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1 Introduction

In my PhD thesis I investigate the time evolution of certain graph-valued Markov chains:
the vertex set and edge set of the graph changes over time: with probabilities that depend
on the present structure of the graph we add/delete edges/vertices from the graph. If
we consider a sequence of Markov chains with a sequence of initial graphs in which the
number of vertices n goes to infinity, but assume that some family of statistics of the
initial graphs converge as n → ∞, then with the appropriate scaling of time we are
able to translate the microscopic transition rules of the Markov chain into differential
equations governing the time evolution of the limiting values of the family of statistics
that we consider. By the analysis of the solutions of these differential equations we are
able to describe the large-scale evolution and properties of random graphs.

We consider two different families of models in the thesis:

The mean field forest fire model and the mean field frozen percolation model
are two closely related random graph models: in both cases we modify the dynamical
Erdős-Rényi random graph model so that large connected components are destroyed,
which creates a competition between coagulation and fragmentation. The most important
property of these models is that they exhibit self-organized criticality, which can be
proved by the analysis of the corresponding modifications of the Smoluchowski coagulation
equations.

The edge reconnecting model is a dense multigraph evolving in discrete timesteps:
at each step we reconnect one endpoint of a uniformly chosen edge according to the rules
of linear preferential attachment. We investigate the model using the notion of dense
graph limits and give a full description of the time evolution of the limit objects. The
number of parallel edges and the degrees evolve on different timescales and because of
this the model exhibits aging.

The thesis is divided into three chapters in which we provide the analysis of these
three random graph models:

The topic of Chapter 2 is the mean field forest fire model and is based on [36].
The topic of Chapter 3 is the mean field frozen percolation and is based on [33].
The topic of Chapter 4 is the edge reconnecting model and is based on [34], joint

work with László Szakács.

The rest of this document is also divided into three sections. We begin each section
with a short résumé of the context, description and relevance of these three models, and
after the necessary definitions we precisely state the results of the PhD thesis.
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2 Mean field forest fire model

2.1 Context

The dynamical Bernoulli bond percolation model is a random graph evolving in contin-
uous time according to the following Markovian dynamics:

Fix an infinite homogenous graph (e.g. the lattice Zd, d ≥ 2). The edges of the graph
can be either ”open” or ”closed”. We start the process from the state where all edges
are closed. Edges are independently switched from closed to open with rate 1. As the
time parameter t increases, the model undergoes phase transition: there is a particular
value tc ∈ (0,+∞) (the critical time) such that if we define

vk(t) := P
(

the size of the connected open component of the origin is k at time t
)

then

• for t < tc the model is subcritical : vk(t) decays exponentially in k.

• for t > tc the model is supercritical :
∑∞

k=1 vk(t) = 1 − θ(t) where θ(t) > 0 is
the probability that the origin is contained in an infinite component. vk(t) decays
exponentially in k.

• for t = tc the model is critical : θ(tc) = 0 and vk(t) decays polynomially in k.

The mean field version of dynamical bond percolation is the dynamical Erdős-Rényi
random graph model: the edges of the complete graph on n vertices are turned from
closed to open with rate 1

n
. If we define

vn,k(t) =
1

n

n∑
i=1

1[ the size of the connected open component of vertex i is k at time t ]

(1)
then vk,n(t) → vk(t) in probability as n → ∞ where (vk(t))

∞
k=1 is the solution of the

Smoluchowski coagulation equations with multiplicative kernel

v̇k(t) =
k

2

k−1∑
l=1

vl(t)vk−l(t)− kvk(t), k ≥ 1 (2)

with initial condition vk(0) = 1[k = 1].
With tc = 1 the phase transition can be described exactly the same way as before

(the only difference is that θ(t) is the density of the giant component). The decay rate of
component size densities at the critical time is vk(tc) � k−3/2 in the Erdős-Rényi model.

The critical forest fire model on the lattice Zd might be informally defined in the
following way: edges are independently switched from closed to open with rate 1, but
if an infinite open component appears, we switch its edges to closed instantaneously. It
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is conjectured by physicists (see [19]) that the forest fire model exhibits self-organized
criticality (S.O.C.): for all t ≥ tc the graph is critical: θ(tc) = 0 and vk(t) decays
polynomially in k.

There are few mathematical results describing forest fire models on Zd: in fact a
rigorously defined graph-valued stochastic process satisfying the informal definition of
the critical forest fire model has not been constructed yet. In [20] and [21] M. Dürre
proves the existence and uniqueness of the subcritical forest fire model satisfying the
following informal definition: edges are independently switched from closed to open with
rate 1 and all the edges of open connected components of size k are switched to closed
with rate λk (a lightning strikes the component with a rate proportional to its size).
Heuristically λ→ 0 yields the critical forest fire model. We modify the dynamical Erdős-
Rényi model in a similar fashion to obtain the mean field forest fire model:

2.2 The model

We start with a graph on n vertices and between each pair of unconnected vertices an
edge appears with rate 1/n, moreover each vertex is exposed to a Poisson process of
lightnings with rate λ(n). If a lightning strikes a vertex, then fire spreads along the edges
instantaneously and burns them: connected components of size k burn down with rate
λ(n) · k and the component is replaced with k isolated vertices. The total number of
vertices remains n.

We investigate the model in the critical regime 1
n
� λ(n) � 1 as n → ∞. Since

λ(n) � 1, the fire doesn’t do much harm to small components, but by 1
n
� λ(n) giant

components of size comparable to n burn immediately.

In order to formulate our problem first have to introduce the proper spaces on which
our processes are defined.

We denote

V :=
{
v =

(
vk
)
k∈N : vk ≥ 0,

∑
k∈N

vk ≤ 1
}
, θ(v) := 1−

∑
k∈N

vk, (3)

V1 :=
{
v ∈ V : θ(v) = 0

}
. (4)

We endow V with the (weak) topology of component-wise convergence. We may interpret
θ as the density of the giant component.

A map [0,∞) 3 t 7→ v(t) ∈ V which is component-wise of bounded variation on com-
pact intervals of time and continuous from the left in [0,∞), will be called a forest fire
evolution (FFE). If v(t) ∈ V1 for all t ∈ [0,∞) we call the FFE conservative. Denote the
space of FFE-s and conservative FFE-s by E , respectively, E1. The space E is endowed
with the topology of component-wise weak convergence of the signed measures corre-
sponding to the functions vk(·) on compact intervals of time. This topology is metrizable
and the space E endowed with this topology is complete and separable.

Define vn,k(t) by (1) and let vn(t) :=
(
vn,k(t)

)
k∈N. Clearly, the random trajectory

t 7→ vn(t) is a (conservative) FFE. We investigate the asymptotics of this process, as
n→∞.
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2.3 Theorems

If 1
n
� λ(n)� 1 then

vn(·) P−→ v(·) =
(
vk(·)

)
k∈N as n→∞

holds, where the deterministic functions t 7→ vk(t) are solutions of the infinite system of
constrained ODE-s

v̇k(t) =
k

2

k−1∑
l=1

vl(t)vk−l(t)− kvk(t), k ≥ 2, (5)

∑
k∈N

vk(t) = 1. (6)

Mind the difference between the system (2) at one hand and the constrained system
(5)+(6) at the other: the first equation from (2) is replaced by the global constraint
(6). A first consequence is that the ODE-s in (5) cannot be solved for k = 1, 2, . . . ,
one-by-one, in turn as opposed to (2): the system of ODE-s is genuinely infinite. The
first main theorem of Chapter 2 states that for a certain class of initial states the system
of constrained differential equations (5)+(6) is well-posed:

Theorem 2.1. If the initial condition v(0) ∈ V1 is such that
∑∞

k=1 k
3vk(0) < +∞ and

the gelation time Tgel is defined by

Tgel :=
( ∞∑
k=1

k · vk(0)
)−1

(7)

then the critical forest fire equations (5)+(6) have a unique solution with the following
properties:

1. For t ≤ Tgel the solution coincides with that of (2) with the same initial condition.

2. For t ≥ Tgel there exists a positive, locally Lipschitz-continuous function ϕ such that

v̇1(t) = −v1(t) + ϕ(t) (8)

and

∞∑
l=k

vl(t) ∼
√

2ϕ(t)

π
k−1/2, as k →∞. (9)

Up to Tgel the solutions of (2), respectively, of (5)+(6) coincide because for t ∈ [0, Tgel]
the solution of (2) satisfies (6). But dramatic differences arise beyond this critical time:
(9) shows that in this regime the random graph dynamics exhibits indeed self-organized
critical behavior : beyond the critical time Tgel it stays critical for ever.
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Theorem 2.2. Let Pn denote the law of the random FFE of the forest fire Markov
chain vn(t) with initial condition vn(0) and lightning rate parameter n−1 � λ(n) � 1.
If vn(0) → v(0) ∈ V1 component-wise where

∑∞
k=1 k

3vk(0) < +∞ then the sequence
of probability measures Pn converges weakly to the Dirac measure concentrated on the
unique solution of the critical forest fire equations (5)+(6) with initial condition v(0). In
particular

∀ε > 0, t ≥ 0 : lim
n→∞

Pn (|vn,k(t)− vk(t)| ≥ ε) = 0

Chapter 2 is devoted to the proof of Theorem 2.1 and Theorem 2.2.

2.4 About the proofs

Now we give an overview of the content of Chapter 2:
In order to prove Theorem 2.2 we want to show that that the sequence of probability

measures
(
Pn
)∞
n=1

is tight using Prohorov’s theorem. From tightness it follows that every

subsequence of
(
Pn
)∞
n=1

has a sub-sub-sequence which converges in probability to some

random FFE. Then we prove that every subsequential limit of
(
Pn
)∞
n=1

is concentrated
on the subset of FFEs satisfying (5)+(6) (which is a set with one single element given
Theorem 2.1), from which Theorem 2.2 follows.

• In order to show the tightness of the sequence
(
Pn
)∞
n=1

we need to show that for
every ε > 0 there exists a compact subset K of FFEs such that

∀ n ∈ N : Pn(K) ≥ 1− ε. (10)

In Section 2.2 we define suitable compact subsets that satisfy (10) and show that
any subsequential limit of

(
Pn
)∞
n=1

is concentrated on the subset of FFEs satisfying
(5).

– In order to do so we introduce auxiliary objects called forest fire flows in
Subsection 2.2.1. The main idea is that we not only register the number of
components of size k at time t for each k ∈ N, but also the number of times
when a component of size k merged with a component of size l before t for
each k, l ∈ N and the number of components of size k that were destroyed by
fire before t for each k ∈ N.

– Then we precisely define the dynamics of the mean field forest fire model in
Subsection 2.2.2: by the mean field property we need not take into account
the graph structure of the connected components: the Markov chain that we
study is a coagulation-fragmentation model (which is a modification of the
Marcus-Lushnikov process, see [32]). Proposition 2.1 proves that

(
Pn
)∞
n=1

is
tight and any subsequential limit is concentrated on the set of solutions of (5).
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– In Subsection 2.2.3 we take the Laplace transform/generating function of
(vk(t))

∞
k=1:

V (t, x) =
∞∑
k=1

vk(t)e
−kx − 1

If (vk(t))
∞
k=1 satisfies (5)+(6) then V (t, x) solves a more tractable controlled

PDE which we call the Burgers control problem:

Find a control function ϕ : [0,∞)→ [0,∞) such that

∂tV (t, x) = −1

2
∂xV

2(t, x)+ϕ(t)e−x, V (0, x) =
∞∑
k=1

vk(0)e−kx−1, V (t, 0) ≡ 0.

(11)

• In Section 2.3 we investigate the behavior of V (t, x) as x→ 0+, which is related to
the tail behavior of (vk(t))

∞
k=1 by Tauberian theory.

– In Subsection 2.3.1 we define X(t, u) by X(t,−V (t, x)) = x and formulate
various aspects of the fact that if ∂uX(t, u)|u=0 = 0 and ∂2

uuX(t, u) � 1 for
some fixed t as x→ 0+ then we have

X(t, u) � u2 ⇐⇒ |V (t, x)| �
√
x ⇐⇒

∞∑
l=k

vl � k−1/2 (12)

– In Subsection 2.3.2 we apply the method of characteristics to the Burgers
control problem to show that ∂2

uuX(0, u) � 1 implies ∂2
uuX(t, u) � 1. We use

this to show that the mass contained in the giant component cannot grow too
fast: d

dt
θ(t) ≤ C∗ for some C∗ < +∞.

– In Subsection 2.3.3 we prove that any subsequential limit of the sequence(
Pn
)∞
n=1

is concentrated on the subset of FFEs satisfying (6). This proof is

quite technical: 1
n
� λ(n) only guarantees the destruction of components of

size comparable to n and one has to work hard proving

lim
N→∞

lim
n→∞

∑
k≥N

vn,k(t) = 0.

A key element of the proof is that we take the generating function of the
random vector

(
vk,n(t)

)n
k=1

defined by (1) and derive results about the tail

behavior of
(
vk,n(t)

)n
k=1

using Laplace transform estimates and the method of
(random) characteristics.

• In Section 2.4 we prove Theorem 2.1 by applying methods from the theory of first
order nonlinear PDE to the Burgers control problem (11).
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– In Subsection 2.4.1 we prove that any solution of (11) satisfies ∂xV (t, x)|x=0 =
−∞ for all t ≥ Tgel. Thus with the notations of Subsection 2.3.1 we have
∂uX(t, u)|u=0 = 0 from which (12) follows: for all t ≥ Tgel the system is
critical.

– In Subsection 2.4.2 we show

lim
x→0

1

2
∂xV

2(t, x) = ϕ(t) (13)

(this fact formally follows from (11)) and derive fine properties of the solution
of (11) from

∑∞
k=1 k

3vk(0) < +∞, e.g. that ϕ(t) is locally Lipschitz-continuous
on [Tgel,+∞).

– In Subsection 2.4.3 we use the method of characteristics to prove that the
solution of (11) is unique from which uniqueness of (5)+(6) and Theorem 2.1
follows.

3 Mean field frozen percolation

3.1 Context

The frozen percolation process on a binary tree was defined by D. J. Aldous in [3]: it is
a modification of the dynamical percolation process which makes the following informal
description mathematically rigorous: we only occupy an edge if both end-vertices are in a
finite cluster. The self-organized critical property of this model manifests in the fact that
for t ≥ 1

2
, which is the critical time of the corresponding percolation process, a typical

finite cluster has the distribution of a critical percolation cluster.
I. Benjamini and O. Schramm showed that it is impossible to define a similar modifi-

cation of the percolation process on Z2. An explanation of this non-existence result can
be found in Section 3. of [8].

3.2 The model

The definition of the mean field frozen percolation model is the same as that of the mean
field forest fire model (between each pair of unconnected vertices an edge appears with
rate 1/n, moreover each vertex is exposed to a Poisson process of lightnings with rate
λ(n)) except that in the frozen percolation model we remove the vertices as well as the
edges of burnt connected components.

The two models are in the same universality class: if 1
n
� λ(n) � 1 then we have

vnk (t)→ vk(t) in probability as n→∞ where (vk(t))
∞
k=1 solves Stockmayer’s coagulation

equation:

∀ k ≥ 1 v̇k(t) =
k

2

k∑
l=1

vl(t)vk−l(t)− k · vk(t)
∞∑
l=1

vl(t). (14)
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The solution of (14) with initial condition vk(0) = 1[k = 1] is well-known (see [39]) and
has a similar self-similarity property as the frozen percolation process on the binary tree.

We might start the frozen percolation with a non-empty initial graph which corre-
sponds to solving (14) with a general initial condition. The solutions are still explicit
and the model exhibits S.O.C.: for all t ≥ Tgel we have (9) where

ϕ(t) :=
d

dt

∞∑
k=1

vk(t). (15)

The mean field forest fire model and the mean field frozen percolation model are conjec-
tured to be in the same universality class but the differential equations corresponding to
the mean field frozen percolation model have a more explicit solution, which allows us to
prove more about this model.

In the frozen percolation model on the binary tree, components are burnt/frozen/removed
when their size becomes infinite. The question may arise:

What is the typical size of a frozen component in the mean field frozen percolation
model?

3.3 A conjecture

In order to precisely formulate this question let 0 ≤ t1 < t2 and denote

Φn([t1, t2], k) :=
k

n
· |{ components of size k burnt in [t1, t2] }| .

Define the mass of components burnt in [t1, t2] by

Φn([t1, t2]) :=
∑
k≥1

Φn([t1, t2], k).

Thus pnk [t1, t2] := Φn([t1,t2],k)
Φn([t1,t2])

, k = 1, 2, . . . is a random probability distribution for all N
and t1 < t2.

Conjecture 3.1. We consider a sequence of frozen percolation processes with convergent
initial conditions vn(0)→ v(0). If λ(n) = n−α where 0 < α < 1 and if we define

β(α) :=

{
2α if α ≤ 1

3
α+1

2
if α ≥ 1

3

(16)

then for every v(0), Tgel < t1 < t2 and α there exists a non-defective probability distribu-
tion function F : (0,∞) → (0, 1), limx→0+ F (x) = 0, limx→∞ F (x) = 1 such that for all
x ∈ R+ we have

lim
n→∞

∑
k≥1

1[ k ≤ x · nβ(α) ] · pnk [t1, t2] = F (x) (17)
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In plain words we might say that after gelation the typical component size of a frozen
vertex is of order nβ(α). This conjecture is supported by heuristic arguments, computer
simulations and Theorems 3.1 and 3.2 below. For 0 < α < 1

3
the model is conjectured

to behave similarly to the case described in Theorem 3.1, whereas for 1
3
< α < 1 it is

conjectured to behave similarly to the case described in Theorem 3.2. Note that β(1
3
) = 2

3

and n
2
3 is the order of the size of the largest component in the critical Erdős-Rényi random

graph.

3.4 Theorems

In Chapter 3 of the thesis we investigate the behavior of the frozen percolation model on
the ”boundary of the critical regime” to prove the following results:

• If the lightning rate is λ(n) ≡ λ∗ then the frozen percolation model is subcritical and
vnk (t)→ vk(t) where (vk(t))

∞
k=1 is the solution of the λ∗-subcritical frozen percolation

equations (an infinite system of ODE’s similar to (14)). As λ∗ → 0 the solutions of
the subcritical equation converge to the solutions of (14) and the typical size of a
frozen component is of order λ−2

∗ when λ∗ � 1, see Theorem 3.1 below.

• If the lightning rate is λ(n) = λ∗

n
then giant components are born and destroyed

from time to time and the n→∞ limit of vnk (t) is a randomly controlled solution of
the Smoluchowski coagulation equations alternating between subcritical and super-
critical phase. As λ∗ → +∞ the solutions of the randomly controlled alternating
equation converge to the solutions of (14) and the typical size of a frozen component
is of order n · (λ∗)−1/2 when 1� λ∗, see Theorem 3.2 below.

Theorem 3.1. We consider a sequence of frozen percolation processes with λ(n) ≡ λ∗
and convergent initial conditions vn(0)→ v(0), moreover we assume that there exists an

M ∈ N such that ∀n,∀ k ≥M : vn,k(0) = 0. Denote by pn,λ∗k [t1, t2] = Φn([t1,t2],k)
Φn([t1,t2])

.
Then we have

lim
λ∗→0

lim
dt→0

lim
n→∞

∑
k≥1

1[ k ≤ x · 2ϕ(t) · (λ∗)−2 ] · pn,λ∗k [t, t+ dt] =

∫ x

0

1√
π

1
√
y
e−ydy (18)

where ϕ(t) is defined by (15) using the solution of (14) with initial condition v(0).

Note that the formulation of this theorem is slightly different in the thesis (see The-
orem 3.8 in Subsection 3.1.5).

The r.h.s. of (18) is the distribution function of the Γ(1
2
, 1) distribution.

The relevance of Theorem 3.1 to Conjecture 3.1 is the following: (18) is a version of
(17) in the sense that if λ∗ = n−α for some small α then (18) suggests that the typical
component size of a frozen vertex is of order (λ∗)

−2 = n2α, thus β(α) = 2α, which is in
agreement with (16).

We prove Theorem 3.1 in Section 3.5 of the thesis using Laplace transform methods.
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Theorem 3.2. We consider a sequence of frozen percolation processes with λ(n) = λ∗

n

and convergent initial conditions vn(0)→ v(0), moreover we assume that there exists an

M ∈ N such that ∀n,∀ k ≥M : vn,k(0) = 0. Denote by pn,λ
∗

k [t1, t2] = Φn([t1,t2],k)
Φn([t1,t2])

.
Then we have

lim
dt→0

lim
λ∗→∞

lim
n→∞

∑
k≥1

1[k ≤ 2

√
ϕ(t)

λ∗
· x · n] · pn,λ

∗

k [t, t+ dt] =

∫ x

0

4√
π
y2e−y

2

dy (19)

where ϕ(t) is defined by (15) using the solution of (14) with initial condition v(0).

Note that the formulation of this theorem is slightly different in the thesis (see The-
orem 3.9 in Subsection 3.1.5).

The r.h.s. of (19) is the distribution function function of the size-biased Rayleigh
distribution (see Definition 3.6.3 in Subsection 3.6.1).

The relevance of Theorem 3.2 to Conjecture 3.1 is the following: (19) is a version
of (17) in the sense that if λ(n) = nε

n
for some small ε (that is α = 1 − ε) then (19)

suggests that the typical component size of a frozen vertex is of order
√

1
nεn = n1−ε/2,

thus β(α) = α+1
2

, which is in agreement with (16).
We prove Theorem 3.1 in Section 3.6 of the thesis using a coupling argument, the key

observation is that the size of the giant component grows linearly right after its birth.

4 The edge reconnecting model

4.1 Context

In recent years a limiting theory has been developed for dense graph sequences (in dense
graphs the number of edges is comparable with |V (G)|2). Roughly speaking, a sequence
(Gn)∞n=1 of simple graphs converges if for any fixed testgraph F , the density of copies of
F found in Gn (called the homomorphism density) converges as n → ∞. It was shown
in [30] that the limit object can be represented by a symmetric measurable function
W : [0, 1]2 → [0, 1]. Such functions are called graphons.

A connection between the theory of dense graph limits and that of infinite exchange-
able arrays of random variables was first observed in [18]: if we label the vertices of our
graphs with a uniformly chosen permutation then a graph sequence converges if and only
if the sequence of the randomly labeled adjacency matrices converge in distribution to
an infinite adjacency matrix.

A natural generalization of the theory of dense graph limits to multigraphs (graphs
with loop and multiple edges) is given in [28] (joint work with István Kolossváry). We
named the limit objects multigraphons.

4.2 The model

We introduce the edge reconnecting model, a random multigraph (undirected graph with
multiple and loop edges) evolving in time. Denote the multigraph at time T by Gn(T ),
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where T = 0, 1, 2, . . . and n = |V (Gn(T ))| is the number of vertices. We denote by
m = |E(Gn(T ))| the number of edges (the number of vertices and edges does not change
over time).

Given the multigraph Gn(T ) we get Gn(T + 1) by uniformly choosing an edge in
E(Gn(T )), choosing one of the endpoints of that edge with a coin flip and reconnecting
the edge to a new endpoint which is chosen using the rule of linear preferential attachment:
a vertex v is chosen with probability d(v)+κ

2m+nκ
, where d(v) is the degree of vertex v in Gn(T )

and κ ∈ (0,+∞) is a parameter. We give the formal definition of the edge reconnecting
model in Section 4.2 of the thesis.

Our aim is to describe the time evolution of edge reconnecting model Gn(T ) when
1� n using the terminology of dense graph limits. The notion of convergence of simple
graph sequences was defined in [30] (with notations slightly different from what we are
using now): we say that a sequence of simple graphs (Gn)∞n=1 is convergent if for every
simple graph F the limit limn→∞ t=(F,Gn) exists, where

t=(F,G) =
1

n|V (F )|

∑
ϕ:V (F )→V (G)

1[∀ v, w ∈ V (F ) : E(v, w) = E(ϕ(v), ϕ(w))] (20)

and E(v, w) denotes the number of edges between v and w. In [30] several equivalent
characterizations of graphons (limit objects of convergent graph sequences) are given. In
[28] a natural generalization of the theory of dense graph limits to multigraphs is given: a
sequence of multigraphs (Gn)∞n=1 is convergent if for every multigraph F the limit g(F ) =
limn→∞ t=(F,Gn) exists (moreover g(·) is a ”non-defective probability distribution”, see
Definition 4.3.2 for details) where t=(F,G) is defined by (20). The limit object of a
convergent multigraph sequence is a W : [0, 1]× [0, 1]× N0 → [0, 1] function satisfying

W (x, y, k) ≡ W (y, x, k),
∞∑
k=0

W (x, y, k) ≡ 1, W (x, x, 2k + 1) ≡ 0.

Such functions are called multigraphons. We say that Gn → W if for every k ∈ N and
every multigraph F with k vertices we have limn→∞ t=(F,Gn) = t=(F,W ) where

t=(F,W ) :=

∫
[0,1]k

∏
v≤w≤k

W (xv, xw, E(v, w)) dx1 dx2 . . . dxk.

We give a short survey of the theory of multigraph limits in Section 4.3.
If Gn is a random multigraph on n vertices for each n ∈ N and if for all F multigraphs

we have t=(F,Gn)
d−→ t=(F,W ) for some multigraphon W as n→∞, that is

∀F ∀ ε > 0 : lim
n→∞

P
(
|t=(F,Gn)− t=(F,W )| > ε

)
= 0 (21)

then we say that the sequence Gn converges to W in probability, Gn
d−→ W .

12



For a multigraphon W and x ∈ [0, 1] we define the average degree of W at x and the
edge density of W by

D(W,x) :=

∫ 1

0

∞∑
k=0

k ·W (x, y, k) dy (22)

ρ(W ) :=

∫ 1

0

∫ 1

0

∞∑
k=0

k ·W (x, y, k) dy dx (23)

If ρ(W ) < +∞ then D(W,x) < +∞ for almost all x.
Let G be a multigraph on n vertices. The adjacency matrix of a labeling of the

multigraph G with [n] = {1, 2, . . . , n} is denoted by (B(i, j))ni,j=1, where B(i, j) ∈ N0 =
{0, 1, 2, . . . } is the number of edges connecting the vertices labeled by i and j. B(i, j) =
B(j, i) since the graph is undirected and B(i, i) is two times the number of loop edges at
vertex i (thus B(i, i) is an even number).

We denote the set of adjacency matrices of multigraphs on n nodes by An, thus

An =
{
B ∈ Nn×n

0 : BT = B, ∀ i ∈ [n] 2 |B(i, i)
}
.

4.3 Theorems

Recall the formulas defining the Poisson, Binomial and Gamma distributions:

p(k, λ) := e−λ
λk

k!
(24)

b(k, n, p) :=

(
n

k

)
pk(1− p)n−k (25)

g(x, α, β) := xα−1β
αe−βx

Γ(α)
1[x > 0] (26)

We describe the evolution of the edge reconnecting model by describing the evolution
of the limiting multigraphons. We consider a sequence of initial multigraphs (Gn)∞n=1

which converge to a multigraphon W . We assume |V (Gn)| = n. We denote the adjacency
matrix of Gn by Bn ∈ An. We assume that the technical condition

∃λ > 0, C < +∞ ∀n :
1(
n
2

) ∑
i≤j≤n

eλBn(i,j) ≤ C,
1

n

n∑
i=1

eλBn(i,i) ≤ C (27)

holds.
First we state Theorem 4.1 about the evolution of the edge reconnecting model on

the T = O(n2) timescale.

Theorem 4.1. Let us fix κ ∈ (0,+∞). We consider the edge reconnecting model Gn(T ),
T = 0, 1, . . . , with the adjacency matrix of the initial state Gn(0) being Bn for n = 1, 2, . . . .
We assume Bn → W for some multigraphon W and that (27) holds.

13



Then for all t ∈ [0,+∞) we have

Gn
(
bt · ρ(W ) · n2

2
c
)

d−→ Wt as n→∞ (28)

where

Wt(x, y, k) =

∞∑
h=0

W (x, y, h)
k∑
l=0

b(l, h, e−t)) · p
(
k − l, D(W,x) ·D(W, y)

ρ(W )
(1− e−t))

)
if x 6= y (29)

Wt(x, y, k) =

1[2|k] ·
∞∑
h=0

W (x, y, h)

k
2∑
l=0

b(l,
h

2
, e−t)) · p

(
k

2
− l, D(W,x) ·D(W, y)

2ρ(W )
(1− e−t))

)
if x = y (30)

We give an intuitive explanation of Theorem 4.1 in Section 4.6 by relating the evo-
lution of the number of parallel/loop edges between two vertices to the evolution of the
queue length of an M/M/∞-queue. We rigorously prove Theorem 4.1 in Section 4.9.

Now we look at the evolution of the edge reconnecting model on the T = O(n3)
timescale.

Theorem 4.2. Let us fix κ ∈ (0,+∞). We consider the edge reconnecting model Gn(T ),
T = 0, 1, . . . , with the adjacency matrix of the initial state Gn(0) being Bn for n = 1, 2, . . . .

We assume Bn → W for some multigraphon W and that (27) holds.
Then for all t ∈ (0,+∞) (but not for t=0) we have

Gn
(
bt · ρ(W ) · n3c

) d−→ Ŵt as n→∞ (31)

where

Ŵt(x, y, k) =

 p(k,
F−1

t (x)F−1
t (y)

ρ(W )
) if x 6= y

1[2|k] · p
(
k
2
,
F−1

t (x)F−1
t (y)

2ρ(W )

)
if x = y

(32)

and F−1
t is the inverse function of Ft(x) =

∫ x
0
f(t, y) dy where

f(t, x) =

∫ ∞
0

∞∑
i=0

p(i, z · τ(α, t))g(x, κ+ i, τ(α, t) + α) dF0(z), (33)

α = κ
ρ(W )

, τ(α, t) = α
exp(αt)−1

and F0(x) =
∫ 1

0
1[D(W, y) ≤ x] dy, x ∈ [0,+∞).
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We prove Theorem 4.2 in Section 4.10, but first we give an intuitive explanation in
Section 4.6 by relating the evolution of the degree of a vertex to a diffusion process (the
C.I.R. process).

Summarizing Theorem 4.1 and Theorem 4.2, we have

Gn(t · ρ(W )

2
· n2)

d−→ Wt and Gn(t · ρ(W ) · n3)
d−→ Ŵt (34)

where the multigraphons Wt and Ŵt are explicit functions of t, W and the linear prefer-
ential attachment parameter κ. Moreover we have

lim
t→0+

Wt = W, lim
t→∞

Wt = lim
t→0+

Ŵt, lim
t→∞

Ŵt = W∞ (35)

where W∞ is the limiting multigraphon of the stationary states of the edge reconnecting

models: Gn(∞)
d−→ W∞. Thus by (35) the convergence theorems (34) give the full

characterization of the time evolution of the multigraphons arising as the graph limits of
the edge reconnecting model.

Although the above theorems are stated using the ”multigraphon” formalism, in their
proofs we use the correspondence between the theory of graph limits and that of ex-
changeable arrays, a connection first observed in [18]. In Section 4.5 we show how the
convergence of the values t=(F,Gn) is related to the convergence in distribution of the
minors of the randomly relabeled adjacency matrices of the multigraphs (Gn)∞n=1.

4.4 About the proofs

In Section 4.6 we give the intuitive explanation of these results using exchangeable arrays.
These sketch proofs also serve as an outline of the rigorous proofs. The basic idea is
to relate the time evolution of the edge reconnecting model to certain continuous-time
stochastic processes using an appropriate rescaling of time:

• If we fix a vertex v ∈ V (Gn(0)) and denote by d(T, v) the degree of v in Gn(T )
then the evolution of the R+-valued continuous-time stochastic process 1

n
d(n3 · t, v)

”almost looks like” that of a Cox-Ingersoll-Ross process (a diffusion process that is
commonly used in financial mathemathics to model the evolution of interest rates).
This fact is rigorously proved using the theory of stochastic differential equations

and is used in the proof of Gn(t · n3)
d−→ W̃t.

• If we fix two vertices v, w ∈ V (Gn(0)) and denote by E(T, v, w) the number of
parallel/loop edges connecting v and w in Gn(T ) then the evolution of the N-valued
continuous-time stochastic process E(n2 · t, v, w) ”almost looks like” that of the
queue length of an M/M/∞-queue. This fact is rigorously proved using a coupling

argument and is used in the proof of Gn(t · n2)
d−→ W̆t.
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The most interesting property of the edge reconnecting model is the separation of
two different timescales : the degrees of the vertices only change significantly on the n3

timescale, whereas the number of parallel (or loop) edges between two vertices evolves
on the much faster n2 timescale. The arrival rate of the M/M/∞-queue describing the
evolution of E(n2 ·t, v, w) depends on the current degrees of v and w, but since the degrees
evolve on the much slower n3 timescale, they may be treated as constant background
parameters on the n2 timescale. If we fix k vertices in the model and denote by Gkn(T )
the random subgraph of Gn(T ) spanned by these vertices then theMk-valued stochastic
process Gkn(n3 · t + n2 · s) looks stationary in the time variable s ∈ R if t ∈ (0,+∞) is
fixed and 1 � n, but different values of t yield distinct pseudo-stationary distributions
since n3 · (t2− t1) steps are enough for the background variables (degrees) to significantly
change.

This phenomenon is called aging in statistical physics, see [4] and [9].

In Section 4.7 we explicitly describe the stationary distribution Gn(∞) of the edge

reconnecting model by relating it to the Pólya urn model and prove Gn(∞)
d−→ W∞.

As an intermediate step we describe the multigraph limits of random multigraphs which
are uniformly chosen from the set of multigraphs with a given degree sequence (this
construction is known as the configuration model in the theory of random graphs).

In Section 4.8 we state and prove technical lemmas needed for the proof of Theorem
4.1 in Section 4.9 and the proof of Theorem 4.2 in Section 4.10.
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