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1 Introduction

Markov chains are the simplest mathematical models for random
phenomena evolving in time. Their simple structure makes it
possible to say a great deal about their behaviour. At the same
time, the class of Markov chains is rich enough to serve in many
applications, for example in population growth, mathematical
genetics, networks of queues, Monte Carlo simulation and in
many others. This makes the Markov chains the first and most
important examples of random processes. Indeed, the whole of
the mathematical study of random processes can be regarded as
a generalization in one way or another of the theory of Markov
chains. We shall be concerned exclusively with the case where
the process can assume only a finite or countable set of states.

A discrete random variable is a function X with values in a
finite set X and its probability mass function is p(x) = Pr{X =
x}, x ∈ X . Each x ∈ X is called a state and X is called
the state-space. A stochastic process is an indexed sequence of
random variables. In general, there can be an arbitrary depen-
dence among these random variables. The process is character-
ized by the joint probability mass functions p(x1, x2, . . . , xn) =
Pr{(X1, X2, . . . , Xn) = (x1, x2, . . . , xn)}, where (x1, x2, . . . , xn) ∈
Xn for n = 1, 2, . . . . A simple, but important example of a
stochastic process with dependence is one in which each random
variable depends on the one preceding it and is conditionally in-
dependent of all the other preceding random variables. Such
a process is said to be Markovian. For the most part we will
attend to the case of three random variables, so we say, that the
random variables X , Y and Z form a Markov triplet
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(denoted by X → Y → Z) if

p(x, y, z) = p(x)p(y|x)p(z|y),

where

p(y|x) =
Pr{X = x, Y = y}

Pr{X = x}

is the conditional probability. If Z has the interpretation as
”future”, Y is the ”present” and X is the ”past”, then having
the Markov property means that, given the present state, future
states are independent of the past states. In other words, the
description of the present state fully captures all the information
that could influence the future evolution of the process.

It is natural to investigate the Markov triplets from infor-
mation theoretical point of view. In 1948 the electric engineer
C. Shannon published a remarkable pair of papers laying the
foundations for the modern theory of information and commu-
nication. Perhaps the key step taken by Shannon was to math-
ematically define the concept of information. As a measure of
uncertainty of a random variable he proposed the following for-
mula

H(X) = −
∑

x∈X

p(x) log p(x)

called Shannon entropy. If the log is to the base 2, the entropy
is expressed in bits, while if the base is e, the unit of entropy
is sometimes called nat. The Shannon entropy has many prop-
erties that are in accord with the intuitive notion of what a
measure of information should be, for example it helps us to
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express the dependence among the random variables. One of its
basic properties is subadditivity, i.e.

H(X,Y ) ≤ H(X) +H(Y ),

where H(X,Y ) = −
∑

x∈X ,y∈Y
p(x, y) log p(x, y) is the joint en-

tropy of random variables X and Y , and measures our total
uncertainty about the pair (X,Y ). The equality holds in the
subadditivity if and only if X and Y are independent random
variables. The other remarkable property of the Shannon en-
tropy is the strong subadditivity:

H(X,Y, Z) +H(Y ) ≤ H(X,Y ) +H(Y, Z),

with equality if and only if X → Y → Z, i.e. X , Y and Z form
a Markov triplet. It means that Markov triplets are completely
characterized by the strong additivity of their Shannon entropy.

At the turn of the twentieth century a series of crises had
arisen in the physics. The problem was that the classical theory
were predicting absurdities such as the existence of an ”ultravio-
let catastrophe” involving infinite energies, or electrons spiraling
inexorably into the atomic nucleous. The crisis came to a head
in the early 1920’s and resulted in the creation of the mod-
ern theory of quantum mechanics. J. von Neumann worked in
Göttingen when W. Heisenberg gave the first lectures on the
subject. Quantum mechanics motivated the creation of new ar-
eas in mathematics, the theory of linear operators on Hilbert
spaces was certainly such an area. John von Neumann made an
effort towards the mathematical foundations and he initiated
the study of what are now called von Neumann algebras. With
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F.J. Murray, they made a first classification of such algebras
[12]. While the mathematics of classical probability theory was
subsumed into classical measure theory by A.N. Kolmogorov
[9], the quantum or non-commutative probability theory was
induced by the quantum theory and was incorporated into the
beginnings of non-commutative measure theory by J. von Neu-
mann [13].

In this concept, quantization is a process in which classical
observables, i.e. real functions on a phase space, are replaced
by self-adjoint operators on a Hilbert space H. Similarly, in
quantum or non-commutative probability the role of random
variables is played by self-adjoint elements affiliated to some
C*-algebra A with unit element 1. Probability measures are
replaced by states, i.e positive linear functionals φ on A such
that φ(1) = 1. If A is a non-commutative algebra then we say
that (A, φ) is an abstract or algebraic non-commutative prob-
ability space. This concept means a generalization: as long as
one considers a commutative C*-algebra A, quantum probabil-
ity reduces to classical probability. One usually represents A as
a subalgebra of B(H) of bounded operators acting on a complex
separable Hilbert space H. If the state φ is normal, i.e. pos-
itive weakly continous normalized linear functional on the von
Neumann algebra B(H), then it is given by φ(A) = Tr (ρA),
A ∈ B(H), for some unique statistical operator ρ acting on H,
i.e. 0 < ρ = ρ∗ ∈ B(H) such that Tr (ρ) = 1. If H is finite
dimensional ρ is often called density matrix. From the quan-
tum theoretical point of view the selfadjoint elements of B(H)
are identified with physical observables, while state φ represents
the state of a physical system.
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It is a natural question, that how can we generalize the
concept of Markovianity in the non-commutative setting which
means the framework of C*-algebras, or matrix algebras in the
finite dimensional case.

In von Neumann’s unifying scheme for classical and quantum
probability an important ingredient was missing: conditioning.
In order to study non-trivial statistical dependences, in particu-
lar to construct Markov processes, this gap had to be filled. The
first step was made in 1962 by the most natural quantum gener-
alization of the notion of conditional expectation, by H. Umegaki
[18], which is relevant for several problems in operator theory
and in quantum probability. By a (Umegaki) conditional expec-
tation E : A → B ⊂ A we mean a norm-one projection of the
C*-algebraA onto the C*-subalgebra B. The map E is automat-
ically a completely positive identity-preserving B-bimodule map
by a theorem of J. Tomiyama [17]. E is called compatible with
a state φ if φ ◦ E = φ. Unfortunately Umegaki’s notion is not
perfect to express the Markovianity, since the states compatible
with norm-one projections tend to be trivial in the extremely
non-commutative case. Indeed, a state φ on Mn ⊗Mn is com-
patible with an Umegaki conditional expectation onto Mn⊗ I if
and only if it is a product state, which means that our random
variables are independent. (Here Mn denotes n by n complex
matrices.) To avoid this trivial case L. Accardi and A. Frige-
rio proposed the following definition in 1978 [3]. Consider a
triplet C ⊂ B ⊂ A of unital C*-algebras. A quasi-conditional
or generalized conditional expectation w.r.t the given triplet is
a completely positive identity-preserving linear map E : A → B
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such that

E(ca) = cE(a), a ∈ A, c ∈ C.

The notion of non-commutative or quantum Markov chains was
also introduced by Accardi in [1, 2]. Quantum Markov chains
are defined on non-commutative C*-algebras, in particular on
UHF algebras, and they are determined by an initial state and
a sequence of unital completely positive maps, called transition
maps. Since in the classical case Markov chains can be defined
on abelian C*-algebras and are determined by an initial distri-
bution and a sequence of transition matrices, quantum Markov
chains can be regarded as the generalization of the classical ones.

In spite of the abstractness of this definition, several im-
provements have been made in their applications to physical
models. In particular a sub-class of Markov chains, also called
finitely correlated states, was shown to coincide with the so-
called valence bond states introduced in the late 1980’s in the
context of antiferromagnetic Heisenberg models. The works of
M. Fannes, B. Nachtergaele and R.F. Werner were apprecia-
ble to find the ground states of these modells [7]. As another
special class of quantum Markov chains, the notion of quantum
Markov states was defined in [3]. A quantum Markov state φ
is determined by an initial state and a sequence of φ-preserving
quasi-conditional expectations. If we consider a Markov state
with three parts we say that it is a short Markov state or Markov
triplet. The question raises, whether similarly to the classical
case, there is any characterization of Markov states by the en-
tropy quantities?

If ρ is the density matrix of a normal state φ, the von Neu-
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mann entropy of the state is defined by

S(φ) ≡ S(ρ) = −Tr ρ log ρ.

Similarly to the classical case the von Neumann entropy plays
an important role in the investigations of quantum systems’s
correlations. The von Neumann entropy is subadditive, i.e.

S(φ12) ≤ S(φ1) + S(φ2),

where φ12 is a normal state of the composite system of A12 =
A1 ⊗A2, and the equality holds if and only if φ12 is product of
its marginals, i.e. φ12 = φ1 ⊗φ2, which is the non-commutative
analogue of the independent random variables. We also have
the remarkable strong subadditivity property which was proved
by E. Lieb and M.B. Ruskai in 1973 [10]. Let A1, A2 and
A3 be subalgebras of B(H) representing three quantum systems
and set A123 = A1 ⊗ A2 ⊗ A3, A12 = A1 ⊗ A2 and A23 =
A2 ⊗A3 as their several compositions. For a state φ123 of A123

we denote its restrictions to A12, A23 and A2 with φ12, φ23 and
φ2, respectively. The strong subadditivity says, that

S(φ123) + S(φ2) ≤ S(φ12) + S(φ23).

On the analogy of the classical Markov property it has been
shown that the strong subadditivity of the von Neumann en-
tropy is tightly related to the Markov property invented by L.
Accardi. A state of a three-fold tensor product system is Marko-
vian if and only if it takes the equality of the strong subaddi-
tivity of von Neumann entropy, which is referred to as strong
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additivity of the von Neumann entropy. In other words, a state
of a tensor product system is Markovian if and only if the von
Neumann entropy increase is constant. The exact structure of
a density ρ123 with this property was established in 1994 by P.
Hayden, R. Jozsa, D. Petz and A. Winter [8].

Although a pivotal example of quantum composite systems
is tensor product of Hilbert spaces, we can see that the definition
of Markov property has been given under a very general setting
that is not limited to the most familiar case of tensor-product
systems. Which means, it does not require in principle any
specific algebraic location among systems imbedded in the total
system. A very important example from this point of view is
the algebra of the canonical anti-commutation relation or briefly
CAR algebra, that serves as the description of fermion lattice
systems.

The quantum-mechanical states of n identical point particles
in the configuration space Rν are given by vectors of the Hilbert
space H := L2(Rνn). If ψ ∈ H is normalized, then

dp(x1, . . . , xn) = |ψ(x1, . . . , xn)|
2dx1 . . . dxn

is the probability density for ψ to describe n particles at the
infinitesimal neighborhood of the points x1, . . . , xn. The nor-
malization of ψ corresponds to the normalization of the total
probability to unity. But in microscopic physics identical par-
ticles are indistinguishable and this is reflected by the symme-
try of the probability density under interchange of the particle
coordinates. This interchange defines an unitary representa-
tion of the permutation group and the symmetry is assured if
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the ψ transform under a suitable subrepresentation. There are
two cases of paramount importance. The first arises when ψ is
symmetric under change of coordinates. Particles whose states
transform in this manner are called bosons and are said to sat-
isfy Bose-Einstein statistics. The second case corresponds to
anti-symmetry of ψ under interchange of each pair of coordi-
nates. The associated particles are called fermions and said to
satisfy Fermi-Dirac statistics. The elementary constituents of
matter seem to be fermions, while interactions are mediated by
bosons. In the case of fermions the anti-symmetry of the wave
function had a deep consequence, namely the Pauli principle:
It is impossible to create two fermions in the same state. The
main qualitative difference between fermions and bosons is the
absence of a Pauli principle for the latter particles. There is
no bound on the number of particles which can occupy a given
state. Mathematically this is reflected by the unboundedness
of the so-called Bose annihilation and creation operators. This
unboundedness leads to a large number of technical difficulties
which are absent for fermions. These problems can be partially
avoided by consideration of bounded functions of the annihila-
tion and creation operators. This idea yields the Weyl oper-
ators and their algebra, the algebra of canonical commutation
relation (briefly CCR algebra). I investigate both systems from
the wievpoint of Markovianity.

Returning to the classical context an important case was
solved recently: The characterisation of multivariate normal
Markov triplets was given [4]. In classical probability, a Gaus-
sian measure leads to a characteristic function which is the
exponential of a quadratic form. Its logarithm is therefore a
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quadratic polynomial, and all correlations beyond the second
order vanish. Following this procedure in some non-commuting
systems as the CAR algebra or the CCR algebra it is also pos-
sible to define the useful concept of the correlation function
(cumulants or truncated function in other words), and we can
arrive to the analogues of Gaussian distributions, to the so-
called quasi-free states. In these states the n-point functions
can be computed from the 2-point functions and in one kind of
central limit theorem the limiting state is quasi-free. The quasi-
free states are quite tractable, for example the von Neumann
entropy has an explicit expression. It is a natural to ask: What
can we say about the quasi-free Markov triplets? My goal is the
discussion of these questions.

2 New scientific results

1. However the strong subadditive property of von Neumann
entropy is well known for a long time ago, all known proofs
are quite difficult. I gave a simple proof based on the Golden-
Thompson-Lieb inequality. The advantage of the proof, that it
works not just for tensor product systems and that the necessary
condition of the equality can be read out easily. The condition
is sufficient as well.

Theorem 2.1 Let A12,A23 and A2 be subalgebras of A123, where
A2 ⊂ A12,A23, as well. For a state φ123 of A123 we denote by
φ12, φ23 and φ2 its restrictions to A12, A23 and A2, respec-
tively. If there exist a trace preserving conditional expectations
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E12 : A123 → A12 and E23 : A123 → A23, such that the com-
muting square condition holds, i.e. E12 ◦ E23 = E23 ◦ E12, then

S(φ123) + S(φ2) ≤ S(φ12) + S(φ23),

and the equality holds if an only if we get for the density matrices

logD123 + logD2 = logD12 + logD23.

The same condition for the equality was also gained by D. Petz
in an other form [15, 16].

2. It has been shown that the Markovianity is tightly related
to the strong subadditivity of von Neumann entropy. Namely, a
state of a three-composed tensor-product system forms a Markov
triplet if and only if it takes the equality for the strong subaddi-
tivity inequality of entropy. Moreover the complete characteri-
zation of Markov triplets is given in this case [8]. The results can
not be used for CAR algebras directly. The root of the problem
is the difference between the three-fold tensor product system
and the CAR algebra from the point of view of the commutation
of the subsystems. Indeed, however when the set I is countable,
the CAR algebra A(I) is isomorphic to the C∗-infinite tensor

product ⊗IM2(C)
C∗

, but the isomorphism does not preserve the
natural localization. The elements of the disjoint subsystems do
not commute in contrast to the tensor product case. In spite of
these difficulties the strong subadditivity of von Neumann en-
tropy also holds for CAR algebras as was proved by Araki and
Moriya [5] and as my proof of Theorem 2.1 shows. Let I and J
be two arbitrary subsets of Z and denote A(I ∪ J), A(I), A(J)
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and A(I ∩J) the CAR algebras corresponding to the sets I ∪J ,
I, J and I ∩ J , respectively with the states φI∪J , φI , φJ and
φI∩J , as usual. Then

S(φI) + S(φJ) ≥ S(φI∩J ) + S(φI∪J) (1)

holds. I prove that the equality case is equivalent with the
Markov property also for CAR algebras if we restrict ourself for
even states.

Theorem 2.2 Let φI∪J be an even state on the CAR algebra
A(I ∪ J). Then φI∪J is a Markov triplet corresponding to the
localization {A(I \ J),A(I),A(I ∪ J)}, i.e. there exists a quasi-
conditional expectation γ w.r.t the triplet A (I \ J) ⊂ A(I) ⊂
A(I ∪ J) satisfying

φI ◦ γ = φI∪J , (2)

E (A(J)) ⊂ A(I ∩ J), (3)

if and only if it saturates the strong subadditivity inequality of
entropy with equality, ie.

S(φI) + S(φJ ) = S(φI∩J) + S(φI∪J ). (4)

I also give a modification of the above theorem by leaving the
condition of evennes:

Theorem 2.3 Let φI∪J be an arbitrary state on the CAR alge-
bra A(I ∪J). Then φI∪J is a Markov state corresponding to the
localization {A(I \ J)+,A(I),A(I ∪ J)} if and only if (4) holds.
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Here A(I \ J)+ denotes the even subalgebra of A(I \ J).

3. I give a characterization of quasi-free product states on CAR
algebras by their symbol. I show that the quasi-free states on
CAR algebra which saturate the strong additivity of von Neu-
mann entropy with equality (ie. Markove states) are product
states with respect their localization.

4. Assume that ψ is a state of CCR(H). If

Cψ(f, g) := ψ(B+(f)B−(g))

can be defined, then it will be called 2-point function of ψ. A
positive operator T , defined by

〈g|Tf〉 = Cψ(f, g), (5)

is called the 2-point operator of ψ. I computed the relative
entropy of a state ψ and a Gaussian state ωA.

Theorem 2.4 Consider a state ψ on the algebra CCR(H) with
a 2-point operator T . Then its relative entropy with respect to
the quasi-free state ωA is given by

S(ψ‖ωA) = −S(ψ)−TrT logA(I +A)−1 + Tr log(I +A). (6)

As a consequence we get that the quasi-free state ωA has the
largest entropy among states with 2-point operator A.

Theorem 2.1 Let ψ be a state of CCR(H) such that its 2-point
function is ψ(B+(f)B−(g)) = 〈g,Af〉 (f, g ∈ H) for a positive
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operator A ∈ B(H). Then S(ψ) ≤ S(ωA) and equality implies
ψ = ωA.

5. I also investigated the Markov property on CCR algebras.
Assume that the Hilbert space H has the orthogonal decompo-
sition H1 ⊕H2 ⊕H3. Then

CCR(H) = CCR(H1) ⊗ CCR(H2) ⊗ CCR(H3)

and the equality in the strong subadditivity of the von Neumann
entropy can be the definition of the Markov property [14]. If
ϕ123 is quasi-free (Gaussian), then it is given by a positive oper-
ator (corresponding to the 2-point function) and the main goal
was to describe the Markov property in terms of this operator.
Consider a Gaussian state ωA ≡ ω123, where A is a positive
operator acting on H. This operator has the block-matrix form

A =





A11 A12 A13

A∗
12 A22 A23

A∗
13 A∗

23 A33



 .

Our aim is to characterize the Markov property in terms of the
block-matrix A. Denote by Pi the orthogonal projection from
H onto Hi, 1 ≤ i ≤ 3. Of course, P1 + P2 + P3 = I and we use
also the notation P12 := P1 + P2 and P23 := P2 + P3.

Theorem 2.2 Assume that A ∈ B(H) is a positive invertible
operator and the Gaussian state ωA ≡ ω123 on CCR(H) has
finite von Neumann entropy. Then the following conditions are
equivalent.
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(a) S(ω123) + S(ω2) = S(ω12) + S(ω23)

(b) Trκ(A) + Trκ(P2AP2) = Trκ(P12AP12) + Trκ(P23AP23)

(c) There is a projection P ∈ B(H) such that P1 ≤ P ≤
P1 + P2 and PA = AP .

Condition (c) tells that the matrix A has the following block
diagonal form:

A =









A11

[

a 0
]

0
[

a∗

0

] [

c 0
0 d

] [

0
b

]

0
[

0 b∗
]

A33









=









[

A11 a

a∗ c

]

0

0

[

d b

b∗ A33

]









, (7)

where the parameters a, b, c, d (and 0) are operators.

6. I discuss the minimization of the relative entropy with respect
a quasi-free state on CCR algebras under some conditions. I
show that the minimizer is Markovian similarly to the classical
probabilistic case [6].

Theorem 2.3 Let ω ≡ ωA be a Markovian a Gaussian state
on the CCR-algebra CCR(H) and let ψ1 be a state of CCR(H1)
with a 2-point function. If ψ is the state minimizing the relative
entropy S(ψ||ωA) under the constraint that ψ|CCR(H1) = ψ1 is
fixed, then ψ is a Markov state.

Note that the minimizer Markovian ψ has the same conditional
expectation than the given state ω. In the probabilistic case the
similar statement is well known. I also prove the following.
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Theorem 2.4 Let ω ≡ ωA be a Markovian quasi-free state on
the CCR-algebra CCR(H). There exists a state ψ which is min-
imizing the relative entropy S(ψ||ωA) under the constraint that
ψ|A1 has a fixed 2-point operator. Moreover, ψ is a Markov
state.

7. I investigated some analogy between the classical Gaussian
and the CCR Gaussian Markov states. I prove that commuting
field operators form a classical Gaussian Markov triplet.
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