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Abstract
This thesis is a systematic presentation of our results in the field of population dy-

namics in patchy space with self and cross-diffusion. The results presented in the thesis
and those connecting to them were published during the past two years (see [3, 4, 5, 6,
7, 8, 9]). The research reported in this thesis was carried out in the Budapest Univer-
sity of Technology and Economics, Institute of Mathematics, Department of Differential
Equations.

In Chapter 1, I briefly review models of two-species, pattern formation in ecological
systems and the two types of spatio-temporal models of populations.

In Chapter 2, I have treated a two-species models in a habitat of two identical patches
linked by migration in which the migration rate of each species is influenced only by its
own density, i.e. there is no response to the density of the other one described by the
equations:

·
u1(t, 1) = u1(t, 1)f1(u1(t, 1), u2(t, 1)) + d1(u1(t, 2)− u1(t, 1)),
·
u2(t, 1) = u2(t, 1)f2(u1(t, 1), u2(t, 1)) + d2(u2(t, 2)− u2(t, 1)),
·
u1(t, 2) = u1(t, 2)f1(u1(t, 2), u2(t, 2)) + d1(u1(t, 1)− u1(t, 2)),
·
u2(t, 2) = u2(t, 2)f2(u1(t, 2), u2(t, 2)) + d2(u2(t, 1)− u2(t, 2)),

(1)

where ui(t, j) := density of species i in patch j at time t, fi is continuously differentiable,
di > 0 is a constant characterizing the rate of migration when individuals of species i
migrate from a certain patch according to Fick’s law, i = 1, 2; j = 1, 2; t ∈ R.
In section 2.1, I have considered a Lotka-Volterra system and I have shown that insta-

bility of a uniform state can not arise via the well known Turing mechanism of diffusion
driven instability. In section 2.2, I have considered a two species predator-prey system
in which the predator consumes the prey with Holling type functional response and the
per capita mortality is an increasing linear function of its quantity. In section 2.3, I have
considered a two species predator-prey model of Cavani-Farkas type in which the preda-
tor consumes the prey with Holling type functional response and the per capita mortality
is neither a constant nor an unbounded function, still, it is increasing with quantity. I
have shown that the equilibrium of a standard (self-diffusion) system may be either stable
or unstable and at a critical value of the bifurcation parameter the system undergoes a
Turing bifurcation. Numerical studies show that if the bifurcation parameter is increased
through a critical value the spatially homogeneous equilibrium loses its stability and two
new equilibria emerge (see [3, 4]).

Chapter 3 is devoted to studied two-species models in a habitat of two identical patches
linked by migration in which the migration rate of each species is influenced not only by
its own but also by the other one’s density, i.e. there is cross diffusion present described
by the equations:

·
u1(t, 1) = u1(t, 1)f1(u1(t, 1), u2(t, 1)) + d1(ρ1(u2(t, 2))u1(t, 2)− ρ1(u2(t, 1))u1(t, 1)),·
u2(t, 1) = u2(t, 1)f2(u1(t, 1), u2(t, 1)) + d2(ρ2(u1(t, 2))u2(t, 2)− ρ2(u1(t, 1))u2(t, 1)),·
u1(t, 2) = u1(t, 2)f1(u1(t, 2), u2(t, 2)) + d1(ρ1(u2(t, 1))u1(t, 1)− ρ1(u2(t, 2))u1(t, 2)),·
u2(t, 2) = u2(t, 2)f2(u1(t, 2), u2(t, 2)) + d2(ρ2(u1(t, 1))u2(t, 1)− ρ2(u1(t, 2))u2(t, 2)),

(2)
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where fi is continuously differentiable, di > 0 is a constant characterizing the rate of
migration when individuals of species i migrate from a certain patch according to Fick’s
law, ρi(u) is a positive function of u characterizing the decrease or the increase of the
rate of migration if it depends on the densities of the species (i = 1, 2).

In section 3.1, I have considered a Lotka-Volterra system and I show that for competi-
tive (or cooperative) type interaction, a cross-diffusion may lead to Turing instability but
for a predator-prey type of interaction, instability of a uniform state can not arise via the
well known Turing mechanism of diffusion driven instability(see [5, 6]). In section 3.2, I
have considered a two species predator-prey system in which the predator consumes the
prey with Holling type functional response and the per capita mortality is an increasing
linear function of its quantity. In section 3.3, I have considered a predator-prey model of
Cavani-Farkas type in which the predator consumes the prey with Holling type functional
response and the per capita mortality is neither a constant nor an unbounded function,
still, it is increasing with quantity. I have shown that a cross-diffusion response can sta-
bilize an unstable equilibrium of standard system and destabilize a stable equilibrium of
standard system. I have shown that at a critical value of the bifurcation parameter the
system undergoes a Turing bifurcation, and numerical studies shown that if the bifurca-
tion parameter is increased through a critical value the spatially homogeneous equilibrium
loses its stability and two new stable equilibria emerge. I conclude that the cross migra-
tion response is an important factor that should not be ignored when pattern emerges
.(see [7, 8]).

Two Appendices in Chapter 4 contain all Tables and Figures of the numerical inves-
tigations.

The thesis ends with Bibliography, my curriculum vitae and list of publications.
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Chapter 1

Introduction

Because the relation between the organisms and the space seems to be essential to stability
of an ecological system, the effect of diffusion on the possibility of species coexistence in
an ecological community has been an important subject in population biology. The effects
of self and cross-diffusion, Turing bifurcation and pattern formation are the subjects of
this thesis.

1.1 Models of Two-Species

The classical approach to modelling ecological systems (see [24], [37]) simplifies by ig-
noring space completely and in essence assumes that the per capita growth rates of the
participating species are linear functions of the quantities (densities) of the species. The
classical Lotka-Volterra model takes the form:

predator-prey {
·
u1 = u1(r1 − a11u1 − a12u2)
·
u2 = u2(−r2 + a21u1 − a22u2)

, (1.1)

competition {
·
u1 = u1(r1 − a11u1 − a12u2)
·
u2 = u2(r2 − a21u1 − a22u2)

, (1.2)

mutualism {
·
u1 = u1(r1 − a11u1 + a12u2)
·
u2 = u2(r2 + a21u1 − a22u2)

, (1.3)

where ri is the growth or death rate, aii > 0 is the coefficient of intra-specific competition,
aij > 0(i 6= j) is the coefficient of inter-specific competition.
The general Kolmogorov-type model of a two species community is

·
u1 = u1f1(u1, u2), (1.4)
·
u2 = u2f2(u1, u2),

where the partial derivatives of fi(i = 1, 2) determine the classification of the community:
- If f 01u2 < 0 and f

0
2u1

> 0 we say that (1.4) represents a predator-prey system such
that u1is prey for u2.
- If f 01u2 < 0 and f

0
2u1
< 0 we say that (1.4) represents a competitive system. etc.

7



8 CHAPTER 1. INTRODUCTION

- If f 01u2 > 0 and f 02u1 > 0 we say that (1.4) represents a cooperative system.

A predator-prey model has received great attention in the last forty years in mathe-
matical ecology due to its universal existence and importance. Standard Lotka-Volterra
models for predator prey species assume that the per capita rate of predation depends on
the prey numbers only, but in many situations, especially when predators have to search,
share or compete for food, a more suitable predator-prey model should be based on the
00
ratio-dependent

00
theory.

A predator-prey model in which the predator consumes the prey with Holling type
functional response (see [19, 20]) (or ratio-dependent) take the form

·
u1 = u1(r1 − a11u1 − u2

a+ u1
),

·
u2 = u2(−r2 + bu1

a+ u1
− a22u2).

(1.5)

where r1 > 0 and −r2 < 0 are the intrinsic growth rate and intrinsic mortality of the
respective species, a11 > 0 and a22 > 0 represent the strength of the intraspecific com-
petition (the competition within the species, r1

a11
is the carrying capacity for the prey),

b > 0, a > 0 are the maximum birth rate and the half saturation constant of the predator,
respectively. The meaning of the half saturation constant is that at u1 = a the specific
growth rate bu1

a+u1
(called also a Holling type functional response) of the predator is equal

to half its maximum b. The Holling type terms are more realistic than those in a Lotka-
Volterra system because they increase with u1 but do not tend to infinity and are concave
down.

A predator-prey system of Cavani-Farkas type (see [11]) takes the form:

·
u1 = εu1(1− u1

K
)− βu1u2

β+u1
,

·
u2 = −u2(γ+δu2)1+u2

+ βu1u2
β+u1

,
(1.6)

where ε > 0 is the specific growth rate of the prey in the absence of predation and without
environmental limitation, β > 0, K > 0 are the conversion rate and carrying capacity
with respect to the prey, respectively, γ > 0 and δ > 0 are the minimal mortality and
the limiting mortality of the predator, respectively (the natural assumption is γ < δ).
The advantage of this model over the more often used models is that here the predator
mortality is neither a constant nor an unbounded function, still, it is increasing with the
predator abundance.

1.2 Pattern Formation in Ecological Systems

The fifty three years since Turing (1952) have witnessed the unfolding of a vast literature
of theoretical investigations of the pattern formation mechanisms as well as numerous
applications to real patterns in a large number of ecological systems (see [10], [17], [25,
26, 27, 28, 29], [32]).
It was Turing who first exposed that unforced systems of reaction-diffusion equations

can exhibit inhomogeneous spatial structures via a symmetry-breaking bifurcation. More
precisely, in a reaction-diffusion system a homogeneous equilibrium which would be stable
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without diffusion becomes unstable. It is, hence, diffusion that destabilizes the homoge-
neous equilibrium. This idea is known as Turing Instability, or Diffusion-Driven Instability
(DDI) nowadays.
Segel and Jackson (see [34]) introduced this idea to the ecological field. By a predator-

prey system of reaction-diffusion equations they demonstrated the same diffusion-driven
instability and gave a biological explanation which is well-known now. In the absence of
dispersal, the prey and the predator arrive at a stable equilibrium so that any increase
in prey is consumed by the predator, and any increase in predator is reduced by self-
limitation. When diffusion is added and the diffusion rate of the predator is sufficiently
larger than that of the prey, the stabilizing influence of the predator may be dissipated by
diffusion, yielding regular peaks and troughs of prey and predator densities. The striking
aspect of the theory is that spatially periodic patterns are formed due to the Brownian
motion of individuals in a homogeneous environment. Under such an assumption of
random movement a criterion has been established for DDI in two-species systems, by
which it is concluded that a standard reaction-diffusion system of two- species competition
can not exhibit DDI (see [25], [30]). There are also some new theories which extend the old
reaction-diffusion models (see [26, 27]). The analytical methods developed for reaction-
diffusion models continue to be of use in the investigation of these alternative models.

1.3 Simple Spatio -Temporal Models of Population
Dynamics

To formulate a spatio-temporal model, one has to make some basic choices about space,
time, and state variables. Each of them may be continuous or discrete (see [13]). Here we
briefly introduce two kinds of classical spatial models of population dynamics which are
relevant to the approaches in this thesis.

One of the classical methods is the standard reaction diffusion equation (see [18]) that
takes into account space as well as the movement of organisms:

ut = f(u) +D∆u, (1.7)

where u = u(t;x) ∈ Rn is the vector of population densities at time t at place x ∈ Ω ⊂ R2
( Ω is a bounded domain with no-flux on the boundary), f is a smooth map, D is a
diagonal matrix with constant positive diagonal elements known as diffusion coefficients.
∆ is the Laplace operator. It is seen that the equation is obtained by simply adding a
diffusion term (i.e., D∆u) to the reaction term describing local interaction and growth
of populations (i.e. f(u)). The basic assumption concerning the diffusion term is that
organisms follow Brownian motion in space with a rate which is invariant in time and
space.

In a patchy world (either the habitat is patchy or the species assumes a patchy dis-
tribution) spatially discrete models (

00
patch models

00
or

00
cell models

00
), in which patches

are coupled by dispersal while the within patch dynamics is described explicitly, turns
out to be one of the relevant approaches (see [12], [33]). When organisms migrate among
patches by way of unbiased random walk and the rate of migration is constant, this type
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of models for two-species living in two identical patches takes the form:

·
u1(t, 1) = u1(t, 1)f1(u1(t, 1), u2(t, 1)) + d1(u1(t, 2)− u1(t, 1)),
·
u2(t, 1) = u2(t, 1)f2(u1(t, 1), u2(t, 1)) + d2(u2(t, 2)− u2(t, 1)),
·
u1(t, 2) = u1(t, 2)f1(u1(t, 2), u2(t, 2)) + d1(u1(t, 1)− u1(t, 2)),
·
u2(t, 2) = u2(t, 2)f2(u1(t, 2), u2(t, 2)) + d2(u2(t, 1)− u2(t, 2)),

(1.8)

where ui(t, j) := density of species i in patch j at time t, fi is continuously differentiable,
di > 0 is a constant characterizing the rate of migration when individuals of species i
migrate from a certain patch according to Fick’s law, i = 1, 2; j = 1, 2; t ∈ R.
It has been the basic assumption behind most early mathematical models of spatial

population dynamics that organisms move or disperse in space randomly, which allows
for a simple mathematical approach to population dynamics and yet is sufficient to study
the fundamental influence of space and dispersal on population dynamics. In the classical
applications of partial differential equations to population biology, for instance, organisms
are assumed to do Brownian motion the rate of which is invariant in time and space. The
assumption leads to the standard reaction-diffusion type model (1.7).

There is an extensive mathematical literature on reaction-diffusion systems applied to
ecological problems (see [1, 2], [21], [30, 31]). However, in spite of all work that has been
devoted to diffusion theory in ecology, the suitability of the most naive diffusion model
for the description of animal movements requires scrutiny. For most insect and mammal
species the reality of individuals’ movement may be far different from standard diffusion.
For instance, individuals may move in response to the local abundance of populations. In
some predator-prey systems prey at a certain position usually have increasing inclination
to leave when the number of predators near-by increases because of the increasing danger,
whereas predators, in contrast, usually have decreasing inclination to leave when the
number of prey increases because of the increasing food resource. Obviously, the standard
reaction-diffusion model (1.7) or the standard diffusively coupled patchy model (1.8) are
too naive to describe such interactions. When a cross-diffusion response is incorporated,
the corresponding reaction diffusion model for a two-species living in two identical patches
has the form:

·
u1(t, 1) = u1(t, 1)f1(u1(t, 1), u2(t, 1)) + d1(ρ1(u2(t, 2))u1(t, 2)− ρ1(u2(t, 1))u1(t, 1)),·
u2(t, 1) = u2(t, 1)f2(u1(t, 1), u2(t, 1)) + d2(ρ2(u1(t, 2))u2(t, 2)− ρ2(u1(t, 1))u2(t, 1)),·
u1(t, 2) = u1(t, 2)f1(u1(t, 2), u2(t, 2)) + d1(ρ1(u2(t, 1))u1(t, 1)− ρ1(u2(t, 2))u1(t, 2)),·
u2(t, 2) = u2(t, 2)f2(u1(t, 2), u2(t, 2)) + d2(ρ2(u1(t, 1))u2(t, 1)− ρ2(u1(t, 2))u2(t, 2)),

(1.9)

where fi is continuously differentiable, di > 0 is a constant characterizing the rate of
migration when individuals of species i migrate from a certain patch according to Fick’s
law, ρi(u) is a positive function of u characterizing the decrease or the increase of the
rate of migration if it depends on the densities of the species (i = 1, 2).
- If ρi(u) ≡ 1, i = 1, 2 we refer to the system (1.9) as the self-diffusion system.
- If the system of equations (1.9) involves a cross-diffusion response (i.e., ∂ρi(u)

∂uj
6= 0,

i 6= j), we call it a cross-diffusion system.
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The system

·
u1(t, 1) = u1(t, 1)f1(u1(t, 1), u2(t, 1)),
·
u2(t, 1) = u2(t, 1)f2(u1(t, 1), u2(t, 1)),
·
u1(t, 2) = u1(t, 2)f1(u1(t, 2), u2(t, 2)),
·
u2(t, 2) = u2(t, 2)f2(u1(t, 2), u2(t, 2)),

(1.10)

is called the kinetic system of (1.9).

I assume that the kinetic system (1.10) has a positive equilibrium

(u1(t, 1), u1(t, 2), u2(t, 1), u2(t, 2)) ≡ (u1, u2, u1, u2). (1.11)

Because the patches are identical, the first two coordinates are equal to the second two
coordinates, i.e. this equilibrium is

00
spatially homogeneous

00
.

There are three important special cases:
- If ρ01(u2) > 0 and ρ02(u1) < 0 we say that (1.9) represents a predator-prey system

such that u1is prey for u2.
- If ρ01(u2) > 0 and ρ02(u1) > 0 we say that (1.9) represents a competitive system. etc.
- If ρ01(u2) < 0 and ρ02(u1) < 0 we say that (1.9) represents a cooperative system.

1.4 The Aims and The Strategy

One of the fundamental issues in spatial ecology is how explicit considerations of space
alter the prediction of population models. Classical theories, such as diffusion-driven
instability and meta-population dynamics which are developed via simple spatial popu-
lation models, have profoundly increased our understanding of the issue. In this thesis I
scrutinize these theories by considering more complicated processes of spatial interaction
of populations. For this purpose I consider spatio-temporal models as systems of ODE
which describe two-identical patch-two-species systems linked by migration, where the
phenomenon of the Turing bifurcation occurs. In the models it is assumed that either
the migration rate of each species is influenced only by its own density (self-diffusion) or
that not only by its own but also by the other one’s density (cross diffusion). I show that
the equilibrium of a standard (self-diffusion) system may be either stable or unstable,
a cross-diffusion response can stabilize an unstable equilibrium of standard system and
destabilize a stable equilibrium of standard system. For the models I show that at a
critical value of the bifurcation parameter the system undergoes a Turing bifurcation and
numerical studies show that if the bifurcation parameter is increased through a critical
value the spatially homogeneous equilibrium loses its stability and two new equilibria
emerge. I conclude that the cross migration response is an important factor that should
not be ignored when pattern emerges.
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Chapter 2

The Effects of a Self-Diffusion
Response

The Turing bifurcation (see [36]) is the basic bifurcation generating spatial pattern,
wherein an equilibrium of a nonlinear system is asymptotically stable in the absence
of diffusion but unstable in the presence of diffusion. This lies at the heart of almost all
mathematical models for patterning in ecology, embryology and elsewhere in biology and
chemistry (see [11], [14, 15, 16], [30]). Since the relation between the organisms and the
space seems to be essential to stability of an ecological system, the effect of diffusion on
the possibility of species coexistence in an ecological community has been an important
subject in population biology (see [22], [25], [35, 36]). In this chapter I treat a two-species
model in a habitat of two identical patches linked by migration in which the migration
rate of each species is influenced only by its own density, i.e. there is no response to the
density of the other one. In section 2.1, I consider a Lotka-Volterra system and I show
that instability of a uniform state can not arise via the well known Turing mechanism of
diffusion driven instability. In section 2.2, I consider a two species predator-prey system in
which the predator consumes the prey with Holling type functional response and the per
capita mortality is an increasing linear function of its quantity. In section 2.3, I consider
a two species predator-prey model of Cavani-Farkas type in which the predator consumes
the prey with Holling type functional response and the per capita mortality is neither a
constant nor an unbounded function, still, it is increasing with quantity. I show that the
equilibrium of a standard (self-diffusion) system may be either stable or unstable and at
a critical value of the bifurcation parameter the system undergoes a Turing bifurcation.
Numerical studies show that if the bifurcation parameter is increased through a critical
value the spatially homogeneous equilibrium loses its stability and two new equilibria
emerge.

2.1 Lotka-Volterra Systems

I consider a two-species Lotka—Volterra system living in a habitat of two identical patches
linked by migration and we show that instability of a uniform state can not arise via the
well known Turing mechanism of diffusion driven instability.
Let ui(t, j) := density of species i in patch j at time t, i = 1, 2; j = 1, 2; t ∈ R. The

13
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interaction is described as a system of differential equations as follows:

·
u1(t, 1) = u1(t, 1)(r1 − a11u1(t, 1)− a12u2(t, 1)) + d1(u1(t, 2)− u1(t, 1)),
·
u2(t, 1) = u2(t, 1)(r2 − a21u1(t, 1)− a22u2(t, 1)) + d2(u2(t, 2)− u2(t, 1)),
·
u1(t, 2) = u1(t, 2)(r1 − a11u1(t, 2)− a12u2(t, 2)) + d1(u1(t, 1)− u1(t, 2)),
·
u2(t, 2) = u2(t, 2)(r2 − a21u1(t, 2)− a22u2(t, 2)) + d2(u2(t, 1)− u2(t, 2)),

(2.1)

where r1 and r2 are the intrinsic growth rates of the respective species, the matrixA = [aik]
is the interaction matrix, aii > 0, (i = 1, 2) represent the strength of the intraspecific
competition, the signs of a12 and a21 determine the type of interaction, di > 0, (i = 1, 2) are
the diffusion coefficients.

First I consider the kinetic system without migration, i.e. d1 = d2 = 0 :

·
u1(t, 1) = u1(t, 1)(r1 − a11u1(t, 1)− a12u2(t, 1)),
·
u2(t, 1) = u2(t, 1)(r2 − a21u1(t, 1)− a22u2(t, 1)),
·
u1(t, 2) = u1(t, 2)(r1 − a11u1(t, 2)− a12u2(t, 2)),
·
u2(t, 2) = u2(t, 2)(r2 − a21u1(t, 2)− a22u2(t, 2)).

(2.2)

We assume that

r1a22 − r2a12 > 0, r2a11 − r1a21 > 0 and detA = a11a22 − a21a12 > 0. (2.3)

Then system (2.2) has a positive equilibrium

(u1(t, 1), u2(t, 1), u1(t, 2), u2(t, 2)) ≡ (u1, u2, u1, u2), (2.4)

where

u1 =
r1a22 − r2a12

detA
, u2 =

r2a11 − r1a21
detA

. (2.5)

The Jacobian matrix of the system without diffusion linearized at (u1, u2, u1, u2) is

Jk =


−a11u1 −a12u1 0 0
−a21u2 −a22u2 0 0
0 0 −a11u1 −a12u1
0 0 −a21u2 −a22u2

 . (2.6)

The characteristic polynomial is

D4(λ) = (D2(λ))
2, D2(λ) = λ2 + λ(a11u1 + a22u2) + u1u2 detA, (2.7)

since (a11u1 + a22u2) > 0, detA > 0, the coexistence equilibrium point (u1, u2, u1, u2) is
linearly asymptotically stable. Now we are ready to check how self-diffusion affects the
stability of (u1, u2, u1, u2). To proceed I distinguish different types of interaction.
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2.1.1 Competitive Interaction

For competitive interaction, r1 > 0 and r2 > 0, the entries of the matrix A = [aik] are
positive.

We see that (u1, u2, u1, u2) is also a spatially homogeneous equilibrium of system (2.1)
with self-diffusion. The Jacobian matrix of the system with self-diffusion at (u1, u2, u1, u2)
can be written as:

JD =


−a11u1 − d1 −a12u1 d1 0
−a21u2 −a22u2 − d2 0 d2
d1 0 −a11u1 − d1 −a12u1
0 d2 −a21u2 −a22u2 − d2

 , (2.8)

det(JD − λI) =

¯̄̄̄
¯̄̄̄ −a11u1 − d1 − λ −a12u1 d1 0

−a21u2 −a22u2 − d2 − λ 0 d2
d1 0 −a11u1 − d1 − λ −a12u1
0 d2 −a21u2 −a22u2 − d2 − λ

¯̄̄̄
¯̄̄̄ . (2.9)

Using the properties of determinant we get¯̄̄̄
¯̄̄̄ −a11u1 − λ −a12u1 d1 0
−a21u2 −a22u2 − λ 0 d2
0 0 −a11u1 − 2d1 − λ −a12u1
0 0 −a21u2 −a22u2 − 2d2 − λ

¯̄̄̄
¯̄̄̄ (2.10)

= D2(λ)(λ
2 + λ(a11u1 + a22u2 + 2(d1 + d2)) + u1u2 detA (2.11)

+2(u1d2a11 + u2d1a22) + 4d1d2.

We know that D2(λ) has two roots with negative real parts and

(a11u1 + a22u2 + 2(d1 + d2)) > 0, (2.12)

u1u2 detA+ 2(u1d2a11 + u2d1a22) + 4d1d2 > 0.

Thus, the equilibrium (u1, u2, u1, u2) can not be destabilized by self-diffusion.

2.1.2 Cooperative Interaction

For cooperative interaction, the case to be considered is when each species survives if left
alone and follows the logistic dynamics, that is, the intrinsic growth rates of the respective
species are positive, r1, r2 > 0, this is called facultative cooperation,

a12 < 0 and a21 < 0, (2.13)

where |a12| and |a21| represent the strength of the cooperation.
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Returning to system (2.1), we see that (u1, u2, u1, u2) is also a spatially homogeneous
equilibrium of the system with self-diffusion. The Jacobian matrix of the system with
self-diffusion at (u1, u2, u1, u2) can be written as:

JD =


−a11u1 − d1 −a12u1 d1 0
−a21u2 −a22u2 − d2 0 d2
d1 0 −a11u1 − d1 −a12u1
0 d2 −a21u2 −a22u2 − d2

 , (2.14)

det(JD − λI) =

¯̄̄̄
¯̄̄̄ −a11u1 − d1 − λ −a12u1 d1 0

−a21u2 −a22u2 − d2 − λ 0 d2
d1 0 −a11u1 − d1 − λ −a12u1
0 d2 −a21u2 −a22u2 − d2 − λ

¯̄̄̄
¯̄̄̄ . (2.15)

Using the properties of determinant we get¯̄̄̄
¯̄̄̄ −a11u1 − λ −a12u1 d1 0
−a21u2 −a22u2 − λ 0 d2
0 0 −a11u1 − 2d1 − λ −a12u1
0 0 −a21u2 −a22u2 − 2d2 − λ

¯̄̄̄
¯̄̄̄ (2.16)

= D2(λ)(λ
2 + λ(a11u1 + a22u2 + 2(d1 + d2)) + u1u2 detA (2.17)

+2(d1a22u2 + d2a11u1) + 4d1d2.

We know that D2(λ) has two roots with negative real parts and

(a11u1 + a22u2 + 2(d1 + d2)) > 0 (2.18)

u1u2 detA++2(d1a22u2 + d2a11u1) + 4d1d2. > 0.

Thus, the equilibrium (u1, u2, u1, u2) can not be destabilized by self-diffusion.

Remark 1 The situation is different if the cooperation is obligatory, r1, r2 < 0,the con-
dition of having a point of intersection in the positive quadrant is

detA = a11a22 − a21a12 < 0. (2.19)

The characteristic polynomial of the linearized system without diffusion at (u1, u2, u1, u2)
is

D4(λ) = (D2(λ))
2, D2(λ) = λ2 + λ(a11u1 + a22u2) + u1u2 detA, (2.20)

since (a11u1 + a22u2) > 0, detA < 0, hence, the coexistence equilibrium point (u1, u2,
u1, u2) is a saddle point and self-diffusion never stabilizes an equilibrium which is unstable
for the kinetic system.
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2.1.3 Predator-Prey Interaction

For predator-prey interaction,

r1 > 0, r2 < 0, a12 > 0 and a21 < 0. (2.21)

Returning to system (2.1), we see that (u1, u2, u1, u2) is also a spatially homogeneous
equilibrium of the system with self-diffusion.

The Jacobian matrix of the system with self-diffusion at (u1, u2, u1, u2) can be written
as:

JD =


−a11u1 − d1 −a12u1 d1 0
−a21u2 −a22u2 − d2 0 d2
d1 0 −a11u1 − d1 −a12u1
0 d2 −a21u2 −a22u2 − d2

 , (2.22)

det(JD − λI) =

¯̄̄̄
¯̄̄̄ −a11u1 − d1 − λ −a12u1 d1 0

−a21u2 −a22u2 − d2 − λ 0 d2
d1 0 −a11u1 − d1 − λ −a12u1
0 d2 −a21u2 −a22u2 − d2 − λ

¯̄̄̄
¯̄̄̄ . (2.23)

Using the properties of determinant we get¯̄̄̄
¯̄̄̄ −a11u1 − λ −a12u1 d1 0
−a21u2 −a22u2 − λ 0 d2
0 0 −a11u1 − 2d1 − λ −a12u1
0 0 −a21u2 −a22u2 − 2d2 − λ

¯̄̄̄
¯̄̄̄ (2.24)

= D2(λ)(λ
2 + λ(a11u1 + a22u2 + 2(d1 + d2)) (2.25)

+u1u2 detA+ 2(d2a11u1 + d1a22u2) + 4d1d2.

We know that D2(λ) has two roots with negative real parts and

(a11u1 + a22u2 + 2(d1 + d2)) > 0, (2.26)

u1u2 detA+ 2(d2a11u1 + d1a22u2) + 4d1d2 > 0.

Thus, we can not destabilize the equilibrium point by self-diffusion.

2.2 A Predator-Prey System with Holling Type II
Functional Response

I consider a two species predator-prey system living in a habitat of two identical patches
linked by migration in which the predator consumes the prey with Holling type functional
response and the per capita mortality is an increasing linear function of its quantity. The
Holling type terms are more realistic than those in a Lotka-Volterra system because they
increase with the quantity of prey but do not tend to infinity and are concave down. I show
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that a standard (self-diffusion) system may have an either stable or unstable equilibrium
point. I show that at a critical value of the bifurcation parameter the system undergoes
a Turing bifurcation (see [3]).

Let u1(t, j) := density of prey in patch j at time t and u2(t, j) := density of predator
in patch j at time t, j = 1, 2; t ∈ R.
The interaction between the two species is described as a system of differential equa-

tions as follows:
·
u1(t, 1) = u1(t, 1)(r1 − a11u1(t, 1)− u2(t,1)

a+u1(t,1)
) + d1(u1(t, 2)− u1(t, 1)),

·
u2(t, 1) = u2(t, 1)(−r2 + b u1(t,1)

a+u1(t,1)
− a22u2(t, 1)) + d2(u2(t, 2)− u2(t, 1)),

·
u1(t, 2) = u1(t, 2)(r1 − a11u1(t, 2)− u2(t,2)

a+u1(t,2)
) + d1(u1(t, 1)− u1(t, 2)),

·
u2(t, 2) = u2(t, 2)(−r2 + b u1(t,2)

a+u1(t,2)
− a22u2(t, 2)) + d2(u2(t, 1)− u2(t, 2)),

(2.27)

where r1 > 0 and −r2 < 0 are the intrinsic growth rate and intrinsic mortality of the
respective species, a11 > 0 and a22 > 0 represent the strength of the intraspecific com-
petition (the competition within the species, r1

a11
is the carrying capacity for the prey),

b > 0, a > 0 are the maximum birth rate and the half saturation constant of predator,
respectively. The meaning of the half saturation constant is that at u1 = a the specific
growth rate bu1

a+u1
(called also a Holling type functional response) of the predator is equal

to half its maximum b, the constants di > 0, (i = 1, 2) are the diffusion coefficients.
First I consider the kinetic system without diffusion i.e. d1 = d2 = 0 :

·
u1(t, 1) = u1(t, 1)(r1 − a11u1(t, 1)− u2(t,1)

a+u1(t,1)
),

·
u2(t, 1) = u2(t, 1)(−r2 + bu1(t,1)

a+u1(t,1)
− a22u2(t, 1)),

·
u1(t, 2) = u1(t, 2)(r1 − a11u1(t, 2)− u2(t,2)

a+u1(t,2)
),

·
u2(t, 2) = u2(t, 2)(−r2 + bu1(t,2)

a+u1(t,2)
− a22u2(t, 2)).

(2.28)

The following conditions are reasonable and natural:

b > r2, (2.29)

r1/a11 > a, (2.30)

b(r1 − aa11) > r2(r1 + aa11), (2.31)

b(r1 − aa11) >
a22
4a
(r1 + aa11)

3 + r2(r1 + aa11).

Condition (2.29) ensures that the predator may have eventually, a positive net growth
rate; (2.30) ensures that for the prey an Allée-effect zone exists where the increase of prey
density is favourable to its growth rate; (2.31) is needed to have a positive equilibrium
point of system (2.28). System (2.28) is made up by two identical uncoupled systems.
Under these conditions each has (the same) positive equilibrium which is the intersection
of the null-clines:

u2 = H1(u1) := (a+ u1)(r1 − a11u1), (2.32)
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u2 = H2(u1) :=
1

a22
(−r2 + bu1

a+ u1
). (2.33)

Thus, denoting the coordinates of a positive equilibrium by (u1, u2, u1, u2), these coordi-
nates satisfy u2 = H1(u1) = H2(u1).

Note that if r1/a11 > a, we have an interval u1 ∈ (0, r1/a11−a2
), where the Allée-effect

holds, i.e., the increase of the prey quantity is beneficial to its growth rate.

The Jacobian matrix of system (2.28) linearized at (u1, u2, u1, u2) is

Jk =


−a11u1 + u1u2

(a+u1)2
− u1
a+u1

0 0
abu2

(a+u1)2
−a22u2 0 0

0 0 −a11u1 + u1u2
(a+u1)2

− u1
a+u1

0 0 abu2
(a+u1)2

−a22u2

 . (2.34)

The characteristic polynomial is

D4(λ) = (D2(λ))
2, D2(λ) = λ2 + λ(a11u1 + a22u2 − u1u2

(a+ u1)2
)

+(a11a22 +
ab

(a+ u1)3
− a22u2
(a+ u1)2

)u1u2. (2.35)

The equilibrium point (u1, u2, u1, u2) lies in the Allée-effect zone if

H1((−a+ r1
a11
)/2) < H2((−a+ r1

a11
)/2), (2.36)

i.e.

a2a11
4
(1 +

r1
aa11

) <
1

a22
(−r2 + br1−aa11

r1+aa11
). (2.37)

Assume that

a11u1 + a22u2 − u1u2
(a+ u1)2

> 0 and a11a22 +
ab

(a+ u1)3
− a22u2
(a+ u1)2

> 0, (2.38)

then the coexistence equilibrium point (u1, u2, u1, u2) is linearly asymptotically stable.

2.2.1 The Linearized Problem

Returning to system (2.27), we see that (u1, u2, u1, u2) is also a spatially homogeneous
equilibrium of the system with self-diffusion.
The Jacobian matrix of system (2.27) at (u1, u2, u1, u2) can be written as:

JD =


−a11u1 + u1u2

(a+u1)2
− d1 − u1

a+u1
d1 0

abu2
(a+u1)2

−a22u2 − d2 0 d2ρ2
d1 0 −a11u1 + u1u2

(a+u1)2
− d1 − u1

a+u1

0 d2
abu2

(a+u1)2
−a22u2 − d2

 ,
(2.39)
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det(JD − λI) =¯̄̄̄
¯̄̄̄
¯
−a11u1 + u1u2

(a+u1)2
− d1 − λ − u1

a+u1
d1 0

abu2
(a+u1)2

−a22u2 − d2 − λ 0 d2
d1 0 −a11u1 + u1u2

(a+u1)2
− d1 − λ − u1

a+u1

0 d2
abu2

(a+u1)2
−a22u2 − d2 − λ

¯̄̄̄
¯̄̄̄
¯ .

(2.40)

Using the properties of determinant we get¯̄̄̄
¯̄̄̄
¯
−a11u1 + u1u2

(a+u1)2
− λ − u1

a+u1
d1 0

abu2
(a+u1)2

−a22u2 − λ 0 d2
0 0 −a11u1 + u1u2

(a+u1)2
− 2d1 − λ − u1

a+u1

0 0 abu2
(a+u1)2

−a22u2 − 2d2 − λ

¯̄̄̄
¯̄̄̄
¯

(2.41)

= D2(λ)(λ
2 + λ(a11u1 + a22u2 − u1u2

(a+ u1)2
+ 2(d1 + d2))

+(a11a22 +
ab

(a+ u1)3
− a22u2
(a+ u1)2

)u1u2 (2.42)

+2a22d1u2 − 2d2(−a11u1 + u1u2
(a+ u1)2

− 2d1).

We know that D2(λ) has two roots with negative real parts. By (2.38), clearly, a11u1 +
a22u2− u1u2

(a+u1)2
+2(d1+ d2) > 0. The other polynomial will have a negative and a positive

root if the constant term is negative. By the properties of the model and conditions (2.38)
the first two terms are positive. If (2.37) holds and the parameters have been chosen so
that

−a11u1 + u1u2
(a+ u1)2

− 2d1 > 0, (2.43)

we may increase d2 and the constant term becomes negative. The calculations lead to the
following Theorem.

Theorem 1 Under conditions (2.37), (2.38), (2.43) If

d2 > d2crit =
[(a11a22 +

ab
(a+u1)3

− a22u2
(a+u1)2

)u1u2 + 2a22d1u2]

2(−a11u1 + u1u2
(a+u1)2

− 2d1)
, (2.44)

then Turing instability occurs.

Remark 2 If (2.37) and (2.38) hold and the parameters have been chosen so that

−a11u1 + u1u2
(a+ u1)2

− 2d1 < 0, (2.45)

then self-diffusion never destabilizes the equilibrium (u1, u2, u1, u2) which is asymptotically
stable for the kinetic system, i.e. the equilibrium (u1, u2, u1, u2) is diffusively stable for all
values of d2.
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2.2.2 Numerical Investigations

In this section I illustrate the results by the following example and we are looking for
conditions which imply Turing instability (diffusion driven instability).

Example 1: We choose r1 = 10.5, r2 = 1, a11 = 0.5, a22 = 5, d1 = 1, a = 2.3,
b = 547.8 then
u1 = 1, u2 = 33.

We consider d2 as a bifurcation parameter. For the above values of the parameters the
positive critical value of the bifurcation is d2crit ∼= 1008.357143. In this case at d2 = d2crit,
we have four eigenvalues λi(i = 1, 2, 3, 4) such that Reλi < 0, (i = 1, 2, 3) and λ4 = 0.

If d2 < d2crit ⇒ Reλi < 0, (i = 1, 2, 3, 4) then, (u1, u2, u1, u2) is asymptotically stable
If d2 > d2crit ⇒ Reλi < 0, (i = 1, 2, 3) and λ4 > 0, then, (u1, u2, u1, u2) is unstable.

Thus as d2 is increased through d2 = d2crit the spatially homogeneous equilibrium
loses its stability by Turing bifurcation. Numerical calculations show that two new spa-
tially non-constant equilibria emerge (see Table 1 and Figure 1), and these equilibria are
asymptotically stable.

2.3 A Predator-Prey System of Cavani-Farkas Type

I consider a two-species predator-prey system of Cavani-Farkas type (see [11]) living in
a habitat of two identical patches linked by migration. The advantage of the present
model over the more often used models is that here the predator mortality is neither a
constant nor an unbounded function, still, it is increasing with quantity. I show that a
standard (self-diffusion) system may have an either stable or unstable equilibrium point.
I show that at a critical value of the bifurcation parameter the system undergoes a Turing
bifurcation (see [4]).

Let u1(t, j) = density of prey in patch j at time t and u2(t, j) = density of predator in
patch j at time t, j = 1, 2; t ∈ R. The interaction is described as a system of differential
equations as follows:

·
u1(t, 1) = εu1(t, 1)(1− u1(t,1)

K
)− βu1(t,1)u2(t,1)

β+u1(t,1)
+ d1(u1(t, 2)− u1(t, 1)),

·
u2(t, 1) = −u2(t,1)(γ+δu2(t,1))1+u2(t,1)

+ βu1(t,1)u2(t,1)
β+u1(t,1)

+ d2(u2(t, 2)− u2(t, 1)),
·
u1(t, 2) = εu1(t, 2)(1− u1(t,2)

K
)− βu1(t,2)u2(t,2)

β+u1(t,2)
+ d1(u1(t, 1)− u1(t, 2)),

·
u2(t, 2) = −u2(t,2)(γ+δu2(t,2))1+u2(t,2)

+ βu1(t,2)u2(t,2)
β+u1(t,2)

+ d2(u2(t, 1)− u2(t, 2)),

(2.46)

where ε > 0 is the specific growth rate of the prey in the absence of predation and without
environmental limitation, β > 0, K > 0 are the half saturation constant and carrying
capacity with respect to the prey, respectively, γ > 0 and δ > 0 are the minimal mortality
and the limiting mortality of the predator, respectively (the natural assumption is γ < δ).
The meaning of the half saturation constant is that at u1 = β the specific growth rate
βu1
β+u1

(called also a Holling type functional response) of the predator is equal to half its
maximum β (the conversion rate is taken to be equal to the half saturation constant for
sake of simplicity). di > 0, (i = 1, 2) are the diffusion coefficients.
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First we consider the kinetic system without diffusion, i.e. d1 = d2 = 0 :

·
u1(t, 1) = εu1(t, 1)(1− u1(t,1)

K
)− βu1(t,1)u2(t,1)

β+u1(t,1)
,

·
u2(t, 1) = −u2(t,1)(γ+δu2(t,1))

1+u2(t,1)
+ βu1(t,1)u2(t,1)

β+u1(t,1)
,

·
u1(t, 2) = εu1(t, 2)(1− u1(t,2)

K
)− βu1(t,2)u2(t,2)

β+u1(t,2)
,

·
u2(t, 2) = −u2(t,2)(γ+δu2(t,2))

1+u2(t,2)
+ βu1(t,2)u2(t,2)

β+u1(t,2)
.

(2.47)

The following conditions are reasonable and natural:

γ < β ≤ δ, (2.48)

β < K, (2.49)

γ <
βK

β +K
. (2.50)

Condition (2.48) ensures that the predator mortality is increasing with density, and that
the predator null-cline has a reasonable concave down shape; (2.49) ensures that for
the prey an Allée-effect zone exists where the increase of prey density is favourable to
its growth rate; (2.50) is needed to have a positive equilibrium point of system (2.47).
System (2.47) is made up by two identical uncoupled systems. Under these conditions
each has (the same) positive equilibrium which is the intersection of the null-clines:

u2 = H1(u1) :=
ε

βK
(K − u1)(β + u1), (2.51)

u2 = H2(u1) :=
(β − γ)u1 − βγ

(δ − β)u1 + βδ
. (2.52)

Thus, denoting the coordinates of a positive equilibrium by (u1, u2, u1, u2), these coordi-
nates satisfy u2 = H1(u1) = H2(u1).
Note that if K > β, we have an interval u1 ∈ (0, K−β2 ), where the Allée-effect holds,

i.e., the increase of the prey quantity is beneficial to its growth rate.
The Jacobian matrix of the system (2.47) linearized at (u1, u2, u1, u2) is

Jk =


εu1(K−β−2u1)
K(β+u1)

− βu1
β+u1

0 0
β2u2

(β+u1)2
− (δ−γ)u2
(1+u2)2

0 0

0 0 εu1(K−β−2u1)
K(β+u1)

− βu1
β+u1

0 0 β2u2
(β+u1)2

− (δ−γ)u2
(1+u2)2

 . (2.53)

The characteristic polynomial is

D4(λ) = (D2(λ))
2, (2.54)

D2(λ) = λ2 + λ(
(δ − γ)u2
(1 + u2)2

− εu1(K − β − 2u1)
K(β + u1)

)

+
βu1u2
(β + u1)

(−ε(δ − γ)(K − β − 2u1)
Kβ(1 + u2)2

+
β2

(β + u1)2
),



2.3. A PREDATOR-PREY SYSTEM OF CAVANI-FARKAS TYPE 23

The equilibrium point (u1, u2, u1, u2) lies in the Allée-effect zone if

H1(
k − β

2
) < H2(

k − β

2
), (2.55)

i.e.

ε

4βK
(K + β)2 < −1 + (δ − γ)K

β2 − βK + δK
. (2.56)

If

K − β

2
< u1, (2.57)

then, in view of (2.48), clearly

(δ − γ)u2
(1 + u2)2

− εu1(K − β − 2u1)
K(β + u1)

> 0, (2.58)

−ε(δ − γ)(K − β − 2u1)
Kβ(1 + u2)2

+
β2

(β + u1)2
> 0,

i.e. the coexistence equilibrium point (u1, u2, u1, u2) is linearly asymptotically stable.
In the sequel we assume that

0 < u1 <
K − β

2
, (2.59)

and that still (2.58) holds. In this case the equilibrium point lies in the Allée-effect zone,
still the coexistence equilibrium point (u1, u2, u1, u2) is linearly asymptotically stable.

2.3.1 The Linearized Problem

Returning to system (2.46), we see that (u1, u2, u1, u2) is also a spatially homogeneous
equilibrium of the system with self-diffusion. The Jacobian matrix of the system at
(u1, u2, u1, u2) can be written as:

JD =


εu1(K−β−2u1)
K(β+u1)

− d1 − βu1
β+u1

d1 0
β2u2

(β+u1)2
− (δ−γ)u2
(1+u2)2

− d2 0 d2

d1 0 εu1(K−β−2u1)
K(β+u1)

− d1 − βu1
β+u1

0 d2
β2u2

(β+u1)2
− (δ−γ)u2
(1+u2)2

− d2

 , (2.60)
det(JD − λI) =¯̄̄̄
¯̄̄̄
¯̄

εu1(K−β−2u1)
K(β+u1)

− d1 − λ − βu1
β+u1

d1 0
β2u2

(β+u1)2
− (δ−γ)u2
(1+u2)2

− d2−λ 0 d2

d1 0 εu1(K−β−2u1)
K(β+u1)

− d1−λ − βu1
β+u1

0 d2
β2u2

(β+u1)2
− (δ−γ)u2
(1+u2)2

− d2−λ

¯̄̄̄
¯̄̄̄
¯̄ .

(2.61)
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Using the properties of determinant we get¯̄̄̄
¯̄̄̄
¯̄

εu1(K−β−2u1)
K(β+u1)

− λ − βu1
β+u1

d1 0
β2u2

(β+u1)2
− (δ−γ)u2
(1+u2)2

−λ 0 d2

0 0 εu1(K−β−2u1)
K(β+u1)

− 2d1 − λ − βu1
β+u1

0 0 β2u2
(β+u1)2

− (δ−γ)u2
(1+u2)2

−2d2−λ

¯̄̄̄
¯̄̄̄
¯̄ , (2.62)

= D2(λ)(λ
2 + λ(−εu1(K − β − 2u1)

K(β + u1)
+
(δ − γ)u2
(1 + u2)2

+ 2(d1 + d2))

+
βu1u2
(β + u1)

(−ε(δ − γ)(K − β − 2u1)
Kβ(1 + u2)2

+
β2

(β + u1)2
) (2.63)

++ 2d1
(δ − γ)u2
(1 + u2)2

− 2d2(εu1(K − β − 2u1)
K(β + u1)

− 2d1).

If (u1, u2, u1, u2) lies outside the Allée-effect zone i.e.
(K−β)
2

< u1 then, obviously all the
eigenvalues of matrices Jk and JD have negative real parts, so no Turing instability may
occur.
We know that D2(λ) has two roots with negative real parts. By (2.58), clearly,

−εu1(K−β−2u1)
K(β+u1)

+ (δ−γ)u2
(1+u2)2

+ 2(d1 + d2) > 0. The other polynomial will have a negative
and a positive root if the constant term is negative. By the properties of the model and
condition (2.56) the first two terms of the constant are positive. If (2.56) hold and the
parameters have been chosen so that

εu1(K − β − 2u1)
K(β + u1)

− 2d1 > 0. (2.64)

we may increase d2 and the constant term becomes negative, i.e. .the equilibrium (u1, u2,
u1, u2) becomes diffusively unstable. The calculations lead to the following Theorem.

Theorem 2 Under conditions (2.56), (2.58), (2.64) if

d2 > d2crit =

βu1u2
(β+u1)

(−ε(δ−γ)(K−β−2u1)
Kβ(1+u2)2

+ β2

(β+u1)2
) + 2d1

(δ−γ)u2
(1+u2)2

2(εu1(K−β−2u1)
K(β+u1)

− 2d1)
, (2.65)

or

0 < d1 <
2εu1(K−β−2u1)

K(β+u1)
d2 − βu1u2

(β+u1)
(−ε(δ−γ)(K−β−2u1)

Kβ(1+u2)2
+ β2

(β+u1)2
)

2 (δ−γ)u2
(1+u2)2

+ 4d2
, (2.66)

then Turing instability occurs.

Remark 3 Note that as d2 tends to infinity the right hand side of (2.66) is increasing
and tends to εu1(K−β−2u1)

2K(β+u1)
. An easy estimate shows that this is less than ε

2
. This means

that irrespective of how large the predator diffusion rate d2 is,the prey diffusion rate d1
must satisfy

d1 <
ε

2
, (2.67)

in order to have Turing instability.
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Remark 4 If (2.56) and (2.58) hold and the parameters have been chosen so that

εu1(K − β − 2u1)
K(β + u1)

− 2d1 < 0, (2.68)

then self-diffusion never destabilizes the equilibrium (u1, u2, u1, u2) which is asymptotically
stable for the kinetic system, i.e. the equilibrium (u1, u2, u1, u2) is diffusively stable for all
values of d2.

2.3.2 Numerical Investigations

We apply our analytical approach to the following example and we are looking for condi-
tions which imply Turing instability (diffusion driven instability).

Example 2: Trying to prepare an example comparable to that of [11], we choose
β = 0.1, γ = 0.01, δ = 0.1055, ε = 1, K = 1, d1 = 0.0001. The unique positive
equilibrium is (u1, u2, u1, u2) = (0.4486, 3.0250, 0.4486, 3.0250). We see that this point is
in the Allée-effect zone (0.4486 < 0.45) and it is asymptotically stable for the kinetic
system (2.47).
We consider d2 as a bifurcation parameter. In this case at d2crit ∼= 2.02447842, we

have four eigenvalues λi(i = 1, 2, 3, 4) such that Reλi < 0, (i = 1, 2, 3) and λ4 = 0.
If d2 < d2crit ⇒ Reλi < 0, (i = 1, 2, 3, 4) then, (u1, u2, u1, u2) is asymptotically stable
If d2 > d2crit ⇒ Reλi < 0, (i = 1, 2, 3) and λ4 > 0, then, (u1, u2, u1, u2) is unstable.

Thus as d2 is increased through d2 = d2crit the spatially homogeneous equilibrium loses
its stability. Numerical calculations show that two new spatially non-constant equilibria
emerge (see Table 2). The dynamics after the bifurcation is strange: none of the equilibria
are stable and computer simulations indicate that there exists an attractive closed path
of a peculiar form (see Figure 2).
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Chapter 3

The Effects of a Cross-Diffusion
Response

In population dynamics there are a lot of problems which are described by a cross-diffusion
system (see [14], [25], [30]). In this chapter I consider a two-species model in a habitat of
two identical patches linked by migration in which the per capita migration rate of each
species is influenced not only by its own but also by the other one’s density, i.e. there is
cross-diffusion present. In section 3.1, I consider a Lotka-Volterra system and I show that
for competitive (or cooperative) type interaction, a cross-diffusion may lead to Turing
instability but for a predator-prey type of interaction, instability of a uniform state can
not arise via the well known Turing mechanism of diffusion driven instability. In section
3.2, I consider a two species predator-prey system in which the predator consumes the
prey with Holling type functional response and the per capita mortality is an increasing
linear function of its quantity. In section 3.3, I consider a predator-prey model of Cavani-
Farkas type in which the predator consumes the prey with Holling type functional response
and the per capita mortality is neither a constant nor an unbounded function, still, it is
increasing with quantity. I show that a cross-diffusion response can stabilize an unstable
equilibrium of standard system and destabilize a stable equilibrium of standard system. I
show that at a critical value of the bifurcation parameter the system undergoes a Turing
bifurcation, and numerical studies show that if the bifurcation parameter is increased
through a critical value the spatially homogeneous equilibrium loses its stability and two
new stable equilibria emerge. I conclude that the cross migration response is an important
factor that should not be ignored when pattern emerges (see [5, 6, 7, 8]).

3.1 Lotka-Volterra Systems

I consider a two-species Lotka—Volterra system living in a habitat of two identical patches
linked by migration and we show that for competitive (or cooperative) type interaction,
cross-diffusion may lead to Turing instability but for a predator-prey type of interaction,
instability of a uniform state can not arise via the well known Turing mechanism of
diffusion driven instability

Let ui(t, j) := density of species i in patch j at time t, i = 1, 2; j = 1, 2; t ∈ R. The

27
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interaction is described as a system of differential equations as follows:
·
u1(t, 1) = u1(t, 1)(r1 − a11u1(t, 1)− a12u2(t, 1))

+d1(ρ1(u2(t, 2))u1(t, 2)− ρ1(u2(t, 1))u1(t, 1)),·
u2(t, 1) = u2(t, 1)(r2 − a21u1(t, 1)− a22u2(t, 1))

+ d2(ρ2(u1(t, 2))u2(t, 2)− ρ2(u1(t, 1))u2(t, 1)),

·
u1(t, 2) = u1(t, 2)(r1 − a11u1(t, 2)− a12u2(t, 2))

+d1(ρ1(u2(t, 1))u1(t, 1)− ρ1(u2(t, 2))u1(t, 2)),·
u2(t, 2) = u2(t, 2)(r2 − a21u1(t, 2)− a22u2(t, 2))

+d2(ρ2(u1(t, 1))u2(t, 1)− ρ2(u1(t, 2))u2(t, 2)),

(3.1)

where r1 and r2 are the intrinsic growth rates of the respective species, the matrixA = [aik]
is the interaction matrix, aii > 0 (i = 1, 2) represent the strength of the intraspecific
competition, the signs of a12 and a21 determine the type of interaction, di > 0, (i = 1, 2) are
the diffusion coefficients and ρi ∈ C1 (i = 1, 2) are positive functions modeling the cross-
diffusion effect. We say that the cross diffusion is strong if

¯̄
ρ
0
iuk

¯̄
(i 6= k) is large. If ρi = 1

(i = 1, 2) then we have mere
00
self-diffusion

00
.

First we consider the kinetic system without migration, i.e. d1 = d2 = 0 :
·
u1(t, 1) = u1(t, 1)(r1 − a11u1(t, 1)− a12u2(t, 1)),
·
u2(t, 1) = u2(t, 1)(r2 − a21u1(t, 1)− a22u2(t, 1)),
·
u1(t, 2) = u1(t, 2)(r1 − a11u1(t, 2)− a12u2(t, 2)),
·
u2(t, 2) = u2(t, 2)(r2 − a21u1(t, 2)− a22u2(t, 2)).

(3.2)

We assume that

r1a22 − r2a12 > 0, r2a11 − r1a21 > 0 and detA = a11a22 − a21a12 > 0. (3.3)

Then system (3.2) has a positive equilibrium

(u1(t, 1), u2(t, 1), u1(t, 2), u2(t, 2)) ≡ (u1, u2, u1, u2), (3.4)

where

u1 =
r1a22 − r2a12

detA
, u2 =

r2a11 − r1a21
detA

. (3.5)

The Jacobian matrix of the system without diffusion linearized at (u1, u2, u1, u2) is

Jk =


−a11u1 −a12u1 0 0
−a21u2 −a22u2 0 0
0 0 −a11u1 −a12u1
0 0 −a21u2 −a22u2

 . (3.6)

The characteristic polynomial is

D4(λ) = (D2(λ))
2, D2(λ) = λ2 + λ(a11u1 + a22u2) + u1u2 detA, (3.7)

since (a11u1+a22u2) > 0, detA > 0, hence, the coexistence equilibrium point (u1, u2, u1, u2)
is linearly asymptotically stable. Now we are ready to check how cross-diffusion affect the
stability of (u1, u2, u1, u2). To proceeds, we distinguish different types of interaction.
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3.1.1 Competitive Interaction

For competitive interaction (see [5]), r1 > 0 and r2 > 0, the entries of the matrix A =
[aik] are positive and ρ1 ∈ C1 is a positive increasing function of u2, the density of
the competitor, with analogous conditions on ρ2. The idea is that high density of the
competitor increases the diffusion rate of the species (see [22, 23]).

We see that (u1, u2, u1, u2) is also a spatially homogeneous equilibrium of the sys-
tem with cross-diffusion. The Jacobian matrix of system (3.1) with cross-diffusion at
(u1, u2, u1, u2) can be written as:
JD =
−a11u1 − d1ρ1 −a12u1 − d1ρ01u1 d1ρ1 d1ρ

0
1u1

−a21u2 − d2ρ02u2 −a22u2 − d2ρ2 d2ρ
0
2u2 d2ρ2

d1ρ1 d1ρ
0
1u1 −a11u1 − d1ρ1 −a12u1 − d1ρ01u1

d2ρ
0
2u2 d2ρ2 −a21u2 − d2ρ02u2 −a22u2 − d2ρ2

 , (3.8)

where ρ1and ρ
0
1 are to be taken at u2 and ρ2, ρ

0
2 at u1.

det(JD − λI) =

¯̄̄̄
¯̄̄̄ −a11u1 − d1ρ1 − λ −a12u1 − d1ρ01u1 d1ρ1 d1ρ

0
1u1

−a21u2 − d2ρ02u2 −a22u2 − d2ρ2 − λ d2ρ
0
2u2 d2ρ2

d1ρ1 d1ρ
0
1u1 −a11u1 − d1ρ1 − λ −a12u1 − d1ρ01u1

d2ρ
0
2u2 d2ρ2 −a21u2 − d2ρ02u2 −a22u2 − d2ρ2 − λ

¯̄̄̄
¯̄̄̄ .
(3.9)

Using the properties of determinant we get¯̄̄̄
¯̄̄̄ −a11u1 − λ −a12u1 d1ρ1 d1ρ

0
1u1

−a21u2 −a22u2 − λ d2ρ
0
2u2 d2ρ2

0 0 −a11u1 − 2d1ρ1 − λ −a12u1 − 2d1ρ01u1
0 0 −a21u2 − 2d2ρ02u2 −a22u2 − 2d2ρ2 − λ

¯̄̄̄
¯̄̄̄ (3.10)

= D2(λ)(λ
2 + λ(a11u1 + a22u2 + 2(d1ρ1 + d2ρ2)) + u1u2 detA (3.11)

+2u1d2(a11ρ2 − a12ρ02u2) + 2u2d1(a22ρ1 − a21ρ01u1)
+4d1d2(ρ1ρ2 − u1u2ρ01ρ02)).

We know that D2(λ) has two roots with negative real parts. The other polynomial will
have a negative and a positive root if the constant term is negative. Clearly, (a11ρ2 −
a12ρ

0
2u2) = ρ2(a11−a12 ρ

0
2

ρ2
u2) < 0 if

ρ02
ρ2
is big enough, (a22ρ1−a21ρ01u1) = ρ1(a22−a21 ρ

0
1

ρ1
u1) <

0 if ρ01
ρ1
is big enough and (ρ1ρ2− u1u2ρ01ρ02) = ρ1ρ2(1− u1u2 ρ

0
1ρ
0
2

ρ1ρ2
) < 0 if ρ01ρ

0
2

ρ1ρ2
is big enough.

If we have achieved this we may increase d1 and/or d2 and the constant term becomes
negative. The calculations lead to the following Theorem.

Theorem 3 The equilibrium (u1, u2, u1, u2) of system (3.1) is asymptotically stable if
ρ01
ρ1
,
ρ02
ρ2
,
ρ01ρ

0
2

ρ1ρ2
, d1 and d2 are sufficiently small; if

ρ01
ρ1
,
ρ02
ρ2
,
ρ01ρ

0
2

ρ1ρ2
and either d1 or d2 are suffi-

ciently large the (u1, u2, u1, u2) loses its stability by a Turing bifurcation.
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Numerical Investigations

I consider two examples of migration function and we are looking for conditions which
imply Turing instability (diffusion driven instability).

Example 3: We choose

ρ1(u2) = exp(m1u2), ρ2(u1) = exp(m2u1), m1, m2 > 0. (3.12)

If r1 = 11, r2 = 10, a11 = 5, a22 = 4, a12 = 4, a21 = 3, m1 = 2, m2 = 1, d1 = 1, then

detA = a11a22 − a21a12 = 8, u1 = r1a22−r2a12
detA

= 0.5, u2 =
r2a11−r1a21

detA
= 17

8
.

At d2crit =
17
2
+ 17

4
exp( 17

4
)

7
2
exp( 1

2
)+ 9

2
exp( 19

4
)
∼= 0.582712, we have four eigenvalues λi(i = 1, 2, 3, 4) such

that λi < 0 (i = 1, 2, 3) and λ4 = 0.
If d2 < d2crit ⇒ λi < 0 (i = 1, 2, 3, 4), then, (u1, u2, u1, u2) is asymptotically stable .
If d2 > d2crit ⇒ λi < 0 (i = 1, 2, 3) and λ4 > 0, then, (u1, u2, u1, u2) is unstable.

Thus if d2 is increased through d2 = d2crit then the spatially homogeneous equilibrium
loses its stability. Numerical calculations show that two new spatially non-constant equi-
libria emerge (see Table 3 and Figure 3), and these equilibria are asymptotically stable;
so that this is a pitchfork bifurcation.

Example 4: We choose

ρ1(u2) =
u2

1 + u2
, ρ2(u1) =

u1
1 + u1

. (3.13)

If r1 = 11, r2 = 10, a11 = 5, a22 = 4, a12 = 4, a21 = 3, d1 = 1 then we have:

detA = a11a22 − a21a12 = 8, u1 = r1a22−r2a12
detA

= 0.5, u2 =
r2a11−r1a21

detA
= 17

8
.

At d2crit = 72777
5242

∼= 13.88344143, we have four eigenvalues λi(i = 1, 2, 3, 4) such that
λi < 0 (i = 1, 2, 3) and λ4 = 0.
If d2 < d2crit ⇒ λi < 0 (i = 1, 2, 3, 4), then, (u1, u2, u1, u2) is asymptotically stable.
If d2 > d2crit ⇒ λi < 0 (i = 1, 2, 3) and λ4 > 0, then (u1, u2, u1, u2) is unstable.

Thus as d2 is increased through d2 = d2crit the spatially homogeneous equilibrium loses
its stability. Numerical calculations show that two new spatially non-constant equilibria
emerge (see Table 4 and Figure 4) and these equilibria are asymptotically stable; so that
this is a pitchfork bifurcation.
It is to be noted that after the bifurcation the sum of the stable equilibrium values

of species 1 ( and, similarly, that of species 2) is equal to the double of its spatially
homogeneous equilibrium value u1 (resp. u2).

3.1.2 Cooperative Interaction

For cooperative interaction (see [6]), the case to be considered is when each species survives
if left alone and follows the logistic dynamics, that is, the intrinsic growth rates of the
respective species are positive, r1, r2 > 0, this is called facultative cooperation,

a12 < 0 and a21 < 0, (3.14)
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where |a12| and |a21| represent the strength of the cooperation, ρ1 ∈ C1 is a positive
decreasing function of u2, with analogous conditions on ρ2.The idea is that these migration
functions describe the inclination of individuals of one species to stay at a certain patch
due to the attraction by the other species in the patch (see [22, 23]).

Returning to system (3.1), we see that (u1, u2, u1, u2) is also a spatially homogeneous
equilibrium of the system with cross-diffusion. The Jacobian matrix of the system with
cross-diffusion at (u1, u2, u1, u2) can be written as:
JD =
−a11u1 − d1ρ1 −a12u1 − d1ρ01u1 d1ρ1 d1ρ

0
1u1

−a21u2 − d2ρ02u2 −a22u2 − d2ρ2 d2ρ
0
2u2 d2ρ2

d1ρ1 d1ρ
0
1u1 −a11u1 − d1ρ1 −a12u1 − d1ρ01u1

d2ρ
0
2u2 d2ρ2 −a21u2 − d2ρ02u2 −a22u2 − d2ρ2

 , (3.15)

where ρ1and ρ
0
1 are to be taken at u2 and ρ2, ρ

0
2 at u1.

det(JD − λI) =

¯̄̄̄
¯̄̄̄ −a11u1 − d1ρ1 − λ −a12u1 − d1ρ01u1 d1ρ1 d1ρ

0
1u1

−a21u2 − d2ρ02u2 −a22u2 − d2ρ2 − λ d2ρ
0
2u2 d2ρ2

d1ρ1 d1ρ
0
1u1 −a11u1 − d1ρ1 − λ −a12u1 − d1ρ01u1

d2ρ
0
2u2 d2ρ2 −a21u2 − d2ρ02u2 −a22u2 − d2ρ2 − λ

¯̄̄̄
¯̄̄̄
(3.16)

Using the properties of determinant we get¯̄̄̄
¯̄̄̄ −a11u1 − λ −a12u1 d1ρ1 d1ρ

0
1u1

−a21u2 −a22u2 − λ d2ρ
0
2u2 d2ρ2

0 0 −a11u1 − 2d1ρ1 − λ −a12u1 − 2d1ρ01u1
0 0 −a21u2 − 2d2ρ02u2 −a22u2 − 2d2ρ2 − λ

¯̄̄̄
¯̄̄̄ (3.17)

= D2(λ)(λ
2 + λ(a11u1 + a22u2 + 2(d1ρ1 + d2ρ2)) + u1u2 detA (3.18)

+2u1d2(a11ρ2 − a12ρ02u2) + 2u2d1(a22ρ1 − a21ρ01u1)
+4d1d2(ρ1ρ2 − u1u2ρ01ρ02)).

We know that D2(λ) has two roots with negative real parts. The other polynomial will
have a negative and a positive root if the constant term is negative. Clearly, (ρ1ρ2 −
u1u2ρ

0
1ρ
0
2) = ρ1ρ2(1−u1u2 ρ

0
1ρ
0
2

ρ1ρ2
) < 0 if ρ01ρ

0
2

ρ1ρ2
is big enough. If we have achieved this we may

increase d1 and/or d2 and the constant term becomes negative. These calculations lead
to the following Theorem.
Theorem 4 The equilibrium (u1, u2, u1, u2) of system ( 3.1) is asymptotically stable if

ρ01ρ
0
2

ρ1ρ2
, d1 and d2 are sufficiently small; if

ρ01ρ
0
2

ρ1ρ2
and either d1 or d2 are sufficiently big then

(u1, u2, u1, u2) loses its stability by a Turing bifurcation.

Remark 5 The situation is different if the cooperation is obligatory, r1, r2 < 0,the con-
dition of having a point of intersection in the positive quadrant is

detA = a11a22 − a21a12 < 0. (3.19)
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The characteristic polynomial of the linearized system (3.2) without diffusion at (u1, u2,
u1, u2) is

D4(λ) = (D2(λ))
2, D2(λ) = λ2 + λ(a11u1 + a22u2) + u1u2 detA, (3.20)

since (a11u1 + a22u2) > 0, detA < 0, hence, the coexistence equilibrium point (u1, u2, u1,
u2) is a saddle point and diffusion never stabilizes an equilibrium which is unstable for
the kinetic system.

Numerical Investigations

We apply our analytical approach to the following example of migration function and we
are looking for conditions which imply Turing instability (diffusion driven instability).

Example 5: We choose

ρ1(u2) = m1 exp(−u2/m1), ρ2(u1) = m2 exp(−u1/m2), m1, m2 > 0. (3.21)

If r1 = 2, r2 = 1, a11 = 5, a22 = 4, a12 = −4, a21 = −3, m1 = 1, m2 = 1, d1 = 1, then

detA = a11a22 − a21a12 = 8, u1 = r1a22−r2a12
detA

= 3
2
, u2 =

r2a11−r1a21
detA

= 11
8
.

At d2crit =
− 33

2
+ 11

8 exp( 118 )

− 17

4 exp( 238 )
− 3

2 exp( 32 )

∼= 28.11725408, we have four eigenvalues λi(i = 1, 2, 3, 4)
such that λi < 0 (i = 1, 2, 3) and λ4 = 0.
If d2 < d2crit ⇒ λi < 0 (i = 1, 2, 3, 4), then, (u1, u2, u1, u2) is asymptotically stable .
If d2 > d2crit ⇒ λi < 0 (i = 1, 2, 3) and λ4 > 0, then, (u1, u2, u1, u2) is unstable.

Thus as d2 is increased through d2 = d2crit then the spatially homogeneous equilibrium
loses its stability. Numerical calculations show that two new spatially non-constant equi-
libria emerge (see Table 5 and Figure 5 ), and these equilibria are asymptotically stable;
so that this is a pitchfork bifurcation.

Remark 6 It is to be noted that after the bifurcation the sum of the stable equilibrium
values of species 1 (and, similarly, that of species 2) is equal to the double of its spatially
homogeneous equilibrium value u1 (resp. u2).

3.1.3 Predator-Prey Interaction

For predator-prey interaction,

r1 > 0, r2 < 0, a12 > 0 and a21 < 0,

and ρ1 ∈ C1 is a positive increasing function of u2, the density of the predator, ρ01 > 0
and ρ2 ∈ C1 is a positive decreasing function of u1 the density of the prey, ρ02 < 0. The
idea is that the dependence of the diffusion coefficient on the density of the other species
reflects the inclination of a prey (or an activator) to leave a certain patch because of the
danger (or the inhibition) and the tendency of a predator (or the inhibition) to stay at a
certain patch because of the abundance of prey (or an activator).
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Returning to system (3.1), we see that (u1, u2, u1, u2) is also a spatially homogeneous
equilibrium of the system with cross-diffusion. The Jacobian matrix of the system with
cross-diffusion at (u1, u2, u1, u2) can be written as:
JD =
−a11u1 − d1ρ1 −a12u1 − d1ρ01u1 d1ρ1 d1ρ

0
1u1

−a21u2 − d2ρ02u2 −a22u2 − d2ρ2 d2ρ
0
2u2 d2ρ2

d1ρ1 d1ρ
0
1u1 −a11u1 − d1ρ1 −a12u1 − d1ρ01u1

d2ρ
0
2u2 d2ρ2 −a21u2 − d2ρ02u2 −a22u2 − d2ρ2

 , (3.22)

where ρ1and ρ
0
1 are to be taken at u2 and ρ2, ρ

0
2 at u1.

det(JD − λI) =

¯̄̄̄
¯̄̄̄ −a11u1 − d1ρ1 − λ −a12u1 − d1ρ01u1 d1ρ1 d1ρ

0
1u1

−a21u2 − d2ρ02u2 −a22u2 − d2ρ2 − λ d2ρ
0
2u2 d2ρ2

d1ρ1 d1ρ
0
1u1 −a11u1 − d1ρ1 − λ −a12u1 − d1ρ01u1

d2ρ
0
2u2 d2ρ2 −a21u2 − d2ρ02u2 −a22u2 − d2ρ2 − λ

¯̄̄̄
¯̄̄̄
(3.23)

Using the properties of determinant we get¯̄̄̄
¯̄̄̄ −a11u1 − λ −a12u1 d1ρ1 d1ρ

0
1u1

−a21u2 −a22u2 − λ d2ρ
0
2u2 d2ρ2

0 0 −a11u1 − 2d1ρ1 − λ −a12u1 − 2d1ρ01u1
0 0 −a21u2 − 2d2ρ02u2 −a22u2 − 2d2ρ2 − λ

¯̄̄̄
¯̄̄̄ (3.24)

= D2(λ)(λ
2 + λ(a11u1 + a22u2 + 2(d1ρ1 + d2ρ2)) (3.25)

+(a11u1 + 2d1ρ1)(a22u2 + 2d2ρ2)

−(a21u2 + 2d2ρ02u2)(a12u1 + 2d1ρ01u1).

We know that D2(λ) has two roots with negative real parts, ρ2(u1) > 0, ρ02(u1) < 0,
ρ1(u2) > 0 and ρ01(u2) > 0, then we can not destabilize the equilibrium point by cross
diffusion.

3.2 A Predator-Prey System with Holling Type II
Functional Response

I consider a two-species predator-prey system living in a habitat of two identical patches
linked by migration and I show that at a critical value of the bifurcation parameter the
system undergoes a Turing bifurcation, i. e. the stable constant steady state loses its
stability and spatially non-constant stationary solutions, pattern emerge (see [7]).

Let u1(t, j) := density of prey in patch j at time t and u2(t, j) := density of predator
in patch j at time t, j = 1, 2; t ∈ R. The interaction is described as a system of differential
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equations as follows:

·
u1(t, 1) = u1(t, 1)(r1 − a11u1(t, 1)− u2(t,1)

a+u1(t,1)
)

+d1(ρ1(u2(t, 2))u1(t, 2)− ρ1(u2(t, 1))u1(t, 1)),·
u2(t, 1) = u2(t, 1)(−r2 + bu1(t,1)

a+u1(t,1)
− a22u2(t, 1))

+d2(ρ2(u1(t, 2))u2(t, 2)− ρ2(u1(t, 1))u2(t, 1)),

·
u1(t, 2) = u1(t, 2)(r1 − a11u1(t, 2)− u2(t,2)

a+u1(t,2)
)

+d1(ρ1(u2(t, 1))u1(t, 1)− ρ1(u2(t, 2))u1(t, 2)),·
u2(t, 2) = u2(t, 2)(−r2 + bu1(t,2)

a+u1(t,2)
− a22u2(t, 2))

+d2(ρ2(u1(t, 1))u2(t, 1)− ρ2(u1(t, 2))u2(t, 2)),

(3.26)

where r1 > 0 and −r2 < 0 are the intrinsic growth rate and intrinsic mortality of the
respective species, a11 > 0 and a22 > 0 represent the strength of the intraspecific com-
petition (the competition within the species, r1

a11
is the carrying capacity for the prey),

b > 0, a > 0 are the maximum birth rate and the half saturation constant of predator
respectively. The meaning of the half saturation constant is that at u1 = a the specific
growth rate bu1

a+u1
(called also a Holling type functional response) of the predator is equal

to half its maximum b. di > 0, (i = 1, 2) are the diffusion coefficients and ρ1 ∈ C1 is
a positive increasing function of u2 the density of the predator, ρ01 > 0 and ρ2 ∈ C1 is
a positive decreasing function of u1 the density of the prey, ρ02 < 0. The idea is that
the dependence of the diffusion coefficient on the density of the other species reflects the
inclination of a prey (or an activator) to leave a certain patch because of the danger (or
the inhibition) and the tendency of a predator (or the inhibition) to stay at a certain
patch because of the abundance of prey (or an activator), (see [14], [22]). The functions
ρi model the cross-diffusion effect. We say that the cross-diffusion is strong if

¯̄
ρ
0
iuk

¯̄
(i 6= k)

is large. If by varying a parameter
¯̄
ρ
0
iuk

¯̄
(i 6= k) is increasing then we say that the cross

diffusion effect is increasing. If ρi = 1, i = 1, 2 then we have mere
00self-diffusion00.

First we consider the kinetic system without migration, i.e. d1 = d2 = 0 :

·
u1(t, 1) = u1(t, 1)(r1 − a11u1(t, 1)− u2(t,1)

a+u1(t,1)
),

·
u2(t, 1) = u2(t, 1)(−r2 + bu1(t,1)

a+u1(t,1)
− a22u2(t, 1)),

·
u1(t, 2) = u1(t, 2)(r1 − a11u1(t, 2)− u2(t,2)

a+u1(t,2)
),

·
u2(t, 2) = u2(t, 2)(−r2 + bu1(t,2)

a+u1(t,2)
− a22u2(t, 2)).

(3.27)

The following conditions are reasonable and natural:

b > r2, (3.28)

r1/a11 > a, (3.29)

b(r1 − aa11) > r2(r1 + aa11), (3.30)

b(r1 − aa11) >
a22
4a
(r1 + aa11)

3 + r2(r1 + aa11).
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Condition (3.28) ensures that the predator may have eventually, a positive net growth
rate; (3.29) ensures that for the prey an Allée-effect zone exists where the increase of prey
density is favourable to its growth rate; (3.30) is needed to have a positive equilibrium
point of system (3.27). System (3.27) is made up by two identical uncoupled systems.
Under these conditions each has (the same) positive equilibrium which is the intersection
of the null-clines:

u2 = H1(u1) := (a+ u1)(r1 − a11u1), (3.31)

u2 = H2(u1) :=
1

a22
(−r2 + bu1

a+ u1
). (3.32)

Thus, denoting the coordinates of a positive equilibrium by (u1, u2, u1, u2), these coordi-
nates satisfy u2 = H1(u1) = H2(u1).

Note that if r1/a11 > a, we have an interval u1 ∈ (0, r1/a11−a2
), where the Allée-effect

holds, i.e., the increase of the prey quantity is beneficial to its growth rate.
The Jacobian matrix of the system without diffusion linearized at (u1, u2, u1, u2) is

Jk =


Θ1 −Θ2 0 0
Θ3 −Θ4 0 0
0 0 Θ1 −Θ2

0 0 Θ3 −Θ4

 . (3.33)

The characteristic polynomial is

D4(λ) = (D2(λ))
2,D2(λ) = λ2 + λ(Θ4 −Θ1) +Θ2Θ3 −Θ1Θ4, (3.34)

where

Θ1 = −a11u1 + u1u2
(a+ u1)2

, Θ2 =
u1

a+ u1
,

Θ3 =
abu2

(a+ u1)2
, Θ4 = a22u2.

The equilibrium point (u1, u2, u1, u2) lies in the Allée-effect zone if

H1((−a+ r1
a11
)/2) < H2((−a+ r1

a11
)/2). (3.35)

Assume that

Θ4 −Θ1 > 0 and Θ2Θ3 −Θ1Θ4 > 0; (3.36)

then the coexistence equilibrium point (u1, u2, u1, u2) is linearly asymptotically stable.

3.2.1 The Linearized Problem

Returning to system (3.26), we see that (u1, u2, u1, u2) is also a spatially homogeneous
equilibrium of the system with cross-diffusion. The Jacobian matrix of the system with
cross-diffusion at (u1, u2, u1, u2) can be written as:

JD =


Θ1 − d1ρ1 −Θ2 − d1ρ01u1 d1ρ1 d1ρ

0
1u1

Θ3 − d2ρ02u2 −Θ4 − d2ρ2 d2ρ
0
2u2 d2ρ2

d1ρ1 d1ρ
0
1u1 Θ1 − d1ρ1 −Θ2 − d1ρ01u1

d2ρ
0
2u2 d2ρ2 Θ3 − d2ρ02u2 −Θ4 − d2ρ2

 , (3.37)
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where ρ1and ρ
0
1 are to be taken at u2 and ρ2, ρ

0
2 at u1.

Theorem 5 Under conditions (3.35), (3.36) if

Θ1 − 2d1ρ1 > 0, (3.38)

and ρ2(u1) is sufficiently large then Turing instability occurs.

Proof : det(JD − λI) =

¯̄̄̄
¯̄̄̄ Θ1 − d1ρ1 − λ −Θ2 − d1ρ01u1 d1ρ1 d1ρ

0
1u1

Θ3 − d2ρ02u2 −Θ4 − d2ρ2 − λ d2ρ
0
2u2 d2ρ2

d1ρ1 d1ρ
0
1u1 Θ1 − d1ρ1 − λ −Θ2 − d1ρ01u1

d2ρ
0
2u2 d2ρ2 Θ3 − d2ρ02u2 −Θ4 − d2ρ2 − λ

¯̄̄̄
¯̄̄̄ . (3.39)

Using the properties of determinant we get¯̄̄̄
¯̄̄̄ Θ1 − λ −Θ2 d1ρ1 d1ρ

0
1u1

Θ3 −Θ4 − λ d2ρ
0
2u2 d2ρ2

0 0 Θ1 − 2d1ρ1 − λ −Θ2 − 2d1ρ01u1
0 0 Θ3 − 2d2ρ02u2 −Θ4 − 2d2ρ2 − λ

¯̄̄̄
¯̄̄̄ (3.40)

= D2(λ){λ2 + λ[Θ4 −Θ1 + 2(d1ρ1 + d2ρ2)] +Θ2Θ3 −Θ1Θ4

+2d1Θ4ρ1 − 2d2ρ2(Θ1 − 2d1ρ1) + 2d1u1Θ3ρ
0
1

−2d2ρ02u2(Θ2 + 2d1ρ
0
1u1)}. (3.41)

We know that D2(λ) has two roots with negative real parts. By (3.36), clearly, Θ4−Θ1+
2(d1ρ1 + d2ρ2) > 0. The other polynomial will have a negative and a positive root if the
constant term is negative. This can be achieved if ρ2(u1) is increased.

Remark 7 As I have mentioned in Chapter 2, if (2.45) holds and there is no cross-
diffusion then the equilibrium remains stable for any d2 > 0. Still, (3.38) may hold, i.e.
in this case only the cross-diffusion effect may destabilize the equilibrium.

Remark 8 If the parameters have been chosen so that

Θ1 − 2d1 > 0 and Θ1 − 2d1ρ1 < 0, (3.42)

then the equilibrium (u1, u2, u1, u2) remains asymptotically stable for any d2 > 0 and ρ2 >
0 in the cross-diffusion case while, as we have seen, it will undergo a Turing bifurcation
in the absence of cross-diffusion.

3.2.2 Numerical Investigations

We apply our analytical approach to the following example of migration function and we
are looking for conditions which imply Turing instability (diffusion driven instability).

Example 6: We choose

ρ1(u2) =
m1u2
1 + u2

, ρ2(u1) = m2 exp(
−u1
m2

), m1, m2 > 0. (3.43)
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If r1 = 10.5, r2 = 1, a11 = 0.5, a22 = 5, m1 = 1, d2 = 1, d1 = 1, a = 2.3, b = 547.8 then
u1 = 1, u2 = 33.
We consider m2 as a bifurcation parameter. In this case at m2crit

∼= 923.0945, we have
four eigenvalues λi(i = 1, 2, 3, 4) such that Reλi < 0 (i = 1, 2, 3) and λ4 = 0.

If m2 < m2crit ⇒ Reλi < 0 (i = 1, 2, 3, 4), then, (u1, u2, u1, u2) is asymptotically stable
.

In this example
¯̄
ρ
0
2u1
(u1, u2)

¯̄
= exp(− u1

m2
). As we see if m2 is increased for fixed u1this

derivative is increasing, i.e. the cross-diffusion effect is increasing.
If m2 > m2crit ⇒ Reλi < 0 (i = 1, 2, 3) and λ4 > 0, then, (u1, u2, u1, u2) is unstable.

Thus asm2 is increased throughm2 = m2crit then the cross-diffusion response is strong
and the spatially homogeneous equilibrium loses its stability. Numerical calculations show
that two new spatially non-constant equilibria emerge (see Table 6 and Figure 6), and
these equilibria are asymptotically stable.

Remark 9 This result does not contradict that of [22] where a situation is treated in
which the spatially homogeneous equilibrium is stable for all values of the

00
self-diffusion

00

coefficients (without cross-diffusion). Here this is not the case.

3.3 A Predator-Prey System of Cavani-Farkas Type

In Chapter 2, I considered a predator-prey system of Cavani-Farkas type (see [11]) living in
a habitat of two identical patches in which the migration rate of each species is influenced
only by its own density and I show that at a critical value of the bifurcation parameter
the system undergoes a Turing bifurcation, pattern emerge. In this Section, I consider
the case when the migration rate of each species is influenced not only by its own but also
by the other one’s density, i.e. there is cross-diffusion present.

Let u1(t, j) := density of prey in patch j at time t and u2(t, j) := density of predator
in patch j at time t, j = 1, 2; t ∈ R. The interaction between two species is described as
a system of differential equations as follows:

·
u1(t, 1) = εu1(t, 1)(1− u1(t,1)

K
)− βu1(t,1)u2(t,1)

β+u1(t,1)

+d1(ρ1(u2(t, 2))u1(t, 2)− ρ1(u2(t, 1))u1(t, 1)),·
u2(t, 1) = −u2(t,1)(γ+δu2(t,1))1+u2(t,1)

+ βu1(t,1)u2(t,1)
β+u1(t,1)

+d2(ρ2(u1(t, 2))u2(t, 2)− ρ2(u1(t, 1))u2(t, 1)),

·
u1(t, 2) = εu1(t, 2)(1− u1(t,2)

K
)− βu1(t,2)u2(t,2)

β+u1(t,2)

+d1(ρ1(u2(t, 1))u1(t, 1)− ρ1(u2(t, 2))u1(t, 2)),·
u2(t, 2) = −u2(t,2)(γ+δu2(t,2))1+u2(t,2)

+ βu1(t,2)u2(t,2)
β+u1(t,2)

+d2(ρ2(u1(t, 1))u2(t, 1)− ρ2(u1(t, 2))u2(t, 2)),
(3.44)

where ε > 0 is the specific growth rate of the prey in the absence of predation and without
environmental limitation, β > 0, K > 0 are the half saturation constant and carrying
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capacity with respect to the prey respectively, γ > 0 and δ > 0 are the minimal mortality
and the limiting mortality of the predator, respectively (the natural assumption is γ < δ).
The meaning of the half saturation constant is that at u1 = β the specific growth rate
βu1
β+u1

(called also a Holling type functional response) of the predator is equal to half its
maximum β (the conversion rate is taken to be equal to the half saturation constant for
sake of simplicity). The advantage of the present model over the more often used models
is that here the predator mortality is neither a constant nor an unbounded function, still,
it is increasing with quantity. di > 0, (i = 1, 2) are the diffusion coefficients and ρ1 ∈ C1
is a positive increasing function of u2, the density of the predator, ρ01 > 0 and ρ2 ∈ C1
is a positive decreasing function of u1 the density of the prey, ρ02 < 0. The idea is that
the dependence of the diffusion coefficient on the density of the other species reflects the
inclination of a prey (or an activator) to leave a certain patch because of the danger (or
the inhibition) and the tendency of a predator (or the inhibition) to stay at a certain
patch because of the abundance of prey (or an activator). The functions ρi model the
cross-diffusion effect. We say that the cross-diffusion is strong if

¯̄
ρ
0
iuk

¯̄
(i 6= k) is large. If

by varying a parameter
¯̄
ρ
0
iuk

¯̄
(i 6= k) is increasing then we say that the cross diffusion

effect is increasing. If ρi = 1, i = 1, 2 then we have mere
00self-diffusion00.

First we consider the kinetic system without migration, i.e. d1 = d2 = 0 :

·
u1(t, 1) = εu1(t, 1)(1− u1(t,1)

K
)− βu1(t,1)u2(t,1)

β+u1(t,1)
,

·
u2(t, 1) = −u2(t,1)(γ+δu2(t,1))

1+u2(t,1)
+ βu1(t,1)u2(t,1)

β+u1(t,1)
,

·
u1(t, 2) = εu1(t, 2)(1− u1(t,2)

K
)− βu1(t,2)u2(t,2)

β+u1(t,2)
,

·
u2(t, 2) = −u2(t,2)(γ+δu2(t,2))

1+u2(t,2)
+ βu1(t,2)u2(t,2)

β+u1(t,2)
.

(3.45)

The following conditions are reasonable and natural:

γ < β ≤ δ, (3.46)

β < K, (3.47)

γ <
βK

β +K
. (3.48)

Condition (3.46) ensures that the predator mortality is increasing with density, and that
the predator null-cline has a reasonable concave down shape; (3.47) ensures that for
the prey an Allée-effect zone exists where the increase of prey density is favourable to
its growth rate; (3.48) is needed to have a positive equilibrium point of system (3.45).
System (3.45) is made up by two identical uncoupled systems. Under these conditions
each has (the same) positive equilibrium which is the intersection of the null-clines:

u2 = H1(u1) :=
ε

βK
(K − u1)(β + u1), (3.49)

u2 = H2(u1) :=
(β − γ)u1 − βγ

(δ − β)u1 + βδ
. (3.50)
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Thus, denoting the coordinates of a positive equilibrium by (u1, u2, u1, u2), these coordi-
nates satisfy u2 = H1(u1) = H2(u1).

Note that if K > β, we have an interval u1 ∈ (0, K−β2 ), where the Allée-effect holds,
i.e., the increase of the prey quantity is beneficial to its growth rate.

The Jacobian matrix of the system (3.45) linearized at (u1, u2, u1, u2) is

Jk =


Φ1 −Φ2 0 0
Φ3 −Φ4 0 0
0 0 Φ1 −Φ2
0 0 Φ3 −Φ4

 . (3.51)

The characteristic polynomial is

D4(λ) = (D2(λ))
2, D2(λ) = λ2 + λ(Φ4 − Φ1) + Φ2Φ3 − Φ1Φ4, (3.52)

where

Φ1 =
εu1(K − β − 2u1)

K(β + u1)
, Φ2 =

βu1
β + u1

, (3.53)

Φ3 =
β2u2

(β + u1)2
, Φ4 =

(δ − γ)u2
(1 + u2)2

.

The equilibrium point (u1, u2, u1, u2) lies in the Allée-effect zone if

H1(
k − β

2
) < H2(

k − β

2
), (3.54)

i.e.

ε

4βK
(K + β)2 < −1 + (δ − γ)K

β2 − βK + δK
. (3.55)

Assume that

Φ4 − Φ1 > 0 and Φ2Φ3 − Φ1Φ4 > 0, (3.56)

then the coexistence equilibrium point (u1, u2, u1, u2) is linearly asymptotically stable.

3.3.1 The Linearized Problem

For model (3.44) with cross-diffusion response (i.e., ∂ρi(u)
∂uj

6= 0, i 6= j) we see that (u1, u2,
u1, u2) is also a spatially homogeneous equilibrium of the system with cross-diffusion.
The Jacobianmatrix of the systemwith cross-diffusion at (u1, u2, u1, u2) can be written

as:
JD = 

Φ1 − d1ρ1 −Φ2 − d1ρ01u1 d1ρ1 d1ρ
0
1u1

Φ3 − d2ρ02u2 −Φ4 − d2ρ2 d2ρ
0
2u2 d2ρ2

d1ρ1 d1ρ
0
1u1 Φ1 − d1ρ1 −Φ2 − d1ρ01u1

d2ρ
0
2u2 d2ρ2 Φ3 − d2ρ02u2 −Φ4 − d2ρ2

 , (3.57)

where ρ1and ρ
0
1 are to be taken at u2 and ρ2, ρ

0
2 at u1.
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Theorem 6 Under conditions (3.55), (3.56) if

Φ1 − 2d1ρ1 > 0, (3.58)

and ρ2(u1) is sufficiently large then Turing instability occurs.

Proof. det(JD − λI) =

¯̄̄̄
¯̄̄̄ Φ1 − d1ρ1 − λ −Φ2 − d1ρ01u1 d1ρ1 d1ρ

0
1u1

Φ3 − d2ρ02u2 −Φ4 − d2ρ2 − λ d2ρ
0
2u2 d2ρ2

d1ρ1 d1ρ
0
1u1 Φ1 − d1ρ1 − λ −Φ2 − d1ρ01u1

d2ρ
0
2u2 d2ρ2 Φ3 − d2ρ02u2 −Φ4 − d2ρ2 − λ

¯̄̄̄
¯̄̄̄ . (3.59)

Using the properties of determinant we get¯̄̄̄
¯̄̄̄ Φ1 − λ −Φ2 d1ρ1 d1ρ

0
1u1

Φ3 −Φ4 − λ d2ρ
0
2u2 d2ρ2

0 0 Φ1 − 2d1ρ1 − λ −Φ2 − 2d1ρ01u1
0 0 Φ3 − 2d2ρ02u2 −Φ4 − 2d2ρ2 − λ

¯̄̄̄
¯̄̄̄ , (3.60)

= D2(λ){λ2 + λ[Φ4 − Φ1 + 2(d1ρ1 + d2ρ2)] + Φ2Φ3 − Φ1Φ4

+2d1Φ4ρ1 − 2d2ρ2(Φ1 − 2d1ρ1) + 2d1u1Φ3ρ01
−2d2ρ02u2(Φ2 + 2d1ρ01u1)}. (3.61)

We know that D2(λ) has two roots with negative real parts. By (3.56), clearly, Φ4−Φ1+
2(d1ρ1+d2ρ2) > 0. The other polynomial will have a negative and a positive root if its con-
stant term is negative. This can be achieved if ρ2(u1) is increased.

Remark 10 As I have mentioned in Chapter 2, if (2.68) holds and there is no cross-
diffusion then the equilibrium remains stable for any d2 > 0. Still, (3.58) may hold, i.e.
in this case only the cross-diffusion effect may destabilize the equilibrium.

Remark 11 If the parameters have been chosen so that

Φ1 − 2d1 > 0 and Φ1 − 2d1ρ1 < 0, (3.62)

then the equilibrium (u1, u2, u1, u2) remains asymptotically stable for any d2 > 0 and ρ2 >
0 in the cross-diffusion case while, as we have seen, it will undergo a Turing bifurcation
in the absence of cross-diffusion.

3.3.2 Numerical Investigations

I illustrate the results by the following example and we are looking for conditions which
imply Turing instability (diffusion driven instability).
Example 7: We choose

ρ1(u2) =
m1u2
1 + u2

, ρ2(u1) = m2 exp(
−u1
m2

), m1, m2 > 0. (3.63)
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If β = 0.1, γ = 0.01, δ = 0.1055, ε = 1, K = 1. The unique positive equilibrium is
(u1, u2, u1, u2) = (0.4486, 3.0250, 0.4486, 3.0250). We see that this point is in the Allée-
effect zone (0.4486 < 0.45) and it is asymptotically stable with respect to the kinetic
system (3.45).

If d2 = 1 (resp.2.5 ) then, (u1, u2, u1, u2) is asymptotically stable (resp. unstable).

For the cross-diffusion system we consider m2 as a bifurcation parameter. In this case
at d1 = 1, .d2 = 1, m1 = 0.001 andm2crit

∼= 350.7, we have four eigenvalues λi(i = 1, 2, 3, 4)
such that Reλi < 0, (i = 1, 2, 3) and λ4 = 0.
If m2 < m2crit ⇒ Reλi < 0, (i = 1, 2, 3, 4), (u1, u2, u1, u2) is asymptotically stable .
If m2 > m2crit ⇒ Reλi < 0, (i = 1, 2, 3) and λ4 > 0, (u1, u2, u1, u2) is unstable.
If d1 = 0.0001, d2crit = 2.5 and m1 = 100, then, (u1, u2, u1, u2) is asymptotically stable

for all m2.

In this example
¯̄
ρ
0
2u1
(u1, u2)

¯̄
= exp(− u1

m2
). As we see if m2 is increased for fixed

u1this derivative is increasing, i.e. the cross-diffusion effect is increasing and the spatially
homogeneous equilibrium loses its stability. Numerical calculations show that two new
spatially non-constant equilibria emerge (see Table 7 and Figure 7), and these equilibria
are asymptotically stable.
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Chapter 4

Appendices

4.1 Appendix to Chapter 2

Table 1: Equilibria of Example 1 before and after bifurcation.

d2 u1(t, 1) u2(t, 1) u1(t, 2) u2(t, 2)

1000 1.000000000 33.00000000 1.000000000 33.00000000

1010
1.036370925
1.000000000
.9653313619

33.07433937
33.00000000
32.95021445

.9653313619
1.000000000
1.036370925

32.95021445
33.00000000
33.07433937

1015
1.074868882
1.000000000
.9320140124

33.17381736
33.00000000
32.92539437

.9320140124
1.000000000
1.074868882

32.92539437
33.00000000
33.17381736

1020
1.100598745
1.000000000
.9114645403

33.25055797
33.00000000
32.92320726

.9114645403
1.000000000
1.100598745

32.92320726
33.00000000
33.25055797

1030
1.140164553
1.000000000
.8822598022

33.38238717
33.00000000
32.94018541

.8822598022
1.000000000
1.140164553

32.94018541
33.00000000
33.38238717

1050
1.200526588
1.000000000
.8426276092

33.61072042
33.00000000
33.00836211

.8426276092
1.000000000
1.200526588

33.00836211
33.00000000
33.61072042

1100
1.313535754
1.000000000
.7815757376

34.10544965
33.00000000
33.24970043

.7815757376
1.000000000
1.313535754

33.24970043
33.00000000
34.10544965

43
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Figure 1a: Graphs of the coordinate u1(t, 1) of two solutions of Example 1 cor-
responding to the respective initial conditions (0.932, 33.925, 1.074, 33.173), (1.0748,
33.1738, 0.932, 33.925); before bifurcation at d2 = 900 and after bifurcation at d2 = 1015
(see Table 1); (Figure produced by applying PHASER).
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Figure 1b: Graphs of the coordinate u1(t, 1) of two solutions of Example 1 cor-
responding to the respective initial conditions (0.932, 33.925, 1.074, 33.173), (1.0748,
33.1738, 0.932, 33.925); before bifurcation at d2 = 900 and after bifurcation at d2 = 1015
(see Table 1); (Figure produced by applying PHASER).
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Table 2 : Equilibria of the Example 2 before and after bifurcation.

d2 u1(t, 1) u2(t, 1) u1(t, 2) u2(t, 2)

2.024 .4486421535 3.024981563 .4486421535 3.024981563

2.025

.4458431186

.4486421535

.4514418231

3.024834058
3.024981563
3.024972373

.4514418231

.4486421535

.4458431186

3.024972373
3.024981563
3.024834058

2.05

.4293231321

.4486421535

.4679918523

3.020772347
3.024981563
3.021716001

.4679918523

.4486421535

.4293231321

3.021716001
3.024981563
3.020772347

2.5

.3788250727

.4486421535

.5189281294

2.974518384
3.024981563
2.977322028

.5189281294

.4486421535

.3788250727

2.977322028
3.024981563
2.974518384

3

.3612552241

.4486421535

.5368308539

2.946467825
3.024981563
2.949395746

.5368308539

.4486421535

.3612552241

2.949395746
3.024981563
2.946467825

5

.3380800939

.4486421535

.5606719399

2.900027778
3.024981563
2.902254925

.5606719399

.4486421535

.3380800939

2.902254925
3.024981563
2.900027778

10

.3256132296

.4486421535

.5736383640

2.870603510
3.024981563
2.871844287

.5736383640

.4486421535

.3256132296

2.871844287
3.024981563
2.870603510
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Figure 2a Graphs of the coordinate u2(t, 1) of five solutions of Example 2 corre-
sponding to the initial conditions (0.33, 2.85, 0.5, 2.91), (3.332, 2.88, 0.542, 2.85), (3.1,
2.851, 3.2, 2.9), (0.542, 2.85, 0.332, 2.88), (0.5, 3.0, 0.3, 3.1); before bifurcation at d2 = 2;
and the projection to the u2(., 1), u1(., 2) plane of the phase portrait of the same solutions
(Figure produced by applying PHASER).
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Figure 2b Graphs of the coordinate u2(t, 1) of five solutions of Example 2 corre-
sponding to the initial conditions (0.33, 2.85, 0.5, 2.91), (3.332, 2.88, 0.542, 2.85), (3.1,
2.851, 3.2, 2.9), (0.542, 2.85, 0.332, 2.88), (0.5, 3.0, 0.3, 3.1); after bifurcation at d2 = 2.5;
and the projection to the u2(., 1), u1(., 2) plane of the phase portrait of the same solutions
(Figure produced by applying PHASER).
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4.2 Appendix to Chapter 3

Table 3. Equilibria of Example 3 before and after bifurcation.

d2 u1(t, 1) u2(t, 1) u1(t, 2) u2(t, 2)

0.5827 .5000000000 2.125000000 .5000000000 2.125000000

0.58272
.5010077539
.5000000000
.4989907276

2.123988386
2.125000000
2.126012509

.4989907276

.5000000000

.5010077539

.4693014611

.5000000000

.5293725729

0.58275
.5021693912
.5000000000
.4978235602

2.122821494
2.125000000
2.127182662

.4978235602

.5000000000

.5021693912

2.127182662
2.125000000
2.122821494

0.583
.5059395913
.5000000000
.4940072986

2.119027941
2.125000000
2.131003365

.4940072986

.5000000000

.5059395913

2.131003365
2.125000000
2.119027941

0.585
.5166055295
.5000000000
.4829743642

2.108235670
2.125000000
2.142011446

.4829743642

.5000000000

.5166055295

2.142011446
2.125000000
2.108235670

0.59
.5293725729
.5000000000
.4693014611

2.095171870
2.125000000
2.155603969

.4693014611

.5000000000

.5293725729

2.155603969
2.125000000
2.095171870

0.62
.5651072032
.5000000000
.4284802446

2.057393659
2.125000000
2.196228829

.4284802446

.5000000000

.5651072032

2.196228829
2.125000000
2.057393659

0.7
.6149762005
.5000000000
.3679939971

2.000472689
2.125000000
2.257933065

.3679939971

.5000000000

.6149762005

2.257933065
2.125000000
2.000472689

0.9
.7090000193
.5000000000
.2686398427

1.881442605
2.125000000
2.367505431

.2686398427

.5000000000

.7090000193

2.367505431
2.125000000
1.881442605

1
.7647806699
.5000000000
.2260228448

1.808440651
2.125000000
2.418691192

.2260228448

.5000000000

.7647806699

2.418691192
2.125000000
1.808440651
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Figure 3a. Graphs of the coordinate u1(t, 1) of five solutions of Example 3 corre-
sponding to the respective initial conditions (0.55, 1.50, 0.20, 0.60), (0.30, 1.50, 0.40, 1.50),
(0.40, 2.40, 0.50, 1.00), (1.00, 2.20, 0.40, 2.50), (0.70, 2.00, 0.10, 2.00); before bifurcation
at d2 = 0.5 and after bifurcation at d2 = 0.7 (see Table 3); (Figure produced by applying
PHASER).
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Figure 3b. Graphs of the coordinate u2(t, 1) of five solutions of Example 3 corre-
sponding to the respective initial conditions (0.55, 1.50, 0.20, 0.60), (0.30, 1.50, 0.40, 1.50),
(0.40, 2.40, 0.50, 1.00), (1.00, 2.20, 0.40, 2.50), (0.70, 2.00, 0.10, 2.00); before bifurcation
at d2 = 0.5 and after bifurcation at d2 = 0.7 (see Table 3); (Figure produced by applying
PHASER).
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Table 4. Equilibria of Example 4 before and after bifurcation.

d2 u1(t, 1) u2(t, 1) u1(t, 2) u2(t, 2)

13.883 .5000000000 2.125000000 .5000000000 2.125000000

13.884
.5014814431
.5000000000
.4985368540

2.122287989
2.125000000
2.127694220

.4985368540

.5000000000

.5014814431

2.127694220
2.125000000
2.122287989

13.885
.5024848312
.5000000000
.4975662194

2.120459963
2.125000000
2.129490400

.4975662194

.5000000000

.5024848312

2.129490400
2.125000000
2.120459963

14
.5231171757
.5000000000
.4806680566

2.084228374
2.125000000
2.162088813

.4806680566

.5000000000

.5231171757

2.162088813
2.125000000
2.084228374

15
.5813860699
.5000000000
.4523622714

1.991069850
2.125000000
2.225928186

.4523622714

.5000000000

.5813860699

2.225928186
2.125000000
1.991069850

18
.6686054058
.5000000000
.4343277017

1.864463939
2.125000000
2.283720787

.4343277017

.5000000000

.6686054058

2.283720787
2.125000000
1.864463939

20
.7062101228
.5000000000
.4308733557

1.812453409
2.125000000
2.301200284

.4308733557

.5000000000

.7062101228

2.301200284
2.125000000
1.812453409

25
.7693452176
.5000000000
.4283289249

1.727299697
2.125000000
2.324188044

.4283289249

.5000000000

.7693452176

2.324188044
2.125000000
1.727299697
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Figure 4a. Graphs of the coordinate u1(t, 1) of five solutions of Example 4 corre-
sponding to the respective initial conditions (0.53, 2.10, 0.485, 2.20), (0.55, 2.30, 0.485,
2.19), (0.525, 2.088, 0.482, 2.18), (0.46, 2.14, 0.52, 2.06), (0.45, 2.15, 0.515, 2.02); before
bifurcation at d2 = 10 and after bifurcation at d2 = 14 (see Table 4); (Figure produced
by applying PHASER).
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Figure 4b. Graphs of the coordinate u2(t, 1) of five solutions of Example 4 corre-
sponding to the respective initial conditions (0.53, 2.10, 0.485, 2.20), (0.55, 2.30, 0.485,
2.19), (0.525, 2.088, 0.482, 2.18), (.46, 2.14, 0.52, 2.06), (0.45, 2.15, 0.515, 2.02); before
bifurcation at d2 = 10 and after bifurcation at d2 = 14 (see Table 4); (Figure produced
by applying PHASER).
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Table 5: Equilibria of Example 5 before and after bifurcation.

d2 u1(t, 1) u2(t, 1) u1(t, 2) u2(t, 2)

28 1.500000000 1.375000000 1.500000000 1.375000000

28.2
1.524440807
1.500000000
1.474516967

1.403943678
1.375000000
1.344807960

1.474516967
1.500000000
1.524440807

1.344807960
1.375000000
1.403943678

29
1.574289053
1.500000000
1.415068046

1.462917090
1.375000000
1.274335600

1.415068046
1.500000000
1.574289053

1.274335600
1.375000000
1.462917090

30
1.602257674
1.500000000
1.376189993

1.495956494
1.375000000
1.228230906

1.376189993
1.500000000
1.602257674

1.228230906
1.375000000
1.495956494

40
1.683294096
1.500000000
1.225824281

1.591314489
1.375000000
1.049861530

1.225824281
1.500000000
1.683294096

1.049861530
1.375000000
1.591314489

50
1.704327936
1.500000000
1.169559919

1.615899482
1.375000000
.9830950704

1.169559919
1.500000000
1.704327936

.9830950704
1.375000000
1.615899482

60
1.714081033
1.500000000
1.138343964

1.627253651
1.375000000
.9460399293

1.138343964
1.500000000
1.714081033

.9460399293
1.375000000
1.627253651

80
1.723234442
1.500000000
1.104276166

1.637870036
1.500000000
.9055833674

1.104276166
1.500000000
1.723234442

.9055833674
1.500000000
1.637870036

100
1.727536907
1.500000000
1.085923814

1.642841684
1.500000000
.8837801086

1.085923814
1.500000000
1.727536907

.8837801086
1.500000000
1.642841684
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Figure 5a. Graphs of the coordinate u1(t, 1) of five solutions of Example 5 cor-
responding to the respective initial conditions (1.80, 1.60, 1.50, 1.25), (1.20, 1.10, 1.59,
1.47), (1.58, 1.45, 1.36, 1.22), (1.00, 1.10, 1.585, 1.47), (1.65, 1.100, 1.320, 1.500); before bi-
furcation at d2 = 28 and after bifurcation at d2 = 30, (see Table 5) (Figure produced by
applying PHASER).
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Figure 5b. Graphs of the coordinate u2(t, 1) of five solutions of Example 5 cor-
responding to the respective initial conditions (1.80, 1.60, 1.50, 1.25), (1.20, 1.10, 1.59,
1.47), (1.58, 1.45, 1.36, 1.22), (1.00, 1.10, 1.585, 1.47), (1.65, 1.100, 1.320, 1.500); before bi-
furcation at d2 = 28 and after bifurcation at d2 = 30, (see Table 5) (Figure produced by
applying PHASER).
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Table 6: Equilibria of Example 6 before and after bifurcation.

m2 u1(t, 1) u2(t, 1) u1(t, 2) u2(t, 2)

923 1.000000000 33.00000000 1.000000000 33.00000000

924
0.972054740
1.000000000
1.029013814

32.95268025
33.00000000
33.06268396

1.029013814
1.000000000
0.972054740

33.06268396
33.00000000
32.95268025

930
0.925412134
1.000000000
1.082739872

32.90756707
33.00000000
33.20954082

1.082739872
1.000000000
0.925412134

33.20954082
33.00000000
32.90756707

940
0.886882196
1.000000000
1.133078158

32.90928234
33.00000000
33.37702687

1.133078158
1.000000000
0.886882196

33.37702687
33.00000000
32.90928234

950
0.860562652
1.000000000
1.171211561

32.93541297
33.00000000
33.51966483

1.171211561
1.000000000
0.860562652

33.51966483
33.00000000
32.93541297

960
0.839838937
1.000000000
1.203757263

32.97292415
33.00000000
33.65052577

1.203757263
1.000000000
0.839838937

33.65052577
33.00000000
32.97292415

1000
0.782414455
1.000000000
1.308603529

33.17586301
33.00000000
34.11782822

1.308603529
1.000000000
0.782414455

34.11782822
33.00000000
33.17586301
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Figure 6a. Graphs of the coordinate u1(t, 1) of four solutions of Example 6 cor-
responding to the respective initial conditions (0.77, 33.10, 1.30, 34.00), (1.30, 37.00,
0.77, 33.10), (0.784, 33.20, 1.32, 34.20), (1.31, 34.20, 0.80, 33.30); before bifurcation at
m2 = 900 and after bifurcation at m2 = 1000 (see Table 6); (Figure produced by applying
PHASER).



60 CHAPTER 4. APPENDICES

Figure 6b. Graphs of the coordinate u2(t, 1) of five solutions of Example 6 cor-
responding to the respective initial conditions (0.77, 33.10, 1.30, 34.00), (1.30, 37.00,
0.77, 33.10), (0.784, 33.20, 1.32, 34.20), (1.31, 34.20, 0.80, 33.30); before bifurcation at
m2 = 900 and after bifurcation at m2 = 1000 (see Table 6); (Figure produced by applying
PHASER).
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Table 7: Equilibria of Example 7 before and after Turing bifurcation.

m2 u1(t, 1) u2(t, 1) u1(t, 2) u2(t, 2)

350 .4486421535 3.024981563 .4486421535 3.024981563

355

.4378285520

.4486421535

.4594667816

3.023718369
3.024981563
3.023905740

.4594667816

.4486421535

.4378285520

3.023905740
3.024981563
3.023718369

365
.4293426859
.4486421535
.4679770577

3.021090741
3.024981563
3.021415850

.4679770577

.4486421535

.4293426859

3.021415850
3.024981563
3.021090741

375
..4239447856
.4486421535
.4733980189

3.018670501
3.024981563
3.019075240

.4733980189

.4486421535

.4239447856

3.019075240
3.024981563
3.018670501

385
.4198086580
.4486421535
.4775559683

3.016422000
3.024981563
3.016882011

.4775559683

.4486421535

.4198086580

3.016882011
3.024981563
3.016422000

400
.4149242890
.4486421535
.4824709584

3.013326528
3.024981563
3.013843903

.4824709584

.4486421535

.4149242890

3.013843903
3.024981563
3.013326528
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Figure 7a: Graphs of the coordinate u1(t, 1) of two solutions of Example 7 corre-
sponding to the respective initial conditions (0.33, 2.85, 0.5, 2.91), (3.332, 2.88, 0.542,
2.85); (a) for self-diffusion at d1 = 0.0001, d2 = 2.5,(b) for cross-diffusion at d1 = 0.0001,
d2 = 2.5, m1 = 100 and m2 = 1, (Figure produced by applying PHASER).
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Figure 7b: Graphs of the coordinate u1(t, 1) of two solutions of Example 7 corre-
sponding to the respective initial conditions (0.423, 3.018, 0.473, 3.02), (0.4733, 3.018, 0.423,
3.0186);(a) for self-diffusion at d1 = 1, d2 = 1, (b) for cross-diffusion at d1 = 1, d2 = 1,
m1 = 0.001 and m2 = 375, (Figure produced by applying PHASER).
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