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1 Introduction

One of the fastest growing sector of the software industry is that of the Internet companies, lead
by the major search engines: Google, Yahoo and MSN. The importance of this field is even more
emphasized by the plans of almost unprecedented magnitude that the European Union is pursuing
to ease their dependence on these US-based technological firms.

The scientific and technological difficulties of this field are dominated by the mere scale: the
web is estimated to contain tens to hundreds of billions of pages, with an exponential increase for
over a decade and without showing any signs of that growth slowing down. At this scale, even the
simplest mathematical constructs, such as a set of linear equations or a matrix inversion are turning
out to be infeasible or practically unsolvable.

This thesis and the underlying publications provide solutions to certain of these scalability
problems stemming from core web search engine research. The actual problems and their abstract
solutions are not ours; they were described in earlier works of seminal authors of the field, generating
considerable interest. Nevertheless, it was our work showing the first methods which could really
scale to the size of the web without serious limitations.

A particularly important aspect of our solutions is that they are not only theoretically applicable
to the web, but also very practical: they follow fairly closely and naturally fit into the architecture
of a web search engine; the algorithms are parallelizable or distributed; the computational model
we assumed is the one that is present in all current major data centers; and the query serving parts
show characteristics very important for industrial applications, such as fault tolerance.

An important price we pay for these benefits is that out methods give approximate solutions
to the abstract formulation. However, on one hand we have strict bounds on the approximation
quality, on the other hand we formally prove that this is the only way to go: we give lower bounds
on the resource usage of any exact method, prohibiting their application on datasets on the Web
scale.

2  Overview

The thesis presents results in three groups of claims.

In the first set of claims we consider the problem of personalized web search, also called as
personalized ranking. General web search has a static, global ranking function that the engine uses
to sort the results according to some notion of relevance that depends on the query but not the user.
However, relevance can easily differ from user to user, e.g. a computer geek and a history teacher
may find different sites authoritative and interesting for the same query. Personalized web search
allows users to specify their preference, and this preference parametrizes the ranking function. As
PageRank is the most successful static ranking function, the personalized version, Personalized
PageRank [23] is of particular interest. All earlier methods for computing personalized PageRank
[10, 16, 17] had severe restrictions on what personalization they allowed [13]. In our work we
provided the first Personalized PageRank algorithm allowing arbitrary personalization and still
scaling to the full Web.

In the second set of claims we consider the problem of similarity search in massive graphs such
as the web. Similarity search is not only motivated by advanced data mining algorithms requiring
easily computable similarity functions such as clustering algorithms, but also by the ‘Related pages’
functionality of web search engines, where the user can query by example: supplying the URL of a
web page of interest, the search engine replies by good quality pages on a similar topic. Traditional
similarity functions stemming in social network analysis such as co-citation express the similarity
of two nodes in a graph by using only the neighbors of the nodes in question. However, considering
the size and depth (e.g. average diameter) of the web graph, this is just as inadequate as using
degree as a ranking function. We consider the similarity function proposed by Jeh and Widom,
SimRank [15], which is a recursive definition similar to that of PageRank. Our methods provided
the first algorithm that scaled beyond graphs of a few hundred thousand nodes.



In the above areas we follow the same outline: We first give approximation algorithms for the
problem, analyzing the approximation quality and convergence speed. Then we claim impossibil-
ity results about non-approximation approaches, proving prohibitive space complexity. Finally we
validate the methods using experiments on real Web datasets.

In the final claims we pursue further impossibility results on similarity functions of massive
graphs. We consider the decision problem: is there a pair of vertexes in a graph that share a
common neighborhood of a particular size? (This is equivalent to the existence of the complete
bipartite graph K, . as a subgraph.) We are particularly interested in the space complexity of
the problem in the data stream model: an algorithm A is allowed to read the set of edges of the
graph sequentially, and after having one or constant many passes, it has to output the answer to
the decision problem. We lower bound the temporary storage use of any such algorithm in the
randomized computation model. The relevance of this problem to web search is that an algorithm
A for the decision problem can be emulated by a search engine. During the preprocessing phase
the search engine indexer can read the input a few times, producing an index database. Then the
search engine query processor can answer queries only the index database, and a proper sequence
of queries gives us the answer to the decision problem. Therefore any lower bound we prove on the
decision problem applies either to the temporary storage requirements of the indexer, the query
engine, or the index database size. A prohibitive (say, quadratic in the input size) lower bound
makes it impossible to build a query engine that can feasibly serve similarity queries up to the
required precision.

3 Research objectives

During our work we seek to answer the following questions with regards to the SimRank similarity
function and the Personalized PageRank ranking function:

Find a scalable approximation algorithm that computes these scores at query serving time.
e Prove that there exists no scalable algorithm that would compute the exact scores.
e How good is the approximation returned by our algorithm?

e What are the resource requirements of our algorithm? Show that our solution adheres the
scalability requirements by conduction experimental runs on sufficiently large inputs.

e Are the mathematical definitions usable in practice? What is the quality of result lists deliv-
ered by these algorithms? Present an experimental quality evaluation on real Web datasets.
Present experimental evidence that these functions are better suited to the Web than the
classic solutions.

e Parameter tuning: How shall we set the parameters in our solution to gain sufficient quality
results with acceptable resource consumption?

e Define new functions and analyze them according to the above criterion.

It is easy to see that the central concept to our research goals is that of scalable algorithms. Due
to the sheer size of the Web as a dataset many specialized systems and architectures were created
to deal with this challenge [4, 2, 8]. We consider an algorithm scalable for web search engines if it
fulfills the following requirements |24, 19|

e Precomputation: The method consists of two parts: an off-line precomputation phase, which
is allowed to run for about a day to precompute an index database, and an on-line query
serving part, which can access only the index database, and needs to answer a query within
a few hundred milliseconds.



e Time: The index database is precomputed within the time of a sorting operation, up to a
constant factor. To serve a query the index database can only be accessed a constant number
of times.

e Memory: The algorithms run in ezxternal memory: the available main memory is constant,
so it can be arbitrarily smaller than the size of the Web graph. In some cases we will con-
sider semi-external-memory algorithms [21| with linear memory requirement in the number
of vertexes in the web graph, with a small constant factor.

e Parallelization: Both precomputation and query part can be implemented to utilize the
computing power and storage capacity of thousands of servers interconnected with a fast
local network.

4 Research methods

The algorithms we developed can be classified as fingerprint-based data mining algorithms, the
textbook example of which was established by Broder [6]. These methods operate by expressing
the result as an expectation of a random variable, and then by taking N independent sample
(fingerprint) we estimate the result via Monte Carlo method.

To create probabilistic reformulations of PageRank and similar problems we heavily rely on the
random walk-based expression of PageRank: on one hand the stationary distribution of the uniform
random walk (Markov-chain) on the graph [23|, on the other hand the ending point of the random
walk with uniform starting point and geometrically distributed length [9].

To show the infeasibility of exact computation of the measures in question we prove lower bounds
on the space complexity of the problems. We use the methodology developed for analyzing graph
algorithms in the data stream model [14], where we reduce the problems at hand to communication
complexity games |20|, mostly the bit-vector probing problem.

In the experimental evaluation of Personalized PageRank we compare the closeness of approxi-
mation to the algorithm by Jeh and Widom [16]. To compare the resulting ranking orders we use
the methodology applied in PageRank research [18, 11, 26].

In the experimental evaluation of similarity search functions we use the methodology developed
by Haveliwala [12], where we utilize a high-quality Internet Directory, the Open Directory Project
(DMOZ) |22]. Taking the category classification of the directory as a base truth, we quantify the
quality of similarity search functions by how close it can reproduce the category classification.

5 New Results

Claim 1: Monte Carlo algorithm for computing Personalized PageRank

The main problem of the currently prevalent model of Web Search is that the user has to express
her information need as a keyword query. This is a very difficult task, especially for the average
user. If the query is too specific, contains too many words, there is a good chance that the page the
user is looking for does not match it, because it happens to phrase the information with different
wording  this is the problem of recall. On the other hand, if the query is too generic, contains
too few words, then millions of other pages will match it, and from this long result list it is quite
impossible to select the page that the user will be interested in — this is the problem of precision.

Due to the recall problem the users’ behavior has shifted to phrasing simple, very short search
queries, accepting the large multitude of results. Therefore the algorithms behind the search engine
will have the main objective to tackle the precision problem by presenting the result list in an order
to the user where the most relevant pages are in the top few results.

The ranking problem has been studied extensively, and the solutions can be classified according
to several aspects. A local ranking algorithm considers a single page at a time, whereas a global



ranking algorithm runs on the entire dataset. A static ranking computes a fixed ranking from the
dataset and applies this ranking for every query, whereas dynamic ranking algorithms are query-
dependent. In practice we typically use a mixture of algorithms, for example a local static algorithm
for identifying and filtering malicious web pages (e.g. malware), a local dynamic algorithm to score
the keyword matches in the page (e.g. weight matches in the title or in large font higher), and a
global static algorithm to represent the popularity of the result page on the entire Web (to capture
the quality of the page).

In this last category of ranking algorithms the most widely researched method is PageRank
[23], since many believe it to be the driving factor behind the quality and popularity of the leading
search engine, Google. PageRank is based on the following assumption:

A hyperlink © — v is the vote of page u for the quality of content of page v.

This intuition is applied recursively in the definition of PageRank in that the PageRank value
of a web page v can be computed from the PageRank values of the pages linking to v.

A major drawback of the PageRank algorithm is that it is static, it computes the relevance of
a web page as one single number, and applies the same decision to all queries, no matter if it is
an American computer scientist or a Mongolian history teacher asking. This drawback is fixed by
personalization, where we can compute the relevance values based on the judgment of a subset of
a Web, and aim to have the ability to set this subset individually for each user.

The main difficulty of Personalized PageRank [5, 23| that the starting point, the personalization
is only available at query time. This makes the usual PageRank calculation methods infeasible,
since they typically require several hours of computation, and even the most patient users cannot
be expected to wait that long in hope for the benefits of personalization. Several groups have been
seeking scalable methods for personalization [10, 16, 17, 13|, but all of these prior work have had
significant restrictions on how the personalization can be expressed. The main result of this claim
is an algorithm that allows unrestricted personalization:

Claim 1.1 [J4, C9]. A scalable randomized algorithm for computing Personalized
PageRank scores that returns an unbiased estimation for any personalization starting
point with constant many database accesses from an index database with a size linear
in the number of web pages. Improvement of the approximation quality by utilizing the
database records for the neighbors of the starting page.

Since the Personalized PageRank values are linear in the weighted starting distribution vector
|10], we can reach arbitrary personalization based on this result.

Of course for the feasibility of the above method we need to be able to compute the index
database using a scalable method. I have given two solutions to this problem, of which on can
select based on the available resources.

Claim 1.2 [J4, C9]. External memory indexing method computing the index database
of Claim 1.1 on a graph with V nodes and average degree d, using M internal memory
with ©(V(Nlog,; NV + Ld)) I/O operations, where N is a constant controlling the
approximation quality, and L is a constant appropriate for the mixing speed of the
graph.

Substituting the values of the constant resulting from the experimental evaluation in the thesis
(L =20,d=10, N =100, V = 10, M = 1GB) we get a total [/O requirement of 256 TB, which
can be performed using 60 disk in a day. The actual space used is 8 TB, and since the algorithm
only uses external memory sort and merge to run, the disk access can be performed in blocks of up
to several hundred megabytes, thereby reaching the peak data transfer speed of modern disks.



Claim 1.3 [J4, C9]. Indexing method for computing the database of Claim 1.1 using
K computers interconnected with a fast local-area network, where the total memory
of the computers is sufficient to store the entire Web graph, with the expected total
communication of O(NV).

In the recent years very sophisticated methods were developed for storing the Web graph in
main memory |1, 3|, which require only a few bits per link. However, using a much simpler approach
allowing faster processing we can still perform the computation using 100 typical workstation-sized
machines. Substituting the above mentioned constants and using everyday network technologies
the indexing can be completed with 100 machines in about an hour.

Claim 2: Analyzing and improving Monte Carlo methods for computing
the SimRank similarity function

As we mentioned in the introduction of Claim 1, one of the main problems of Web search is that of
the difficulty of formulating keyword queries (from the perspective of the user), and the difficulty
of understanding the keyword queries (from the perspective of search engines). A possible solution
to this problem is to ask for more data from the user when she specifies a search query. Of course
we don’t want to complicate the search workflow and disrupt its fluency by clarification questions
or complicated Ul, therefore it is especially useful if the search query contains some implicit extra
information.

One possibility of such implicit extra information is search by example. In this mode of operation
the user specifies an existing web page as a query instead of some keywords, and expects a response
of a list of web pages in the same topic. This functionality has been available since the beginning
on the search result pages of search engines under the link “Similar Pages”. Despite this being
probably the most often displayed link today (since it appears many times on all search result
pages) it receives relatively little traffic, most probably because the current algorithms return
results of varying quality.

It is reasonable to assume that advanced link-mining algorithms will revolutionize search by
example just as PageRank has revolutionized the ranking problem. This is why the primary focus
of our research has been the SimRank similarity function |15], which defines the similarity of two
web pages (or nodes in an arbitrary graph) with a recursive definition similar to PageRank.

The major difficulty with the SimRank similarity function is that while one can use the naive
power-iteration method to compute PageRank, this is absolutely infeasible for SimRank, since
the resource requirements would be quadratic in the number of web pages. Previous results using
aggressive heuristics were only able to apply SimRank on graphs with about 200,000 nodes.

The first SimRank algorithm that is truly scalable to the size of the Web (as defined in our
research objectives) was developed by my co-author Déniel Fogaras [J5, C10]. This is a randomized
approximation algorithm that computes fingerprints for each node in the graph, and then gives
unbiased estimation on the SimRank value using these fingerprints. Using Monte Carlo method,
with N fingerprints we can get sufficient precision:

Claim 2.1 [J5, C10]. Analysis of the convergence speed of the fingerprint-based
SimRank approximation method, and proof that for any fixed absolute error the error
probability converges to zero exponentially in the number N of fingerprints taken, uni-
formly over the all nodes and all graphs. Proof that for the top query problem ignoring
a fixed absolute error the expected recall converges to 1 exponentially and uniformly
over all nodes and all graphs.

The important consequence of this claim is that with a fixed error the number N of fingerprints
can be considered constant, independently of the query or even the growth of the graph (i.e., even
asymptotically).



Despite having fairly strong theorems about the convergence speed a natural question arises
whether there is an algorithm performing exact computation or we have to do with approximate
solutions? My lower bound theorems answer this question:

Claim 2.2 [J5, C10]. Lower bound on the index database size, in that any SimRank
algorithm supplying exact results on arbitrary graphs will require index database of

Q(V?) on some graphs with V nodes, whereas any approximation algorithm will require
Q(V) sized index database.

The direct corollary of this is that we can’t hope for a generic solution for graphs sized as the
Web, since the required index database exceeds the total storage capacity ever manufactured. Our
approximation similarity search method is on the other hand space-optimal up to a logarithmic
factor using the following representation:

Claim 2.3 [J5, C10]. Compact representation for the fingerprint paths generated by
the [P|SimRank algorithm of [C10| that encodes the coupled fingerprint paths in two
cells per node.

This compact representation requires asymptotically O(V 1log V') storage, which means that
substituting the usual constants (V' = 10'°, N = 100) the similarity database for the entire Web
consumes 8 TB of space.

Our algorithms show very important properties from the industrial perspective:

Claim 2.4 [J5]. Preparation of our algorithms for industrial [2| application: paralleliza-
tion, fault tolerance, load balancing and dynamic adaptation to workload. Incremental
indexing methods for updating the index. Experimental proof that the total serving
capacity of a cluster is linear in the number of computing nodes in the cluster.

Claim 3: On the common neighborhood problem

In this claim we consider an abstract problem, which can be considered a complexity theory in-
terpretation of the graph-based similarity search problem. Buchsbaum, Giancarlo and Westbrook
considered in [7] the following decision problem in the data stream model: Given a directed graph

and a constant ¢, decide whether the graph has a Ia as a directed subgraph, i.e., is there a pair
of nodes with at least ¢ common neighbors?

The data stream model presents the input graph on a one-way read-only input tape to the
algorithms. Two interesting cases are usually considered: in the single-pass model the input tape
can be advanced only in one direction, i.e. the input can be read through only once. This model
is especially suited for application where a large quantity of continuously streaming data has to be
processed, since these streams are typically not possible to be stored and processed offline due to
the mere data volume. The general case allows a “rewind” operation on the input take, which the
algorithm can trigger O(1) times, i.e., the input can be read through constant many times. This is
a good model for data residing of secondary storage, where the cost of random access is infeasible.
This is true for the current hard disk technologies.

The interesting question in the data stream model is always the temporary storage requirement,
to give lower bounds on the internal storage requirement of any algorithm.

Unfortunately one of the basic lemmas in the the above quoted paper |7| has an incorrect proof
that cannot be fixed easily.

Claim 3.1 [J2]. Correct proof for the single-pass data stream model results of [7].

Using the new proof methodology we can give stronger bounds in both a single and the O(1)-
pass model. The new bounds are tight up to a logarithmic factor, i.e. we also give algorithms that
solve the common neighborhood problem with a logarithmic factor more storage.



Claim 3.2 [J2]. Lower bound on the common neighborhood problem in the single-
pass data stream model, in that the temporary storage requirement for graphs with n
vertexes and neighborhood threshold c is Q(y/cn®?). Algorithm for solving the common
neighborhood problem with O(y/cn®?logn) space.

Claim 3.3 [J2]. Lower bound on the common neighborhood problem in the O(1)-
pass data stream model, in that the temporary storage requirement for graphs with n
vertexes and neighborhood threshold c is Q(/cn®/?). Algorithm for solving the common
neighborhood problem with O(y/cn®?logn) space.

Application of results

The results in Claim 2 were implemented by Daniel Fogaras as part of the research grant “Analog”,
and the result scan be tried on a brawl of the .hu domain from 2004 on the website www.hasonlo.hu.
The following table shows and example query.

Similarity  query result for query Description
www.bkv.hu using the PSimRank simi-
larity function

1  www.bkv.hu/ public transport company of Budapest

2  www.malev.hu/ Hungarian Airlines

3  www.elvira.hu/ online timetable for the Hungarian Railways

4  www.mahart.hu/ Hungarian Ship Lines

5 www.turizmusonline.hu/ Tourism Office
adatbazis/kutatas_fejlesztes.php

6 www.turizmusonline.hu/ Tourism Office
heti_turizmus/bemutatkozo.php

7 www.volan.hu/ Hungarian Coach Lines

8 www.idojaras.hu/ weather

9 www.met.hu/ weather

10 www.worldtimeserver.com/
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