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1 Preliminaries

In the 3-dimensional spaces the Schläfli’s symbols of the regular mosaics (honey-
combs) are {p, q, r}, where {p, q} describes the domain (cell) and {q, r} denotes the
vertex figure of a mosaic (Coxeter [1]). Thus, an edge of a regular polyhedron {p, q}
is surrounded by r other polyhedra, so the order of the rotational symmetry along
an edge is r ([15]). Coxeter ([1]) examined the higher dimensional honeycombs
as well. He proved that there is only the well-known cube mosaic {4, 3, 4} in the
3-dimensional Euclidean space and there are 15 regular mosaics in the 3-dimensional
hyperbolic space. Four of them have bounded domains ({3, 5, 3}, {4, 3, 5}, {5, 3, 4},
{5, 3, 5}), while the domains of the further ones are unbounded ({3, 4, 4}, {3, 3, 6},
{4, 3, 6}, {5, 3, 6}, {4, 4, 3}, {6, 3, 3}, {6, 3, 4}, {6, 3, 5}, {6, 3, 6}, {4, 4, 4}, {3, 6, 3}).
Coxeter ([1]) also showed that there are three honeycombs ({3, 3, 4, 3}, {3, 4, 3, 3},
{4, 3, 3, 4}) in the 4-dimensional Euclidean space and there are only the honeycombs
{4, 3, ..., 3, 4} in the higher dimensional Euclidean spaces. There are honeycombs yet
only in the 4- and 5-dimensional hyperbolic spaces. Among the 7 honeycombs in the
4-dimensional hyperbolic space five have bounded domains ({3, 3, 3, 5}, {4, 3, 3, 5},
{5, 3, 3, 5}, {5, 3, 3, 4}, {5, 3, 3, 3}) and two have unbounded domains ({3, 4, 3, 4},
{4, 3, 4, 3}). It has already been proved, that in the 5-dimensional hyperbolic space
the 5 honeycombs have unbounded domains.

Fejes Tóth, L. [2, 261. p.] examined the area of the circles with common centre
in the following way. Let C(r) be the area of the circle with radius r. If a > 0, then
lim

r→∞
C(r+a)−C(r)

C(r) is equal to 0 in the Euclidean plane, but it is ea−1 in the hyperbolic
plane. This fact inspired several mathematicians to deal with analogous structures
of the hyperbolic space.

In the following we generalize this limit for the regular mosaics.

Let us fix a point P , as a (finite) vertex of the mosaic and create belts around
it. The first belt consists of the domains of the mosaic containing P . (The belt 0
is the point P itself. In cases of the mosaics having no finite vertices, the belt 0 is
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defined as a domain itself.) If the belt i is known, let the belt (i + 1) consist of the
domains having a common (finite) point (not necessarily a common vertex)with the
belt i, but they do not have common points with the belt (i − 1). Let Πi denote
the polyhedron solid determined by the outer boundary of the belt i (Π0 = P ). Πi

contains all the belts j, where j = 0, . . . , i.

Let Vi denote the volume of the belt i, and F k
i (i ≥ 0, d ≥ k > 0, d is the

dimension of the mosaic) the sum of the volumes of the k-dimensional faces on the
surface of Πi. (If k = d, then F r

i = Vi, and F 0
i is the number of the finite vertices

on the surface of Πi.) Furthermore, let Si =
∑i

j=0 Vj be the volume of Πi.

Kárteszi [4] examined the mosaics with regular triangles {3,m} in the hyper-
bolic plane. He took a triangle as the belt 0 and constructed the other belts around

it. He calculated that lim
i→∞

Vi

Si
=

√
(m−4)2−4−(m−6)

2 , (m > 6). Horváth [3] showed

for all the regular mosaics {p, q} in the hyperbolic plane that lim
i→∞

Vi

Si
=

√
c2−4−(c−2)

2 ,

where c > 2 and c = (p−2)(q−2)−2. Vermes [11], [12], [14] gave this limit for the
mosaics with asymptotic polygons in the hyperbolic plane. Zeitler [16] determined
for the cube mosaic {4, 3, 5} in the 3-dimensional hyperbolic space, that lim

i→∞
Vi

Si
=

4
√

14− 14 ≈ 0.9666 and lim
i→∞

Vi+1

Vi
= 15 + 4

√
14 ≈ 29.96.

2 Construction of the dissertation

In the dissertation we give the limits lim
i→∞

Vi

Si
and lim

i→∞
Vi+1

Vi
(i ≥ 1) for almost

all the 3-dimensional and 4-dimensional Euclidean and hyperbolic regular mosaics
(Table 1.), and we also show, that lim

i→∞
Vi+1

Vi
= lim

i→∞
Si+1

Si
= lim

i→∞
F k

i+1

F k
i

(i ≥ 1). This
limit can be called as crystal-growing ratio. If i is large enough, there are about
lim
i→∞

Vi+1

Vi
-times more domains in the belt (i + 1) than in the belt i.

For determining the above limits, we classify the vertices in the belts and sum
them up. The numbers of the domains of the belts can be given by the help of these
different types of vertices. (Since the domains are congruent for a mosaic, we can
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take their volumes as if they were units.) We give the number of the vertices in
the belt (i + 1) by the help of the numbers and types of the vertices in the belt i.
The basis of the calculation is, that we classify and calculate the vertices, edges, ...,
k-dimensional faces of the vertex-figures of the mosaics. These vertex-figures always
are the well-known regular polytopes.

Chapter 2 contains the definitions, introduces the basic theorems and lemmas in
connection with the recurrence sequences by which we can simplify the calculation
of the limits later. During the proofs we use some algebraic theorems ([9], [10]). The
most important theorems in this chapter are:

Let n ≥ 2, i ≥ 1, j = 1, 2, . . . , n be integers, let M ∈ Rn×n be a regular matrix
and let a1 ∈ Rn, α ∈ Rn. We create the vector-sequence {ai}∞i=1 recursively:

ai+1 = Mai, (1)

and the scalar-sequence {ri}∞i=1 with

ri = αTai. (2)

Theorem 2.1.1. The sequence {ri}∞i=1 is a recurrence sequence of order (at most)
n, thus

ri = β1ri−1 + β2ri−2 + · · ·+ βnri−n, (3)

where βj ∈ IR, βn 6= 0 and i ≥ n + 1.

The characteristic equation of (3) (also the characteristic equation of M) is given
by (βn 6= 0):

zn = β1z
n−1 + β2z

n−2 + · · ·+ βnz0. (4)

Moreover, let

zn − β1z
n−1 − β2z

n−2 − · · · − βnz0 = (z − z1)
m1 · · · (z − zh)mh , (5)

be the factorization of the characteristic polynomial, where z1, . . . , zh are the dif-
ferent roots (m1 + · · · + mh = n, 1 ≤ h ≤ n), and because of βn 6= 0 they are not
equal to zero (zl 6= 0, l = 1, . . . , h) as well.
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Using the fundamental theorem ([10, p.33.]) in the theory of recurrence se-
quences, any element of the linear recurrence sequence {ri}∞i=1 can be written ex-
plicitly:

ri = g1(i)z
i
1 + g2(i)z

i
2 + · · ·+ gh(i)zi

h, (6)

where gk(i) (k = 1, . . . , h) are polynomials of degree less than mk and they depend on
the first elements r1, r2, . . . , rn of the sequence {ri}∞i=1, on mk and zk (k = 1, . . . , h).

In the following let us also suppose that all the roots of the equation (4) are real,
zk ∈ R, k = 1 . . . h ≤ n and ri 6= 0 (i ≥ 1). In cases of the Euclidean mosaics the roots
are equal to 1, thus z1 = 1, h = 1 and m1 = n. Using (6), ri = g1(i)1

i = g1(i) 6= 0,
so g1(i) is not the constant zero polynomial. In cases of the considered hyperbolic
mosaics the roots of the equation (4) are real, there are at least two different roots
and there exists a root z1 with m1 = 1 for which |z1| > |zk| and |z1| = z1 > 1

(k = 2, . . . , h).

Theorem 2.2.2. In case of h = 1, z1 = 1 and 1 < h ≤ n, |z1| > |zk| 6= 0,
|z1| = z1 > 1, g1 6= 0 (k = 2, . . . , h), we get lim

1≤i→∞
ri+1

ri
= z1 and lim

1≤i→∞
ri

si
= z1−1

z1

for the sequences ri and si =
∑i

j=0 rj (i ≥ 1).

Theorem 2.2.6. The crystal-growing ratio of a regular mosaic is the biggest real
eigenvalue, whose absolute value is also maximal, of the matrix M given by the
recursion of the mosaic.

In the further chapters we give the matrices of the recursion of the mosaics.

First of all we examine the belt 1, then the belt (i + 1) by induction, supposing
that we have already known the belt i. By the help of the recurrence sequences first
we determine the number of the vertices on the outher surface of belts, afterwards
the numbers of the domains and other dimensional faces. For counting up them,
we use the fact, that – being a regular mosaic – it has congruent domains and
congruent vertex figures as well. Thus it is enough for us to know the environment
of any vertices of the mosaics and the positions of the surrounding vertices, and
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their numbers of course. For counting up these, we use only geometrical methods,
taking into consideration the topological properties of the vertex figures.

In chapter 3 we begins with the examination the Euclidean cube-mosaic {4, 3, 4}
for didactical reason. Then we examine the hyperbolic cube mosaic {4, 3, 5} (al-
though Zeitler [16] calculated the limits yet in an other way), the 4-dimensional
hypercube mosaics ({4, 3, 3, 4}, {4, 3, 3, 5}) and their duals ({5, 3, 4}, {5, 3, 3, 4})
(Németh [5], [6]). We prove the following theorem for dual mosaics.

Theorem 3.6.1. The limits lim
1≤i→∞

Vi

Si
, lim

1≤i→∞
Vi+1

Vi
, lim

1≤i→∞
Si+1

Si
and lim

1≤i→∞
F k

i+1

F k
i

are

equal in cases of the dual mosaics.

In chapter 4 we deal with the dodecahedron mosaics {5, 3, 4} and {5, 3, 5} by
applying the above method.

In chapter 5 we examine the mosaics with infinite regular polyhedra {4, 4, 3},
{6, 3, 3}, {6, 3, 4} and {6, 3, 5} having unbounded domains (Németh [7]). These
mosaics can be cut onto asymptotic pyramid mosaics (Vermes [13], [14]). Their cor-
responding 4-dimensional analogue is {4, 3, 4, 3}. Their duals are {3, 4, 4}, {3, 3, 6},
{4, 3, 6}, {5, 3, 6} and {3, 4, 3, 4}, respectively (Németh [7]). We use the previous
method for the computations.

In the 3-dimensional hyperbolic space there are mosaics with regular prisms, too
(Vermes I. [13], [14]). In chapter 6 we apply our counting up method for these
mosaics. As the number of the mosaics with regular prisms is infinite and we take
them altogether in a parametric form, for the final results computer is necessary,
too.

Finally, we managed to find an other method for determining the above limits for
mosaics with bounded domains in the 3- and 4-dimensional spaces. The description
of the method has been placed into the appendix. For determining the numbers of
the domains of the different belts we divide the domains into characteristic simplices.
The vertices of the characteristic simplices are the centres of the k-dimensional faces
of these mosaics and we examine these vertices in algebraic way. From the belt i to
the belt (i + 1) we can go forward step by step recursively as well, but the matrix
of the recursion can be given with the parameters of Schläfli symbols of the regular
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mosaics, in general. We use the well-known combinatorial sieve ([8, 41. p.]). Of
course, the results gained by the two basically different methods are the same. E.g.
the results for the mosaic {4, 3, 5} coincide with those published by Zeitler [16].
The main theorem for the 3-dimensional honeycombs {p, q, r} is as follows.

Definition. We denote by vk
i the number of the centres of the k-dimensional

faces in the union of the belts 1, 2, . . . , i. Let it be written in a matrix vi =(
v0
i v1

i v2
i v3

i

)T
.

Theorem F.1.4. vi+1 = Mvi, i ≥ 0, where M = GT

(
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

)
, and

G =




V
(

U
4q2 + 1

r − p
4

)
− 1 V

(
U
8q + 1

2r − p
4

)
V

(
U

4pq − 1
4

)
V 1

2q

r
(

U
2q − p

)
+ 2 r

(
U
4 − p

)
+ 1 r

(
U
2p − 1

)
r

U
q − p U

2 − p U
p − 1 2

U
2q

U
4

U
2p 1




,

where U = 4
1
p
+ 1

q
− 1

2

and V = 4
1
r
+ 1

q
− 1

2

.

This method seems to be fruitful for any d-dimensional honeycombs with bound-
ed and unbounded domains. It probably gives the numbers of k-dimensional faces
(k ≤ d) in the belts of the mosaics.
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3 Summary of the results

The tables below show the results for the mosaics examined in the dissertation.
Until now, except from the Euclidean mosaics, the limits of the regular mosaic
{4, 3, 5} (Zeitler [16]) were known. {p, q, r}g denotes the mosaic with asymptotic
regular pyramids gained by dividing the infinite regular polyhedron {p, q, r} (chapter
5). The Table 1 summarises the limits for the honeycombs. Tables 2 and 3 present
them (only for the cases p ≤ 10) for the regular prism mosaics (chapter 6).

mosaic lim
i→∞

Vi+1

Vi
lim
i→∞

Vi

Si

{4, 3, 4} 1 0
{4, 3, 5}, {5, 3, 4} 29.96663 0.96663

{5, 3, 5} 166.99401 0.99401
{3, 5, 3} 46.97871 0.97871

{4, 4, 3}g, {4, 4, 3}, {3, 4, 4} 10 0.9
{6, 3, 3}g, {6, 3, 3}, {3, 3, 6} 6 0.83333
{6, 3, 4}g, {6, 3, 4}, {4, 3, 6} 21 0.95238
{6, 3, 5}g, {6, 3, 5}, {5, 3, 6} 76 0.98684

{4, 3, 3, 4} 1 0
{3, 3, 3, 5}, {5, 3, 3, 3} 84.03807 0.98810
{4, 3, 3, 5}, {5, 3, 3, 4} 2381.82771 0.99958

{5, 3, 3, 5} 319483.2496 0.999997
{4, 3, 4, 3}g, {4, 3, 4, 3}, {3, 4, 3, 4} 141.728617 0.992971

Table 1. Summarizing table for honeycombs.
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lim
i→∞

Vi+1

Vi
{p|3, 3} {p|3, 4} {p|3, 5} {p|4, 3} {p|5, 3}

p = 3 – – – – –
p = 4 – – – – 229.904
p = 5 – – – 91.1299 306.746
p = 6 – – – 116.403 384.746
p = 7 35.2892 117.827 413.707 141.309 463.059
p = 8 42.1757 138.482 484.300 166.994 541.449
p = 9 48.8284 158.870 554.594 190.533 619.837
p = 10 55.3460 179.081 624.665 215.970 698.198

Table 2. lim
i→∞

Vi+1

Vi
for mosaics with regular prisms.

lim
i→∞

Vi

Si
{p|3, 3} {p|3, 4} {p|3, 5} {p|4, 3} {p|5, 3}

p = 3 – – – – –
p = 4 – – – – 0.995650
p = 5 – – – 0.989027 0.996740
p = 6 – – – 0.991409 0.997401
p = 7 0.971663 0.991514 0.997583 0.992923 0.997840
p = 8 0.976290 0.992779 0.997935 0.993976 0.998153
p = 9 0.979520 0.993706 0.998197 0.994752 0.998387
p = 10 0.981929 0.994416 0.998399 0.995348 0.998567

Table 3. lim
i→∞

Vi

Si
for mosaics with regular prisms.
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