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Abstract

This thesis is a systematic presentation of our results in the field of population dy-
namics in patchy space with self and cross-diffusion. The results presented in the thesis
and those connecting to them were published during the past two years (see [3, 4, 5, 6,
7, 8, 9]). The research reported in this thesis was carried out in the Budapest Univer-
sity of Technology and Economics, Institute of Mathematics, Department of Differential
Equations.

In Chapter 1, I briefly review models of two-species, pattern formation in ecological
systems and the two types of spatio-temporal models of populations.

In Chapter 2, I have treated a two-species models in a habitat of two identical patches
linked by migration in which the migration rate of each species is influenced only by its
own density, i.e. there is no response to the density of the other one described by the
equations:

ur(t, 1) = uy (¢, 1) fr(u (¢, 1), uz(t, 1)) + dy(us (¢, 2) — usi(t, 1)),
gg(t, 1) = us(t, 1) folur(t, 1), us(t, 1)) + do(ua(t,2) — us(t, 1)), 1)
yl(t, 2) = uy(t,2) fr(uy(t,2), us(t, 2)) + dy(ui(t, 1) — ui(¢,2)),
us(t,2) = ua(t, 2) fa(ui(t,2), us(t, 2)) + da(us(t, 1) — us(t, 2)),

where u;(t, j) := density of species 7 in patch j at time ¢, f; is continuously differentiable,
d; > 0 is a constant characterizing the rate of migration when individuals of species
migrate from a certain patch according to Fick’s law, 1 =1,2; j =1,2;t € R.

In section 2.1, I have considered a Lotka-Volterra system and I have shown that insta-
bility of a uniform state can not arise via the well known Turing mechanism of diffusion
driven instability. In section 2.2, I have considered a two species predator-prey system
in which the predator consumes the prey with Holling type functional response and the
per capita mortality is an increasing linear function of its quantity. In section 2.3, I have
considered a two species predator-prey model of Cavani-Farkas type in which the preda-
tor consumes the prey with Holling type functional response and the per capita mortality
is neither a constant nor an unbounded function, still, it is increasing with quantity. I
have shown that the equilibrium of a standard (self-diffusion) system may be either stable
or unstable and at a critical value of the bifurcation parameter the system undergoes a
Turing bifurcation. Numerical studies show that if the bifurcation parameter is increased
through a critical value the spatially homogeneous equilibrium loses its stability and two
new equilibria emerge (see [3, 4]).

Chapter 3 is devoted to studied two-species models in a habitat of two identical patches
linked by migration in which the migration rate of each species is influenced not only by
its own but also by the other one’s density, i.e. there is cross diffusion present described
by the equations:

7%1<t> 1) = u1<t7 1)f1(u1<t7 1)7 u2<t> 1)) + dl(ﬁl(UQ(t> 2))u1<t7 2) - p1<u2(t, 1))u1(ta 1))7
us(t, 1) = ua(t, 1) fa(ur(f, 1), uz(t, 1)) + da(pa(ur(t, 2))ual(t, 2) — pylua(t, 1))ua(t, 1)),
7%1<t7 2) = u1<t7 2)f1 (u1<t7 2)7 u2<tv 2)) + dl(/)l (UZ(tv 1))u1 (ta 1) - p1<u2(t, 2))u1 (tv 2))7
uz(t,2) = ua(t, 2) fa(ur (£, 2), uz(t, 2)) + da(pa(ur(t, 1))ua(t, 1) — pylua(t, 2))ua(t, 2)),



where f; is continuously differentiable, d; > 0 is a constant characterizing the rate of
migration when individuals of species ¢ migrate from a certain patch according to Fick’s
law, p;(u) is a positive function of wu characterizing the decrease or the increase of the
rate of migration if it depends on the densities of the species (i = 1,2).

In section 3.1, I have considered a Lotka-Volterra system and I show that for competi-
tive (or cooperative) type interaction, a cross-diffusion may lead to Turing instability but
for a predator-prey type of interaction, instability of a uniform state can not arise via the
well known Turing mechanism of diffusion driven instability(see [5, 6]). In section 3.2, I
have considered a two species predator-prey system in which the predator consumes the
prey with Holling type functional response and the per capita mortality is an increasing
linear function of its quantity. In section 3.3, I have considered a predator-prey model of
Cavani-Farkas type in which the predator consumes the prey with Holling type functional
response and the per capita mortality is neither a constant nor an unbounded function,
still, it is increasing with quantity. I have shown that a cross-diffusion response can sta-
bilize an unstable equilibrium of standard system and destabilize a stable equilibrium of
standard system. I have shown that at a critical value of the bifurcation parameter the
system undergoes a Turing bifurcation, and numerical studies shown that if the bifurca-
tion parameter is increased through a critical value the spatially homogeneous equilibrium
loses its stability and two new stable equilibria emerge. I conclude that the cross migra-
tion response is an important factor that should not be ignored when pattern emerges
.(see [7, 8]).

Two Appendices in Chapter 4 contain all Tables and Figures of the numerical inves-
tigations.

The thesis ends with Bibliography, my curriculum vitae and list of publications.
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Chapter 1

Introduction

Because the relation between the organisms and the space seems to be essential to stability
of an ecological system, the effect of diffusion on the possibility of species coexistence in
an ecological community has been an important subject in population biology. The effects
of self and cross-diffusion, Turing bifurcation and pattern formation are the subjects of
this thesis.

1.1 Models of Two-Species

The classical approach to modelling ecological systems (see [24], [37]) simplifies by ig-
noring space completely and in essence assumes that the per capita growth rates of the
participating species are linear functions of the quantities (densities) of the species. The
classical Lotka-Volterra model takes the form:

predator-prey { = w(r = antn = diot) , (1.1)

Uy = Ug(—T2 + 21U — AUs)

competition  { = (r1 = anw = anus) , (1.2)
Ug = U2(7“2 — Q21U — G22U2)
mutualism up = u(r — Gy + arus) , (1.3)

Uy = Ug(re + ag1uy — agts)

where r; is the growth or death rate, a; > 0 is the coefficient of intra-specific competition,
a;; > 0(i # j) is the coefficient of inter-specific competition.
The general Kolmogorov-type model of a two species community is

U = ulfl(ulaUZ)a (14)
ﬂ2 = U2f2(U17U2),

where the partial derivatives of f;(i = 1,2) determine the classification of the community:
- If fi,, <0 and f5, > 0 we say that (1.4) represents a predator-prey system such
that u,is prey for us.
- If fi,, <0and f5, <0 we say that (1.4) represents a competitive system. etc.

7



8 CHAPTER 1. INTRODUCTION

- If fi,, > 0and fj, >0 we say that (1.4) represents a cooperative system.

A predator-prey model has received great attention in the last forty years in mathe-
matical ecology due to its universal existence and importance. Standard Lotka-Volterra
models for predator prey species assume that the per capita rate of predation depends on
the prey numbers only, but in many situations, especially when predators have to search,
share or compete for food, a more suitable predator-prey model should be based on the
"ratio-dependent " theory.

A predator-prey model in which the predator consumes the prey with Holling type
functional response (see [19, 20]) (or ratio-dependent) take the form

Uz
Uy = U1(7‘1 —annt — )
a + Ui (1 5)
bu1 :
Ug = UQ(—T'Q + — G22u2).

a+ uy

where 71 > 0 and —ry < 0 are the intrinsic growth rate and intrinsic mortality of the
respective species, a;; > 0 and ags > 0 represent the strength of the intraspecific com-
petition (the competition within the species, 7= is the carrying capacity for the prey),
b > 0, a > 0 are the maximum birth rate and the half saturation constant of the predator,
respectively. The meaning of the half saturation constant is that at u; = a the specific
growth rate lf; (called also a Holling type functional response) of the predator is equal
to half its maximum b. The Holling type terms are more realistic than those in a Lotka-
Volterra system because they increase with u; but do not tend to infinity and are concave

down.

A predator-prey system of Cavani-Farkas type (see [11]) takes the form:

w =ew(l— ) - 5, (1.6)
U — _ u2(y+dug) 4 Buiuy :
2= 14us B+uy ’

where € > 0 is the specific growth rate of the prey in the absence of predation and without
environmental limitation, 5 > 0, K > 0 are the conversion rate and carrying capacity
with respect to the prey, respectively, v > 0 and § > 0 are the minimal mortality and
the limiting mortality of the predator, respectively (the natural assumption is 7 < ).
The advantage of this model over the more often used models is that here the predator
mortality is neither a constant nor an unbounded function, still, it is increasing with the
predator abundance.

1.2 Pattern Formation in Ecological Systems

The fifty three years since Turing (1952) have witnessed the unfolding of a vast literature
of theoretical investigations of the pattern formation mechanisms as well as numerous
applications to real patterns in a large number of ecological systems (see [10], [17], [25,
26, 27, 28, 29], [32]).

It was Turing who first exposed that unforced systems of reaction-diffusion equations
can exhibit inhomogeneous spatial structures via a symmetry-breaking bifurcation. More
precisely, in a reaction-diffusion system a homogeneous equilibrium which would be stable



1.3. SIMPLE SPATIO -TEMPORAL MODELS OF POPULATION DYNAMICS 9

without diffusion becomes unstable. It is, hence, diffusion that destabilizes the homoge-
neous equilibrium. This idea is known as Turing Instability, or Diffusion-Driven Instability
(DDI) nowadays.

Segel and Jackson (see [34]) introduced this idea to the ecological field. By a predator-
prey system of reaction-diffusion equations they demonstrated the same diffusion-driven
instability and gave a biological explanation which is well-known now. In the absence of
dispersal, the prey and the predator arrive at a stable equilibrium so that any increase
in prey is consumed by the predator, and any increase in predator is reduced by self-
limitation. When diffusion is added and the diffusion rate of the predator is sufficiently
larger than that of the prey, the stabilizing influence of the predator may be dissipated by
diffusion, yielding regular peaks and troughs of prey and predator densities. The striking
aspect of the theory is that spatially periodic patterns are formed due to the Brownian
motion of individuals in a homogeneous environment. Under such an assumption of
random movement a criterion has been established for DDI in two-species systems, by
which it is concluded that a standard reaction-diffusion system of two- species competition
can not exhibit DDI (see [25], [30]). There are also some new theories which extend the old
reaction-diffusion models (see [26, 27]). The analytical methods developed for reaction-
diffusion models continue to be of use in the investigation of these alternative models.

1.3 Simple Spatio -Temporal Models of Population
Dynamics

To formulate a spatio-temporal model, one has to make some basic choices about space,
time, and state variables. Each of them may be continuous or discrete (see [13]). Here we
briefly introduce two kinds of classical spatial models of population dynamics which are
relevant to the approaches in this thesis.

One of the classical methods is the standard reaction diffusion equation (see [18]) that
takes into account space as well as the movement of organisms:

u = f(u) + DAuw, (1.7)

where u = u(t; z) € R"™ is the vector of population densities at time ¢ at place x € Q C R?
( 2 is a bounded domain with no-flux on the boundary), f is a smooth map, D is a
diagonal matrix with constant positive diagonal elements known as diffusion coefficients.
A is the Laplace operator. It is seen that the equation is obtained by simply adding a
diffusion term (i.e., DAu) to the reaction term describing local interaction and growth
of populations (i.e. f(u)). The basic assumption concerning the diffusion term is that
organisms follow Brownian motion in space with a rate which is invariant in time and
space.

In a patchy world (either the habitat is patchy or the species assumes a patchy dis-
tribution) spatially discrete models ("patch models” or “cell models “), in which patches
are coupled by dispersal while the within patch dynamics is described explicitly, turns
out to be one of the relevant approaches (see [12], [33]). When organisms migrate among
patches by way of unbiased random walk and the rate of migration is constant, this type
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of models for two-species living in two identical patches takes the form:

@1(t, 1) =ui(t, 1) fi(us(t, 1), us(t, 1)) + dy(ur(t,2) — ui(t, 1)),
7{2(757 1) = ua(t, 1) foua(t, 1), ua(t, 1)) + da(ua(t, 2) — ua(t, 1)), (1.8)
ur(t,2) = ui(t, 2) f1(ua(t, 2), ua(t, 2)) + dy(us(t, 1) — uy(t, 2)),
us(t,2) = us(t, 2) folui(t,2), us(t, 2)) + do(ua(t, 1) — ua(t, 2)),

where u;(t, j) := density of species 7 in patch j at time ¢, f; is continuously differentiable,
d; > 0 is a constant characterizing the rate of migration when individuals of species ¢
migrate from a certain patch according to Fick’s law, 1 =1,2; j =1,2;t € R.

It has been the basic assumption behind most early mathematical models of spatial
population dynamics that organisms move or disperse in space randomly, which allows
for a simple mathematical approach to population dynamics and yet is sufficient to study
the fundamental influence of space and dispersal on population dynamics. In the classical
applications of partial differential equations to population biology, for instance, organisms
are assumed to do Brownian motion the rate of which is invariant in time and space. The
assumption leads to the standard reaction-diffusion type model (1.7).

There is an extensive mathematical literature on reaction-diffusion systems applied to
ecological problems (see [1, 2], [21], [30, 31]). However, in spite of all work that has been
devoted to diffusion theory in ecology, the suitability of the most naive diffusion model
for the description of animal movements requires scrutiny. For most insect and mammal
species the reality of individuals’ movement may be far different from standard diffusion.
For instance, individuals may move in response to the local abundance of populations. In
some predator-prey systems prey at a certain position usually have increasing inclination
to leave when the number of predators near-by increases because of the increasing danger,
whereas predators, in contrast, usually have decreasing inclination to leave when the
number of prey increases because of the increasing food resource. Obviously, the standard
reaction-diffusion model (1.7) or the standard diffusively coupled patchy model (1.8) are
too naive to describe such interactions. When a cross-diffusion response is incorporated,
the corresponding reaction diffusion model for a two-species living in two identical patches
has the form:

ui(t, 1) = wi(t, 1) fi(wa(t, 1), uz(t, 1)) + di(py (ua(t, 2))ua (t,2) — py (u2(t, 1)) (8, 1)),
u2<tv 1) = u2<t7 1)f2(u1<t7 1)7 u2<tv 1)) + d2<p2(u1(t, 2))u2(t= 2) - p2<u1(t, 1))u2(t7 1))7
ui(t,2) = ui(t,2) fr(ui(t, 2), us(t, 2)) + di(py (ua(t, 1))ua(t, 1) — py(ua(t, 2))ua(t, 2)),
us(t,2) = ua(t, 2) fa(ur(t, 2), u2(t, 2)) + da(pa(ua(t, 1))ua(t, 1) — py(ur(t, 2))ua(t, 2))(, |
1.9

where f; is continuously differentiable, d; > 0 is a constant characterizing the rate of
migration when individuals of species ¢ migrate from a certain patch according to Fick’s
law, p,(u) is a positive function of wu characterizing the decrease or the increase of the
rate of migration if it depends on the densities of the species (i = 1,2).

-If p(u) =1, 4= 1,2 we refer to the system (1.9) as the self-diffusion system.

- If the system of equations (1.9) involves a cross-diffusion response (i.e., 8?—15]_") # 0,

i # 7), we call it a cross-diffusion system.
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The system
1:L1 (t,1) = ui(t, 1) fr(us(t, 1), ua(t, 1)),
'LAL2(t’ ].) = ’U,Q(t, 1)f2(u1(t, 1), 'LLQ(t, 1)), (110)
7,.1,1 (t, 2) = ul(t, 2)f1 (ul(t, 2), U9 (t, 2)),
U2 (t, 2) = UQ(t, 2>f2 (ul(t, 2), U2 (t, 2)),

is called the kinetic system of (1.9).

I assume that the kinetic system (1.10) has a positive equilibrium
(ul(t, ].), ul(t, 2), UQ(t, ].), Ug(t, 2)) = (ﬂl, Eg,ﬂl,ﬂg). (111)

Because the patches are identical, the first two coordinates are equal to the second two
coordinates, i.e. this equilibrium is * spatially homogeneous .

There are three important special cases:

- If pl(ug) > 0 and ph(uy) < 0 we say that (1.9) represents a predator-prey system
such that wu,is prey for us.

- If pi(u2) > 0 and p(uy) > 0 we say that (1.9) represents a competitive system. etc.

-If pi(ug) <0 and ph(u;) < 0 we say that (1.9) represents a cooperative system.

1.4 The Aims and The Strategy

One of the fundamental issues in spatial ecology is how explicit considerations of space
alter the prediction of population models. Classical theories, such as diffusion-driven
instability and meta-population dynamics which are developed via simple spatial popu-
lation models, have profoundly increased our understanding of the issue. In this thesis I
scrutinize these theories by considering more complicated processes of spatial interaction
of populations. For this purpose I consider spatio-temporal models as systems of ODE
which describe two-identical patch-two-species systems linked by migration, where the
phenomenon of the Turing bifurcation occurs. In the models it is assumed that either
the migration rate of each species is influenced only by its own density (self-diffusion) or
that not only by its own but also by the other one’s density (cross diffusion). I show that
the equilibrium of a standard (self-diffusion) system may be either stable or unstable,
a cross-diffusion response can stabilize an unstable equilibrium of standard system and
destabilize a stable equilibrium of standard system. For the models I show that at a
critical value of the bifurcation parameter the system undergoes a Turing bifurcation and
numerical studies show that if the bifurcation parameter is increased through a critical
value the spatially homogeneous equilibrium loses its stability and two new equilibria
emerge. | conclude that the cross migration response is an important factor that should
not be ignored when pattern emerges.
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Chapter 2

The Effects of a Self-Diffusion
Response

The Turing bifurcation (see [36]) is the basic bifurcation generating spatial pattern,
wherein an equilibrium of a nonlinear system is asymptotically stable in the absence
of diffusion but unstable in the presence of diffusion. This lies at the heart of almost all
mathematical models for patterning in ecology, embryology and elsewhere in biology and
chemistry (see [11], [14, 15, 16], [30]). Since the relation between the organisms and the
space seems to be essential to stability of an ecological system, the effect of diffusion on
the possibility of species coexistence in an ecological community has been an important
subject in population biology (see [22], [25], [35, 36]). In this chapter I treat a two-species
model in a habitat of two identical patches linked by migration in which the migration
rate of each species is influenced only by its own density, i.e. there is no response to the
density of the other one. In section 2.1, I consider a Lotka-Volterra system and I show
that instability of a uniform state can not arise via the well known Turing mechanism of
diffusion driven instability. In section 2.2, I consider a two species predator-prey system in
which the predator consumes the prey with Holling type functional response and the per
capita mortality is an increasing linear function of its quantity. In section 2.3, I consider
a two species predator-prey model of Cavani-Farkas type in which the predator consumes
the prey with Holling type functional response and the per capita mortality is neither a
constant nor an unbounded function, still, it is increasing with quantity. I show that the
equilibrium of a standard (self-diffusion) system may be either stable or unstable and at
a critical value of the bifurcation parameter the system undergoes a Turing bifurcation.
Numerical studies show that if the bifurcation parameter is increased through a critical
value the spatially homogeneous equilibrium loses its stability and two new equilibria
emerge.

2.1 Lotka-Volterra Systems

I consider a two-species Lotka—Volterra system living in a habitat of two identical patches
linked by migration and we show that instability of a uniform state can not arise via the
well known Turing mechanism of diffusion driven instability.

Let u;(t,7) := density of species i in patch j at time ¢, i = 1,2; j = 1,2; t € R. The

13
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interaction is described as a system of differential equations as follows:

’l:Ll(t, 1) = U1<t, 1)(7“1 — anul(t, 1) — CL12U2<t, 1)) + dl(ul(t, 2) — ul(t, ].)),
UQ(t, 1) = Ug(t, 1)(7"2 — Gglul(t, 1) — a22U2<t, 1)) + dg(Ug(t, 2) — Ug(t, 1)),

(2.1)
(t,2)

2 (t, )(7‘1 — 11U (t, 2) — a12U2(t, )) + dl (’U,l(t, 1) — Uy (t, 2)),
(t,2)

(51 2 2
us(t, 2)(re — agiuy (t,2) — asgua(t,2)) + da(ua(t, 1) — ua(t, 2)),

Uy
U2

where 7 and 75 are the intrinsic growth rates of the respective species, the matrix A = [a;]
is the interaction matrix, a; > 0, (i = 1,2) represent the strength of the intraspecific
competition, the signs of a12 and ag; determine the type of interaction, d; > 0, (i = 1, 2) are
the diffusion coefficients.

First I consider the kinetic system without migration, i.e. d; =dy; =0

'L:Ll (t, 1) = U (t, 1)(T1 — anul(t, 1) — a12u2(t, 1)),
UQ(t, 1) = UQ(t, 1)(’/“2 — aglul(t, 1) — CL22’U,2(t, 1)),

(2.2)
1:L1 (t,2) = uy(t,2)(r1 — anrus(t,2) — apus(t, 2)),
us(t,2) = us(t, 2)(re — agyuq(t, 2) — agus(t, 2)).
We assume that
r1Q99 — Toa12 > 0,79a11 — r1az; > 0 and det A = aq1a99 — asra12 > 0. (2.3)
Then system (2.2) has a positive equilibrium
(ur(t, 1), ua(t, 1), u(t,2),us(t, 2)) = (a1, Uz, ur, Ua), (2.4)
where
Ty = 7‘1CL2(21(;122CL12’H2 _ 7“2&156;21@21 (2.5)

The Jacobian matrix of the system without diffusion linearized at (@y,ds, Uy, Uz) is

—aq 1%1 —algﬂl 0 0
J = —Q21Uz  —QA22U2 0 0 26
- 0y (2.6)
0 0 —ajju; —ajly
0 0 —aglﬂg —aggﬂg

The characteristic polynomial is
D4(>\) = (Dg(}\))2, Dg()\) = )\2 + )\(allﬂl + a22ﬂ2> + ﬂlﬂg det A, (27)
since (@11 + awlz) > 0, det A > 0, the coexistence equilibrium point (@, Us, Uy, Us) is

linearly asymptotically stable. Now we are ready to check how self-diffusion affects the
stability of (w1, Ws, Uy, us). To proceed I distinguish different types of interaction.
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2.1.1 Competitive Interaction

For competitive interaction, r; > 0 and ry > 0, the entries of the matrix A = [a;] are
positive.

We see that (U, s, Uy, Us) is also a spatially homogeneous equilibrium of system (2.1)
with self-diffusion. The Jacobian matrix of the system with self-diffusion at (uy, U, U1, Uz)
can be written as:

—anu; — d; —a12U dy 0
—Q21Us —Qg2ly — dy 0 dy
Jp = _ _ , 2.8
b dy 0 —anl — di —ai2Uy ( )
0 da —aly  —alz — dy
det(JD — )\I) =
—anﬂl — d1 — A —CL12H1 d1 0
— Q21 U2 —Qgly — dy — A 0 dy (2.9)
dl 0 —CL11U1 — dl - A —algﬂl )
0 dsy —Q91Us —Qgolly — dy — A
Using the properties of determinant we get
—a11U; — A —a12Uq dl 0
—anUy  —AxnlUy — A 0 ds
0 0 —auﬂl - 2d1 - A —algﬂl (210)
0 0 —aglﬂg _ax22ﬂ2 — 2d2 - A
= D2(>\>(>\2 + )\(allﬂl + CLQQUQ + 2(d1 + dz)) + Ulﬂg det A (211)
+2(ﬂ1d2a11 + ﬂgdlazg) + 4d1d2.
We know that Ds(A) has two roots with negative real parts and
(allﬂl + a9ty + 2<d1 + dg)) > 0, (2.12)

U U det A + 2(ﬂ1d2a11 + Ugdlagg) + 4d1d2 > 0.

Thus, the equilibrium (@y, U, @1, Ts) can not be destabilized by self-diffusion.

2.1.2 Cooperative Interaction

For cooperative interaction, the case to be considered is when each species survives if left
alone and follows the logistic dynamics, that is, the intrinsic growth rates of the respective
species are positive, ri, 79 > 0, this is called facultative cooperation,

a1g < 0 and ag < O, (213)

where |a15| and |ag;| represent the strength of the cooperation.
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Returning to system (2.1), we see that (1, us, Uy, Us) is also a spatially homogeneous
equilibrium of the system with self-diffusion. The Jacobian matrix of the system with
self-diffusion at (@, Uz, U1, Us) can be written as:

—anu; — d; —Q12U1 d; 0
— Q212 —ag9lUy — dy 0 dy
Jp = _ _ , 2.14
b d; 0 —a11Uy — dy —a12l; (2.14)
0 da —agly  —alz —dp
det(JD — /\]) =
—(lnﬂl — d1 — A —algﬂl d1 0
—Q21Us —Qgly —dy — A 0 dy
d1 0 —CLHHl - d1 - A —algﬂl (215)
0 da — 021Uz —Qliz — dz — A
Using the properties of determinant we get
—anﬂl — A —algﬂl d1 0
— Q21 U2 —Q22Ty — A 0 ds
0 0 —allﬂl — 2d1 - A —algﬂl (216)
0 0 —Gglﬂg —GQQUQ — 2d2 - A
= Dg()\)()\2 + )\(allﬂl + (Iggﬂg + 2<d1 + dQ)) + ﬂlﬂg det A (2.17)
+2(d1&22ﬂ2 + dgallﬂl) + 4d1d2.
We know that Dy(A) has two roots with negative real parts and
(alﬁl + agts + 2<d1 —+ dQ)) > 0 (218)

Ul det A + +2(d1a22ﬂ2 + dgallﬂﬂ + 4d1d2. > 0.

Thus, the equilibrium (@, s, w1, Us) can not be destabilized by self-diffusion.

Remark 1 The situation s different if the cooperation is obligatory, ri,m < 0,the con-
dition of having a point of intersection in the positive quadrant is

det A = 11022 — as1a1z < 0. (219)

The characteristic polynomial of the linearized system without diffusion at (Gy,Us, Uy, Us)
18

D4<)\) = (DQ()\))Z, D2(>\) = )\2 + )\(&11@1 + a22ﬂ2> + ﬂlﬂg det A, (220)

since (a1l + agelz) > 0, det A < 0, hence, the coexistence equilibrium point (uy,To,
Uy, Us) is a saddle point and self-diffusion never stabilizes an equilibrium which is unstable
for the kinetic system.
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2.1.3 Predator-Prey Interaction
For predator-prey interaction,
> O,Tg <0,a12 >0 and as < 0. (221)

Returning to system (2.1), we see that (uy,%s,Ts,Us) is also a spatially homogeneous
equilibrium of the system with self-diffusion.

The Jacobian matrix of the system with self-diffusion at (@, us, Wy, Uz2) can be written

as:
—anu; —dp —Q12U1 d; 0
—Q21Us —Q0ly — d 0 dy
Jp = b _ , 9.9
b d; 0 —an; — dy —a121 (2.22)
0 ds — 91Uy —Qg2lly — da
det(Jp — AI) =
—anﬂl — dl - A —CL12U1 d1 0
—Q1 U3 —Qgolly — dy — A 0 ds
d1 0 —allﬂl — dl - A —algﬂl (223)
0 dy —Q21U2 —QlU — dy — A
Using the properties of determinant we get
—anﬂl - A —(Ilgﬂl d1 0
—Q21U2 —Q22Ty — A 0 dsy
0 0 —allﬂl — 2d1 - A —CL12U1 (224)
0 0 —aglﬂg —CLQQUQ — 2d2 — A
= DQ(}\)()\Q + /\(auﬂl + CLQQEQ + 2(d1 + dg)) (225)
+ﬂ1ﬂ2 det A -+ 2(d2a11ﬂ1 -+ dlaggﬂg) + 4d1d2.
We know that Ds(A) has two roots with negative real parts and
(allﬂl + a9ty + 2<d1 + dg)) > 0, (2.26)

U U det A + 2(d2a11ﬂ1 + dlaggﬂg) + 4d1d2 > 0.

Thus, we can not destabilize the equilibrium point by self-diffusion.

2.2 A Predator-Prey System with Holling Type II
Functional Response

I consider a two species predator-prey system living in a habitat of two identical patches
linked by migration in which the predator consumes the prey with Holling type functional
response and the per capita mortality is an increasing linear function of its quantity. The
Holling type terms are more realistic than those in a Lotka-Volterra system because they
increase with the quantity of prey but do not tend to infinity and are concave down. I show
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that a standard (self-diffusion) system may have an either stable or unstable equilibrium
point. I show that at a critical value of the bifurcation parameter the system undergoes
a Turing bifurcation (see [3]).

Let uy(t,7) := density of prey in patch j at time ¢ and us(¢, j) := density of predator
in patch j at time ¢, ) =1,2;t € R.

The interaction between the two species is described as a system of differential equa-
tions as follows:

(1) = ug(t,1)(r1 — anu (¢, 1) — 2280 4 d) (ug (8, 2) — ua (¢, 1)),

a+ui(t,1)
a(t, 1) = ua(t, 1)(—ry + 2L — apyus(t, 1)) + da(ua(t, 2) — ua(t, 1)),
(2.27)
al(t, 2) = 'u,l(t, 2)(7‘1 — 11U (t, 2) - azi(1t£§,)2)) + dl(ul (t, 1) — Ux (t, 2)),
Ua(t, 2) = ua(t, 2) (=72 + 2 — ansus(t,2)) + da(ua(t, 1) — ua(t, 2)),

where 71 > 0 and —ry < 0 are the intrinsic growth rate and intrinsic mortality of the
respective species, a;; > 0 and ags > 0 represent the strength of the intraspecific com-
petition (the competition within the species, ;- is the carrying capacity for the prey),
b > 0, a > 0 are the maximum birth rate and the half saturation constant of predator,
respectively. The meaning of the half saturation constant is that at u; = a the specific
growth rate alf;l (called also a Holling type functional response) of the predator is equal
to half its maximum b, the constants d; > 0, (i = 1,2) are the diffusion coefficients.

First I consider the kinetic system without diffusion i.e. dy =dy =0:

wp(t, 1) = uy (t, 1) (r1 — anua(t,1) — ua(t,1) ),

; a+ui(t,1)
. uy (t,1
y(t,1) = up(t, 1)(—=rs + 24 — anus(t,1)), .
ui(t,2) = wi(t,2)(r1 — anw(t, 2) — afu(ltfi)g))
’ bu; (t,
Ua(t,2) = us(t,2)(—rs + 22 — anus(t, 2)).
The following conditions are reasonable and natural:
b > ro, (2.29)
ri/an > a, (2.30)
b(’f‘l — CLCL11> > 7‘2(7“1 + aall), (231)
a
b(ry —aayy) > 4%3(7“1 +aay)® + ro(ry + aay).

Condition (2.29) ensures that the predator may have eventually, a positive net growth
rate; (2.30) ensures that for the prey an Allée-effect zone exists where the increase of prey
density is favourable to its growth rate; (2.31) is needed to have a positive equilibrium
point of system (2.28). System (2.28) is made up by two identical uncoupled systems.
Under these conditions each has (the same) positive equilibrium which is the intersection
of the null-clines:

Uo = Hl(ul) = (a + Ul)(’f’l — anul), (232)
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1 bu1
= Hy(uy) = —(—
Y2 2(U1) a9 ( "2 a+ U1

). (2.33)

Thus, denoting the coordinates of a positive equilibrium by (uy, us, Uy, Uz), these coordi-
nates satisfy @y, = Hy (1) = Ha(Ty).

Note that if 7/a;; > a, we have an interval u; € (0, 7’1/"+_a), where the Allée-effect

holds, i.e., the increase of the prey quantity is beneficial to its growth rate.

The Jacobian matrix of system (2.28) linearized at (uy, Uy, Uy, Us) is

_allﬂlj_— (aﬂ—‘:ﬂﬂf)z _a—?—lﬂl 0 0
L2 —GQQﬂQ 0 0
T — (a+u1)? _ - z 2.34
k 0 0 —a11Uq :_— (a—':ﬂlz)Q — a+lﬂ1 ( )
0 0 % — Q2o
The characteristic polynomial is
Da(d) = (Da(A)2 Da(X) = A2 + A(anTh + aslly — — 222
(a+7y)?
ab 9o
+(a11a22 + - 2272 )Elﬂg. (235)

(a+m)?  (a+71y)?

The equilibrium point (1, Wa, Uy, Us) lies in the Allée-effect zone if

r r
Hy((—a+—)/2) < Hy((—a + —)/2), (2.36)
a1 ai
i.e.
a’aq; 7 1 r1-aa11
1+ < —(=re+b (2.37)
4 aaqq (22 7140011
Assume that
_ _ U1 U2 ab A22U3
11Uy + Aoy — ———= > 0 and aq1a99 + — > 0, 2.38
11U1 20Uo CEEAE 11022 @rm)P  (a+m) ( )

then the coexistence equilibrium point (@, Uz, U1, Us) is linearly asymptotically stable.

2.2.1 The Linearized Problem

Returning to system (2.27), we see that (u, s, Uy, uz) is also a spatially homogeneous
equilibrium of the system with self-diffusion.
The Jacobian matrix of system (2.27) at (@, Us, Uy, U2) can be written as:

— (1T _ulpy __w
anty + g,z dy ) dy 0
abto o -
Jp = ()2 az2Us — da 0 dapy
- T, L W o w ;
dy 0 Gty + lgc_z+m)2 d at1;
0 do o) —aglUy — dp

(2.39)
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det(Jp — AI) =
—allﬂl + (a_'b};Q — d1 )\ _azlﬂl dl O
—(aifjf) —Q0ly — dy — A 0 dy
dl 0 —anﬂl + (anl:jlz) — d1 — A __ailﬂl
0 d2 ﬁ —agUy — d2 —
(2.40)
Using the properties of determinant we get
—anth + i A —oh dl 0
% —aggﬂg - A O dg
0 0 % —CLQQUQ — 2d2 - A
(2.41)
UL U
= DQ(}\)()\Q -+ /\(anﬂl + CLQQEQ — ﬁ + 2<d1 + d2>>
ab agzﬂg —
- 2.42
+(ar1az + Gty (a_i_ﬂl)Q)UlUQ (2.42)
_ _ U U
2a99d1TUs — 2do(— ——— — 2d;).
t2a2201 Uz o(—an® + CESAE 1)

We know that D5()) has two roots with negative real parts. By (2.38), clearly, aj1u; +
99Ty — (a M )2 +2(dy 4+ d3) > 0. The other polynomial will have a negative and a positive
root if the constant term is negative. By the properties of the model and conditions (2.38)

the first two terms are positive. If (2.37) holds and the parameters have been chosen so
that

U1 U2

(a+wy)?

we may increase ds and the constant term becomes negative. The calculations lead to the
following Theorem.

Theorem 1 Under conditions (2.37), (2.38), (2.43) If

—a1u; + — 2d1 > O, (243)

[(a11a92 + =2~ — 2 225 Uiz + 2a20d1 )]
dy > daerit = @y Gl , (2.44)
2( a;u + m — 2d1)

then Turing instability occurs.

Remark 2 If (2.37) and (2.38) hold and the parameters have been chosen so that

U1U2
(a+wy)?

then self-diffusion never destabilizes the equilibrium (uy, Uz, Wy, Uz) which is asymptotically
stable for the kinetic system, i.e. the equilibrium (U, s, Uy, Uz) is diffusively stable for all
values of ds.

—a11u1 + —2d; < O (245)
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2.2.2 Numerical Investigations

In this section I illustrate the results by the following example and we are looking for
conditions which imply Turing instability (diffusion driven instability).

Example 1: We choose r1 = 10.5, ro = 1, a117 = 0.5, ass = 5,d; = 1, a = 2.3,
b = 547.8 then

u =1, uy = 33.

We consider ds as a bifurcation parameter. For the above values of the parameters the
positive critical value of the bifurcation is da..;; = 1008.357143. In this case at dy = daerit,
we have four eigenvalues \;(i = 1,2,3,4) such that Re); <0,(: =1,2,3) and \y = 0.

If dy < doerir = Re; <0, (i =1,2,3,4) then, (U, Uy, U1, Uz) is asymptotically stable

If dy > doeris = ReX; <0, (i =1,2,3) and Ay > 0, then, (Ty,Us, U1, Ts) is unstable.

Thus as ds is increased through dy = dy..;; the spatially homogeneous equilibrium
loses its stability by Turing bifurcation. Numerical calculations show that two new spa-
tially non-constant equilibria emerge (see Table 1 and Figure 1), and these equilibria are
asymptotically stable.

2.3 A Predator-Prey System of Cavani-Farkas Type

I consider a two-species predator-prey system of Cavani-Farkas type (see [11]) living in
a habitat of two identical patches linked by migration. The advantage of the present
model over the more often used models is that here the predator mortality is neither a
constant nor an unbounded function, still, it is increasing with quantity. I show that a
standard (self-diffusion) system may have an either stable or unstable equilibrium point.
I show that at a critical value of the bifurcation parameter the system undergoes a Turing
bifurcation (see [4]).

Let u;(t, j) = density of prey in patch j at time ¢ and wus(t, j) = density of predator in
patch j at time ¢, j = 1,2; t € R. The interaction is described as a system of differential
equations as follows:

i (t, 1) = euy (t,1)(1 — 2leldy  BunbDua®l) 4 g (4, (42) — uy(t, 1)),

B+u1 (t,1)
uy(t,1) = _uQ(t’BfE(Tf)(t’l)) + ﬁ"éfif}‘flﬁ U dy(ua(t, 2) — ua(t, 1)),
(2.46)
i (t,2) = eun (t,2) (1 — 22y — 2Rl 4, (uy (1,1) - wi(t,2)),
up(t,2) = — 22Tl . Pl 4 dy(us(t, 1) — us(t, 2)),

where € > 0 is the specific growth rate of the prey in the absence of predation and without
environmental limitation, 8 > 0, K > 0 are the half saturation constant and carrying
capacity with respect to the prey, respectively, v > 0 and 6 > 0 are the minimal mortality
and the limiting mortality of the predator, respectively (the natural assumption is v < 6).
The meaning of the half saturation constant is that at u; = (3 the specific growth rate
% (called also a Holling type functional response) of the predator is equal to half its
maximum [ (the conversion rate is taken to be equal to the half saturation constant for
sake of simplicity). d; > 0, (i = 1,2) are the diffusion coefficients.
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First we consider the kinetic system without diffusion, i.e. dy =dy =0

in(t,1) = eun(t, 1)(1 — “1d)  Sultut)

Do) | puiuad)
. . u t, +ou t, U t7 U, tv
us(t,1) = —=2 1+12(t,12) + T
(2.47)
. uy (t,2 w1 (t,2)uz(t,2
in(t:2) = et 2)(1 - 24 - e,
. u2(t,2)(y+oua(t,2 w1 (t,2)usz(t,2
w(t,2)= —=nas - T T ey
The following conditions are reasonable and natural:
y<p<s (2.48)
0 < K, (2.49)
BK
< . 2.50
TS BFK (2:50)

Condition (2.48) ensures that the predator mortality is increasing with density, and that
the predator null-cline has a reasonable concave down shape; (2.49) ensures that for
the prey an Allée-effect zone exists where the increase of prey density is favourable to
its growth rate; (2.50) is needed to have a positive equilibrium point of system (2.47).
System (2.47) is made up by two identical uncoupled systems. Under these conditions
each has (the same) positive equilibrium which is the intersection of the null-clines:

us = Hy(uy) := ﬁiKu( —w)(B+w), (2.51)
_ _ (B=7)u1 =By

Thus, denoting the coordinates of a positive equilibrium by (uy, Uz, U1, Uz), these coordi-
nates satisfy @y, = Hy (1) = Ha ().

Note that if K > [, we have an interval u; € (0, #), where the Allée-effect holds,
i.e., the increase of the prey quantity is beneficial to its growth rate.

The Jacobian matrix of the system (2.47) linearized at (uy, U, U1, Us) is

euy (K—B—2u;) Bu
K(B+1) _6+ﬂll 0 0
5222 : _ (‘i*z)ﬂg 0 0
J. = (ﬁ+611) ( 8“2) cn(K-f-2m)  pm, (2.53)
K%ﬂ;ﬁﬂﬂ (f+ﬂ)1_
U —y)u2
0 0 (ﬁ+ﬂ12)2 T (1+T2)?
The characteristic polynomial is
DiN) = (V)2 (2.54)
65— eu(K —f—2u)
Dy(N) = N+ ( —~
i (TTmp K(B+1)
U1 (6 —v) (K —-p3—-2u 2
X By (— (6 =) B —2u) + p ),

(B +w) KB(1+y)? (B +1)?
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The equilibrium point (w1, Uy, Uy, uz) lies in the Allée-effect zone if

Hﬂk;ﬁ)<Hﬂk;ﬁL (2.55)
ie.
€ 2 (6 —7)K
4WAK+5)<—1+y_ﬁK+dK. (2.56)
If
K=68 Ty, (2.57)
2
then, in view of (2.48), clearly
((5 - ’V)Ug _ 6@1([( — ﬁ — 2@1)
%) RO > 0, (2.58)
- -pomm) B
KpB(1 +1y)? (B+1)? ’

i.e. the coexistence equilibrium point (uy, us, Uy, Uz) is linearly asymptotically stable.
In the sequel we assume that

K —
0<m < 5 ﬁ, (2.59)

and that still (2.58) holds. In this case the equilibrium point lies in the Allée-effect zone,
still the coexistence equilibrium point (uy, Uy, Uy, Uz) is linearly asymptotically stable.

2.3.1 The Linearized Problem

Returning to system (2.46), we see that (uy,Ws, Uy, Us) is also a spatially homogeneous
equilibrium of the system with self-diffusion. The Jacobian matrix of the system at
(U1, U2, U1, Uz) can be written as:

71 (K —f—211) s
1K(ﬁ+g2ll = —d (6_§i—ﬂll dy 0
b2 —=xrz 0 d
a1 )2 1+75)2 2 2
Ip = %f) <+3 ) _ a . (2.60)
1 K(ﬂ+g2ll n ?j—ﬂl
U —v)u
0 dz e N (1+ﬂ2)§ — d
det(JD — /\]) =
euy (K—p—2u1) - _ Pu
1K(5+ﬂl )ﬂ;_ dy — A " )_ﬂJrﬂll dy 0
w —y)u
(5%12)2 _(H%Q); e ) (K- 29) 622_
e (K—p—2u 0
d]_ 0 1K(/B+Elﬂ)2 1) dl_)\ (6 :ﬂ-i—ﬂll
U —)u
0 d (/3+E12)2 _(1+ﬂ2)g — dy=A

(2.61)
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Using the properties of determinant we get

cu1 (K —B—2u1) Ga
1K(ﬂ4g21_) Vo) . ,B)HL dq 0
R (1+12)2 A 7 (K 2—(; Cf;— (2.62)
EUul —0—2u1 Ul ? .
0 0 G 2y = A B
0 0 (ﬂﬁf)Q #—2@ A
2 K(B+m) (1 +7)? e
ﬂ_ﬂLQ 8(6—’7)(K—ﬁ—2ﬂl) 52
— + 2.63
(5‘1’“1)( KB(1+1p)? (ﬁ+ﬂ1)2) ( )
(6 — )y e (K — B —2m)
+ 4+ 2dj—F—= —2d — 2d4).
NEERAE 2 K(B+m) )

If (Uy, U, W1, Uz) lies outside the Allée-effect zone i.e. (K; A ~ 7, then, obviously all the
eigenvalues of matrices J; and Jp have negative real parts, so no Turing instability may
occur.

We know that Dy(A) has two roots with negative real parts. By (2.58), clearly,
—Eﬂlf(gg fgl 2)ﬂ1) + g ﬁ)qf + 2(dy + d3) > 0. The other polynomial will have a negative
and a positive root if the constant term is negative. By the properties of the model and
condition (2.56) the first two terms of the constant are positive. If (2.56) hold and the

parameters have been chosen so that
6@1(K - ﬁ - 2@1)
K(B+7)

we may increase dy and the constant term becomes negative, i.e. .the equilibrium (@, Us,
Uy, Uy) becomes diffusively unstable. The calculations lead to the following Theorem.

Theorem 2 Under conditions (2.56), (2.58), (2.64) if

—2d; > 0. (2.64)

B_luz( (60— (K—B—2u) +( 82 )+2d1(5—v)ﬂz

(B+71) KB(1+72)? B+711)? (1+7u2)2
d2 > d2cmt - 9 cuL (K —5—2u1) 2d ) (265)
( K(B+u1) 1)
or
26u1(1§ﬂ5 21, ) dy — %_11@) (_5(5—723((K—ﬁ;22ﬁl) 3 B2 )2)
+a1) +u1 KpB(14+ue FE
0<d < = Wm " : (2.66)
(1+w2)? +4dy

then Turing instability occurs.

Remark 3 Note that as dy tends to infinity the right hand side of (2.66) is increasing
and tends to % An easy estimate shows that this is less than £. This means
that irrespective of how large the predator diffusion rate dy is,the prey dzﬁuszon rate dy

must satisfy
€

i order to have Turing instability.
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Remark 4 If (2.56) and (2.58) hold and the parameters have been chosen so that

Eﬂl(K - ﬁ - 2%1)
K(B+7)

—2d; <0, (2.68)

then self-diffusion never destabilizes the equilibrium (Uy, Us, Ty, Uz) which is asymptotically
stable for the kinetic system, i.e. the equilibrium (U, s, Uy, Uz) is diffusively stable for all
values of ds.

2.3.2 Numerical Investigations

We apply our analytical approach to the following example and we are looking for condi-
tions which imply Turing instability (diffusion driven instability).

Example 2: Trying to prepare an example comparable to that of [11], we choose
6 =01, v =001, 6 = 01055, ¢ = 1, K = 1, d; = 0.0001. The unique positive
equilibrium is (Uy, Uy, Uy, Uz) = (0.4486, 3.0250, 0.4486, 3.0250). We see that this point is
in the Allée-effect zone (0.4486 < 0.45) and it is asymptotically stable for the kinetic
system (2.47).

We consider dy as a bifurcation parameter. In this case at doe.;y = 2.02447842, we
have four eigenvalues \;(i = 1,2,3,4) such that Re); <0,(: =1,2,3) and \y = 0.

If dy < doeris = ReX; <0, (i =1,2,3,4) then, (U, Uy, U1, Us) is asymptotically stable

If dy > doeris = ReX; <0, (i =1,2,3) and Ay > 0, then, (Ty,Us, Ty, Ts) is unstable.

Thus as ds is increased through dy = ds..; the spatially homogeneous equilibrium loses
its stability. Numerical calculations show that two new spatially non-constant equilibria
emerge (see Table 2). The dynamics after the bifurcation is strange: none of the equilibria
are stable and computer simulations indicate that there exists an attractive closed path
of a peculiar form (see Figure 2).
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Chapter 3

The Effects of a Cross-Diffusion
Response

In population dynamics there are a lot of problems which are described by a cross-diffusion
system (see [14], [25], [30]). In this chapter I consider a two-species model in a habitat of
two identical patches linked by migration in which the per capita migration rate of each
species is influenced not only by its own but also by the other one’s density, i.e. there is
cross-diffusion present. In section 3.1, I consider a Lotka-Volterra system and I show that
for competitive (or cooperative) type interaction, a cross-diffusion may lead to Turing
instability but for a predator-prey type of interaction, instability of a uniform state can
not arise via the well known Turing mechanism of diffusion driven instability. In section
3.2, I consider a two species predator-prey system in which the predator consumes the
prey with Holling type functional response and the per capita mortality is an increasing
linear function of its quantity. In section 3.3, I consider a predator-prey model of Cavani-
Farkas type in which the predator consumes the prey with Holling type functional response
and the per capita mortality is neither a constant nor an unbounded function, still, it is
increasing with quantity. I show that a cross-diffusion response can stabilize an unstable
equilibrium of standard system and destabilize a stable equilibrium of standard system. I
show that at a critical value of the bifurcation parameter the system undergoes a Turing
bifurcation, and numerical studies show that if the bifurcation parameter is increased
through a critical value the spatially homogeneous equilibrium loses its stability and two
new stable equilibria emerge. I conclude that the cross migration response is an important
factor that should not be ignored when pattern emerges (see [5, 6, 7, 8]).

3.1 Lotka-Volterra Systems

I consider a two-species Lotka—Volterra system living in a habitat of two identical patches
linked by migration and we show that for competitive (or cooperative) type interaction,
cross-diffusion may lead to Turing instability but for a predator-prey type of interaction,
instability of a uniform state can not arise via the well known Turing mechanism of
diffusion driven instability

Let u;(t,7) := density of species i in patch j at time ¢t, i = 1,2; j = 1,2; t € R. The

27



28 CHAPTER 3. THE EFFECTS OF A CROSS-DIFFUSION RESPONSE

interaction is described as a system of differential equations as follows:

ul(t, 1) = Ul(t, 1)(7“1 — a11U1 (t, 1) — CL12U2<t, 1))
. +d1(p1(u2(t, 2))u1 (ta 2) - pl(u2(ta 1))u1 <t7 1))7
'U,g(t, 1) = 'U,g(t, 1)(7‘2 — 21U1 (t, 1) — a22u2(t, 1)
+ d2<p2(u1 (t7 2))u2<t7 2) - :02(u1 <t7 1))u2(t> 1))a
(3.1)
'U,l(t, 2) = 'U,l(t, 2)(7‘1 — allul( ) — CL12U2( 2))
. +da(py (uz(t, 1)ur(t, 1) — 1 (ua(t, 2))ua (¢, 2)),
UQ(t, 2) = UQ(t, 2)(7"2 — CL21U1<t 2) — a22u2(t 2))
Fda(py(ua(t, 1))ua(t, 1) — py(ua(t, 2))us(t, 2)),

where r; and 75 are the intrinsic growth rates of the respective species, the matrix A = [a]
is the interaction matrix, a; > 0 (i = 1,2) represent the strength of the intraspecific
competition, the signs of a;2 and ay; determine the type of interaction, d; > 0, (i = 1, 2) are
the diffusion coefficients and p; € C*! (i = 1,2) are positive functions modeling the cross-
diffusion effect. We say that the cross diffusion is strong if ‘p;ulc} (1 # k) is large. If p, =1
(i = 1,2) then we have mere ~ self-diffusion”.

First we consider the kinetic system without migration, i.e. dy =dy =0:

'L:Ll (t, 1) = U (t, 1)(T1 — anul(t, 1) — a12u2(t, 1)),
Ug(t, 1) = Ug(t, 1)(7“2 — aglul(t, 1) — CLQQUQ(t, 1)),

(3.2)
1:L1 (t,2) = uy(t,2)(r1 — anrus(t,2) — apus(t, 2)),
us(t,2) = us(t, 2)(re — agyus(t, 2) — agus(t, 2)).
We assume that
r1Q99 — Toa12 > 0,79a11 — r1az; > 0 and det A = aq1a99 — as1a12 > 0. (3.3)
Then system (3.2) has a positive equilibrium
(ur(t, 1), ua(t, 1), ui(t,2),us(t, 2)) = (a1, Uz, ur, Ua), (3.4)
where
Ty = 7‘1@2§et 122CL12’H2 _ r2aléet 21%1' (3.5)

The Jacobian matrix of the system without diffusion linearized at (uy,us,wy,Uz) is

—allﬂl —algﬂl 0 0
T, — —aglﬂg —aggﬂg 0 0 3.6
- 0 (3.6)
0 0 —Qa11U1 —a12Uq
0 0 —aglﬂg —aggﬂg

The characteristic polynomial is
D4(>\) = (Dg()\))Q, Dg()\) = )\2 + )\(allﬂl + a22ﬂ2> + U1 Us det A, (37)

since (@111 +ag2Ts) > 0, det A > 0, hence, the coexistence equilibrium point (@, s, Uy, Us)
is linearly asymptotically stable. Now we are ready to check how cross-diffusion affect the
stability of (u, s, U, Us). To proceeds, we distinguish different types of interaction.
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3.1.1 Competitive Interaction

For competitive interaction (see [5]), 71 > 0 and ro > 0, the entries of the matrix A =
laix] are positive and p; € C! is a positive increasing function of uy, the density of
the competitor, with analogous conditions on p,. The idea is that high density of the
competitor increases the diffusion rate of the species (see [22, 23]).

We see that (u, s, U, uz) is also a spatially homogeneous equilibrium of the sys-
tem with cross-diffusion. The Jacobian matrix of system (3.1) with cross-diffusion at
(U1, U2, Wy, Uz) can be written as:

Jp =
—an — dip;  —aily — dipiUs dypy di1p\t
—Q1Ty — dophlly  —a29Ty — dapy do T dapy (3.8)
dip; dipi U —anuy —dipy  —aty —dipiun |’ ’
do Pz dapy —anTy — dophlly  —aly — dap,
where p,and p, are to be taken at Ty and p,, p, at ;.
det(JD — )\I) =
—a11U — dipy — A —a19T — dipii dypy di1p\T
—a1 Uy — dophlly  —Qlly — dapy — A dophTs dapy
dip; d1p —ant —dipy — A —a2ly — dipi
da Py dapo —a Uy — daphUy  —a2lly — dapy — A
(3.9)
Using the properties of determinant we get
—a11U; — A —a12U dipy d1py
— Q21U —QglUy — A da Py dapy (3.10)
0 0 —anﬂl - 2d1p1 — A —algﬂl — 2d1p/1ﬂ1 ’
0 0 —aglﬂQ — 2d2p,2E2 _CLQQﬂQ — 2d2,02 - A
= Dg()\)()\Z -+ )\(anﬂl —+ aggﬂg -+ 2(d1p1 + d2p2)) + ﬂlﬂz det A (311)

+2T1dy(ar1py — a19pyUs) + 2Uad (agapy — a21p U1 )

+dida(pypy — Wl2p ).

We know that Dy(\) has two roots with negative real parts. The other polynomial will
have a negative and a positive root if the constant term is negative. Clearly, (a11p5 —
a,lgpéﬂg) = pz(au—algz—iﬂg) < 0if Z—i is blg enough, (aggpl—aglp’lﬂl) = pl(agg—aglz—iﬂﬂ <
P1PH
P1P2

If we have achieved this we may increase d; and/or dy and the constant term becomes
negative. The calculations lead to the following Theorem.

0 if Z—Ii is big enough and (p; py — UrT2p|py) = p1po(1 — WU EL2) < 0 if % is big enough.

Theorem 3 The equilibrium (U, Uy, Uy, Uz) of system (3.1) is asymptotically stable if
/ / VN / / VN
b hk BB PP gnd either dy or dy are suffi-
P17 P27 P1P2 P17 P27 P1P2

ciently large the (U, s, Uy, Us) loses its stability by a Turing bifurcation.

dy and dy are sufficiently small; if
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Numerical Investigations

I consider two examples of migration function and we are looking for conditions which
imply Turing instability (diffusion driven instability).

Example 3: We choose

p1(u2) = exp(myus), py(ur) = exp(meauy), my, mg > 0. (3.12)
If’f’l = 11, o = 10, aj] = 5, 922 :4, a2 :4, asq :3, my = 2, meo — ]., d1 = 1, then
det A = a11G22 — A21A12 = 8, uy = —Tla?ez;zalz = O.5,ﬂ2 = —mahle;:{lam = %
17 17 17
At doerir = = 7+F ef,(p(f)lg 2 0.582712, we have four eigenvalues X\;(i = 1,2, 3,4) such
5 exp(5)+3 exp(7)
that A\; <0 (i =1,2,3) and A\, = 0.
If dy < doerir = N <0 (i =1,2,3,4), then, (U, s, U1, Us) is asymptotically stable .
If dy > doerie = A\ <0 (1 =1,2,3) and Ay > 0, then, (U1, U, U1, Uz) is unstable.

Thus if ds is increased through dy = da..;; then the spatially homogeneous equilibrium
loses its stability. Numerical calculations show that two new spatially non-constant equi-
libria emerge (see Table 3 and Figure 3), and these equilibria are asymptotically stable;
so that this is a pitchfork bifurcation.

Example 4: We choose

Uz

P1(U2) = maPQ(Ul)

N 1+U1

(3.13)

If T = ]_1, To = ]_0, ajl = 5, 29 — 4, 19 = 4, 91 = 3,d1 =1 then we have:

det A = a11G22 — A21A12 = 8, uy = —Tla?ez;zam = 05, Uy = —mahle;:{lam = %

At doeris = % = 13.88344143, we have four eigenvalues \;(i = 1,2,3,4) such that
N <0(i=1,23) and \y = 0.
If dy < doeris = A <0 (i =1,2,3,4), then, (U, s, Ty, Us) is asymptotically stable.
1,2,3

If dy > dQCrit = )‘Z <0 (l y 2, ) and Ay > 0, then (ﬂl,ﬂg,ﬂl,ﬂg) is unstable.

Thus as ds is increased through dy = ds..;; the spatially homogeneous equilibrium loses
its stability. Numerical calculations show that two new spatially non-constant equilibria
emerge (see Table 4 and Figure 4) and these equilibria are asymptotically stable; so that
this is a pitchfork bifurcation.

It is to be noted that after the bifurcation the sum of the stable equilibrium values
of species 1 ( and, similarly, that of species 2) is equal to the double of its spatially
homogeneous equilibrium value @; (resp. uy).

3.1.2 Cooperative Interaction

For cooperative interaction (see [6]), the case to be considered is when each species survives
if left alone and follows the logistic dynamics, that is, the intrinsic growth rates of the
respective species are positive, r1, ro > 0, this is called facultative cooperation,

ap <0 and ag; < O, (314)
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where |ajs| and |as;| represent the strength of the cooperation, p, € C' is a positive
decreasing function of us, with analogous conditions on p,. The idea is that these migration
functions describe the inclination of individuals of one species to stay at a certain patch
due to the attraction by the other species in the patch (see [22, 23]).

Returning to system (3.1), we see that (u, s, Uy, Us) is also a spatially homogeneous
equilibrium of the system with cross-diffusion. The Jacobian matrix of the system with
cross-diffusion at (1, s, %1, Us) can be written as:

Jp =
—anty —dipy  —a12U; — dipiT dip, dy P
—a9 Uy — dophlly  —a2Tlly — dapy da P dap, (3.15)
dip; d1pi —anuy —dipy  —apuy —dipiuy |’ '
dopyTs dapy —21 Uy — dapyUy  —QaU — dapy
where p,and p, are to be taken at Ty and p,, p, at ;.
det(Jp — AI) =
—a1 U —dipy — A —aty — dipit dip; dip\
—a1 Uy — dophTy  —lls — dapy — A do T dapy
dip, dip\u —a11U — dipy — A —a12ty — dipiT
dophTy dapy —Q1Ty — dophly  —aglz — dapy — A
(3.16)
Using the properties of determinant we get
—a11U; — A —a12U dipy d1py
— Q21U —QglUy — A do s dapy (3.17)
0 0 —allﬂl — 2d1p1 - A —algﬂl — lepllﬂl '
0 0 —aglﬂg - 2d2p,2ﬂ2 _ax22ﬂ2 — 2d2,02 - A
= DQ()\)()\Q -+ /\(anﬂl + a9y + 2(d1p1 + d2p2)> + UqUo det A (318)

+2T1dy(a11p; — ar12p5Us) + 2Uady (ag2py — az1pi1)
+4d1d2(p1,02 - ﬂlﬂ2p/1p,2))

We know that Dy(\) has two roots with negative real parts. The other polynomial will
have a negative and a positive root if the constant term is negative. Clearly, (p;py —

WU ph) = prpo(1 — UiTa2 17 /z) < 0if % is big enough. If we have achieved this we may

pipa
increase d; and/or dy and the constant term becomes negative. These calculations lead

to the following Theorem.

Theorem 4 The equilibrium (Ty, Uz, U1, Ts) of system (3.1) is asymptotically stable if
%, dy and do are sufficiently small; if % and either dy or ds are sufficiently big then
(U1, o, Uy, Uz) loses its stability by a Turing bifurcation.

Remark 5 The situation is different if the cooperation is obligatory, ri,m9 < 0,the con-
dition of having a point of intersection in the positive quadrant is

det A = 11022 — as1aqz < 0. (319)
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The characteristic polynomial of the linearized system (3.2) without diffusion at (1, s,
Hl, ﬂg) 18

D4(>\) = (Dg()\))2, DQ()\) = )\2 + )\(allﬂl + &22ﬂ2> + ﬂlﬂg det A, (320)

since (a1 + axts) > 0, det A < 0, hence, the coexistence equilibrium point (uy, Us, Uy,
Us) is a saddle point and diffusion never stabilizes an equilibrium which is unstable for
the kinetic system.

Numerical Investigations

We apply our analytical approach to the following example of migration function and we
are looking for conditions which imply Turing instability (diffusion driven instability).

Example 5: We choose

p1(u2) = my exp(—us/myq), ps(u1) = maeexp(—uy/ms), my, mg > 0. (3.21)
Ifri=2,ro=1,a11 =05, axp =4, a10 = —4,a91 = -3, m; =1, my =1, dy =1, then
det A = anan oy =8, T = e = 4.7, = eyrgen =
At dors = — 37 Sexp<%3> = 28.11725408, we have four eigenvalues \;(i = 1,2, 3,4)

4exp(28?—’)729xp(%)
such that A\; <0 (i =1,2,3) and Ay = 0.
If dy < doerir = A\ <0 (i =1,2,3,4), then, (U, Uy, Ty, Uz) is asymptotically stable .

If dy > dQCrit = )‘Z <0 (Z =1, 2, 3) and Ay > 0, then, (ﬂl,ﬂg,ﬂl,ﬂg) is unstable.

Thus as ds is increased through ds = da..;; then the spatially homogeneous equilibrium
loses its stability. Numerical calculations show that two new spatially non-constant equi-
libria emerge (see Table 5 and Figure 5 ), and these equilibria are asymptotically stable;
so that this is a pitchfork bifurcation.

Remark 6 It is to be noted that after the bifurcation the sum of the stable equilibrium
values of species 1 (and, similarly, that of species 2) is equal to the double of its spatially
homogeneous equilibrium value Ty (resp. ).

3.1.3 Predator-Prey Interaction

For predator-prey interaction,
r1 > 0,79 < 0,a12 > 0 and as < 0,

and p; € C! is a positive increasing function of uy, the density of the predator, p}j > 0
and p, € C'! is a positive decreasing function of u; the density of the prey, p) < 0. The
idea is that the dependence of the diffusion coefficient on the density of the other species
reflects the inclination of a prey (or an activator) to leave a certain patch because of the
danger (or the inhibition) and the tendency of a predator (or the inhibition) to stay at a
certain patch because of the abundance of prey (or an activator).
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Returning to system (3.1), we see that (1, us, U, Us) is also a spatially homogeneous
equilibrium of the system with cross-diffusion. The Jacobian matrix of the system with
cross-diffusion at (@y,Us, U1, Us) can be written as:

Jp =
—anU; —dipy  —ait — dipih dip; di Py
—ao1 Uy — dapyUy  —QaUp — dapy da Py dap, (3.22)
dip; dip\u —an — dip;  —ay — dipiur |’ '
dopyTs dapy —a Uy — dophTUy  —QTp — dapy
where p,and p| are to be taken at T, and p,, p, at ;.
det(Jp — M) =
—a1U —dipy — A —aty — dipith dip; dipi
—a1 Uy — daphUly  —alls — dapy — A da P dapy
dip; d1pi —a11t —dipy — A —a19T — dipiT
d2pyis dapy —ag1 Ty — doplylly  —agolly — dapy — A
(3.23)
Using the properties of determinant we get
—aU; — A —a12U dipy dip\ T
— Q21U —aglUy — A dopyTis dapy (3.24)
0 0 —allﬂl — 2d1p1 - A —CL12U1 — lepllﬂl |
0 0 —aglﬂg — 2d2p,2ﬂ2 —GQQUQ — 2d2,02 - A
= DQ()\)()\2 + )\(allﬂl + CLQQUQ + 2(d1p1 + d2p2>> (325)

+(a11ﬂ1 + 2d1p1)(aggﬂg + 2d2p2>
— (a1 Uz + 2d2p5T2) (a19uy + 2d;1 p\T1).

We know that Dy(\) has two roots with negative real parts, py(uy) > 0, ph(uy) < 0,
p1(u2) > 0 and p}(ug) > 0, then we can not destabilize the equilibrium point by cross
diffusion.

3.2 A Predator-Prey System with Holling Type II
Functional Response

I consider a two-species predator-prey system living in a habitat of two identical patches
linked by migration and I show that at a critical value of the bifurcation parameter the
system undergoes a Turing bifurcation, i. e. the stable constant steady state loses its
stability and spatially non-constant stationary solutions, pattern emerge (see [7]).

Let uy(t, ) := density of prey in patch j at time ¢ and us(t, j) := density of predator
in patch j at time ¢, j = 1,2; t € R. The interaction is described as a system of differential
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equations as follows:

Q.Ll(t, 1) = Ul(t, 1)(7“1 — anul(t 1) — aj:ilt 11)1))

+di(py (ua(t, 2))ui(t, 2) — py(ua(t, 1))us(t, 1)),

ﬂz(ﬂ 1) = U2(ta 1)(—7“ + alféft(tli) - a22U2( 1))

+da(pa(ur(t, 2))ua(t, 2) — polu(t, 1))ua(t, 1)),

(3.26)

( a+ui(t,2
_ +di(py (u2(t, 1))ui(t, 1) —
ua(t, 2) = us(t,2) (=12 + 122 — anus(t,2))
1 ) - p2(ul<t72))u2(t> 2))7

+d2(p2(u (t7 1))u2<t7 1
where 1 > 0 and —ry < 0 are the intrinsic growth rate and intrinsic mortality of the
respective species, a;; > 0 and ags > 0 represent the strength of the intraspecific com-
petition (the competition within the species, +— Is the carrying capacity for the prey),
b > 0, a > 0 are the maximum birth rate and the half saturation constant of predator
respectively. The meaning of the half saturation constant is that at u; = a the specific
growth rate If;l (called also a Holling type functional response) of the predator is equal
to half its maximum b. d; > 0, (i = 1,2) are the diffusion coefficients and p, € C! is
a positive increasing function of uy the density of the predator, pj > 0 and p, € C! is
a positive decreasing function of u; the density of the prey, p, < 0. The idea is that
the dependence of the diffusion coefficient on the density of the other species reflects the
inclination of a prey (or an activator) to leave a certain patch because of the danger (or
the inhibition) and the tendency of a predator (or the inhibition) to stay at a certain
patch because of the abundance of prey (or an activator), (see [14], [22]). The functions
p; model the cross-diffusion effect. We say that the cross-diffusion is strong if ‘ Din . ‘ (i # k)
is large. If by varying a parameter |p;ulc‘ (¢ # k) is increasing then we say that the cross

diffusion effect is increasing. If p, = 1, i = 1, 2 then we have mere "self-diffusion”.

dl(t, 2) = ui(t,2)(r1 —anw(t,2) — =2 (L2) ))
P1 (u2<t7 2))u1(t> 2))a

First we consider the kinetic system without migration, i.e. dy =dy =0:

uy(t,1) = ui(t,1)(ry — ayug (¢, 1) — ua(t,1) )

. ) . atuq(t,1) 7/

Ug(t, 1) = UQ(t, 1)(—’/“2 + % — a22u2(t, 1)),
(3.27)

wn(t,2) = (£, 2)(r1 — anw(t,2) — 720205,

up(t, 2) = us(t,2) (—ra + 22 — agyus(t, 2)).

The following conditions are reasonable and natural:

b > T2, (328)
ri/an > a, (3.29)
b(’f‘l — CLCL11> > 7‘2(7“1 + aall), (330)

ﬂ(rl + aa11)3 + ro(r1 4+ aagy).

a
b(ry —aay) > "
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Condition (3.28) ensures that the predator may have eventually, a positive net growth
rate; (3.29) ensures that for the prey an Allée-effect zone exists where the increase of prey
density is favourable to its growth rate; (3.30) is needed to have a positive equilibrium
point of system (3.27). System (3.27) is made up by two identical uncoupled systems.
Under these conditions each has (the same) positive equilibrium which is the intersection
of the null-clines:

ug = Hy(uy) := (a4 uy)(ry — annuy), (3.31)
1 bu1

=H = —(— : .32

U9 2<U1) CL22( 7"2"‘ a+u1) (33 )

Thus, denoting the coordinates of a positive equilibrium by (4, U, W1, Uz), these coordi-
nates satisfy @y, = Hy (1) = Ha ().

Note that if 7/a;; > a, we have an interval u; € (0, 7’1/"+_a), where the Allée-effect
holds, i.e., the increase of the prey quantity is beneficial to its growth rate.

The Jacobian matrix of the system without diffusion linearized at (uy, s, W1, Uz) is

0, -6, 0 0
O; -0, 0 0

Je = 0 0 O —6, (3:33)
0 0 O3 —0,
The characteristic polynomial is
Dy(\) = (D2(N)?, Da(A) = N+ A\(O4 — ©;) + 0,03 — 0,0, (3.34)
where
_ U1Us Uy
@ — — _— @ —
1 aj uy + @at+m)?’ A
abﬂg —
O3 = m, O4 = agls.
The equilibrium point (uy, Uy, Uy, us) lies in the Allée-effect zone if
Hi((—a+—~L)/2) < Hy((—a + ~L)/2). (3.35)
a1 ail
Assume that
@4 — @1 >0 and @2@3 — @1@4 > O, (336)

then the coexistence equilibrium point (@, Uz, U, Us) is linearly asymptotically stable.

3.2.1 The Linearized Problem

Returning to system (3.26), we see that (u, s, Uy, u2) is also a spatially homogeneous
equilibrium of the system with cross-diffusion. The Jacobian matrix of the system with
cross-diffusion at (@, Uz, U1, Us) can be written as:

O1—dipy  —O2—dipit d1p, d1pit
O3 — dophly  —O4 — dap, da Py dap,
Jp = G . 3.37
b dip; dlplul ©) —dipy -6 — dlplu1 ( )

do Py dapy O3 — daphly  —O4 — dap,
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where p,and p, are to be taken at Ty and p,, p, at ;.

Theorem 5 Under conditions (3.35), (3.36) if
@1 — 2d1p1 > O, (338)

and py (W) is sufficiently large then Turing instability occurs.

Proof: det(Jp — M) =

@1 — d1,01 — A —®2 — dlpllﬂl d1p1 dlpllﬂl
@3 — dgplgﬂg —@4 — d2p2 — A dgplgﬂg d2p2 (3 39)
d1P1 dlpllﬂl @1 — d1P1 - A —@2 — dlpllﬂl '
dzpéﬂg d2,02 @3 — dgplzﬂz —@4 — d2p2 - A
Using the properties of determinant we get
@1 - —@2 d1P1 dlpllﬂl

@3 —@4 — A d2,0/2ﬂ2 d2p2
0 0 @1 - 2d1p1 - A —@2 - 2d1pllﬂ1 (340)
0 0 @3 — 2d2p,2ﬂ2 —@4 — 2d2p2 — A

= Dy(N{N + A0y — Oy +2(dip, + dapy)] + 02,05 — 0,0,
+2d1@4p1 — 2d2p2(@1 — 2d1p1) + 2d1ﬂ1@3p,1

We know that D()) has two roots with negative real parts. By (3.36), clearly, O, — O +
2(dypy + dapy) > 0. The other polynomial will have a negative and a positive root if the
constant term is negative. This can be achieved if p,(@; ) is increased.

Remark 7 As I have mentioned in Chapter 2, if (2.45) holds and there is no cross-
diffusion then the equilibrium remains stable for any dy > 0. Still, (3.38) may hold, i.e.
wn this case only the cross-diffusion effect may destabilize the equilibrium.

Remark 8 If the parameters have been chosen so that
©1 —2d; > 0 and ©1 — 2d1p; <0, (3.42)

then the equilibrium (T, Ty, Uy, Uz) remains asymptotically stable for any ds > 0 and py >
0 in the cross-diffusion case while, as we have seen, it will undergo a Turing bifurcation
wn the absence of cross-diffusion.

3.2.2 Numerical Investigations

We apply our analytical approach to the following example of migration function and we
are looking for conditions which imply Turing instability (diffusion driven instability).

Example 6: We choose

mius —U1
T u2,p2(u1) = My eXp(E), my, mg > 0. (3.43)

p1(u2) =
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If T = 105, To = ]_, ayp = 05, 99 = 5, m; = 1, d2 == 1, d1 == 1, a = 23, b = 547.8 then
up = 1, uy = 33.
We consider my as a bifurcation parameter. In this case at moe.;; = 923.0945, we have
four eigenvalues \;(i = 1,2,3,4) such that Re); <0 (i =1,2,3) and Ay = 0.

If my < mogr = ReX; <0 (i =1,2,3,4), then, (U, s, Uy, Us) is asymptotically stable

In this example |py,, (u1, uz)| = exp(—p-). As we see if my is increased for fixed u;this
derivative is increasing, i.e. the cross-diffusion effect is increasing.
If my > moew = ReX; <0 (i =1,2,3) and Ay > 0, then, (U, Us, Uy, Uz) is unstable.

Thus as ms is increased through ms = my..; then the cross-diffusion response is strong
and the spatially homogeneous equilibrium loses its stability. Numerical calculations show
that two new spatially non-constant equilibria emerge (see Table 6 and Figure 6), and
these equilibria are asymptotically stable.

Remark 9 This result does not contradict that of [22] where a situation is treated in
which the spatially homogeneous equilibrium is stable for all values of the " self-diffusion’
coefficients (without cross-diffusion). Here this is not the case.

3.3 A Predator-Prey System of Cavani-Farkas Type

In Chapter 2, I considered a predator-prey system of Cavani-Farkas type (see [11]) living in
a habitat of two identical patches in which the migration rate of each species is influenced
only by its own density and I show that at a critical value of the bifurcation parameter
the system undergoes a Turing bifurcation, pattern emerge. In this Section, I consider
the case when the migration rate of each species is influenced not only by its own but also
by the other one’s density, i.e. there is cross-diffusion present.

Let uy(t, 7) := density of prey in patch j at time ¢ and us(t, j) := density of predator
in patch j at time ¢, j = 1,2; t € R. The interaction between two species is described as
a system of differential equations as follows:

. Uu ’1 u ,1 U ,1
wn(t,1) = cuy (1, 1)(1 — 2Ll)y - Sty
+di(py (ua(t, 2))ui(t, 2) — py(ua(t, 1))u(t, 1)),
. o u2 (¢,1)(v+b6ua(t,1)) Bui (¢,1)ua(t,1)
U2(t> 1) == 1+12(t,12) + g+u1(t2,1)

—|—d2(p2(u1(t, 2))u2<t7 2) - p2(u1 (t’ 1))u2(ta 1))a

n(t,2) = ewn(£,2)(1 — 242)  Pultduta

+d1(py (u2(t, 1))ui(t, 1) — py(ua(t, 2))us(t, 2)),

- _ ua(t,2)(y+ua(t,2)) Bui(t,2)u2(t,2)
UQ(t’Q) == 1+Zcz(t,22) + é+u1(t2,2)

+da(pa(ur(t,1))ua(t, 1) — polus(t, 2))usa(t, 2)),

(3.44)

where € > 0 is the specific growth rate of the prey in the absence of predation and without
environmental limitation, 3 > 0, K > 0 are the half saturation constant and carrying
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capacity with respect to the prey respectively, v > 0 and > 0 are the minimal mortality
and the limiting mortality of the predator, respectively (the natural assumption is v < 6).
The meaning of the half saturation constant is that at u; = (3 the specific growth rate
% (called also a Holling type functional response) of the predator is equal to half its
maximum [ (the conversion rate is taken to be equal to the half saturation constant for
sake of simplicity). The advantage of the present model over the more often used models
is that here the predator mortality is neither a constant nor an unbounded function, still,
it is increasing with quantity. d; > 0, (i = 1,2) are the diffusion coefficients and p, € C!
is a positive increasing function of u,, the density of the predator, pj > 0 and p, € C!
is a positive decreasing function of u; the density of the prey, p, < 0. The idea is that
the dependence of the diffusion coefficient on the density of the other species reflects the
inclination of a prey (or an activator) to leave a certain patch because of the danger (or
the inhibition) and the tendency of a predator (or the inhibition) to stay at a certain
patch because of the abundance of prey (or an activator). The functions p, model the
cross-diffusion effect. We say that the cross-diffusion is strong if |'0;u;c‘ (i # k) is large. If
by varying a parameter | p;ulc‘ (1 # k) is increasing then we say that the cross diffusion
effect is increasing. If p, = 1, ¢ = 1, 2 then we have mere "self-diffusion”.

First we consider the kinetic system without migration, i.e. dy =dy =0:

Wt 1) = eu(t,1)(1 —ulelly  fultbustl)

D tsuwt) | puliut)
. u2(t,1)(y+oua(t,1 w1 (t,1)ua(t,1
up(t, 1) = —= 1+12(t,12) T e
(3.45)
w(t,2) = 5ul((t, im —(u1%2>> - fﬁ)i()(;))
: - u2(t,2) (y+oua(t,2 Bui (t,2)uz(t,2
us(t,2) = —= 1+Zz(t,22) +
The following conditions are reasonable and natural:
¥<pB <, (3.46)
B <K, (3.47)
BK
< . 3.48
B K (3.48)

Condition (3.46) ensures that the predator mortality is increasing with density, and that
the predator null-cline has a reasonable concave down shape; (3.47) ensures that for
the prey an Allée-effect zone exists where the increase of prey density is favourable to
its growth rate; (3.48) is needed to have a positive equilibrium point of system (3.45).
System (3.45) is made up by two identical uncoupled systems. Under these conditions
each has (the same) positive equilibrium which is the intersection of the null-clines:

us = Hy(uy) == ﬁiKg( —w)(B+w), (3.49)

(B —7y)ur — By
(6 — B)us + B6°

U = HQ(U1> = (350)



3.3. A PREDATOR-PREY SYSTEM OF CAVANI-FARKAS TYPE 39

Thus, denoting the coordinates of a positive equilibrium by (uy, Uz, U1, Uz), these coordi-
nates satisfy @, = Hy (1) = Ha ().

Note that if K > [, we have an interval u; € (0, KT*B), where the Allée-effect holds,
i.e., the increase of the prey quantity is beneficial to its growth rate.

The Jacobian matrix of the system (3.45) linearized at (@, Us, U, Us) 18

O P, 0 0
[ @ -2, 0 0
=10 o e —o | (3.51)

0 0 o3 —P4

The characteristic polynomial is

Ds(N) = (D2(N)2, Dy(N) = N+ APy — ®y) + DyP3 — DDy, (3.52)
where
Eﬂl(K - 6 - 2&1) ﬁﬂl
b, — By = , 3.53
1 K(B+1) T Btm (3:53)
B. — 3, _ (6—y)m
PoGrm? T 4w
The equilibrium point (@, @s, Ty, Us) lies in the Allée-effect zone if
k — k —
Hy( 25) < Hy( 25), (3.54)
ie.
£ (6 —v)K
K+p3)P?<-1+ : 3.55
4,6K( f) B3 — BK + 6K (3:35)
Assume that
b, — P, >0 and Oy P — PPy > O, (356)

then the coexistence equilibrium point (@, Uz, U1, Us) is linearly asymptotically stable.

3.3.1 The Linearized Problem

For model (3.44) with cross-diffusion response (i.e., 8g¢_zfju) # 0,1 # j) we see that (T, us,

Uy, s) is also a spatially homogeneous equilibrium of the system with cross-diffusion.
The Jacobian matrix of the system with cross-diffusion at (@, Uz, U1, Us) can be written

as:
Jp =
Oy —dipy —Py —dipii dypy dip\u
O3 — dophla  —Py — dap, da Pyl dapy (3.57)
dip, d1 01T Q) —dipy —Po—dipjur |’ .
da P dapy O3 — dopiUy  —Py — dap,

where p,and p, are to be taken at Ty and p,, p, at ;.
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Theorem 6 Under conditions (3.55), (3.56) if
b, — 2d1p1 > 0, (358)

and py(Uy) is sufficiently large then Turing instability occurs.

Proof. det(Jp — AI) =

Q) —dipy — A =Py —dipT dip, d1py
O3 — dopiTUy  —Py — dapy — A da P dap, (3.59)
dip; d1pi Oy —dipy — A —Py —dipfUy '
da Py dapy O3 — dophia  —Py — dapy — A
Using the properties of determinant we get
(I)l - A —CI)Q dlpl dlpllﬂl
@3 —(I)4 - A dgp&ﬂg d2p2
0 0 (I)l - 2d1p1 — A —(I)Q — 2(11/)’1@1 ’ (360)
0 0 @3 - 2d2pl2ﬂ2 —q)4 — 2d2p2 - A
= Dy(W{N2 + A[®y — Oy + 2(dip, + dapy)] + PPy — D1 Dy

+2d1q)4p1 — 2d2p2<q)1 — 2d1p1) + 2d1ﬂ1q)3p/1

We know that Dy(\) has two roots with negative real parts. By (3.56), clearly, &4 — ®; +
2(d1p;+dapy) > 0. The other polynomial will have a negative and a positive root if its con-
stant term is negative. This can be achieved if p, (T, ) is increased.

Remark 10 As I have mentioned in Chapter 2, if (2.68) holds and there is no cross-
diffusion then the equilibrium remains stable for any dy > 0. Still, (3.58) may hold, i.e.
i this case only the cross-diffusion effect may destabilize the equilibrium.

Remark 11 If the parameters have been chosen so that
b, — 2d; >0 and P, — 2d1,01 < 0, (362)

then the equilibrium (U, Ts, Uy, Us) remains asymptotically stable for any ds > 0 and py >
0 wn the cross-diffusion case while, as we have seen, it will undergo a Turing bifurcation
i the absence of cross-diffusion.

3.3.2 Numerical Investigations

I illustrate the results by the following example and we are looking for conditions which
imply Turing instability (diffusion driven instability).

Example 7: We choose
MUz !

T u2,p2(u1) = My eXp(E), my, mg > 0. (3.63)

p1(u2) =
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If =01 ~v=0.01, 6 = 0.1055, ¢ = 1, K = 1. The unique positive equilibrium is
(U1, o, Ty, Uz) = (0.4486, 3.0250, 0.4486, 3.0250). We see that this point is in the Allée-
effect zone (0.4486 < 0.45) and it is asymptotically stable with respect to the kinetic
system (3.45).

If dy =1 (resp.2.5 ) then, (U, Uy, Uy, Us) is asymptotically stable (resp. unstable).

For the cross-diffusion system we consider my as a bifurcation parameter. In this case
atdy = 1,.dy = 1, my = 0.001 and mag; = 350.7, we have four eigenvalues \;(i = 1,2, 3,4)
such that Re\; < 0,(: =1,2,3) and A\y = 0.

If my < moge = ReX; <0, (i =1,2,3,4), (U1, 0o, Uy, Uz) is asymptotically stable .

If mo > moeit = ReX; <0, (i =1,2,3) and Ay > 0, (U1, Us, Ty, Us) is unstable.

If d; = 0.0001, doeriy = 2.5 and my = 100, then, (Ty,Us, U1, Us) is asymptotically stable
for all ms.

In this example |py,, (u1,us)| = exp(—7). As we see if my is increased for fixed
u1this derivative is increasing, i.e. the cross-diffusion effect is increasing and the spatially
homogeneous equilibrium loses its stability. Numerical calculations show that two new
spatially non-constant equilibria emerge (see Table 7 and Figure 7), and these equilibria
are asymptotically stable.
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Chapter 4

Appendices

4.1 Appendix to Chapter 2

Table 1: Equilibria of Example 1 before and after bifurcation.

d2 ul(t, 1) (%) (t, 1) U1 (t, 2) UQ(t, 2)
1000 1.000000000 33.00000000 1.000000000 33.00000000
1.036370925 33.07433937 9653313619 32.95021445
1010 1.000000000 33.00000000 1.000000000 33.00000000
9653313619 32.95021445 1.036370925 33.07433937
1.074868882 33.17381736 9320140124 32.92539437
1015 1.000000000 33.00000000 1.000000000 33.00000000
9320140124 32.92539437 1.074868882 33.17381736
1.100598745 33.25055797 9114645403 32.92320726
1020 1.000000000 33.00000000 1.000000000 33.00000000
9114645403 32.92320726 1.100598745 33.25055797
1.140164553 33.38238717 .8822598022 32.94018541
1030 1.000000000 33.00000000 1.000000000 33.00000000
.8822598022 32.94018541 1.140164553 33.38238717
1.200526588 33.61072042 .8426276092 33.00836211
1050 1.000000000 33.00000000 1.000000000 33.00000000
.8426276092 33.00836211 1.200526588 33.61072042
1.313535754 34.10544965 815757376 33.24970043
1100 1.000000000 33.00000000 1.000000000 33.00000000
7815757376 33.24970043 1.313535754 34.10544965

43
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Figure la: Graphs of the coordinate wu;(t,1) of two solutions of Example 1 cor-
responding to the respective initial conditions (0.932, 33.925, 1.074, 33.173), (1.0748,
33.1738, 0.932, 33.925); before bifurcation at dy = 900 and after bifurcation at dy = 1015
(see Table 1); (Figure produced by applying PHASER).
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Figure 1b: Graphs of the coordinate wy(t,1) of two solutions of Example 1 cor-
responding to the respective initial conditions (0.932, 33.925, 1.074, 33.173), (1.0748,
33.1738, 0.932, 33.925); before bifurcation at dy = 900 and after bifurcation at dy = 1015

(see Table 1); (Figure produced by applying PHASER).
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Table 2 : Equilibria of the Example 2 before and after bifurcation.

do

2.024

2.025

2.05

2.5

10

U1 (tv 1)
4486421535

4458431186
4486421535
4514418231

4293231321
4486421535
4679918523

3788250727
4486421535
.5189281294

3612552241
4486421535
5368308539

.3380800939
4486421535
5606719399

.3256132296
4486421535
5736383640

U2 (tv 1)
3.024981563

3.024834058
3.024981563
3.024972373

3.020772347
3.024981563
3.021716001

2.974518384
3.024981563
2977322028

2.946467825
3.024981563
2.949395746

2.900027778
3.024981563
2.902254925

2.870603510
3.024981563
2.871844287

U1 (ta 2)
4486421535

4514418231
4486421535
4458431186

4679918523
4486421535
4293231321

.5189281294
4486421535
3788250727

.5368308539
4486421535
3612552241

5606719399
4486421535
.3380800939

5736383640
4486421535
.3256132296

u2(t> 2)
3.024981563

3.024972373
3.024981563
3.024834058

3.021716001
3.024981563
3.020772347

2977322028
3.024981563
2.974518384

2.949395746
3.024981563
2.946467825

2.902254925
3.024981563
2.900027778

2.871844287
3.024981563
2.870603510
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Figure 2a Graphs of the coordinate wus(t,1) of five solutions of Example 2 corre-
sponding to the initial conditions (0.33, 2.85, 0.5, 2.91), (3.332, 2.88, 0.542, 2.85), (3.1,
2.851, 3.2,2.9), (0.542, 2.85, 0.332, 2.88), (0.5, 3.0, 0.3, 3.1); before bifurcation at dy = 2;
and the projection to the us(., 1), ui(.,2) plane of the phase portrait of the same solutions
(Figure produced by applying PHASER).
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Figure 2b Graphs of the coordinate wus(t,1) of five solutions of Example 2 corre-
sponding to the initial conditions (0.33, 2.85, 0.5, 2.91), (3.332, 2.88, 0.542, 2.85), (3.1,
2.851, 3.2,2.9),(0.542, 2.85, 0.332, 2.88), (0.5, 3.0, 0.3, 3.1); after bifurcation at dy = 2.5;
and the projection to the us(., 1), ui(.,2) plane of the phase portrait of the same solutions
(Figure produced by applying PHASER).
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4.2 Appendix to Chapter 3

Table 3. Equilibria of Example 3 before and after bifurcation.

da

0.5827

0.58272

0.58275

0.583

0.585

0.59

0.62

0.7

0.9

U1 (t, 1)

.5000000000

5010077539
.5000000000
4989907276

5021693912
5000000000
4978235602

5059395913
5000000000
4940072986

5166055295
5000000000
4829743642

5293725729
5000000000
4693014611

.5651072032
5000000000
4284802446

.6149762005
5000000000
3679939971

.7090000193
5000000000
.2686398427

7647806699
5000000000
.2260228448

Uz (ta 1)
2.125000000

2.123988386
2.125000000
2.126012509

2.122821494
2.125000000
2.127182662

2.119027941
2.125000000
2.131003365

2.108235670
2.125000000
2.142011446

2.095171870
2.125000000
2.155603969

2.057393659
2.125000000
2.196228829

2.000472689
2.125000000
2.257933065

1.881442605
2.125000000
2.367505431

1.808440651
2.125000000
2.418691192

U (tv 2)
.5000000000

4989907276
.5000000000
5010077539

4978235602
5000000000
5021693912

4940072986
5000000000
5059395913

4829743642
5000000000
5166055295

4693014611
5000000000
.5293725729

4284802446
5000000000
5651072032

3679939971
.5000000000
6149762005

.2686398427
5000000000
.7090000193

.2260228448
5000000000
7647806699

Uz (ta 2)
2.125000000

4693014611
.5000000000
.5293725729

2.127182662
2.125000000
2.122821494

2.131003365
2.125000000
2.119027941

2.142011446
2.125000000
2.108235670

2.155603969
2.125000000
2.095171870

2.196228829
2.125000000
2.057393659

2.257933065
2.125000000
2.000472689

2.367505431
2.125000000
1.881442605

2.418691192
2.125000000
1.808440651
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Figure 3a. Graphs of the coordinate w;(t,1) of five solutions of Example 3 corre-
sponding to the respective initial conditions (0.55, 1.50, 0.20, 0.60), (0.30, 1.50, 0.40, 1.50),
(0.40, 2.40, 0.50, 1.00), (1.00, 2.20, 0.40, 2.50), (0.70, 2.00, 0.10, 2.00); before bifurcation
at dy = 0.5 and after bifurcation at dy = 0.7 (see Table 3); (Figure produced by applying
PHASER).
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Figure 3b. Graphs of the coordinate wus(t,1) of five solutions of Example 3 corre-
sponding to the respective initial conditions (0.55, 1.50, 0.20, 0.60), (0.30, 1.50, 0.40, 1.50),
(0.40, 2.40, 0.50, 1.00), (1.00, 2.20, 0.40, 2.50), (0.70, 2.00, 0.10, 2.00); before bifurcation
at dy = 0.5 and after bifurcation at dy = 0.7 (see Table 3); (Figure produced by applying

PHASER).
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3 L5 . BOERG @. 268084 2297923 B. 614978
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Table 4. Equilibria of Example 4 before and after bifurcation.

do

13.883

13.884

13.885

14

15

18

20

25

Uq (t, ].)

.5000000000

5014814431
.5000000000
4985368540

.5024848312
5000000000
4975662194

5231171757
.5000000000
4806680566

.5813860699
.5000000000
4523622714

6686054058
.5000000000
4343277017

7062101228
5000000000
4308733557

7693452176
.5000000000
4283289249

U2 (tv 1)
2.125000000

2.122287989
2.125000000
2.127694220

2.120459963
2.125000000
2.129490400

2.084228374
2.125000000
2.162088813

1.991069850
2.125000000
2.225928186

1.864463939
2.125000000
2.283720787

1.812453409
2.125000000
2.301200284

1.727299697
2.125000000
2.324188044
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(751 (t, 2)

.5000000000

4985368540
.5000000000
5014814431

4975662194
5000000000
5024848312

4806680566
.5000000000
5231171757

4523622714
.5000000000
.5813860699

4343277017
.5000000000
6686054058

4308733557
5000000000
7062101228

4283289249
.5000000000
7693452176

Uz <t7 2)
2.125000000

2.127694220
2.125000000
2.122287989

2.129490400
2.125000000
2.120459963

2.162088813
2.125000000
2.084228374

2.225928186
2.125000000
1.991069850

2.283720787
2.125000000
1.864463939

2.301200284
2.125000000
1.812453409

2.324188044
2.125000000
1.727299697
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Figure 4a. Graphs of the coordinate w;(t,1) of five solutions of Example 4 corre-
sponding to the respective initial conditions (0.53, 2.10, 0.485, 2.20), (0.55, 2.30, 0.485,
2.19), (0.525, 2.088, 0.482, 2.18), (0.46, 2.14, 0.52, 2.06), (0.45, 2.15, 0.515, 2.02); before
bifurcation at dy = 10 and after bifurcation at dy = 14 (see Table 4); (Figure produced
by applying PHASER).
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Figure 4b. Graphs of the coordinate wus(t,1) of five solutions of Example 4 corre-
sponding to the respective initial conditions (0.53, 2.10, 0.485, 2.20), (0.55, 2.30, 0.485,
2.19), (0.525, 2.088, 0.482, 2.18), (.46, 2.14, 0.52, 2.06), (0.45, 2.15, 0.515, 2.02); before
bifurcation at dy = 10 and after bifurcation at dy = 14 (see Table 4); (Figure produced
by applying PHASER).
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Table 5: Equilibria of Example 5 before and after bifurcation.

da

28

28.2

29

30

40

50

60

80

100

U (ta 1)
1.500000000

1.524440807
1.500000000
1.474516967

1.574289053
1.500000000
1.415068046

1.602257674
1.500000000
1.376189993

1.683294096
1.500000000
1.225824281

1.704327936
1.500000000
1.169559919

1.714081033
1.500000000
1.138343964

1.723234442
1.500000000
1.104276166

1.727536907
1.500000000
1.085923814

Uz <t7 1)
1.375000000

1.403943678
1.375000000
1.344807960

1.462917090
1.375000000
1.274335600

1.495956494
1.375000000
1.228230906

1.591314489
1.375000000
1.049861530

1.615899482
1.375000000
9830950704

1.627253651
1.375000000
.9460399293

1.637870036
1.500000000
9055833674

1.642841684
1.500000000
.8837801086

U (ta 2)
1.500000000

1.474516967
1.500000000
1.524440807

1.415068046
1.500000000
1.574289053

1.376189993
1.500000000
1.602257674

1.225824281
1.500000000
1.683294096

1.169559919
1.500000000
1.704327936

1.138343964
1.500000000
1.714081033

1.104276166
1.500000000
1.723234442

1.085923814
1.500000000
1.727536907

Uz (ta 2)
1.375000000

1.344807960
1.375000000
1.403943678

1.274335600
1.375000000
1.462917090

1.228230906
1.375000000
1.495956494

1.049861530
1.375000000
1.591314489

.9830950704
1.375000000
1.615899482

.9460399293
1.375000000
1.627253651

9055833674
1.500000000
1.637870036

.8837801086
1.500000000
1.642841684

55}
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Figure 5a. Graphs of the coordinate wu;(t,1) of five solutions of Example 5 cor-
responding to the respective initial conditions (1.80, 1.60, 1.50, 1.25), (1.20, 1.10, 1.59,
1.47), (1.58, 1.45,1.36, 1.22), (1.00, 1.10, 1.585, 1.47), (1.65, 1.100, 1.320, 1.500); before bi-
furcation at dy = 28 and after bifurcation at dy = 30, (see Table 5) (Figure produced by
applying PHASER).
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Figure 5b. Graphs of the coordinate ws(t,1) of five solutions of Example 5 cor-
responding to the respective initial conditions (1.80, 1.60, 1.50, 1.25), (1.20, 1.10, 1.59,
1.47), (1.58, 1.45,1.36, 1.22), (1.00, 1.10, 1.585, 1.47), (1.65, 1.100, 1.320, 1.500); before bi-
furcation at dy = 28 and after bifurcation at dy = 30, (see Table 5) (Figure produced by

applying PHASER).
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Table 6: Equilibria of Example 6 before and after bifurcation.

ma

923

924

930

940

950

960

1000

U (tv 1)
1.000000000

0.972054740
1.000000000
1.029013814

0.925412134
1.000000000
1.082739872

0.886882196
1.000000000
1.133078158

0.860562652
1.000000000
1.171211561

0.839838937
1.000000000
1.203757263

0.782414455
1.000000000
1.308603529

Uz (t7 1)
33.00000000

32.95268025
33.00000000
33.06268396

32.90756707
33.00000000
33.20954082

32.90928234
33.00000000
33.37702687

32.93541297
33.00000000
33.51966483

32.97292415
33.00000000
33.65052577

33.17586301
33.00000000
34.11782822

Uy (ta 2)
1.000000000

1.029013814
1.000000000
0.972054740

1.082739872
1.000000000
0.925412134

1.133078158
1.000000000
0.886882196

1.171211561
1.000000000
0.860562652

1.203757263
1.000000000
0.839838937

1.308603529
1.000000000
0.782414455

U2 (tv 2)
33.00000000

33.06268396
33.00000000
32.95268025

33.20954082
33.00000000
32.90756707

33.37702687
33.00000000
32.90928234

33.51966483
33.00000000
32.93541297

33.65052577
33.00000000
32.97292415

34.11782822
33.00000000
33.17586301
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Figure 6a. Graphs of the coordinate wu;(¢,1) of four solutions of Example 6 cor-
responding to the respective initial conditions (0.77, 33.10, 1.30, 34.00), (1.30, 37.00,
0.77, 33.10), (0.784, 33.20, 1.32,34.20), (1.31, 34.20, 0.80, 33.30); before bifurcation at
ms = 900 and after bifurcation at my = 1000 (see Table 6); (Figure produced by applying
PHASER).
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Figure 6b. Graphs of the coordinate ws(t,1) of five solutions of Example 6 cor-
responding to the respective initial conditions (0.77, 33.10, 1.30, 34.00), (1.30, 37.00,
0.77, 33.10), (0.784, 33.20, 1.32,34.20), (1.31, 34.20, 0.80, 33.30); before bifurcation at
ms = 900 and after bifurcation at my = 1000 (see Table 6); (Figure produced by applying
PHASER).
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Table 7: Equilibria of Example 7 before and after Turing bifurcation.

350

355

365

375

385

400

ul(t, 1)

4486421535

4378285520
4486421535
4594667816

4293426859
4486421535
4679770577

.. 4239447856
4486421535
4733980189

4198086580
4486421535
AT75559683

4149242890
4486421535
4824709584

U2 (tv 1)
3.024981563

3.023718369
3.024981563
3.023905740

3.021090741
3.024981563
3.021415850

3.018670501
3.024981563
3.019075240

3.016422000
3.024981563
3.016882011

3.013326528
3.024981563
3.013843903

(751 (t, 2)

4486421535

4594667816
4486421535
4378285520

4679770577
4486421535
4293426859

4733980189
4486421535
4239447856

AT75559683
4486421535
4198086580

4824709584
4486421535
.4149242890

u2(tv 2)
3.024981563

3.023905740
3.024981563
3.023718369

3.021415850
3.024981563
3.021090741

3.019075240
3.024981563
3.018670501

3.016882011
3.024981563
3.016422000

3.013843903
3.024981563
3.013326528
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Figure Ta: Graphs of the coordinate wy(t,1) of two solutions of Example 7 corre-
sponding to the respective initial conditions (0.33, 2.85, 0.5, 2.91), (3.332, 2.88, 0.542,
2.85); (a) for self-diffusion at d; = 0.0001, dy = 2.5,(b) for cross-diffusion at d; = 0.0001,
dy = 2.5, my = 100 and my = 1, (Figure produced by applying PHASER).
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Figure Tb: Graphs of the coordinate wu;(¢,1) of two solutions of Example 7 corre-
sponding to the respective initial conditions (0.423, 3.018,0.473, 3.02), (0.4733, 3.018, 0.423,
3.0186);(a) for self-diffusion at dy = 1, dy = 1, (b) for cross-diffusion at d; = 1, dy = 1,
my = 0.001 and my = 375, (Figure produced by applying PHASER).
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