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1 Introdu
tionOne of the fastest growing se
tor of the software industry is that of the Internet 
ompanies, leadby the major sear
h engines: Google, Yahoo and MSN. The importan
e of this �eld is even moreemphasized by the plans of almost unpre
edented magnitude that the European Union is pursuingto ease their dependen
e on these US-based te
hnologi
al �rms.The s
ienti�
 and te
hnologi
al di�
ulties of this �eld are dominated by the mere s
ale: theweb is estimated to 
ontain tens to hundreds of billions of pages, with an exponential in
rease forover a de
ade and without showing any signs of that growth slowing down. At this s
ale, even thesimplest mathemati
al 
onstru
ts, su
h as a set of linear equations or a matrix inversion are turningout to be infeasible or pra
ti
ally unsolvable.This thesis and the underlying publi
ations provide solutions to 
ertain of these s
alabilityproblems stemming from 
ore web sear
h engine resear
h. The a
tual problems and their abstra
tsolutions are not ours; they were des
ribed in earlier works of seminal authors of the �eld, generating
onsiderable interest. Nevertheless, it was our work showing the �rst methods whi
h 
ould reallys
ale to the size of the web without serious limitations.A parti
ularly important aspe
t of our solutions is that they are not only theoreti
ally appli
ableto the web, but also very pra
ti
al: they follow fairly 
losely and naturally �t into the ar
hite
tureof a web sear
h engine; the algorithms are parallelizable or distributed; the 
omputational modelwe assumed is the one that is present in all 
urrent major data 
enters; and the query serving partsshow 
hara
teristi
s very important for industrial appli
ations, su
h as fault toleran
e.An important pri
e we pay for these bene�ts is that out methods give approximate solutionsto the abstra
t formulation. However, on one hand we have stri
t bounds on the approximationquality, on the other hand we formally prove that this is the only way to go: we give lower boundson the resour
e usage of any exa
t method, prohibiting their appli
ation on datasets on the Webs
ale.2 OverviewThe thesis presents results in three groups of 
laims.In the �rst set of 
laims we 
onsider the problem of personalized web sear
h, also 
alled aspersonalized ranking. General web sear
h has a stati
, global ranking fun
tion that the engine usesto sort the results a

ording to some notion of relevan
e that depends on the query but not the user.However, relevan
e 
an easily di�er from user to user, e.g. a 
omputer geek and a history tea
hermay �nd di�erent sites authoritative and interesting for the same query. Personalized web sear
hallows users to spe
ify their preferen
e, and this preferen
e parametrizes the ranking fun
tion. AsPageRank is the most su

essful stati
 ranking fun
tion, the personalized version, PersonalizedPageRank [23℄ is of parti
ular interest. All earlier methods for 
omputing personalized PageRank[10, 16, 17℄ had severe restri
tions on what personalization they allowed [13℄. In our work weprovided the �rst Personalized PageRank algorithm allowing arbitrary personalization and stills
aling to the full Web.In the se
ond set of 
laims we 
onsider the problem of similarity sear
h in massive graphs su
has the web. Similarity sear
h is not only motivated by advan
ed data mining algorithms requiringeasily 
omputable similarity fun
tions su
h as 
lustering algorithms, but also by the `Related pages'fun
tionality of web sear
h engines, where the user 
an query by example: supplying the URL of aweb page of interest, the sear
h engine replies by good quality pages on a similar topi
. Traditionalsimilarity fun
tions stemming in so
ial network analysis su
h as 
o-
itation express the similarityof two nodes in a graph by using only the neighbors of the nodes in question. However, 
onsideringthe size and depth (e.g. average diameter) of the web graph, this is just as inadequate as usingdegree as a ranking fun
tion. We 
onsider the similarity fun
tion proposed by Jeh and Widom,SimRank [15℄, whi
h is a re
ursive de�nition similar to that of PageRank. Our methods providedthe �rst algorithm that s
aled beyond graphs of a few hundred thousand nodes.2



In the above areas we follow the same outline: We �rst give approximation algorithms for theproblem, analyzing the approximation quality and 
onvergen
e speed. Then we 
laim impossibil-ity results about non-approximation approa
hes, proving prohibitive spa
e 
omplexity. Finally wevalidate the methods using experiments on real Web datasets.In the �nal 
laims we pursue further impossibility results on similarity fun
tions of massivegraphs. We 
onsider the de
ision problem: is there a pair of vertexes in a graph that share a
ommon neighborhood of a parti
ular size? (This is equivalent to the existen
e of the 
ompletebipartite graph K2,c as a subgraph.) We are parti
ularly interested in the spa
e 
omplexity ofthe problem in the data stream model: an algorithm A is allowed to read the set of edges of thegraph sequentially, and after having one or 
onstant many passes, it has to output the answer tothe de
ision problem. We lower bound the temporary storage use of any su
h algorithm in therandomized 
omputation model. The relevan
e of this problem to web sear
h is that an algorithm
A for the de
ision problem 
an be emulated by a sear
h engine. During the prepro
essing phasethe sear
h engine indexer 
an read the input a few times, produ
ing an index database. Then thesear
h engine query pro
essor 
an answer queries only the index database, and a proper sequen
eof queries gives us the answer to the de
ision problem. Therefore any lower bound we prove on thede
ision problem applies either to the temporary storage requirements of the indexer, the queryengine, or the index database size. A prohibitive (say, quadrati
 in the input size) lower boundmakes it impossible to build a query engine that 
an feasibly serve similarity queries up to therequired pre
ision.3 Resear
h obje
tivesDuring our work we seek to answer the following questions with regards to the SimRank similarityfun
tion and the Personalized PageRank ranking fun
tion:

• Find a s
alable approximation algorithm that 
omputes these s
ores at query serving time.
• Prove that there exists no s
alable algorithm that would 
ompute the exa
t s
ores.
• How good is the approximation returned by our algorithm?
• What are the resour
e requirements of our algorithm? Show that our solution adheres thes
alability requirements by 
ondu
tion experimental runs on su�
iently large inputs.
• Are the mathemati
al de�nitions usable in pra
ti
e? What is the quality of result lists deliv-ered by these algorithms? Present an experimental quality evaluation on real Web datasets.Present experimental eviden
e that these fun
tions are better suited to the Web than the
lassi
 solutions.
• Parameter tuning: How shall we set the parameters in our solution to gain su�
ient qualityresults with a

eptable resour
e 
onsumption?
• De�ne new fun
tions and analyze them a

ording to the above 
riterion.It is easy to see that the 
entral 
on
ept to our resear
h goals is that of s
alable algorithms. Dueto the sheer size of the Web as a dataset many spe
ialized systems and ar
hite
tures were 
reatedto deal with this 
hallenge [4, 2, 8℄. We 
onsider an algorithm s
alable for web sear
h engines if itful�lls the following requirements [24, 19℄:
• Pre
omputation:The method 
onsists of two parts: an o�-line pre
omputation phase, whi
his allowed to run for about a day to pre
ompute an index database, and an on-line queryserving part, whi
h 
an a

ess only the index database, and needs to answer a query withina few hundred millise
onds. 3



• Time: The index database is pre
omputed within the time of a sorting operation, up to a
onstant fa
tor. To serve a query the index database 
an only be a

essed a 
onstant numberof times.
• Memory: The algorithms run in external memory : the available main memory is 
onstant,so it 
an be arbitrarily smaller than the size of the Web graph. In some 
ases we will 
on-sider semi-external-memory algorithms [21℄ with linear memory requirement in the numberof vertexes in the web graph, with a small 
onstant fa
tor.
• Parallelization: Both pre
omputation and query part 
an be implemented to utilize the
omputing power and storage 
apa
ity of thousands of servers inter
onne
ted with a fastlo
al network.4 Resear
h methodsThe algorithms we developed 
an be 
lassi�ed as �ngerprint-based data mining algorithms, thetextbook example of whi
h was established by Broder [6℄. These methods operate by expressingthe result as an expe
tation of a random variable, and then by taking N independent sample(�ngerprint) we estimate the result via Monte Carlo method.To 
reate probabilisti
 reformulations of PageRank and similar problems we heavily rely on therandom walk-based expression of PageRank: on one hand the stationary distribution of the uniformrandom walk (Markov-
hain) on the graph [23℄, on the other hand the ending point of the randomwalk with uniform starting point and geometri
ally distributed length [9℄.To show the infeasibility of exa
t 
omputation of the measures in question we prove lower boundson the spa
e 
omplexity of the problems. We use the methodology developed for analyzing graphalgorithms in the data stream model [14℄, where we redu
e the problems at hand to 
ommuni
ation
omplexity games [20℄, mostly the bit-ve
tor probing problem.In the experimental evaluation of Personalized PageRank we 
ompare the 
loseness of approxi-mation to the algorithm by Jeh and Widom [16℄. To 
ompare the resulting ranking orders we usethe methodology applied in PageRank resear
h [18, 11, 26℄.In the experimental evaluation of similarity sear
h fun
tions we use the methodology developedby Haveliwala [12℄, where we utilize a high-quality Internet Dire
tory, the Open Dire
tory Proje
t(DMOZ) [22℄. Taking the 
ategory 
lassi�
ation of the dire
tory as a base truth, we quantify thequality of similarity sear
h fun
tions by how 
lose it 
an reprodu
e the 
ategory 
lassi�
ation.5 New ResultsClaim 1: Monte Carlo algorithm for 
omputing Personalized PageRankThe main problem of the 
urrently prevalent model of Web Sear
h is that the user has to expressher information need as a keyword query. This is a very di�
ult task, espe
ially for the averageuser. If the query is too spe
i�
, 
ontains too many words, there is a good 
han
e that the page theuser is looking for does not mat
h it, be
ause it happens to phrase the information with di�erentwording � this is the problem of re
all. On the other hand, if the query is too generi
, 
ontainstoo few words, then millions of other pages will mat
h it, and from this long result list it is quiteimpossible to sele
t the page that the user will be interested in � this is the problem of pre
ision.Due to the re
all problem the users' behavior has shifted to phrasing simple, very short sear
hqueries, a

epting the large multitude of results. Therefore the algorithms behind the sear
h enginewill have the main obje
tive to ta
kle the pre
ision problem by presenting the result list in an orderto the user where the most relevant pages are in the top few results.The ranking problem has been studied extensively, and the solutions 
an be 
lassi�ed a

ordingto several aspe
ts. A lo
al ranking algorithm 
onsiders a single page at a time, whereas a global4



ranking algorithm runs on the entire dataset. A stati
 ranking 
omputes a �xed ranking from thedataset and applies this ranking for every query, whereas dynami
 ranking algorithms are query-dependent. In pra
ti
e we typi
ally use a mixture of algorithms, for example a lo
al stati
 algorithmfor identifying and �ltering mali
ious web pages (e.g. malware), a lo
al dynami
 algorithm to s
orethe keyword mat
hes in the page (e.g. weight mat
hes in the title or in large font higher), and aglobal stati
 algorithm to represent the popularity of the result page on the entire Web (to 
apturethe quality of the page).In this last 
ategory of ranking algorithms the most widely resear
hed method is PageRank[23℄, sin
e many believe it to be the driving fa
tor behind the quality and popularity of the leadingsear
h engine, Google. PageRank is based on the following assumption:A hyperlink u → v is the vote of page u for the quality of 
ontent of page v.This intuition is applied re
ursively in the de�nition of PageRank in that the PageRank valueof a web page v 
an be 
omputed from the PageRank values of the pages linking to v.A major drawba
k of the PageRank algorithm is that it is stati
, it 
omputes the relevan
e ofa web page as one single number, and applies the same de
ision to all queries, no matter if it isan Ameri
an 
omputer s
ientist or a Mongolian history tea
her asking. This drawba
k is �xed bypersonalization, where we 
an 
ompute the relevan
e values based on the judgment of a subset ofa Web, and aim to have the ability to set this subset individually for ea
h user.The main di�
ulty of Personalized PageRank [5, 23℄ that the starting point, the personalizationis only available at query time. This makes the usual PageRank 
al
ulation methods infeasible,sin
e they typi
ally require several hours of 
omputation, and even the most patient users 
annotbe expe
ted to wait that long in hope for the bene�ts of personalization. Several groups have beenseeking s
alable methods for personalization [10, 16, 17, 13℄, but all of these prior work have hadsigni�
ant restri
tions on how the personalization 
an be expressed. The main result of this 
laimis an algorithm that allows unrestri
ted personalization:Claim 1.1 [J4, C9℄. A s
alable randomized algorithm for 
omputing PersonalizedPageRank s
ores that returns an unbiased estimation for any personalization startingpoint with 
onstant many database a

esses from an index database with a size linearin the number of web pages. Improvement of the approximation quality by utilizing thedatabase re
ords for the neighbors of the starting page.Sin
e the Personalized PageRank values are linear in the weighted starting distribution ve
tor[10℄, we 
an rea
h arbitrary personalization based on this result.Of 
ourse for the feasibility of the above method we need to be able to 
ompute the indexdatabase using a s
alable method. I have given two solutions to this problem, of whi
h on 
ansele
t based on the available resour
es.Claim 1.2 [J4, C9℄. External memory indexing method 
omputing the index databaseof Claim 1.1 on a graph with V nodes and average degree d, using M internal memorywith Θ(V (N logM NV + Ld)) I/O operations, where N is a 
onstant 
ontrolling theapproximation quality, and L is a 
onstant appropriate for the mixing speed of thegraph.Substituting the values of the 
onstant resulting from the experimental evaluation in the thesis(L = 20, d = 10, N = 100, V = 1010, M = 1GB) we get a total I/O requirement of 256 TB, whi
h
an be performed using 60 disk in a day. The a
tual spa
e used is 8 TB, and sin
e the algorithmonly uses external memory sort and merge to run, the disk a

ess 
an be performed in blo
ks of upto several hundred megabytes, thereby rea
hing the peak data transfer speed of modern disks.
5



Claim 1.3 [J4, C9℄. Indexing method for 
omputing the database of Claim 1.1 using
K 
omputers inter
onne
ted with a fast lo
al-area network, where the total memoryof the 
omputers is su�
ient to store the entire Web graph, with the expe
ted total
ommuni
ation of Θ(NV ).In the re
ent years very sophisti
ated methods were developed for storing the Web graph inmain memory [1, 3℄, whi
h require only a few bits per link. However, using a mu
h simpler approa
hallowing faster pro
essing we 
an still perform the 
omputation using 100 typi
al workstation-sizedma
hines. Substituting the above mentioned 
onstants and using everyday network te
hnologiesthe indexing 
an be 
ompleted with 100 ma
hines in about an hour.Claim 2: Analyzing and improving Monte Carlo methods for 
omputingthe SimRank similarity fun
tionAs we mentioned in the introdu
tion of Claim 1, one of the main problems of Web sear
h is that ofthe di�
ulty of formulating keyword queries (from the perspe
tive of the user), and the di�
ultyof understanding the keyword queries (from the perspe
tive of sear
h engines). A possible solutionto this problem is to ask for more data from the user when she spe
i�es a sear
h query. Of 
oursewe don't want to 
ompli
ate the sear
h work�ow and disrupt its �uen
y by 
lari�
ation questionsor 
ompli
ated UI, therefore it is espe
ially useful if the sear
h query 
ontains some impli
it extrainformation.One possibility of su
h impli
it extra information is sear
h by example. In this mode of operationthe user spe
i�es an existing web page as a query instead of some keywords, and expe
ts a responseof a list of web pages in the same topi
. This fun
tionality has been available sin
e the beginningon the sear
h result pages of sear
h engines under the link �Similar Pages�. Despite this beingprobably the most often displayed link today (sin
e it appears many times on all sear
h resultpages) it re
eives relatively little tra�
, most probably be
ause the 
urrent algorithms returnresults of varying quality.It is reasonable to assume that advan
ed link-mining algorithms will revolutionize sear
h byexample just as PageRank has revolutionized the ranking problem. This is why the primary fo
usof our resear
h has been the SimRank similarity fun
tion [15℄, whi
h de�nes the similarity of twoweb pages (or nodes in an arbitrary graph) with a re
ursive de�nition similar to PageRank.The major di�
ulty with the SimRank similarity fun
tion is that while one 
an use the naivepower-iteration method to 
ompute PageRank, this is absolutely infeasible for SimRank, sin
ethe resour
e requirements would be quadrati
 in the number of web pages. Previous results usingaggressive heuristi
s were only able to apply SimRank on graphs with about 200,000 nodes.The �rst SimRank algorithm that is truly s
alable to the size of the Web (as de�ned in ourresear
h obje
tives) was developed by my 
o-author Dániel Fogaras [J5, C10℄. This is a randomizedapproximation algorithm that 
omputes �ngerprints for ea
h node in the graph, and then givesunbiased estimation on the SimRank value using these �ngerprints. Using Monte Carlo method,with N �ngerprints we 
an get su�
ient pre
ision:Claim 2.1 [J5, C10℄. Analysis of the 
onvergen
e speed of the �ngerprint-basedSimRank approximation method, and proof that for any �xed absolute error the errorprobability 
onverges to zero exponentially in the number N of �ngerprints taken, uni-formly over the all nodes and all graphs. Proof that for the top query problem ignoringa �xed absolute error the expe
ted re
all 
onverges to 1 exponentially and uniformlyover all nodes and all graphs.The important 
onsequen
e of this 
laim is that with a �xed error the number N of �ngerprints
an be 
onsidered 
onstant, independently of the query or even the growth of the graph (i.e., evenasymptoti
ally). 6



Despite having fairly strong theorems about the 
onvergen
e speed a natural question ariseswhether there is an algorithm performing exa
t 
omputation or we have to do with approximatesolutions? My lower bound theorems answer this question:Claim 2.2 [J5, C10℄. Lower bound on the index database size, in that any SimRankalgorithm supplying exa
t results on arbitrary graphs will require index database of
Ω(V 2) on some graphs with V nodes, whereas any approximation algorithm will require
Ω(V ) sized index database.The dire
t 
orollary of this is that we 
an't hope for a generi
 solution for graphs sized as theWeb, sin
e the required index database ex
eeds the total storage 
apa
ity ever manufa
tured. Ourapproximation similarity sear
h method is on the other hand spa
e-optimal up to a logarithmi
fa
tor using the following representation:Claim 2.3 [J5, C10℄. Compa
t representation for the �ngerprint paths generated bythe [P℄SimRank algorithm of [C10℄ that en
odes the 
oupled �ngerprint paths in two
ells per node.This 
ompa
t representation requires asymptoti
ally O(V log V ) storage, whi
h means thatsubstituting the usual 
onstants (V = 1010, N = 100) the similarity database for the entire Web
onsumes 8 TB of spa
e.Our algorithms show very important properties from the industrial perspe
tive:Claim 2.4 [J5℄. Preparation of our algorithms for industrial [2℄ appli
ation: paralleliza-tion, fault toleran
e, load balan
ing and dynami
 adaptation to workload. In
rementalindexing methods for updating the index. Experimental proof that the total serving
apa
ity of a 
luster is linear in the number of 
omputing nodes in the 
luster.Claim 3: On the 
ommon neighborhood problemIn this 
laim we 
onsider an abstra
t problem, whi
h 
an be 
onsidered a 
omplexity theory in-terpretation of the graph-based similarity sear
h problem. Bu
hsbaum, Gian
arlo and Westbrook
onsidered in [7℄ the following de
ision problem in the data stream model: Given a dire
ted graphand a 
onstant c, de
ide whether the graph has a −−→

K2,c as a dire
ted subgraph, i.e., is there a pairof nodes with at least c 
ommon neighbors?The data stream model presents the input graph on a one-way read-only input tape to thealgorithms. Two interesting 
ases are usually 
onsidered: in the single-pass model the input tape
an be advan
ed only in one dire
tion, i.e. the input 
an be read through only on
e. This modelis espe
ially suited for appli
ation where a large quantity of 
ontinuously streaming data has to bepro
essed, sin
e these streams are typi
ally not possible to be stored and pro
essed o�ine due tothe mere data volume. The general 
ase allows a �rewind� operation on the input take, whi
h thealgorithm 
an trigger O(1) times, i.e., the input 
an be read through 
onstant many times. This isa good model for data residing of se
ondary storage, where the 
ost of random a

ess is infeasible.This is true for the 
urrent hard disk te
hnologies.The interesting question in the data stream model is always the temporary storage requirement,to give lower bounds on the internal storage requirement of any algorithm.Unfortunately one of the basi
 lemmas in the the above quoted paper [7℄ has an in
orre
t proofthat 
annot be �xed easily.Claim 3.1 [J2℄. Corre
t proof for the single-pass data stream model results of [7℄.Using the new proof methodology we 
an give stronger bounds in both a single and the O(1)-pass model. The new bounds are tight up to a logarithmi
 fa
tor, i.e. we also give algorithms thatsolve the 
ommon neighborhood problem with a logarithmi
 fa
tor more storage.7



Claim 3.2 [J2℄. Lower bound on the 
ommon neighborhood problem in the single-pass data stream model, in that the temporary storage requirement for graphs with nvertexes and neighborhood threshold c is Ω(
√

cn3/2). Algorithm for solving the 
ommonneighborhood problem with O(
√

cn3/2 log n) spa
e.Claim 3.3 [J2℄. Lower bound on the 
ommon neighborhood problem in the O(1)-pass data stream model, in that the temporary storage requirement for graphs with nvertexes and neighborhood threshold c is Ω(
√

cn3/2). Algorithm for solving the 
ommonneighborhood problem with O(
√

cn3/2 log n) spa
e.Appli
ation of resultsThe results in Claim 2 were implemented by Dániel Fogaras as part of the resear
h grant �Analog�,and the result s
an be tried on a brawl of the .hu domain from 2004 on the website www.hasonlo.hu.The following table shows and example query.Similarity query result for querywww.bkv.hu using the PSimRank simi-larity fun
tion Des
ription1 www.bkv.hu/ publi
 transport 
ompany of Budapest2 www.malev.hu/ Hungarian Airlines3 www.elvira.hu/ online timetable for the Hungarian Railways4 www.mahart.hu/ Hungarian Ship Lines5 www.turizmusonline.hu/adatbazis/kutatas_fejlesztes.php Tourism O�
e6 www.turizmusonline.hu/heti_turizmus/bemutatkozo.php Tourism O�
e7 www.volan.hu/ Hungarian Coa
h Lines8 www.idojaras.hu/ weather9 www.met.hu/ weather10 www.worldtimeserver.
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