point of
view, it is much better than the other 3 algorithms: the random tree approach

17

usually gives a close-to-optimum tree when the average degree of the input
graph is at least n/5, and the FIFO-DFS- and DFS-tree approaches give such
a tree when the average degree is at least n/3.

18

Acknowledgement

I would like to express my gratitude to everyone who helped me, in one way or
another, preparing the thesis. First of all, I thank my family for their long last-
ing patience, support and inspiration. I am particularly grateful to my supervisor,
András Recski for teaching me many interesting topics in graph theory, for giving
me the possibility to become a member of Department of Computer Science and
Information Theory, for introducing me to the research topic of Steiner- and span-
ning trees, and last but not least, for supporting my research with his indispensable
pieces of idea and advice. My special thanks to my co-author, Gábor Wiener for
working with me on some topics discussed in the thesis, and for giving me his pro-
fessional support. I wish he could play Carcassonne much better in the future :) .
I thank Katalin Friedl, Jácint Szabó, and Ferenc Wettl for improving the quality
of the thesis by reading it through and making several valuable comments on it. I
am grateful to András Sebő for his help and indications in the field of linear pro-
gramming and approximation algorithms, and also for welcoming me as a visitor of
the Graph Theory and Combinatorial Optimization Group of IMAG, in the beau-
tiful city of Grenoble, France. I also express my thanks to András Frank whose
classes on linear programming, combinatorial optimization and graph theory gave
a solid foundation for my research work. At last, let me mention that the research
leading to the results discussed in the thesis was supported by Grant Nos. 042559,
044733, and 67651 of the Hungarian National Science Foundation (OTKA), and by
the Grant No. 2003-5044438 of the European MCRTN Adonet Contract.

19

Publications of the Author

Journal Papers

[J5] G. Salamon. Approximating the Maximum Internal Spanning Tree problem.
Theoretical Computer Science, MFCS 2007 special issue, 410:5273–5284, 2009.

[J4] G. Salamon. Vulnerability bounds on the number of spanning tree leaves. Ars
Mathematica Contemporanea, 2:77–92, 2009.

[J3] G. Salamon and G. Wiener. On finding spanning trees with few leaves. Infor-
mation Processing Letters, 105:164–169, 2008.

[J1–J2] A. Recski, G. Salamon, and D. Szeszlér. Improving size-bounds for sub-
cases of square-shaped switchbox routing. Periodica Polytechnica, Electrical
Engineering, BUTE, Budapest, 48:55–60, 2003. Full version in Annales Univer-
sitatis Scientiarum Budapestinensis, Sectio Mathematica, 49:15–24, 2006.

Conference Papers

[C8] G. Salamon. A Survey on Algorithms for the Maximum Internal Spanning Tree
and Related Problems. Accepted to International Symposium on Combinatorial
Optimization (ISCO 2010), March 2010.

[C7] G. Salamon. Fesźıtőfa optimalizálási problémák a Hamilton utak
általánośıtására, (Spanning tree optimization problems for generalizing Hamil-
tonian paths, in Hungarian). In XIII. Fiatal Műszakiak Tudományos Ülésszaka,
Erdélyi Múzeum-Egyesület, (Proc.), pages 203–206, March 2008.

[C6] G. Salamon. Approximation algorithms for the Maximum Internal Spanning
Tree problem. In Proc. of the 32nd International Symposium on Mathematical
Foundations of Computer Science (MFCS 2007), volume 4708 of LNCS, pages
90–102, August 2007.

[C5] G. Salamon and G. Wiener. Leaves of spanning trees and vulnerability. In
Proc. of the 5th Hungarian-Japanese Symposium on Discrete Mathematics and
Its Applications (HJ 2007), pages 225–235, April 2007.

[C4] G. Salamon. Spanning tree optimization problems with degree-based objec-
tive functions. In Proc. of the 4th Japanese-Hungarian Symposium on Discrete
Mathematics and Its Applications (JH 2005), pages 309–315, June 2005.

[C3] A. Recski, G. Salamon, and D. Szeszlér. Improving size-bounds for subcases
of square-shaped switchbox routing. In Proc. of the John von Neumann PhD
Conference, BUTE, Budapest, pages 43–46, October 2003.

20

[C2] A. Pataricza, G. Salamon, and D. Varró. Formal verification of model transfor-
mation systems. In Fast Abstracts of the 4th European Dependable Computing
Conference (EDCC 2002), pages 15–16, October 2002.

[C1] T. Cinkler, S. Győri, J. Harmatos, and G. Salamon. Dimensioning WDM-based
multi-layer transport networks with grooming by genetic algorithm. In Proc. of
the 7th European Conference on Networks and Optical Communication (NOC
2002), pages 44–51, June 2002.

Theses

[T2] G. Salamon. Degree-Based Spanning Tree Optimization. PhD thesis, Budapest
University of Technology and Economics, Hungary, 2010.

[T1] G. Salamon. Formal Verification of Model Transformation Systems. Master’s
thesis, Budapest University of Technology and Economics, Hungary, 2002.

21

Independent References to Publications

On finding spanning trees with few leaves [J3]:

[R1] D. Eppstein. Paired approximation problems and incompatible inapproxima-
bilities. Arxiv preprint arXiv:0909.1870, 2009.

[R2] H. Fernau, S. Gaspers, and D. Raible. Exact and parameterized algorithms
for Max Internal Spanning Tree. In Proc. of the 35th International Workshop
on Graph-Theoretic Concepts in Computer Science (WG 2009), volume 5911
of LNCS, pages 100–111, December 2009.

[R3] H. Fernau, S. Gaspers, D. Raible, and A. A. Stepanov. Exact exponential time
algorithms for Max Internal Spanning Tree. Arxiv preprint arXiv:0811.1875,
2008.

[R4] M. Knauer and J. Spoerhase. Better approximation algorithms for the max-
imum internal spanning tree problem. In Proc. of the 11th Workshop on Al-
gorithms and Data Structures (WADS 2009), volume 5664 of LNCS, pages
459–470, July 2009.

[R5] W. Yang, H.-R. Tseng, R.-H. Jan, and B.-Y. Shen. Broadcasting with the least
energy is an NP-complete problem. International Journal of Multimedia and
Ubiquitous Engineering, 3(3):55–65, 2008.

Approximation algorithms for the Maximum Internal Spanning Tree
problem [C6]:

[R6] H. Fernau, S. Gaspers, and D. Raible. Exact and parameterized algorithms
for Max Internal Spanning Tree. In Proc. of the 35th International Workshop
on Graph-Theoretic Concepts in Computer Science (WG 2009), volume 5911
of LNCS, pages 100–111, December 2009.

[R7] H. Fernau, S. Gaspers, D. Raible, and A. A. Stepanov. Exact exponential time
algorithms for Max Internal Spanning Tree. Arxiv preprint arXiv:0811.1875,
2008.

[R8] M. Knauer and J. Spoerhase. Better approximation algorithms for the max-
imum internal spanning tree problem. In Proc. of the 11th Workshop on Al-
gorithms and Data Structures (WADS 2009), volume 5664 of LNCS, pages
459–470, July 2009.

22

Approximating the Maximum Internal Spanning Tree problem [J5]:

[R9] M. Knauer and J. Spoerhase. Better approximation algorithms for the max-
imum internal spanning tree problem. In Proc. of the 11th Workshop on Al-
gorithms and Data Structures (WADS 2009), volume 5664 of LNCS, pages
459–470, July 2009.

23

Further References

[1] N. Alon, D. Moshkovitz, and S. Safra. Algorithmic construction of sets for
k-restrictions. ACM Transactions on Algorithms, 2(2):153–177, 2006.

[2] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi. Complexity and Approximation. Springer-Verlag, 1999.

[3] C. A. Barefoot, R. Entringer, and H. Swart. Vulnerability in graphs — a
comparative survey. Journal of Combinatorial Mathematics and Combinatorial
Computing, 1:13–22, 1987.

[4] D. Bauer, H. Broersma, and E. Schmeichel. Toughness in graphs — a survey.
Graphs and Combinatorics, 22:1–35, 2006.

[5] J-C. Bermond. On Hamiltonian walks. In Proc. of the 5th British Combinatorial
Conference, pages 41–51, 1975.

[6] O. Bor̊uvka. O jistém problému minimálńım (About a certain minimal problem,
in Czech). Práca Moravské Pr̆irodovĕdecké Spolec̆nosti, 3:37–58, 1926.

[7] H. Fernau, S. Gaspers, D. Raible, and A. A. Stepanov. Exact exponential time
algorithms for Max Internal Spanning Tree. Arxiv preprint arXiv:0811.1875,
2008.

[8] E. Flandrin, T. Kaiser, R. Kužel, H. Li, and Z. Ryjáček. Neighborhood unions
and extremal spanning trees. Discrete Mathematics, 308:2343–2350, 2008.

[9] L. Gargano and M. Hammar. There are spanning spiders in dense graphs (and
we know how to find them). In Proc. of the 30th International Colloquium on
Automata, Languages and Programming (ICALP 2003), volume 2719 of LNCS,
pages 802–816, July 2003.

[10] L. Gargano, M. Hammar, P. Hell, L. Stacho, and U. Vaccaro. Spanning spiders
and light-splitting switches. Discrete Mathematics, 285:83–95, 2004.

[11] L. Gargano, P. Hell, L. Stacho, and U. Vaccaro. Spanning trees with bounded
number of branch vertices. In Proc. of the 29th International Colloquium on
Automata, Languages and Programming (ICALP 2002), volume 2380 of LNCS,
pages 355–365, July 2002.

[12] W. Goddard. Measures of vulnerability — the integrity family. Networks,
24(4):207–213, 1994.

[13] W. Goddard and H. C. Swart. Integrity in graphs: bounds and basics. Journal
of Combinatorial Mathematics and Combinatorial Computing, 7:139–151, 1990.

24

[14] R. Hassin and A. Tamir. On the Minimum Diameter Spanning Tree problem.
Information Processing Letters, 53:109–111, 1995.

[15] J.-M. Ho, D.T. Lee, C.-H. Chang, and C.K. Wong. Minimum diameter spanning
trees and related problems. SIAM Journal of Computing, 20:987–997, 1991.

[16] D. S. Johnson. Approximation algorithms for combinatorial problems. Journal
of Computer System Science, 9:256–278, 1974.

[17] H. A. Jung. On a class of posets and the corresponding comparability graphs.
Journal of Combinatorial Theory Ser. B, 24:125–133, 1978.

[18] A. Kirlangiç. Scattering number in graphs. International Journal of Mathe-
matics and Mathematical Sciences, 30(1):1–8, 2002.

[19] J. B. Kruskal. On the shortest spanning subtree of a graph and the Travelling
Salesman problem. Proc. of American Mathematical Society, 7:48–50, 1956.

[20] H.-I. Lu and R. Ravi. The power of local optimization: Approximation al-
gorithms for maximum-leaf spanning tree (draft). Technical Report CS-96-05,
Department of Computer Science, Brown University, Providence, Rhode Island,
1996.

[21] O. Ore. Note on Hamiltonian circuits. American Mathematical Monthly, 67:55,
1960.

[22] E. Prieto. Kernelization in FPT Algorithm Design. PhD thesis, The University
of Newcastle, Australia, 2005.

[23] E. Prieto and C. Sloper. Either/or: Using vertex cover structure in designing
FPT-algorithms — the case of k-internal spanning tree. In Proc. of the 8th

Workshop on Algorithms and Data Structures (WADS 2003), volume 2748 of
LNCS, pages 465–483, July 2003.

[24] R. C. Prim. Shortest connection networks and some generalizations. Bell System
Technical Journal, 36:1389–1401, 1957.

[25] C. Savage. Depth-first search and the Vertex Cover problem. Information
Processing Letters, 14:233–235, 1982.

[26] K. M. Sivalingam and S. Subramaniam. Optical WDM Networks: Principles
and Practice. Kluwer Academic Publishers, London, 2000.

[27] B. Y. Wu and K.-M. Chao. Spanning Trees and Optimization Problems. Chap-
man & Hall / CRC, 2004.

[28] S. Zhang and Z. Wang. Scattering number in graphs. Networks, 37:102–106,
2001.

25

