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1 IntrodutionOne of the fastest growing setor of the software industry is that of the Internet ompanies, leadby the major searh engines: Google, Yahoo and MSN. The importane of this �eld is even moreemphasized by the plans of almost unpreedented magnitude that the European Union is pursuingto ease their dependene on these US-based tehnologial �rms.The sienti� and tehnologial di�ulties of this �eld are dominated by the mere sale: theweb is estimated to ontain tens to hundreds of billions of pages, with an exponential inrease forover a deade and without showing any signs of that growth slowing down. At this sale, even thesimplest mathematial onstruts, suh as a set of linear equations or a matrix inversion are turningout to be infeasible or pratially unsolvable.This thesis and the underlying publiations provide solutions to ertain of these salabilityproblems stemming from ore web searh engine researh. The atual problems and their abstratsolutions are not ours; they were desribed in earlier works of seminal authors of the �eld, generatingonsiderable interest. Nevertheless, it was our work showing the �rst methods whih ould reallysale to the size of the web without serious limitations.A partiularly important aspet of our solutions is that they are not only theoretially appliableto the web, but also very pratial: they follow fairly losely and naturally �t into the arhitetureof a web searh engine; the algorithms are parallelizable or distributed; the omputational modelwe assumed is the one that is present in all urrent major data enters; and the query serving partsshow harateristis very important for industrial appliations, suh as fault tolerane.An important prie we pay for these bene�ts is that out methods give approximate solutionsto the abstrat formulation. However, on one hand we have strit bounds on the approximationquality, on the other hand we formally prove that this is the only way to go: we give lower boundson the resoure usage of any exat method, prohibiting their appliation on datasets on the Websale.2 OverviewThe thesis presents results in three groups of laims.In the �rst set of laims we onsider the problem of personalized web searh, also alled aspersonalized ranking. General web searh has a stati, global ranking funtion that the engine usesto sort the results aording to some notion of relevane that depends on the query but not the user.However, relevane an easily di�er from user to user, e.g. a omputer geek and a history teahermay �nd di�erent sites authoritative and interesting for the same query. Personalized web searhallows users to speify their preferene, and this preferene parametrizes the ranking funtion. AsPageRank is the most suessful stati ranking funtion, the personalized version, PersonalizedPageRank [23℄ is of partiular interest. All earlier methods for omputing personalized PageRank[10, 16, 17℄ had severe restritions on what personalization they allowed [13℄. In our work weprovided the �rst Personalized PageRank algorithm allowing arbitrary personalization and stillsaling to the full Web.In the seond set of laims we onsider the problem of similarity searh in massive graphs suhas the web. Similarity searh is not only motivated by advaned data mining algorithms requiringeasily omputable similarity funtions suh as lustering algorithms, but also by the `Related pages'funtionality of web searh engines, where the user an query by example: supplying the URL of aweb page of interest, the searh engine replies by good quality pages on a similar topi. Traditionalsimilarity funtions stemming in soial network analysis suh as o-itation express the similarityof two nodes in a graph by using only the neighbors of the nodes in question. However, onsideringthe size and depth (e.g. average diameter) of the web graph, this is just as inadequate as usingdegree as a ranking funtion. We onsider the similarity funtion proposed by Jeh and Widom,SimRank [15℄, whih is a reursive de�nition similar to that of PageRank. Our methods providedthe �rst algorithm that saled beyond graphs of a few hundred thousand nodes.2



In the above areas we follow the same outline: We �rst give approximation algorithms for theproblem, analyzing the approximation quality and onvergene speed. Then we laim impossibil-ity results about non-approximation approahes, proving prohibitive spae omplexity. Finally wevalidate the methods using experiments on real Web datasets.In the �nal laims we pursue further impossibility results on similarity funtions of massivegraphs. We onsider the deision problem: is there a pair of vertexes in a graph that share aommon neighborhood of a partiular size? (This is equivalent to the existene of the ompletebipartite graph K2,c as a subgraph.) We are partiularly interested in the spae omplexity ofthe problem in the data stream model: an algorithm A is allowed to read the set of edges of thegraph sequentially, and after having one or onstant many passes, it has to output the answer tothe deision problem. We lower bound the temporary storage use of any suh algorithm in therandomized omputation model. The relevane of this problem to web searh is that an algorithm
A for the deision problem an be emulated by a searh engine. During the preproessing phasethe searh engine indexer an read the input a few times, produing an index database. Then thesearh engine query proessor an answer queries only the index database, and a proper sequeneof queries gives us the answer to the deision problem. Therefore any lower bound we prove on thedeision problem applies either to the temporary storage requirements of the indexer, the queryengine, or the index database size. A prohibitive (say, quadrati in the input size) lower boundmakes it impossible to build a query engine that an feasibly serve similarity queries up to therequired preision.3 Researh objetivesDuring our work we seek to answer the following questions with regards to the SimRank similarityfuntion and the Personalized PageRank ranking funtion:

• Find a salable approximation algorithm that omputes these sores at query serving time.
• Prove that there exists no salable algorithm that would ompute the exat sores.
• How good is the approximation returned by our algorithm?
• What are the resoure requirements of our algorithm? Show that our solution adheres thesalability requirements by ondution experimental runs on su�iently large inputs.
• Are the mathematial de�nitions usable in pratie? What is the quality of result lists deliv-ered by these algorithms? Present an experimental quality evaluation on real Web datasets.Present experimental evidene that these funtions are better suited to the Web than thelassi solutions.
• Parameter tuning: How shall we set the parameters in our solution to gain su�ient qualityresults with aeptable resoure onsumption?
• De�ne new funtions and analyze them aording to the above riterion.It is easy to see that the entral onept to our researh goals is that of salable algorithms. Dueto the sheer size of the Web as a dataset many speialized systems and arhitetures were reatedto deal with this hallenge [4, 2, 8℄. We onsider an algorithm salable for web searh engines if itful�lls the following requirements [24, 19℄:
• Preomputation:The method onsists of two parts: an o�-line preomputation phase, whihis allowed to run for about a day to preompute an index database, and an on-line queryserving part, whih an aess only the index database, and needs to answer a query withina few hundred milliseonds. 3



• Time: The index database is preomputed within the time of a sorting operation, up to aonstant fator. To serve a query the index database an only be aessed a onstant numberof times.
• Memory: The algorithms run in external memory : the available main memory is onstant,so it an be arbitrarily smaller than the size of the Web graph. In some ases we will on-sider semi-external-memory algorithms [21℄ with linear memory requirement in the numberof vertexes in the web graph, with a small onstant fator.
• Parallelization: Both preomputation and query part an be implemented to utilize theomputing power and storage apaity of thousands of servers interonneted with a fastloal network.4 Researh methodsThe algorithms we developed an be lassi�ed as �ngerprint-based data mining algorithms, thetextbook example of whih was established by Broder [6℄. These methods operate by expressingthe result as an expetation of a random variable, and then by taking N independent sample(�ngerprint) we estimate the result via Monte Carlo method.To reate probabilisti reformulations of PageRank and similar problems we heavily rely on therandom walk-based expression of PageRank: on one hand the stationary distribution of the uniformrandom walk (Markov-hain) on the graph [23℄, on the other hand the ending point of the randomwalk with uniform starting point and geometrially distributed length [9℄.To show the infeasibility of exat omputation of the measures in question we prove lower boundson the spae omplexity of the problems. We use the methodology developed for analyzing graphalgorithms in the data stream model [14℄, where we redue the problems at hand to ommuniationomplexity games [20℄, mostly the bit-vetor probing problem.In the experimental evaluation of Personalized PageRank we ompare the loseness of approxi-mation to the algorithm by Jeh and Widom [16℄. To ompare the resulting ranking orders we usethe methodology applied in PageRank researh [18, 11, 26℄.In the experimental evaluation of similarity searh funtions we use the methodology developedby Haveliwala [12℄, where we utilize a high-quality Internet Diretory, the Open Diretory Projet(DMOZ) [22℄. Taking the ategory lassi�ation of the diretory as a base truth, we quantify thequality of similarity searh funtions by how lose it an reprodue the ategory lassi�ation.5 New ResultsClaim 1: Monte Carlo algorithm for omputing Personalized PageRankThe main problem of the urrently prevalent model of Web Searh is that the user has to expressher information need as a keyword query. This is a very di�ult task, espeially for the averageuser. If the query is too spei�, ontains too many words, there is a good hane that the page theuser is looking for does not math it, beause it happens to phrase the information with di�erentwording � this is the problem of reall. On the other hand, if the query is too generi, ontainstoo few words, then millions of other pages will math it, and from this long result list it is quiteimpossible to selet the page that the user will be interested in � this is the problem of preision.Due to the reall problem the users' behavior has shifted to phrasing simple, very short searhqueries, aepting the large multitude of results. Therefore the algorithms behind the searh enginewill have the main objetive to takle the preision problem by presenting the result list in an orderto the user where the most relevant pages are in the top few results.The ranking problem has been studied extensively, and the solutions an be lassi�ed aordingto several aspets. A loal ranking algorithm onsiders a single page at a time, whereas a global4



ranking algorithm runs on the entire dataset. A stati ranking omputes a �xed ranking from thedataset and applies this ranking for every query, whereas dynami ranking algorithms are query-dependent. In pratie we typially use a mixture of algorithms, for example a loal stati algorithmfor identifying and �ltering maliious web pages (e.g. malware), a loal dynami algorithm to sorethe keyword mathes in the page (e.g. weight mathes in the title or in large font higher), and aglobal stati algorithm to represent the popularity of the result page on the entire Web (to apturethe quality of the page).In this last ategory of ranking algorithms the most widely researhed method is PageRank[23℄, sine many believe it to be the driving fator behind the quality and popularity of the leadingsearh engine, Google. PageRank is based on the following assumption:A hyperlink u → v is the vote of page u for the quality of ontent of page v.This intuition is applied reursively in the de�nition of PageRank in that the PageRank valueof a web page v an be omputed from the PageRank values of the pages linking to v.A major drawbak of the PageRank algorithm is that it is stati, it omputes the relevane ofa web page as one single number, and applies the same deision to all queries, no matter if it isan Amerian omputer sientist or a Mongolian history teaher asking. This drawbak is �xed bypersonalization, where we an ompute the relevane values based on the judgment of a subset ofa Web, and aim to have the ability to set this subset individually for eah user.The main di�ulty of Personalized PageRank [5, 23℄ that the starting point, the personalizationis only available at query time. This makes the usual PageRank alulation methods infeasible,sine they typially require several hours of omputation, and even the most patient users annotbe expeted to wait that long in hope for the bene�ts of personalization. Several groups have beenseeking salable methods for personalization [10, 16, 17, 13℄, but all of these prior work have hadsigni�ant restritions on how the personalization an be expressed. The main result of this laimis an algorithm that allows unrestrited personalization:Claim 1.1 [J4, C9℄. A salable randomized algorithm for omputing PersonalizedPageRank sores that returns an unbiased estimation for any personalization startingpoint with onstant many database aesses from an index database with a size linearin the number of web pages. Improvement of the approximation quality by utilizing thedatabase reords for the neighbors of the starting page.Sine the Personalized PageRank values are linear in the weighted starting distribution vetor[10℄, we an reah arbitrary personalization based on this result.Of ourse for the feasibility of the above method we need to be able to ompute the indexdatabase using a salable method. I have given two solutions to this problem, of whih on anselet based on the available resoures.Claim 1.2 [J4, C9℄. External memory indexing method omputing the index databaseof Claim 1.1 on a graph with V nodes and average degree d, using M internal memorywith Θ(V (N logM NV + Ld)) I/O operations, where N is a onstant ontrolling theapproximation quality, and L is a onstant appropriate for the mixing speed of thegraph.Substituting the values of the onstant resulting from the experimental evaluation in the thesis(L = 20, d = 10, N = 100, V = 1010, M = 1GB) we get a total I/O requirement of 256 TB, whihan be performed using 60 disk in a day. The atual spae used is 8 TB, and sine the algorithmonly uses external memory sort and merge to run, the disk aess an be performed in bloks of upto several hundred megabytes, thereby reahing the peak data transfer speed of modern disks.
5



Claim 1.3 [J4, C9℄. Indexing method for omputing the database of Claim 1.1 using
K omputers interonneted with a fast loal-area network, where the total memoryof the omputers is su�ient to store the entire Web graph, with the expeted totalommuniation of Θ(NV ).In the reent years very sophistiated methods were developed for storing the Web graph inmain memory [1, 3℄, whih require only a few bits per link. However, using a muh simpler approahallowing faster proessing we an still perform the omputation using 100 typial workstation-sizedmahines. Substituting the above mentioned onstants and using everyday network tehnologiesthe indexing an be ompleted with 100 mahines in about an hour.Claim 2: Analyzing and improving Monte Carlo methods for omputingthe SimRank similarity funtionAs we mentioned in the introdution of Claim 1, one of the main problems of Web searh is that ofthe di�ulty of formulating keyword queries (from the perspetive of the user), and the di�ultyof understanding the keyword queries (from the perspetive of searh engines). A possible solutionto this problem is to ask for more data from the user when she spei�es a searh query. Of oursewe don't want to ompliate the searh work�ow and disrupt its �ueny by lari�ation questionsor ompliated UI, therefore it is espeially useful if the searh query ontains some impliit extrainformation.One possibility of suh impliit extra information is searh by example. In this mode of operationthe user spei�es an existing web page as a query instead of some keywords, and expets a responseof a list of web pages in the same topi. This funtionality has been available sine the beginningon the searh result pages of searh engines under the link �Similar Pages�. Despite this beingprobably the most often displayed link today (sine it appears many times on all searh resultpages) it reeives relatively little tra�, most probably beause the urrent algorithms returnresults of varying quality.It is reasonable to assume that advaned link-mining algorithms will revolutionize searh byexample just as PageRank has revolutionized the ranking problem. This is why the primary fousof our researh has been the SimRank similarity funtion [15℄, whih de�nes the similarity of twoweb pages (or nodes in an arbitrary graph) with a reursive de�nition similar to PageRank.The major di�ulty with the SimRank similarity funtion is that while one an use the naivepower-iteration method to ompute PageRank, this is absolutely infeasible for SimRank, sinethe resoure requirements would be quadrati in the number of web pages. Previous results usingaggressive heuristis were only able to apply SimRank on graphs with about 200,000 nodes.The �rst SimRank algorithm that is truly salable to the size of the Web (as de�ned in ourresearh objetives) was developed by my o-author Dániel Fogaras [J5, C10℄. This is a randomizedapproximation algorithm that omputes �ngerprints for eah node in the graph, and then givesunbiased estimation on the SimRank value using these �ngerprints. Using Monte Carlo method,with N �ngerprints we an get su�ient preision:Claim 2.1 [J5, C10℄. Analysis of the onvergene speed of the �ngerprint-basedSimRank approximation method, and proof that for any �xed absolute error the errorprobability onverges to zero exponentially in the number N of �ngerprints taken, uni-formly over the all nodes and all graphs. Proof that for the top query problem ignoringa �xed absolute error the expeted reall onverges to 1 exponentially and uniformlyover all nodes and all graphs.The important onsequene of this laim is that with a �xed error the number N of �ngerprintsan be onsidered onstant, independently of the query or even the growth of the graph (i.e., evenasymptotially). 6



Despite having fairly strong theorems about the onvergene speed a natural question ariseswhether there is an algorithm performing exat omputation or we have to do with approximatesolutions? My lower bound theorems answer this question:Claim 2.2 [J5, C10℄. Lower bound on the index database size, in that any SimRankalgorithm supplying exat results on arbitrary graphs will require index database of
Ω(V 2) on some graphs with V nodes, whereas any approximation algorithm will require
Ω(V ) sized index database.The diret orollary of this is that we an't hope for a generi solution for graphs sized as theWeb, sine the required index database exeeds the total storage apaity ever manufatured. Ourapproximation similarity searh method is on the other hand spae-optimal up to a logarithmifator using the following representation:Claim 2.3 [J5, C10℄. Compat representation for the �ngerprint paths generated bythe [P℄SimRank algorithm of [C10℄ that enodes the oupled �ngerprint paths in twoells per node.This ompat representation requires asymptotially O(V log V ) storage, whih means thatsubstituting the usual onstants (V = 1010, N = 100) the similarity database for the entire Webonsumes 8 TB of spae.Our algorithms show very important properties from the industrial perspetive:Claim 2.4 [J5℄. Preparation of our algorithms for industrial [2℄ appliation: paralleliza-tion, fault tolerane, load balaning and dynami adaptation to workload. Inrementalindexing methods for updating the index. Experimental proof that the total servingapaity of a luster is linear in the number of omputing nodes in the luster.Claim 3: On the ommon neighborhood problemIn this laim we onsider an abstrat problem, whih an be onsidered a omplexity theory in-terpretation of the graph-based similarity searh problem. Buhsbaum, Gianarlo and Westbrookonsidered in [7℄ the following deision problem in the data stream model: Given a direted graphand a onstant c, deide whether the graph has a −−→

K2,c as a direted subgraph, i.e., is there a pairof nodes with at least c ommon neighbors?The data stream model presents the input graph on a one-way read-only input tape to thealgorithms. Two interesting ases are usually onsidered: in the single-pass model the input tapean be advaned only in one diretion, i.e. the input an be read through only one. This modelis espeially suited for appliation where a large quantity of ontinuously streaming data has to beproessed, sine these streams are typially not possible to be stored and proessed o�ine due tothe mere data volume. The general ase allows a �rewind� operation on the input take, whih thealgorithm an trigger O(1) times, i.e., the input an be read through onstant many times. This isa good model for data residing of seondary storage, where the ost of random aess is infeasible.This is true for the urrent hard disk tehnologies.The interesting question in the data stream model is always the temporary storage requirement,to give lower bounds on the internal storage requirement of any algorithm.Unfortunately one of the basi lemmas in the the above quoted paper [7℄ has an inorret proofthat annot be �xed easily.Claim 3.1 [J2℄. Corret proof for the single-pass data stream model results of [7℄.Using the new proof methodology we an give stronger bounds in both a single and the O(1)-pass model. The new bounds are tight up to a logarithmi fator, i.e. we also give algorithms thatsolve the ommon neighborhood problem with a logarithmi fator more storage.7



Claim 3.2 [J2℄. Lower bound on the ommon neighborhood problem in the single-pass data stream model, in that the temporary storage requirement for graphs with nvertexes and neighborhood threshold c is Ω(
√

cn3/2). Algorithm for solving the ommonneighborhood problem with O(
√

cn3/2 log n) spae.Claim 3.3 [J2℄. Lower bound on the ommon neighborhood problem in the O(1)-pass data stream model, in that the temporary storage requirement for graphs with nvertexes and neighborhood threshold c is Ω(
√

cn3/2). Algorithm for solving the ommonneighborhood problem with O(
√
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