SZABÁLYOS MOZAIKOK VIZSGÁLATA

PhD tézisfüzet

Németh László Témavezető: Dr. Vermes Imre† Dr. Molnár Emil

Budapesti Műszaki és Gazdaságtudományi Egyetem Matematika Intézet, Geometria Tanszék Budapest 2007

Németh László NyME EMK, Sopron lnemeth@emk.nyme.hu

1. Előzmények

A 3-dimenziós tér szabályos mozaikjainak Schläfli szimbólumai $\{p, q, r\}$ alakúak, ahol $\{p,q\}$ jelenti a mozaik tartományát (celláját), $\{q,r\}$ pedig a csúcsalakzatot írja le (COXETER [1]). A $\{p,q\}$ szabályos poliéder egy élét r számú poliéderrel rakhatjuk körbe, azaz a mozaiknak minden éle mentén r-ed rendű forgásszimmetriája van [15]. COXETER ([1]) vizsgálta a magasabb-dimenziós szabályos mozaikokat is. Bebizonyította, hogy szabályos poliéderekkel a 3-dimenziós euklideszi térben csak egy szabályos mozaik, a jólismert kockamozaik létezik, melynek Schläfli szimbóluma $\{4,3,4\}$. A 3-dimenziós hiperbolikus térben már 15 szabályos mozaikot adott meg. Közülük 4 korlátos tartományú ($\{3, 5, 3\}, \{4, 3, 5\}, \{5, 3, 4\}, \{5, 3, 5\}$), a többi tartománya nem korlátos ($\{3, 4, 4\}$, $\{3, 3, 6\}$, $\{4, 3, 6\}$, $\{5, 3, 6\}$, $\{4, 4, 3\}$, $\{6, 3, 3\}$, $\{6,3,4\}, \{6,3,5\}, \{6,3,6\}, \{4,4,4\}, \{3,6,3\}$). COXETER ([1]) megmutatta, hogy a 4-dimenziós euklideszi térben három, a $\{3, 3, 4, 3\}$, a $\{3, 4, 3, 3\}$ és a $\{4, 3, 3, 4\}$, magasabb dimenziós terekben csak a kockamozaiknak megfelelő {4, 3, ..., 3, 4} szabályos mozaik létezik, melyek tartományai természetesen korlátosak. A hiperbolikus terekben csak a 4 és az 5-dimenziós térben léteznek szabályos mozaikok. A 4-dimenziós hiperbolikus térben összesen 7 szabályos mozaik létezik, melyek közül 5 korlátos tartományú mozaik ($\{3, 3, 3, 5\}$, $\{4, 3, 3, 5\}$, $\{5, 3, 3, 5\}$, $\{5, 3, 3, 4\}$, $\{5, 3, 3, 3\}$), míg a további 2 tartománya nem korlátos ($\{3, 4, 3, 4\}, \{4, 3, 4, 3\}$). Bizonyított, hogy az 5-dimenziós hiperbolikus térben 5 szabályos mozaik létezik, amelyek között nincs korlátos tartományú mozaik.

FEJES TÓTH L. [2, 261. old.] koncentrikus körgyűrűtartományok területeit vizsgálta a következőképpen. Legyen C(r) egy r sugarú kör területe. Ekkor a > 0 esetén $\lim_{r\to\infty} \frac{C(r+a)-C(r)}{C(r)}$ az euklideszi síkon 0, míg a hiperbolikus síkon $e^a - 1$. Ez a tény inspirált több matematikust, hogy a hiperbolikus tér szerkezetének vizsgálatával foglalkozzon.

A továbbiakban FEJES TÓTH L. körökre vonatkozó határértékét általánosítjuk szabályos mozaikokra. Rögzítsünk egy P pontot, mint egy szabályos mozaik egy (véges) csúcspontját és hozzunk létre köré övezeteket. (FEJES TÓTH L. vizsgálata esetén a koncentrikus körök középpontját tekinthetjük kiinduló pontnak.) Az

1. övezet álljon a P pontot tartalmazó tartományokból. (A 0. övezet legyen a P pont. Véges csúcsponttal nem rendelkező mozaikok esetén a 0. övezetnek a mozaik egy tartományát tekintjük és köré hozzuk létre az övezeteket.) A 2. övezet álljon a mozaik azon tartományaiból, melyeknek van közös (véges) pontja az 1. övezettel (nem feltétlen közös csúcspontja), de nincs a 0. övezettel. Az *i*. övezet ismerete esetén az (i + 1). övezet álljon a mozaik azon tartományaiból, melyeknek az *i*. övezet valamely tartományával van közös (véges) pontja, de nincs közös pontja egyetlen (i - 1). övezetbeli tartománnyal sem. A legfeljebb *i*-edik övezetek unióját jelöljük Π_i -vel. Π_0 legyen a P pont.

Jelölje V_i az *i*. övezet térfogatát, F_i^k ($i \ge 0, d \ge k > 0$, ahol *d* a mozaik dimenziója) a Π_i felületére illeszkedő *k*-dimenziós lapok térfogatösszegét. (Ha k = d, akkor $F_i^k = V_i$, valamint F_i^0 jelentse az *i*. övezet külső felületére illeszkedő véges csúcspontok számát.) Továbbá legyen $S_i = \sum_{j=0}^i V_j$, amely a Π_i térfogata.

KÁRTESZI [4] szabályos háromszög mozaikokat vizsgált a hiperbolikus síkon. A 0. övezetként egy háromszöget tekintett és köréje képezte az övezeteket. Kiszámolta, hogy $\lim_{i\to\infty} \frac{V_i}{S_i} = \frac{\sqrt{(m-4)^2-4}-(m-6)}{2}$, ahol *m* az egy csúcshoz tartozó háromszögek száma, Schläfli szimbólummal {3, *m*} (*m* > 6). HORVÁTH [3] a szabályos *p*-szögekkel képezett {*p*, *q*} mozaikokat vizsgálta és meghatározta, hogy $\lim_{i\to\infty} \frac{V_i}{S_i} = \frac{\sqrt{c^2-4}-(c-2)}{2}$, ahol *c* > 2 és *c* = (*p*-2)(*q*-2)-2. VERMES [11], [12], [14] a hiperbolikus sík aszimptotikus sokszögeivel képezett mozaikok esetére határozta meg a fenti határértéket. ZEITLER [16] a 3-dimenziós hiperbolikus tér {4,3,5} kockamozaikjára számolta ki, hogy $\lim_{i\to\infty} \frac{V_i}{S_i} = 4\sqrt{14} - 14 \approx 0.9666$ és $\lim_{i\to\infty} \frac{V_{i+1}}{V_i} = 15 + 4\sqrt{14} \approx 29.96$.

2. A dolgozat tematikája

A dolgozatban megadjuk a $\lim_{i\to\infty}\frac{V_i}{S_i}$ és $\lim_{i\to\infty}\frac{V_{i+1}}{V_i} \quad (i\geq 1)$ határértékeket csaknem az összes 3-dimenziós és 4-dimenziós szabályos mozaik esetén (1. táblázat), továbbá belátjuk, hogy $\lim_{i\to\infty}\frac{V_{i+1}}{V_i} = \lim_{i\to\infty}\frac{S_{i+1}}{S_i} = \lim_{i\to\infty}\frac{F_{i+1}^k}{F_i^k} \quad (i\geq 1)$, melyet kristály növekedési hányadosnak is nevezhetünk. Elég nagy i esetén, megközelítőleg $\lim_{i\to\infty}\frac{V_{i+1}}{V_i}$ -szer több tartomány van a mozaik (i+1). övezetében, mint az i.-ben.

A fenti határértékek meghatározásához a mozaik egyes övezetein levő csúcspontokat osztályozzuk, és számoljuk össze. Ezen csúcspontok segítségével határozzuk meg az egyes övezetek tartományainak számait. (Mivel a vizsgált mozaikok tartományai egybevágóak, ezért a térfogataikat tekinthetjük egységnek.) Az (i+1). övezet csúcspontjainak számát az *i*. övezet csúcspontjainak típusaitól és számától függően rekurzív módon határozzuk meg. Az összeszámolás alapja az, hogy minden csúcspont környezetének, a mozaik csúcsalakzatának csúcsait, éleit, ..., *k*-dimenziós lapjait szintén osztályozzuk és az egyes osztályokba tartozó elemeket megadjuk. Ezen csúcsalakzatok mindig a jólismert szabályos poliéderek.

A dolgozat 2. fejezete a definíciókat tartalmazza, illetve az összeszámoláshoz szükséges rekurzív sorozatokkal kapcsolatban közöl néhány fontos tételt, amelyek a határértékek meghatározását egyszerűsítik le. A bizonyítás során néhány algebrai tételt használunk fel ([9], [10]). A fejezet legfontosabbak tételei a következők:

Adottak $n \geq 2, i \geq 1, j = 1, 2, ..., n$ esetén az $\mathbf{a}_1 \in \mathbb{R}^n, \boldsymbol{\alpha} \in \mathbb{R}^n$ (oszlop-) vektorok és az $\mathbf{M} \in \mathbb{R}^{n \times n}$ reguláris mátrix. Képezzük a szokásos mátrixszorzással az $\{\mathbf{a}_i\}_{i=1}^{\infty}$ vektorsorozatot rekurzív módon az

$$\mathbf{a}_{i+1} = \mathbf{M}\mathbf{a}_i, \tag{1}$$

formula segítségével, majd belőle az $\{r_i\}_{i=1}^\infty$ valós számsorozatot az

$$r_i = \boldsymbol{\alpha}^T \mathbf{a}_i, \tag{2}$$

összefüggéssel.

2.1.1. Tétel. Az (2)-ben definiált $\{r_i\}_{i=1}^{\infty}$ sorozat egy (legfeljebb) n-ed rendű lineáris rekurzív sorozat, azaz

$$r_{i} = \beta_{1}r_{i-1} + \beta_{2}r_{i-2} + \dots + \beta_{n}r_{i-n},$$
(3)

ahol $\beta_j \in \mathbb{R}, \ \beta_n \neq 0$ és $i \geq n+1$.

A (3) rekurzív sorozathoz tartozó karakterisztikus egyenlet (ami az **M** mátrix karakterisztikus egyenlete is) legyen a következő alakú ($\beta_n \neq 0$):

$$z^{n} = \beta_{1} z^{n-1} + \beta_{2} z^{n-2} + \dots + \beta_{n} z^{0}.$$
 (4)

Továbbá legyen

$$z^{n} - \beta_{1} z^{n-1} - \beta_{2} z^{n-2} - \dots - \beta_{n} z^{0} = (z - z_{1})^{m_{1}} \cdots (z - z_{h})^{m_{h}},$$
(5)

ahol z_1, \ldots, z_h gyökök különbözőek $(m_1 + \cdots + m_h = n, 1 \le h \le n)$ és a $\beta_n \ne 0$ feltétel miatt nullától is különböznek $(z_l \ne 0, l = 1, \ldots, h)$.

A rekurzív sorozatok főtétele ([10, 33. old.]) szerint az $\{r_i\}_{i=1}^{\infty}$ lineáris rekurzív sorozat bármely tagját explicit módon meghatározhatjuk a következőképp:

$$r_i = g_1(i)z_1^i + g_2(i)z_2^i + \dots + g_h(i)z_h^i,$$
(6)

ahol $g_k(i)$ egy legfeljebb $(m_k - 1)$ -ed fokú polinomja *i*-nek és függvénye az $\{r_i\}_{i=1}^{\infty}$ sorozat r_1, r_2, \ldots, r_n kezdőelemeinek, m_k -nak és z_k -nak $(k = 1, \ldots, h)$.

A továbbiakban tegyük fel azt is, hogy a (4) karakterisztikus egyenlet minden gyöke valós, azaz $z_k \in \mathbb{R}$, $k = 1 \dots h \leq n$ és az $r_i \neq 0$ $(i \geq 1)$. A vizsgált euklideszi mozaikok esetén a (4) karakterisztikus egyenlet minden gyöke 1, azaz $z_1 = 1$, h = 1és $m_1 = n$. Ekkor (6) alapján $r_i = g_1(i)1^i = g_1(i) \neq 0$, tehát $g_1(i)$ nem a konstans 0 polinom. Minden vizsgált hiperbolikus mozaik esetén pedig a (4) karakterisztikus egyenletnek minden gyöke valós, legalább kettő különböző gyöke van és létezik egy z_1 egyszeres, domináns gyök, amelyre teljesül, hogy $|z_1| > |z_k|$ és $|z_1| = z_1 > 1$ $(k = 2, \dots, h)$. A továbbiakban ezeket az eseteket vizsgáljuk és ehhez feltesszük, hogy $g_1 \neq 0$.

2.2.2. Tétel. $A \ h = 1, \ z_1 = 1, \ illetve \ az \ 1 < h \le n, \ |z_1| > |z_k| \ne 0, \ |z_1| = z_1 > 1,$ $g_1 \ne 0 \ (k = 2, ..., h), \ esetek \ mindegyikében \ a \ (2)-ben \ definiált \ r_i \ és \ az \ s_i = \sum_{j=0}^i r_j$ $(i \ge 1) \ sorozatokra \ \lim_{1 \le i \to \infty} \frac{r_{i+1}}{r_i} = z_1 \ és \ \lim_{1 \le i \to \infty} \frac{r_i}{s_i} = \frac{z_1 - 1}{z_1}.$

2.2.6. Tétel. Egy szabályos mozaik kristály növekedési hányadosa a mozaik által meghatározott rekurzió **M** mátrixának a legnagyobb, abszolútértékben is a legnagyobb, valós sajátértéke.

A további fejezetekben az egyes mozaikok esetén a rekurziós mátrixokat adjuk meg.

Először az 1. övezeteket vizsgáljuk meg részletesebben, majd teljes indukcióval az i. övezet ismeretét feltételezve következtetünk az (i+1). övezetre. Rekurzív sorozatok segítségével előbb az övezetek külső felületén levő mozaikcsúcspontok számát, majd az egyes övezetek tartományainak, valamint 2-, 3- és 4-dimenziós lapjainak számát is kifejezzük. Az összeszámláláshoz azt a tényt használjuk fel, hogy szabályos mozaik lévén nemcsak a tartományai, hanem a csúcsok környezetei, a csúcsalakzatok is egybevágóak. Így elég ismernünk a mozaikok egy tetszőleges csúcspontjának a környezetét, e csúcsponthoz közeli csúcspontok elhelyezkedését, számát. Az összeszámlás tisztán geometriai módszerekkel elvégezhető a csúcsalakzatoknak csak a kombinatorikus topológikus tulajdonságait felhasználva.

A dolgozatban szereplő módszer jobb megismerése miatt a 3. fejezetet a $\{4, 3, 4\}$ euklideszi kockamozaik vizsgálatával kezdjük, annak ellenére, hogy ezen mozaik esetén sokkal egyszerűbben elvégezhetnénk az azon tartományok számának meghatározását, melyek az egyes övezeteket alkotják. Ezután a $\{4, 3, 5\}$ hiperbolikus kockamozaik megfelelő rekurzív sorozatainak felírásával folytatjuk a fejezetet (habár ZEITLER [16] már részben, más módon a fenti határértékeket kiszámolta), majd ezután a megfelelő 4-dimenziós mozaikokat ($\{4, 3, 3, 4\}$, $\{4, 3, 3, 5\}$) és a duálisaikat ($\{5, 3, 4\}$, $\{5, 3, 3, 4\}$) vizsgáljuk (NÉMETH [5], [6]). Duális mozaikokra bebizonyítjuk a következő tételt.

3.6.1. Tétel. A minden hiperbolikus kockamozaik és duálisa estén a $\lim_{1 \le i \to \infty} \frac{V_i}{S_i},$ $\lim_{1 \le i \to \infty} \frac{V_{i+1}}{S_i}, \lim_{1 \le i \to \infty} \frac{S_{i+1}}{S_i} \text{ és } \lim_{1 \le i \to \infty} \frac{F_{i+1}^k}{F_i^k} \text{ határértékek megegyeznek.}$

A 4. fejezetben a 3-dimenziós $\{5,3,4\}$ és az $\{5,3,5\}$ hiperbolikus dodekaéder mozaikokat vizsgáljuk a bemutatott módszert használva.

Az 5. fejezetben a nem korlátos tartományú $\{4, 4, 3\}$, $\{6, 3, 3\}$, $\{6, 3, 4\}$ és $\{6, 3, 5\}$ végtelen szabályos poliéderekkel képezett mozaikokat és az ezek felosztásával (VER-MES [13], [14]) kapott aszimptotikus gúlákkal képezett mozaikokat, valamint 4dimenziós megfelelőjét ($\{4, 3, 4, 3\}$) és duálisaikat ($\{3, 4, 4\}$, $\{3, 3, 6\}$, $\{4, 3, 6\}$, $\{5, 3, 6\}$ és $\{3, 4, 3, 4\}$) vizsgáljuk meg (NÉMETH [7]). Itt is az előző fejezetek összeszámolási módszerét alkalmazzuk. A 3-dimenziós hiperbolikus térben szabályos hasábokkal is (VERMES I. [13], [14]) képezhetünk mozaikokat. A 6. fejezetben ezen mozaikokra használjuk a megfelelő összeszámolási módszert. A szabályos hasábokkal képezhető mozaikok Schläfli szimbólumai $\{p|q,r\}$ alakúak, ahol p a szabályos hasábok alapsokszögeinek számát jelöli, $\{q,r\}$ pedig a mozaik csúcsalakzatát írja le. Mivel a szabályos hasábokkal képezhető mozaikok száma végtelen és tárgyalásukat egységesen, paraméteres formában végezzük, a végső eredmény meghatározásához a számítógép is szükséges.

A dolgozatban sikerült egy másik módszerrel is megadni a fenti határértékeket korlátos tartományú mozaikok esetére a 3- és 4-dimenziójú euklideszi és hiperbolikus terekben. A módszer leírása a függelékben kapott helyet. Az egyes övezetek tartományai számának meghatározásához a mozaikot felosztjuk karakterisztikus szimplexekre. A karakterisztikus szimplexek csúcsainak, amelyek a k-dimenziós ($k \leq d$) lapok középpontjai, számát vizsgáljuk algebrai módszerekkel. Itt is rekurzió segítségével térünk át az *i*. övezetről az (i + 1). övezetre, de a rekurzió mátrixát általánosan, a szabályos mozaikok Schläfli szimbólumainak paramétereivel tudjuk felírni. Többször a jólismert kombinatorikai szita módszert alkalmazzuk ([8, 41. old.]). Természetesen a dolgozatban bemutatott két módszerrel kapott eredmények megegyeznek és a $\{4, 3, 5\}$ mozaik esetén ZEITLER [16] eredményeivel is egybeesnek. Ha a 2-dimenziós euklideszi és hiperbolikus síkra alkalmazzuk az általános módszert, akkor a vizsgált határértékek más szerzők (KÁRTESZI [4], HORVÁTH [3]) eredményeit adják.

Definíció. Nevezzük *i-együttes*nek az 1., a 2., ..., (i - 1). és az *i*. mozaikövezet unióját. Jelöljük v_i^k -val az *i*-együttes *k*-dimenziós $(k \le d)$ lapok középpontjainak számát. Legyen ez vektor alakban $\mathbf{v}_i = (v_i^0 \ v_i^1 \ v_i^2 \ v_i^3)^T$

 $\begin{aligned} \mathbf{F.1.4. \ T\acute{e}tel. \ } \mathbf{v}_{i+1} \ &= \ \mathbf{Mv}_i, \ i \ge 0, \ ahol \ \mathbf{M} \ &= \ \mathbf{G}^T \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \ \acute{es} \ \ U = \frac{4}{\frac{1}{p} + \frac{1}{q} - \frac{1}{2}}, \\ V &= \frac{4}{\frac{1}{r} + \frac{1}{q} - \frac{1}{2}} \ eset\acute{en} \\ \mathbf{G} &= \begin{pmatrix} V \begin{pmatrix} \frac{U}{4q^2} + \frac{1}{r} - \frac{p}{4} \end{pmatrix} - 1 & V \begin{pmatrix} \frac{U}{8q} + \frac{1}{2r} - \frac{p}{4} \end{pmatrix} & V \begin{pmatrix} \frac{U}{4pq} - \frac{1}{4} \end{pmatrix} & V \frac{1}{2q} \\ r \begin{pmatrix} \frac{U}{2q} - p \end{pmatrix} + 2 & r \begin{pmatrix} \frac{U}{4} - p \end{pmatrix} + 1 & r \begin{pmatrix} \frac{U}{2p} - 1 \end{pmatrix} & r \\ \frac{U}{2q} - p & \frac{U}{2} - p & \frac{U}{p} - 1 & 2 \\ \frac{U}{2q} & \frac{U}{4} & \frac{U}{2p} & 1 \end{pmatrix}. \end{aligned}$

Reményteljesnek látszik, hogy e számolási módszer kiterjeszthető tetszőleges ddimenziós korlátos és nem korlátos tartományú szabályos mozaikokra is, és a módszer általánosításával megadható a mozaikövezetek külső felületére illeszkedő csúcsok, lapok, élek, ..., (d-1)-dimenziós lapok száma is.

3. Eredmények összefoglalása

A következő táblázatok összefoglaló jelleggel a dolgozatban vizsgált mozaikokra pontosan meghatározott határérték közelítő értékeit tartalmazzák. Eddig az euklideszi mozaikoktól eltekintve a {4,3,5} mozaik esetére (ZEITLER [16]) voltak ismertek az eredmények. A {p,q,r} végtelen érintőpoliéderekkel képezett mozaik aszimptotikus gúlákra történő felosztásával kapott mozaikot {p,q,r} jelöli (5. fejezet). Az 1. táblázat a szabályos mozaikokra kapott határértékeket összegzi, míg a 2. és a 3. táblázat a 6. fejezetben leírt, VERMES I. [13], [14] által definiált, szabályos hasábmozaikokra tartozó határértékeket adja meg (csak $p \leq 10$ esetre).

mozaik	$\lim_{i\to\infty} \frac{V_{i+1}}{V_i}$	$\lim_{i \to \infty} \frac{V_i}{S_i}$
$\{4, 3, 4\}$	1	0
$\{4,3,5\}, \{5,3,4\}$	29.96663	0.96663
$\{5, 3, 5\}$	166.99401	0.99401
${3,5,3}$	46.97871	0.97871
${4,4,3}_g, {4,4,3}, {3,4,4}$	10	0.9
$\{6,3,3\}_g, \{6,3,3\}, \{3,3,6\}$	6	0.83333
$\{6,3,4\}_g, \{6,3,4\}, \{4,3,6\}$	21	0.95238
$\{6,3,5\}_g, \{6,3,5\}, \{5,3,6\}$	76	0.98684
$\{4, 3, 3, 4\}$	1	0
$\{3,3,3,5\}, \{5,3,3,3\}$	84.03807	0.98810
$\{4,3,3,5\}, \{5,3,3,4\}$	2381.82771	0.99958
$\{5, 3, 3, 5\}$	319483.2496	0.999997
$[{4,3,4,3}_g, {4,3,4,3}, {3,4,3,4}]$	141.728617	0.992971

1. táblázat. A szabályos mozaikok összefoglaló táblázata.

$\lim_{i \to \infty} \frac{V_{i+1}}{V_i}$	$\{p 3,3\}$	$\{p 3,4\}$	$\{p 3,5\}$	$\{p 4,3\}$	$\{p 5,3\}$
p = 3	_	_	_	_	_
p = 4	_	—	—	—	229.904
p = 5	_	_	_	91.1299	306.746
p = 6	-	_	_	116.403	384.746
p = 7	35.2892	117.827	413.707	141.309	463.059
p = 8	42.1757	138.482	484.300	166.994	541.449
p = 9	48.8284	158.870	554.594	190.533	619.837
p = 10	55.3460	179.081	624.665	215.970	698.198

2. táblázat. $\lim_{i\to\infty}\frac{V_{i+1}}{V_i}$ értékei a szabályos hasábmozaikok esetén.

$\lim_{i\to\infty}\frac{V_i}{S_i}$	$\{p 3,3\}$	$\{p 3,4\}$	$\{p 3,5\}$	$\{p 4,3\}$	$\{p 5,3\}$
p = 3	-	_	_	_	_
p = 4	_	—	_	_	0.995650
p = 5	_	_	_	0.989027	0.996740
p = 6	-	_	_	0.991409	0.997401
p = 7	0.971663	0.991514	0.997583	0.992923	0.997840
p = 8	0.976290	0.992779	0.997935	0.993976	0.998153
p = 9	0.979520	0.993706	0.998197	0.994752	0.998387
p = 10	0.981929	0.994416	0.998399	0.995348	0.998567

3. táblázat. $\lim_{i\to\infty}\frac{V_i}{S_i}$ értékei a szabályos hasábmozaikok esetén.

Hivatkozások

- Coxeter, H.S.M., Regular honeycombs in hyperbolic space, Proc. Int. Congress of Math. Amsterdam, Vol. III. (1954), 155-169.
- [2] Fejes Tóth, L., Regular Figures, Akadémiai Kiadó, Budapest, 1964.
- [3] Horváth, J., Uber die regulären Mosaiken der hyperbolishen Ebene, Ann. Univ. Sci., Budapest. Eötvös Sect. Math. 7 (1964), 49-53.
- [4] Kárteszi, F., Eine Bemerkung über das Dreiecksnetz der hyperbolischen Ebene, Publ. Math. Debrecen, 5 (1957), 142-146.
- [5] Németh L., Combinatorial examination of the mosaic with asymptotical square pyramids, Proceedings of Symposium on Computational Geometry SCG'2002, Vol. 11., Bratislava (2002), 56-59.
- [6] Németh L., Combinatorial examination of mosaics with asymptotic pyramids and their reciprocals in 3-dimensional hyperbolic space, Studia Sci. Math. Hungar. 43 (2), (2006), 247-264.
- [7] Németh L., On the 4-dimensional hyperbolic hypercube mosaic, Publ. Math., Debrecen, (közlésre elfogadva).
- [8] Prékopa, A., Valószínűségelmélet műszaki alkalmazásokkal, Műszaki könyvkiadó, Budapest, 1962.
- [9] Rózsa, P., *Lineáris algebra és alkalmazásai*, Tankönyvkiadó, Budapest, 1991.
- [10] Shorey, T.N. Tijdeman. R., Exponential diophantine equation, Cambridge University Press, 1986.
- [11] Vermes, I., A hiperbolikus sík lefedése aszimptotikus sokszögekkel, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 20 (1971) 341-347.
- [12] Vermes, I., Über die Parkettierungsmöglichkeit der hyperbolischen Ebene durch nicht-total asymptotische Vielecke. Wissenschaftliche Zeitschrift der Martin-Luther-Universität Halle, 1 (1971), 9-13.
- [13] Vermes, I., Uber die Parkettierungsmöglichkeit des dreidimensionalen hyperbolischen Raumes durch kongruente Polyeder, Studia Sci. Math. Hungar. 7 (1972), 267-287.

- [14] Vermes, I., Sikbeli és térbeli hiperbolikus mozaikok vizsgálata, Kandidátusi értekezés, Budapest, 1971.
- [15] Vinberg, E.B. Shvartsman, O.V., Discrete groups of motions of spaces of constant curvature, in Geometry II. Encyclopaedia of Math. Sci., Springer-Verlag, 1991.
- [16] Zeitler, H., Über eine Parkettierung des dreidimensionalen hyperbolischen Raumes, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 12 (1969), 3-10.