SZABÁLYOS MOZAIKOK VIZSGÁLATA

PhD értekezés

Németh László Témavezető: Dr. Vermes Imre† Dr. Molnár Emil

Budapesti Műszaki és Gazdaságtudományi Egyetem Matematika Intézet, Geometria Tanszék Budapest 2007

Németh László NyME EMK, Sopron lnemeth@emk.nyme.hu

Tartalomjegyzék

1.	Bev	ezetés	5				
2.	Rekurzív sorozatok						
	2.1.	Definíciók	11				
	2.2.	A rekurzív sorozatokkal kapcsolatos tételek	13				
3.	Koc	kamozaikok	19				
	3.1.	$\{4,3,4\}$ euklideszi kockamozaik 	19				
	3.2.	$\{4,3,5\}$ hiperbolikus kockamozaik	25				
	3.3.	$\{4,3,3,4\}$ 4-dimenziós euklideszi hiperkockamozaik 	30				
	3.4.	$\{4,3,3,5\}$ 4-dimenziós hiperbolikus hiperkockamozaik	35				
	3.5.	Tételek	40				
	3.6.	Duális mozaikok	42				
4.	Dodekaéder mozaikok						
	4.1.	$\{5,3,4\}$ hiperbolikus dodekaé dermozaik	45				
	4.2.	$\{5,3,5\}$ hiperbolikus dodekaé dermozaik	49				
5.	Nem korlátos tartományú mozaikok						
	5.1.	Aszimptotikus gúlákkal képezett mozaikok	51				
		5.1.1. Négyzet alapú aszimptotikus gúlákkal képezett mozaik $\ldots\ldots\ldots\ldots$	53				
		5.1.2. Szabályos hatszög alapú aszimptotikus gúlákkal képezett mozaikok .	56				
	5.2.	4-dimenziós aszimptotikus gúlákkal képezett mozaik	61				
	5.3.	Végtelen, paraszférát érintő szabályos poliéderekkel képezett mozaikok	66				
	5.4.	Szabályos aszimptotikus poliéderekkel képezett mozaikok 	67				
	5.5.	Tételek	68				
6.	Szal	bályos hasábokkal képezett mozaikok	71				
Ire	odalo	omjegyzék	81				

Függelék		i						
7.1. Korlátos tartományú szabályos mozaikok								
F.1.1. 3-dimenziós korlátos tartományú szabályos mozaikok \ldots		i						
F.1.2. 2-dimenziós korlátos tartományú szabályos mozaikok $\ldots\ldots\ldots\ldots$		vi						
F.1.3. 4-dimenziós korlátos tartományú szabályos mozaikok $\ldots\ldots\ldots\ldots$		vii						
F.2. 4-dimenziós szabályos poliéderek adatai		viii						
F.3. Számítások		х						

1. fejezet

Bevezetés

A mozaikok, a kristályok nagy szerepet játszanak mindennapi életünkben. Már az ókorban készítettek egybevágó síkidomokkal díszítő mintákat, főként az építészetben, a festészetben, de a mindennapi használati eszközökön is alkalmazták ezt a díszítési eljárást. Ilyen mintákat napjainkban is láthatunk épületek homlokzatán, tapétákon, csempéken, kövezeteken. A természetben is előfordulnak szimmetrikus alakzatok pl. virágszirom, hópehely, míg térben a kristályok mutatnak hasonló tulajdonságokat. A mozaikok, a kristályok nagyszámú előfordulása, gyakorlati felhasználása tette fontossá tanulmányozásukat, matematikai és geometriai vizsgálatukat, precíz leírásukat ([3], [11], [12], [25], [35]).

Az euklideszi síkban az "egy fixpontú mozaikokat", a rozetta mozaikokat, az ún. forgásés diédercsoportok írják le, melyek száma végtelen. Az egy egyenes menti mintákat, az egy eltolást tartalmazó mintákat, az ún. frízcsoportok határozzák meg, számuk 7. Míg a két független eltolást tartalmazó (tapétacsoportok) mintákat 17 darab síkbeli kristálycsoport írja le ([8], [14]). Az euklideszi térbeli kristályokat 219 + 11 = 230 tércsoport definiálja és a 4-dimenziós E^4 térben a kristálycsoportok száma már 4783 + 111 = 4894 (Bernd Souvignier 2004 új számítógépes ellenőrzésének eredménye). Az első összeadandó az (affin konjugáltságból adódó) izomorfia osztályok száma, a második összeadandó az irányításban eltérő (enantiomorf) párok száma ([34, 181. old.], [19]).

A legtöbb szimmetriát tartalmazó, legegyszerűbb mozaikok a szabályos mozaikok. Szabályosnak nevezünk egy mozaikot, ha a tartományai (cellái) és a csúcsalakzatai is szabályos poliéderek (ill. poligonok). A definícióból következik, hogy a szabályos mozaikoknak csak kongruens tartományai vannak.

Az euklideszi síkban három, a jólismert négyzet-, a szabályos háromszög- és a szabályos hatszög tartományú szabályos mozaikok léteznek. Ezek Schläfli szimbólumai {4,4}, {3,6} és {6,3}. Általánosan, ha egy szabályos *p*-szög csúcsainál lévő szögek $\frac{2\pi}{q}$ nagyságúak, akkor annak szükséges és elégséges feltételét, hogy ezen egybevágó sokszögekkel egy {p,q} Schläfli szimbólumú mozaikot lehessen alkotni a szférikus, az euklideszi és a hiperbolikus síkon a következő egyenlőtlenséggel lehet megadni: $\frac{1}{p} + \frac{1}{q} \geq \frac{1}{2}$, ahol a > jel a szférikus, az = jel az euklideszi, a < jel a hiperbolikus esetre vonatkozik (FEJES TÓTH L. [14, 65. old.]). Ebből adódik, hogy a gömbön, a szabályos kétszögekkel képezett mozaikoktól eltekintve csak öt, az öt 3-dimenziós szabályos testnek megfelelő mozaik van, melyek Schläfli szimbólumai: $\{3, 3\}, \{3, 4\}, \{3, 5\}, \{4, 3\}$ és $\{5, 3\}$. Ezzel szemben a hiperbolikus síkon végtelen sok szabályos $\{p, q\}$ mozaik létezik, hiszen bármely szabályos sokszöggel képezhetünk mozaikot, ha a szögei megfelelő nagyságúak. Továbbá a hiperbolikus síkon léteznek nem korlátos tartományokkal (aszimptotikus sokszögek, melyek szögösszege 0) képezett szabályos mozaikok is ([30], [31], [33]).

A 3-dimenziós tér mozaikjainak Schläfli szimbólumai $\{p, q, r\}$ alakúak, ahol $\{p, q\}$ jelenti a mozaik tartományát (celláját), $\{q, r\}$ pedig a csúcsalakzatot írja le (COXETER [5]). A $\{p,q\}$ szabályos poliéder egy élét r számú poliéderrel rakhatjuk körbe, azaz a mozaiknak minden éle mentén r-ed rendű forgásszimmetriája van [34]. COXETER ([5]) vizsgálta a magasabb dimenziós szabályos mozaikokat is. Bebizonyította, hogy szabályos poliéderekkel a 3-dimenziós euklideszi térben csak egy szabályos mozaik, a jólismert kockamozaik létezik, melynek Schläfli szimbóluma {4,3,4}. A 3-dimenziós hiperbolikus térben már 15 szabályos mozaikot adott meg. Közülük 4 korlátos tartományú $(\{3, 5, 3\},$ $\{4,3,5\}, \{5,3,4\}, \{5,3,5\}$, a többi tartománya nem korlátos ($\{3,4,4\}, \{3,3,6\}, \{4,3,6\}$, $\{5,3,6\}, \{4,4,3\}, \{6,3,3\}, \{6,3,4\}, \{6,3,5\}, \{6,3,6\}, \{4,4,4\}, \{3,6,3\}$). COXETER ([5]) megmutatta, hogy a 4-dimenziós euklideszi térben három, a $\{3, 3, 4, 3\}$, a $\{3, 4, 3, 3\}$ és a $\{4, 3, 3, 4\}$, magasabb dimenziós terekben csak a kockamozaiknak megfelelő $\{4, 3, ..., 3, 4\}$ szabályos mozaik létezik, melyek tartományai természetesen korlátosak. A hiperbolikus terekben csak a 4- és az 5-dimenziós térben léteznek szabályos mozaikok. A 4-dimenziós hiperbolikus térben összesen 7 szabályos mozaik létezik, melyek közül 5 korlátos tartományú mozaik ($\{3, 3, 3, 5\}, \{4, 3, 3, 5\}, \{5, 3, 3, 5\}, \{5, 3, 3, 4\}, \{5, 3, 3, 3\}$), míg a további 2 tartománya nem korlátos ($\{3, 4, 3, 4\}, \{4, 3, 4, 3\}$). Bizonyított, hogy az 5-dimenziós hiperbolikus térben 5 szabályos mozaik létezik, amelyek között nincs korlátos tartományú mozaik.

A matematikának, a geometriának számos területe kapcsolódik a mozaikokhoz. Diszkrét geometriai vizsgálatokat végeznek rácsszerű elhelyezésekkel, fedésekkel, felosztásokkal kapcsolatban ([13], [15]). A szabályos poliéderek és a mozaikok vizsgálatát csoportelméleti alapokra helyezték és algebrai módszerekkel is vizsgálták a mozaikok, kristályok tulajdonságait ([1], [4], [6], [7], [8], [9], [10], [17], [19], [26], [34]).

FEJES TÓTH L. [14, 261. old.] koncentrikus körgyűrűtartományok területeit vizsgálta a következőképpen. Legyen C(r) egy r sugarú kör területe. Ekkor a > 0 esetén $\lim_{r\to\infty} \frac{C(r+a)-C(r)}{C(r)}$ az euklideszi síkon 0, míg a hiperbolikus síkon $e^a - 1$. (A hiperbolikus síkon $C(r) = 2\pi(ch r - 1)$.) Ez a tény inspirált több matematikust, hogy a hiperbolikus síkon különböző mozaikok esetén hasonló határértékeket vizsgáljanak, valamint a hiperbolikus síkon a sűrűség fogalmával ([14]) részletesebben foglalkozzanak. BÖRÖCZKY K. ([2]) adott számos példát, hogy a hiperbolikus síkon ugyanazon körrendszer esetén különböző cellafelbontásokhoz más-más sűrűség tartozik.

A továbbiakban FEJES TÓTH L. körökre vonatkozó határértékét általánosítjuk szabályos mozaikokra. Rögzítsünk egy P pontot, mint egy szabályos mozaik egy (véges) csúcspontját és hozzunk létre köré övezeteket (öveket). (FEJES TÓTH L. vizsgálata esetén a koncentrikus körök középpontját tekinthetjük kiinduló pontnak.) Az 1. övezet (öv) álljon a P pontot tartalmazó tartományokból. (A 0. övezet legyen a P pont. Véges csúcsponttal nem rendelkező mozaikok esetén a 0. övezetnek a mozaik egy tartományát tekintjük és köré hozzuk létre az övezeteket. Egy mozaik *tartományainak* a mozaik elemeit, vagy más szóval celláit fogjuk nevezni.) A 2. övezet álljon a mozaik azon tartományaiból, melyeknek van közös (véges) pontja az 1. övezettel (nem feltétlen közös csúcsponja), de nincs a 0.-kal. Az *i*. övezet ismerete esetén az (i+1). övezet álljon a mozaik azon tartományaiból, melyeknek az *i*. övezet valamely tartományával van közös (véges) pontja, de nincs közös pontja egyetlen (i-1). övezetbeli tartománnyal sem. A legfeljebb *i*-edik övezetek unióját jelöljük Π_i -vel. Π_0 legyen a P pont, ill. véges csúcspont nemléte esetén egy tartománya.

Jelölje V_i az *i*. övezet térfogatát, F_i^k ($0 \le k \le d$, ahol *d* a mozaik dimenziója) a Π_i felületére illeszkedő *k*-dimenziós lapok térfogatösszegét. (Ha k = d, akkor definíció szerint $F_i^k = V_i$, valamint egy csúcs 0-dimenziós térfogata 1, azaz F_i^0 az *i*. övezet felületére illeszkedő véges csúcspontok számát jelenti.) Továbbá legyen $S_i = \sum_{j=0}^i V_j$, amely a Π_i térfogata.

KÁRTESZI [18] szabályos háromszög mozaikokat vizsgált a hiperbolikus síkon. A 0. övezetként egy háromszöget tekintett és köréje képezte az övezeteket. Kiszámolta, hogy $\lim_{i\to\infty} \frac{V_i}{S_i} = \frac{\sqrt{(m-4)^2-4}-(m-6)}{2}$, ahol *m* az egy csúcshoz tartozó háromszögek száma, Schläfli szimbólummal {3, *m*} (*m* > 6). HORVÁTH [16] a szabályos *p*-szögekkel képezett {*p*, *q*} mozaikokat vizsgálta és meghatározta, hogy $\lim_{i\to\infty} \frac{V_i}{S_i} = \frac{\sqrt{c^2-4}-(c-2)}{2}$, ahol c = (p-2)(q-2)-2 és c > 2. VERMES [30], [31], [33] a hiperbolikus sík aszimptotikus sokszögeivel képezett mozaikok esetére határozta meg a fenti határértéket. ZEITLER [36] a 3-dimenziós hiperbolikus tér {4, 3, 5} kockamozaikjára számolta ki, hogy $\lim_{i\to\infty} \frac{V_i}{S_i} = 4\sqrt{14} - 14 \approx 0.9666$ és $\lim_{i\to\infty} \frac{V_{i+1}}{V_i} = 15 + 4\sqrt{14} \approx 29.96$.

A dolgozatban megadjuk a $\lim_{1 \le i \to \infty} \frac{V_i}{S_i}$ és $\lim_{1 \le i \to \infty} \frac{V_{i+1}}{V_i}$ határértékeket csaknem az összes 3-dimenziós és 4-dimenziós szabályos mozaik esetén (1.1. táblázat 10. old.), továbbá belátjuk, hogy $\lim_{1 \le i \to \infty} \frac{V_{i+1}}{V_i} = \lim_{1 \le i \to \infty} \frac{S_{i+1}}{S_i} = \lim_{1 \le i \to \infty} \frac{F_{i+1}^k}{F_i^k}$, melyet kristály növekedési hányadosnak is nevezhetünk. Elég nagy *i* esetén, megközelítőleg $\lim_{1 \le i \to \infty} \frac{V_{i+1}}{V_i}$ -szer több tartomány van a mozaik (*i* + 1). övezetében, mint az *i*.-ben. (Egyes mozaikok esetén már *i* = 4 esetén 5 tizedes pontosságal közelítjük a határértéket.)

A fenti határértékek meghatározásához a mozaik egyes övezeten levő külső felületi csúcspontjait osztályozzuk, és számoljuk össze. Ezen csúcspontok segítségével határozzuk meg az egyes övezetek tartományainak számait. (Mivel a vizsgált mozaikok cellái egybevágóak, ezért a térfogataik a hányados vételekor kiesnek.) Az (i+1). övezet csúcspontjainak számát az *i*. övezet csúcspontjainak típusaitól és számától függően rekurzív módon határozzuk meg. Az összeszámolás alapja az, hogy minden csúcspont környezetének, a mozaik csúcsalakzatának csúcsait, éleit, ..., *k*-dimenziós lapjait szintén osztályozzuk és az egyes osztályokba tartozó elemeket megadjuk. Ezen csúcsalakzatok mindig a jólismert szabályos poliéderek.

A dolgozat 2. fejezete a definíciókat tartalmazza, illetve az összeszámoláshoz szükséges rekurzív sorozatokkal kapcsolatban közöl néhány fontos tételt, amelyek a határértékek meghatározását egyszerűsítik le. A bizonyítás során néhány algebrai tételt használunk fel ([24], [27]). Itt bizonyítjuk, hogy az *i*. övezetből az (i + 1). övezetet meghatározó rekurzió mátrixának a legnagyobb, abszolút értékben is a legnagyobb, sajátértéke adja a kristálynövekedési hányadost, feltéve egy bizonyos együttható nem-0 voltát, amit minden esetben konkrét numerikus számitásokkal igazolunk. A további fejezetekben az egyes mozaikok esetén a rekurziós mátrixokat adjuk meg. A 3. fejezetben a 3-dimenziós $\{4, 3, 4\}$ euklideszi és az $\{4,3,5\}$ hiperbolikus kockamozaikot, a 4-dimenziós $\{4,3,3,4\}$ euklideszi és az $\{4,3,3,5\}$ hiperbolikus hiperkockamozaikokat, valamint ezek duálisait vizsgáljuk (NÉMETH [22]). Először az 1. övezeteket vizsgáljuk meg részletesebben, majd teljes indukcióval az i. övezet ismeretét feltételezve következtetünk az (i + 1). övezetre. Rekurzív sorozatok segítségével előbb az övezetek külső felületén levő mozaikcsúcspontok számát, majd az egyes övezetek tartományainak, valamint 1-, 2- (és 3-)dimenziós lapjainak számát is kifejezzük. Az összeszámláláshoz azt a tényt használjuk fel, hogy szabályos mozaik lévén, nemcsak a tartományai, hanem a csúcsok környezetei, a csúcsalakzatok is egybevágóak. Így elég ismernünk a mozaikok egy tetszőleges csúcspontjának a környezetét, e csúcsponthoz közeli csúcspontok elhelyezkedését, számát. Az összeszámolás tisztán geometriai módszerekkel elvégezhető a csúcsalakzatoknak csak a topológikus tulajdonságait felhasználva.

A dolgozatban szereplő módszer jobb megismerése miatt a fejezetet a $\{4,3,4\}$ euklideszi kockamozaik vizsgálatával kezdjük, annak ellenére, hogy ezen mozaik esetén sokkal egyszerűbben elvégezhetnénk az azon tartományok számának meghatározását, melyek az egyes övezeteket alkotják (akár egy középiskolai feladatként is kitűzhetnénk). Az egyszerűbb számolást a fejezet végén megjegyzésben be is mutatjuk. Ezután a $\{4,3,5\}$ hiperbolikus kockamozaik megfelelő rekurzív sorozatainak felírásával folytatjuk a fejezetet (habár ZEITLER [36] már részben, más módon a fenti határértékeket kiszámolta), majd ezután a megfelelő 4-dimenziós mozaikokat ($\{4,3,3,4\}$, $\{4,3,3,5\}$) és a duálisaikat ($\{5,3,4\}$, $\{5,3,3,4\}$) vizsgáljuk. Belátjuk, duális mozaikok esetén a fenti határértékek megegyeznek.

A 4. fejezetben a 3-dimenziós $\{5, 3, 4\}$ és a $\{5, 3, 5\}$ hiperbolikus mozaikokra írjuk fel a határértéket a 3. fejezetben bemutatott módszert használva.

Az 5. fejezetben a nem korlátos tartományú $\{4, 4, 3\}$, $\{6, 3, 3\}$, $\{6, 3, 4\}$ és $\{6, 3, 5\}$ végtelen, paraszférát érintő szabályos poliéderekkel képezett mozaikokat és az ezek felosztásával (VERMES [32], [33]) kapott aszimptotikus gúlákkal képezett mozaikokat, valamint 4-dimenziós megfelelőjüket ($\{4, 3, 4, 3\}$) és duálisaikat, a szabályos aszimptotikus poliéderekkel képezett mozaikokat ($\{3, 4, 4\}$, $\{3, 3, 6\}$, $\{4, 3, 6\}$, $\{5, 3, 6\}$ és $\{3, 4, 3, 4\}$) vizsgáljuk meg (NÉMETH [20], [21]). Itt is az előző fejezetek összeszámolási módszerét alkalmazzuk. A 3-dimenziós hiperbolikus térben szabályos hasábokkal is (VERMES I. [32], [33]) képezhetünk mozaikokat. A 6. fejezetben ezen mozaikokra használjuk a megfelelő összeszámolási módszert. A szabályos hasábokkal képezhető mozaikok Schläfli szimbólumai $\{p|q,r\}$ alakúak, ahol p a szabályos hasábok alapsokszögeinek számát jelöli, $\{q,r\}$ pedig a mozaik csúcsalakzatát írja le. Mivel a szabályos hasábokkal képezhető mozaikok száma végtelen és tárgyalásukat egységesen, paraméteres formában végezzük, a végső eredmény meghatározásához a számítógép segítsége is szükséges.

A dolgozatban sikerült egy másik módszerrel is megadni a fenti határértékeket korlátos tartományú mozaikok esetére a 3- és 4-dimenziójú euklideszi és hiperbolikus terekben. A módszer leírása a függelékben kapott helyet. Az egyes övezetek tartományainak a számának meghatározásához a mozaikot felosztjuk karakterisztikus szimplexekre. A karakterisztikus szimplexek csúcsainak, amelyek a k-dimenziós ($k \leq d$) lapok középpontjai, számát vizsgáljuk algebrai módszerekkel. Itt is rekurzió segítségével térünk át az *i*. övezetről az (i + 1). övezetre, de a rekurzió mátrixát általánosan, a szabályos mozaikok Schläfli szimbólumainak paramétereivel tudjuk felírni. Többször a jólismert kombinatorikai szita módszert alkalmazzuk ([23, 41. old.]). Természetesen a dolgozatban bemutatott két módszerrel kapott eredmények megegyeznek és a {4,3,5} mozaik esetén ZEITLER [36] eredményeivel egybeesnek. Ha a 2-dimenziós euklideszi és hiperbolikus síkra alkalmazzuk az általános módszert, akkor a vizsgált határértékek más szerzők (KÁRTESZI [18], HORVÁTH [16]) eredményeivel megegyeznek.

Reményteljesnek látszik, hogy e számolási módszer általánosítható tetszőleges dimenziós korlátos és nem korlátos tartományú szabályos mozaikokra is, és a módszer általánosításával megadható a mozaikövezetek felületére illeszkedő csúcsok, lapok, élek, ..., (d-1)-dimenziós lapok száma is.

A függelék további része a 4-dimenziós szabályos poliéderekről egy rövid összefoglalót tartalmaz ([8, 392. old.], [28]), melynek adatait felhasználtuk a dolgozat során. A számolások, bonyolultságuk miatt (3. és 4.-fokú egyenletek megoldása, 5×5 -ös mátrixok sajátérté-kének kiszámolása, lineáris egyenletrendszerek megoldása, rekurzív egyenletek megoldása) számítógéppel, a *Maple V Release 5* szoftver alkalmazásával készültek, melyek a függelék további részében részletesen megtalálhatók.

A következő táblázatok összefoglaló jelleggel a dolgozatban vizsgált mozaikokra pontosan meghatározott határérték közelítő értékeit tartalmazzák. Eddig az euklideszi mozaikoktól eltekintve a {4,3,5} mozaik esetére (ZEITLER [36]) voltak ismertek az eredmények. A {p,q,r} végtelen, paraszférát érintő poliéderekkel képezett mozaik aszimptotikus gúlákra történő felosztásával kapott mozaikot {p,q,r}_g jelöli (5. fejezet). Az 1.1. táblázat a szabályos mozaikokra kapott határértékeket, illetve ezek közül egyeseknek aszimptotikus gúlákra történő felosztásaira kapott határértékeit összesiti, míg az 1.2. és az 1.3. táblázat a 6. fejezetben leírt, VERMES I. [32], [33] által definiált, szabályos mozaikokhoz tartozó határértékeket adja meg (csak $p \leq 10$ esetre).

mozaik	$\lim_{i \to \infty} \frac{V_{i+1}}{V_i}$	$\lim_{i\to\infty}\frac{V_i}{S_i}$
$\{4, 3, 4\}$	1	0
$\{4,3,5\}, \{5,3,4\}$	29.96663	0.96663
$\{5, 3, 5\}$	166.99401	0.99401
$\{3, 5, 3\}$	46.97871	0.97871
${4,4,3}_g, {4,4,3}, {3,4,4}$	10	0.9
$\{6,3,3\}_g, \{6,3,3\}, \{3,3,6\}$	6	0.83333
$\{6,3,4\}_g, \{6,3,4\}, \{4,3,6\}$	21	0.95238
$\{6,3,5\}_g, \{6,3,5\}, \{5,3,6\}$	76	0.98684
$\{4, 3, 3, 4\}$	1	0
$\{3,3,3,5\}, \{5,3,3,3\}$	84.03807	0.98810
$\{4,3,3,5\}, \{5,3,3,4\}$	2381.82771	0.99958
$\{5, 3, 3, 5\}$	319483.2496	0.999997
$\{4,3,4,3\}_g, \{4,3,4,3\}, \{3,4,3,4\}$	141.728617	0.992971

1.1. táblázat. A szabályos mozaikok összefoglaló táblázata.

$\lim_{i \to \infty} \frac{V_{i+1}}{V_i}$	$\{p 3,3\}$	$\{p 3,4\}$	$\{p 3,5\}$	$\{p 4,3\}$	$\{p 5,3\}$
p = 3	_	_	_	_	_
p = 4	_	_	_	_	229.904
p = 5	_	_	_	91.1299	306.746
p = 6	-	_	_	116.403	384.746
p = 7	35.2892	117.827	413.707	141.309	463.059
p = 8	42.1757	138.482	484.300	166.994	541.449
p = 9	48.8284	158.870	554.594	190.533	619.837
p = 10	55.3460	179.081	624.665	215.970	698.198

1.2. táblázat. $\lim_{i\to\infty}\frac{V_{i+1}}{V_i}$ értékei a szabályos hasábmozaikok esetén.

$\lim_{i \to \infty} \frac{V_i}{S_i}$	$\{p 3,3\}$	$\{p 3,4\}$	$\{p 3,5\}$	$\{p 4,3\}$	$\{p 5,3\}$
p = 3	_	_	_	—	_
p = 4	_	—	_	_	0.995650
p = 5	-	—	_	0.989027	0.996740
p = 6	_	_	_	0.991409	0.997401
p = 7	0.971663	0.991514	0.997583	0.992923	0.997840
p = 8	0.976290	0.992779	0.997935	0.993976	0.998153
p = 9	0.979520	0.993706	0.998197	0.994752	0.998387
p = 10	0.981929	0.994416	0.998399	0.995348	0.998567

1.3. táblázat. $\lim_{i\to\infty} \frac{V_i}{S_i}$ értékei a szabályos hasábmozaikok esetén.

2. fejezet

Rekurzív sorozatok

2.1. Definíciók

A Π_i $(i \geq 1)$ poliéder felületére illeszkedő mozaikcsúcspontokat (nem biztos, hogy Π_i -nek is csúcspontja) osztályozzuk aszerint, hogy milyen távol vannak az (i - 1). övezet csúcspontjaitól, azaz a Π_{i-1} poliéder csúcspontjaitól. A távolság mérésére bevezetjük az *élszámtávolság*ot. Két mozaikcsúcspont *l élszámtávolság*ra (röviden *éltávolság*ra) van egymástól, ha a két mozaikcsúcspontot *l* számú véges él összeköti, de l - 1 számú még nem. Egy Q mozaikcsúcspont a Π_{i-1} poliédertől k *éltávolság*ra van, ha létezik Π_{i-1} felületén olyan mozaikcsúcspont, amely k élszámtávolságra van Q-tól, és a Π_{i-1} felületén levő többi mozaikcsúcspont élszámtávolsága nem kisebb, mint k. Lehet, hogy több csúcspont is létezik a Π_{i-1} felületén, amely k éltávolságra van Q-tól.

Most bevezetjük kockamozaikokra d = 3 dimenzió esetén az A_i , B_i , C_i pontokat, ill. d = 4 dimenzió eseten az A_i , B_i , C_i , D_i pontokat. Felhívjuk rá a figyelmet, hogy ezen jelölések mást fognak jelölni a kockamozaikok esetén (tehát a 3. fejezetben), mint a más tartományokból álló mozaikok esetén (tehát a 4., 5 és 6. fejezetekben). Kockamozaikok esetén A_i , B_i , C_i (D_i) jelöli Π_i felületen levő olyan mozaikcsúcspontokat, amelyek élszámtávolsága Π_{i-1} -től 1, 2, 3 (4), d = 3 (d = 4) esetén. A más mozaikelemekből álló mozaikoknál mindig az illető fejezet elején rögzített módon értjük a fenti módon jelölt csúcspontokat (időnként csak A_i -t es B_i -t, de lesz amikor E_i -t is).

Az A_i pont éltávolságát adó él közös éle az A_i csúcspontot tartalmazó *i*. övezetbeli tartományoknak. A B_i pontok esetén az éltávolságot adó két él (esetleg több élpár is van) mindig egy tartomány 2-dimenziós lapjának élei (később látni fogjuk). Tehát a B_i csúcspontú, *i*. övezetbeli tartományoknak egy közös 2-dimenziós lapja van. Hasonlóan a C_i pontokat tartalmazó tartományoknak egy 3-dimenziós közös lapja van, mely a C_i távolságát meghatározó mozaikélek által meghatározott egyetlen 3-dimenziós lap. A D_i pont távolságát adó élek egy 4-dimenziós lapot (csak 4-dimenziós mozaik esetén, akkor egy tartomány) határoznak meg, D_i -t az *i*. övezetbeli tartományok közül mindig csak 1 tartalmazza csúcspontként. Tehát az azonos típusba tartozó csúcspontokban azonos számú *i*. övezetbeli tartomány kapcsolódik egymáshoz. A vizsgálatok során ezt a tulajdonságot is kihasználjuk. Egyes fejezetekben a csúcspontok ezen definíciójától egy kissé el fogunk térni, a definíciót általánosítjuk, mégpedig A_i pontoknak nevezzük az *i*. övezet azon mozaikcsúcspontjait, melyeket tartalmazó *i*. övezetbeli tartományoknak csak 1 közös mozaikéle van, továbbá B_i -nek, C_i -nek, illetve D_i -nek, melyeket csúcspontként tartalmazó *i*. övezetbeli tartományoknak közös része pontosan egy 2-dimenziós mozaiklap, egy 3-dimenziós mozaiklap, illetve egy 4-dimenziós tartomány. (Egy 3-dimenziós mozaik esetén egy 3-dimenziós lap a mozaik tartománya.) Ha valamelyik pontról az aktuális vizsgálat során nem tudjuk (vagy nem fontos tudnunk) Π_{i-1} -től való távolságát, akkor azt W_i -vel jelöljük.

Jelölje $a_i, b_i, c_i, (d_i)$ a Π_i felületen levő $A_i, B_i, C_i, (D_i)$ típusú pontok számát d = 3-ra (d = 4-re). Továbbá jelölje r_i az i. övezetet alkotó tartományok számát és $s_i = \sum_{j=0}^{i} r_j$ a Π_i poliédert alkotó összes tartomány számát. Jelöljük f_i^k -val $(k = 0, \ldots, d-1)$ a Π_i poliéder felületén levő k-dimenziós véges térfogatú mozaiklapok (csúcspontok, élek, 2-dimenziós lapok, k-dimenziós lapok, ...) számát. Ekkor definíció szerint $f_i^d = r_i$ és $f_i^0 = a_i + b_i + c_i$ (d = 3), ill. $f_i^0 = a_i + b_i + c_i + d_i$ (d = 4), ahol d a mozaik dimenziója.

Mivel egy szabályos mozaik tartományai egybevágóak, ezért a térfogatuk (illetve a k-dimenziós mozaiklapok térfogatai) egyenlők és így a bevezetőben definiált határértékek az övezetek tartományainak (illetve a k-dimenziós mozaiklapok) számaival is felírhatók, azaz $\lim_{1 \leq i \to \infty} \frac{V_{i+1}}{V_i} = \lim_{1 \leq i \to \infty} \frac{r_{i+1}}{r_i}, \lim_{1 \leq i \to \infty} \frac{V_i}{S_i} = \lim_{1 \leq i \to \infty} \frac{r_i}{s_i}, \lim_{1 \leq i \to \infty} \frac{F_{i+1}^k}{F_i^k} = \lim_{1 \leq i \to \infty} \frac{f_{i+1}^k}{f_i^k}, \lim_{1 \leq i \to \infty} \frac{S_{i+1}}{S_i} = \lim_{1 \leq i \to \infty} \frac{s_{i+1}}{s_i}$ $(k = 0, \dots, d-1).$

E dolgozatban részletesebben csak 3- és 4-dimenziós mozaikokat vizsgálunk, ezért a továbbiakban röviden a 2-dimenziós lapot *lap*nak, a 3-dimenziós lapot *cellá*nak vagy *hiperlap*nak nevezzük.

Mivel az általunk vizsgált mozaikok szabályosak, ezért nemcsak a tartományai szabályosak és egybevágóak, hanem minden mozaikpont *csúcsalakzata* is, azaz a csúcsponthoz legközelebbi csúcspontok által meghatározott szabályos poliéder. Jelöljük e *csúcsalakzatokat* Ω -val, a P ponthoz tartozó Ω alakzatot Ω_P -vel, valamint az A_i , B_i , C_i (és D_i) pontokhoz tartozót Ω_A , Ω_B , Ω_C (és Ω_D)-vel d = 3-ra (d = 4-re). Azért van szükség a különböző típusú csúcspontokhoz tartozó Ω -k megkülönböztetésére, mert más-más részei lesznek e csúcsalakzatoknak az i., illetve az (i + 1). övezetben, és számunkra fontos lesz ezt tudni.

Jelölje $n_i(X_iY_i)$ a Π_i felületére illeszkedő X_iY_i típusú élek számát.

Egy \mathcal{N} mozaik *reciprok*, vagy *duális* mozaikján értjük azt az \mathcal{M} mozaikot, amelyet az \mathcal{N} mozaik (véges) csúcspontjainak Dirichlet-Voronoi cellái határoznak meg. COXETER [5] megmutatta, hogy egy *d*-dimenziós $\{p_1, p_2, \ldots, p_{d-1}, p_d\}$ szabályos mozaik duálisa a $\{p_d, p_{d-1}, \ldots, p_2, p_1\}$ szabályos mozaik.

A duális mozaikok esetén a 0. övezet legyen a P középpontú D-V cella. Ezt jelöljük Π_0^* -gal. (Későbbiekben látni fogjuk, hogy a vizsgált határértékeket nem befolyásolja, hogy a 0. övezet egy csúcspontja, vagy egy tartománya a mozaiknak.) A duális mozaik esetén is az övezeteket természetesen az előzőekhez hasonlón definiáljuk és az egyes csúcspont típusokat és rekurzív sorozatokat *-gal jelöljük.

A mozaikok övezeteinek rekurzív definíciójából következik, hogy az (i + 1). övezet csúcsainak, éleinek, ..., k-dimenziós lapjainak a számát az i. övezet hasonló adataiból

lineáris rekurzív egyenletekkel, egyenletrendszerrel tudjuk megadni. Egy ilyen rekurzív egyenletrendszer **M** mátrixát a mozaik által meghatározott *rekurzió mátrixá*nak nevezzük. Egy mozaik esetén többféle rekurzív egyenletrendszer is leírhatja az egyes övezetek közötti átmenetet (l. a 2.2.4. tétel bizonyítása utáni bekezdés). Például az *i*. övezet felületén levő A_i , B_i , C_i , D_i típusú pontok számának ismerete esetén meghatározzuk az (i + 1). övezet felületén levő A_{i+1} , B_{i+1} , C_{i+1} , D_{i+1} típusú pontok számát, majd az így kapott egyenletrendszer (illetve a mátrixa) segítségével megadhatjuk az r_{i+1} és az f_{i+1}^k értékeket. A következő fejezetekben ezt az egyenletrendszert (illetve a mátrixát) határozzuk meg az egyes szabályos mozaikok esetén.

2.2. A rekurzív sorozatokkal kapcsolatos tételek

Ebben a fejezetben a vizsgált szabályos mozaikok által meghatározott rekurzív sorozatokkal kapcsolatos fontosabb tételeket foglaljuk össze.

Adottak $n \geq 2, i \geq 1, j = 1, 2, ..., n$ esetén az $\mathbf{a}_1 \in \mathbb{R}^n, \boldsymbol{\alpha} \in \mathbb{R}^n$ (oszlop)vektorok és az $\mathbf{M} \in \mathbb{R}^{n \times n}$ reguláris mátrix¹. Képezzük a szokásos sor-oszlop mátrixszorzással az $\{\mathbf{a}_i\}_{i=1}^{\infty}$ vektorsorozatot rekurzív módon az

$$\mathbf{a}_{i+1} = \mathbf{M}\mathbf{a}_i, \tag{2.1}$$

formula segítségével, majd belőle az $\{r_i\}_{i=1}^\infty$ valós számsorozatot az

$$r_i = \boldsymbol{\alpha}^T \mathbf{a}_i, \qquad (2.2)$$

összefüggéssel.

Mivel $1 \leq i, j$ esetén kapjuk, hogy

$$r_j = \boldsymbol{\alpha}^T \mathbf{M}^{j-i} \mathbf{a}_i, \qquad (2.3)$$

ezért $r_{i+1} = \boldsymbol{\alpha}^T \mathbf{a}_{i+1} = \boldsymbol{\alpha}^T \mathbf{M} \mathbf{a}_i$. Tehát az $\{r_i\}_{i=2}^{\infty}$ skalársorozatot definiálhatjuk az

$$r_{i+1} = \boldsymbol{\gamma}^T \mathbf{a}_i \tag{2.4}$$

formula segítségével is, ahol $\boldsymbol{\gamma}^T = \boldsymbol{\alpha}^T \mathbf{M}$ (, illetve $\boldsymbol{\alpha}^T = \boldsymbol{\gamma}^T \mathbf{M}^{-1}$).

2.2.1. Tétel. A (2.2)-ben definiált $\{r_i\}_{i=1}^{\infty}$ sorozat egy (legfeljebb) n-ed rendű lineáris rekurzív sorozat, azaz

$$r_i = \beta_1 r_{i-1} + \beta_2 r_{i-2} + \dots + \beta_n r_{i-n}, \qquad (2.5)$$

ahol $\beta_j \in \mathbb{R}, \ \beta_n \neq 0 \ és \ i \geq n+1.$ Továbbá β_j -kre fennáll a következő összefüggés:

$$\mathbf{M}^{n} = \beta_{1}\mathbf{M}^{n-1} + \beta_{2}\mathbf{M}^{n-2} + \dots + \beta_{n}\mathbf{M}^{0}.$$
(2.6)

 $(\beta_j \text{ értékek csak az } \mathbf{M} \text{ mátrixtól függnek – függetlenek az } \boldsymbol{\alpha} \text{ vektortól.})$

¹Nem feltétlen igaz, hogy n = d. Például az aszimptotikus gúlákkal képezett mozaikok esetén n = d-1, a függelékben vizsgált módszerrel n = d + 1.

BIZONYÍTÁS. A (2.3) egyenletből kapjuk, hogy

$$r_i = \boldsymbol{\alpha}^T \mathbf{M}^n \mathbf{a}_{i-n} \qquad (i \ge n+1)$$

és

$$r_{i-j} = \boldsymbol{\alpha}^T \mathbf{M}^{n-j} \mathbf{a}_{i-n} \qquad (i \ge j+1, \ i \ge n+1).$$

Legyen

$$\lambda^n = \beta_1 \lambda^{n-1} + \beta_2 \lambda^{n-2} + \dots + \beta_n \lambda^0$$

az **M** mátrix karakterisztikus egyenlete, ahol $\beta_j \in \mathbb{R}$ és rang(**M**) = *n*-ből következik, hogy $\beta_n \neq 0$. Ekkor igaz rá (CAYLEY–HAMILTON–tétel [24, 212. old.] — Minden kvadratikus mátrix kielégíti karakterisztikus egyenletét.), hogy

$$\mathbf{M}^{n} = \beta_1 \mathbf{M}^{n-1} + \dots + \beta_j \mathbf{M}^{n-j} + \dots + \beta_n \mathbf{M}^{0}.$$

Így

$$\boldsymbol{\alpha}^{T}\mathbf{M}^{n}\mathbf{a}_{i-n} = \boldsymbol{\alpha}^{T}\left(\beta_{1}\mathbf{M}^{n-1} + \dots + \beta_{j}\mathbf{M}^{n-j} + \dots + \beta_{n}\mathbf{M}^{0}\right)\mathbf{a}_{i-n}$$

azaz

$$\boldsymbol{\alpha}^{T} \mathbf{M}^{n} \mathbf{a}_{i-n} = \beta_{1} \boldsymbol{\alpha}^{T} \mathbf{M}^{n-1} \mathbf{a}_{i-n} + \dots + \beta_{j} \boldsymbol{\alpha}^{T} \mathbf{M}^{n-j} \mathbf{a}_{i-n} + \dots + \beta_{n} \boldsymbol{\alpha}^{T} \mathbf{M}^{0} \mathbf{a}_{i-n}$$
$$r_{i} = \beta_{1} r_{i-1} + \dots + \beta_{j} r_{i-j} + \dots + \beta_{n} r_{i-n}.$$

Tehát (2.5), így $\{r_i\}_{i=1}^{\infty}$ lineáris rekurzív sorozat, melynek rendje (legfeljebb) n.

A (2.5) rekurzív sorozathoz tartozó karakterisztikus egyenlet (ami az M mátrix karakterisztikus egyenlete is) legyen a következő alakú ($\beta_n \neq 0$):

$$z^{n} = \beta_{1} z^{n-1} + \beta_{2} z^{n-2} + \dots + \beta_{n} z^{0}.$$
 (2.7)

Továbbá legyen

$$z^{n} - \beta_{1} z^{n-1} - \beta_{2} z^{n-2} - \dots - \beta_{n} z^{0} = (z - z_{1})^{m_{1}} \cdots (z - z_{h})^{m_{h}}, \qquad (2.8)$$

ahol z_1, \ldots, z_h gyökök különbözőek $(m_1 + \cdots + m_h = n, 1 \le h \le n)$ és a $\beta_n \ne 0$ feltétel miatt nullától is különböznek $(z_l \ne 0, l = 1, \ldots, h)$.

Rekurzív sorozatok főtétele. ([27, 33. old.])

a) Legyen az $\{r_i\}_{i=1}^{\infty}$ sorozat, mely kielégíti az $r_i = \beta_1 r_{i-1} + \cdots + \beta_n r_{i-n}, \ \beta_n \neq 0 \ (i = n+1, n+2, n+3, \ldots)$ feltételt. Legyen z_l és m_l $(l = 1, 2, \ldots, h)$ a $G(z) = z^n - \beta_1 z^{n-1} - \cdots - \beta_n = \prod_{l=1}^{h} (z-z_l)^{m_l}$ egyenlőséggel definiálva, ahol z_1, z_2, \ldots, z_h különbözőek. Ekkor egyértelműen léteznek a m_l -nél kisebb fokszámú $f_l \in \mathbb{Q}(r_1, r_2, \ldots, r_n, z_1, z_2, \ldots, z_h)[z]$ polinomok, melyekre

$$r_i = \sum_{l=1}^h f_l(i) z_l^i$$
 $(i = 1, 2, ...).$

b) Legyenek $z_1, z_2, ..., z_h$ különböző komplex számok és $m_1, m_2, ..., m_h$ pozitív egészek, melyekre $\sum_{l=1}^{h} m_l = n$. Definiáljuk $\beta_1, \beta_2, ..., \beta_d$ értékeket az $G(z) = \prod_{l=1}^{h} (z - z_l)^{m_l} = z^n - \beta_1 z^n - \cdots - \beta_d$ egyenlőséggel. Minden l-re (l = 1, 2, ..., h) legyen f_l egy m_l -nél kisebb fokú polinom. Ekkor az $r_i = \sum_{l=1}^{h} f_l(i) z_l^i$ kifejezéssel definiált $\{r_i\}_{i=0}^{\infty}$ sorozat kielégíti az $r_i = \beta_1 r_{i-1} + \cdots + \beta_n r_{i-n}$ (i = 1, 2, 3, ...) rekurzív egyenlőséget. A rekurzív sorozatok főtétele szerint az $\{r_i\}_{i=1}^{\infty}$ lineáris rekurzív sorozat bármely tagját explicit módon meghatározhatjuk a következőképp:

$$r_i = g_1(i)z_1^i + g_2(i)z_2^i + \dots + g_h(i)z_h^i,$$
(2.9)

ahol $g_k(i)$ egy legfeljebb $(m_k - 1)$ -ed fokú polinomja *i*-nek és függvénye az $\{r_i\}_{i=1}^{\infty}$ sorozat r_1, r_2, \ldots, r_n kezdőelemeinek, m_k -nak és z_k -nak $(k = 1, \ldots, h)$.

Tehát, ha z_k egyszeres gyök, azaz $m_k = 1$, akkor $g_k(i) = g_k$ konstans, továbbá ha minden gyök egyszeres, azaz h = n, akkor az összes $g_k(i) = g_k$ konstans.

A továbbiakban tegyük fel azt is, hogy a (2.7) karakterisztikus egyenlet minden gyöke valós, azaz $z_k \in \mathbb{R}, k = 1 \dots h \leq n$ és az $r_i \neq 0$ $(i \geq 1)$.

A vizsgált euklideszi mozaikok esetén a (2.7) karakterisztikus egyenlet minden gyöke 1, azaz $z_1 = 1$, h = 1 és $m_1 = n$. Ekkor (2.9) alapján $r_i = g_1(i)1^i = g_1(i) \neq 0$, tehát $g_1(i)$ nem a konstans 0 polinom. Minden vizsgált hiperbolikus mozaik esetén pedig a (2.7) karakterisztikus egyenletnek minden gyöke valós, legalább kettő különböző gyöke van és létezik egy z_1 egyszeres, domináns gyök, amelyre teljesül, hogy $|z_1| > |z_k|$ és $|z_1| = z_1 > 1$ (k = 2, ..., h).

A továbbiakban ezeket az eseteket vizsgáljuk és ehhez feltesszük, hogy $g_1 \neq 0$. A következő fejezetekben vizsgált mozaikokra a (2.2)-ben definiált r_i $(i \geq 1)$ sorozatokra teljesülni fognak a 2.2. fejezetben a 2.2.1. Tétel előtti feltételek, és a rekurzív sorozatok főtétele után eddig feltett feltételek.

2.2.2. Tétel. $A \ h = 1, \ z_1 = 1, \ illetve \ az \ 1 < h \le n, \ |z_1| > |z_k| \neq 0, \ |z_1| > 1, \ g_1 \neq 0 \ (k = 2, ..., h), \ esetek \ mindegyikében \ a \ (2.2)-ben \ definiált \ r_i, \ s_i \ (i \ge 1) \ sorozatokra \ \lim_{1 \le i \to \infty} \frac{r_i}{r_i} = z_1 \ és \ \lim_{1 \le i \to \infty} \frac{r_i}{s_i} = \frac{z_1 - 1}{z_1}.$

BIZONYÍTÁS.

A h = 1 és $z_1 = 1$ esetén.

Az $r_i = g_1(i) = A_{n-1}i^{n-1} + A_{n-2}i^{n-2} + \dots + A_0$ $(A_k \in \mathbb{R}, 0 \le k \le n-1)$ nem a konstans 0 polinom, így létezik legnagyobb k, hogy $A_k \ne 0$. Ekkor

$$\lim_{1 \le i \to \infty} \frac{r_{i+1}}{r_i} = \lim_{1 \le i \to \infty} \frac{g_1(i+1)}{g_1(i)} = \\ = \lim_{1 \le i \to \infty} \frac{A_k(i+1)^k + A_{k-1}(i+1)^{k-1} + \dots + A_0}{A_k i^k + A_{k-1} i^{k-1} + \dots + A_0} = \frac{A_k}{A_k} = 1 = z_1$$

Valamint

$$\lim_{1 \le i \to \infty} \frac{r_i}{s_i} = \lim_{1 \le i \to \infty} \frac{r_i}{\sum_{j=0}^i r_j} = \lim_{1 \le i \to \infty} \frac{g_1(i)}{\sum_{j=0}^i g_1(j)} = \lim_{1 \le i \to \infty} \frac{g_1(i)}{g_1^*(i)} = 0 = \frac{z_1 - 1}{z_1},$$

ahol $g_1^*(i)$ fokszáma eggyel nagyobb, mint $g_1(i)$ fokszáma.

A h > 1, $|z_1| > |z_k|$, $|z_1| > 1$, $g_1 \neq 0$ (k = 2, ..., h) esetén. Mivel $\lim_{1 \le i \to \infty} \left(\frac{z_k}{z_1}\right)^i = 0$ és $\lim_{1 \le i \to \infty} \frac{z_k^j}{z_1^i} = 0$ $(2 \le k \le h, j \le i)$, ezért

$$\lim_{1 \le i \to \infty} \frac{r_{i+1}}{r_i} = \lim_{1 \le i \to \infty} \frac{g_1 z_1^{i+1} + g_2(i+1) z_2^{i+1} + \dots + g_h(i+1) z_h^{i+1}}{g_1 z_1^i + g_2(i) z_2^i + \dots + g_h(i) z_h^i} = \lim_{1 \le i \to \infty} \frac{g_1 z_1 + g_2(i+1) z_2 \left(\frac{z_2}{z_1}\right)^i + \dots + g_h(i+1) z_h \left(\frac{z_h}{z_1}\right)^i}{g_1 + g_2(i) \left(\frac{z_2}{z_1}\right)^i + \dots + g_h(i) \left(\frac{z_h}{z_1}\right)^i} = z_1.$$

Valamint

$$\lim_{1 \le i \to \infty} \frac{r_i}{s_i} = \lim_{1 \le i \to \infty} \frac{r_i}{\sum\limits_{j=0}^i r_j} = \lim_{1 \le i \to \infty} \frac{g_1 z_1^i + g_2(i) z_2^i + \dots + g_h(i) z_h^i}{g_1 \sum\limits_{j=0}^i z_1^j + \sum\limits_{j=0}^i g_2(j) z_2^j + \dots + \sum\limits_{j=0}^i g_h(j) z_h^j} = \lim_{1 \le i \to \infty} \frac{g_1 z_1^i + g_2(i) z_2^i + \dots + g_h(i) z_h^i}{g_1 \frac{z_1^{i+1} - 1}{z_1 - 1} + \sum\limits_{j=0}^i g_2(j) z_2^j + \dots + \sum\limits_{j=0}^i g_h(j) z_h^j} = \lim_{1 \le i \to \infty} \frac{g_1 + g_2(i) \left(\frac{z_2}{z_1}\right)^i + \dots + g_h(i) \left(\frac{z_h}{z_1}\right)^i}{g_1 \frac{z_1 - \frac{1}{z_1 - 1}}{z_1 - 1} + \sum\limits_{j=0}^i g_2(j) \frac{z_2^j}{z_1^i} + \dots + \sum\limits_{j=0}^i g_h(j) \frac{z_h^j}{z_1^i}} = \frac{z_1 - 1}{z_1}.$$

2.2.3. Tétel. $A \ h = 1, \ z_1 = 1, \ illetve \ az \ 1 < h \le n, \ |z_1| > |z_k| \ne 0, \ |z_1| > 1, \ g_1 \ne 0$ $(k = 2, \ldots, h) \ eset \ in \ \lim_{1 \le i \to \infty} \frac{s_{i+1}}{s_i} = \lim_{1 \le i \to \infty} \frac{r_{i+1}}{r_i}.$

BIZONYÍTÁS. A 2.2.2. tétel bizonyításához hasonlóan járunk el. Hah=1 és $z_1=1.$

$$\lim_{1 \le i \to \infty} \frac{s_{i+1}}{s_i} = \lim_{1 \le i \to \infty} \frac{\sum_{\substack{j=0 \\ i \ j = 0}}^{i+1} r_j}{\sum_{\substack{j=0 \\ j = 0}}^{i} r_j} = \lim_{1 \le i \to \infty} \frac{g_i(i+1) + \sum_{\substack{j=0 \\ j = 0}}^{i} g_1(j)}{\sum_{\substack{j=0 \\ j = 0}}^{i} g_1(j)} = \lim_{1 \le i \to \infty} \frac{g_i(i+1)}{\sum_{\substack{j=0 \\ j = 0}}^{i} g_1(j)} + 1 = 1$$
$$= \lim_{1 \le i \to \infty} \frac{g_i(i+1)}{g_1^*(i)} + 1 = 1 = z_1 = \lim_{1 \le i \to \infty} \frac{r_{i+1}}{r_i}.$$

Ha h > 1, $|z_1| > |z_k|$ (k = 2, ..., h), $|z_1| > 1$.

$$\begin{split} \lim_{1 \le i \to \infty} \frac{s_{i+1}}{s_i} &= \lim_{1 \le i \to \infty} \frac{\sum\limits_{j=0}^{i+1} r_j}{\sum\limits_{j=0}^i r_j} = \lim_{1 \le i \to \infty} \frac{g_1 \sum\limits_{j=0}^{i+1} z_1^j + \sum\limits_{j=0}^{i+1} g_2(j) z_2^j + \dots + \sum\limits_{j=0}^{i+1} g_h(j) z_h^j}{g_1 \sum\limits_{j=0}^i z_1^j + \sum\limits_{j=0}^i g_2(j) z_2^j + \dots + \sum\limits_{j=0}^i g_h(j) z_h^j} = \\ &= \lim_{1 \le i \to \infty} \frac{g_1 z_1 \frac{z_1 - \frac{1}{z_1^i}}{z_1 - 1} + g_2(i+1) z_2 \left(\frac{z_2}{z_1}\right)^i + \sum\limits_{j=0}^i g_2(j) \frac{z_2^j}{z_1^i} + \dots + g_h(i+1) z_h \left(\frac{z_h}{z_1}\right)^i + \sum\limits_{j=0}^i g_h(j) \frac{z_h^j}{z_1^i}}{g_1 \frac{z_1 - \frac{1}{z_1^i}}{z_1 - 1} + \sum\limits_{j=0}^i g_2(j) \frac{z_2^j}{z_1^i} + \dots + \sum\limits_{j=0}^i g_h(j) \frac{z_h^j}{z_1^i}} = \\ &= z_1 = \lim_{i \to \infty} \frac{r_{i+1}}{r_i}. \blacksquare \end{split}$$

A következő fejezetekben vizsgált mozaikokra a (2.2)-ben definiált f_i^k ($i \ge 1$, $k = 0, \ldots, d-1$) sorozatokra teljesülni fognak a 2.2. fejezetben a 2.2.1. és a 2.2.2. tétel előtt kimondott feltételek. Sőt, minden $k = 0, \ldots, d-1$ esetén az **M** mátrix meg fog egyezni az r_i ($i \ge 1$) sorozathoz tartozó **M** mátrixszal.

2.2.4. Tétel. $A \ h = 1, \ z_1 = 1 \ és \ az \ 1 < h \le d, \ |z_1| > |z_l| \ne 0, \ |z_1| > 1, \ g_1 \ne 0 \ (l = 2, \dots, h) \ esetén \ a \ (2.2)-ben \ definiált \ f_i^k \ (i \ge 1, k = 0, \dots, d-1) \ sorozatokra \ \lim_{1 \le i \to \infty} \frac{f_{i+1}^k}{f_i^k} = \lim_{1 \le i \to \infty} \frac{f_{i+1}^k}{r_i} \ f_j^k = \lim_{1 \le i \to \infty} \frac{f_{i+1}^k}{r_i} \ f_j^k = \lim_{1 \le i \to \infty} \frac{f_{i+1}^k}{r_i} \ (k = 0, \dots, n-1).$

BIZONYÍTÁS. Hasonló a 2.2.2 és a 2.2.3. tétel bizonyításához. A (2.2)-től kezdődően r_i helyett f_i^d -t is írunk.

A következő fejezetekben az egyes mozaikokhoz tartozó rekurziót határozzuk meg. A mozaikokhoz tartozó rekurzió mátrixára, az **M** mátrixra minden esetben teljesül, hogy rang(**M**) = n. Továbbá igaz, hogy $\mathbf{a}_1 \neq \mathbf{0}$. Az $\{r_i\}_{i=1}^{\infty}$, illetve $\{f_i^k\}_{i=1}^{\infty}$ ($k = 0, \ldots, n-1$) rekurzív sorozatok esetén $r_1 > 0$, illetve $f_1^k > 0$ és monoton növekvőek. E sorozatokat a kezdő (i = 1) elemeik megadása után a (2.2) vagy a (2.4) összefüggéssel határozzuk meg és megadjuk az $\alpha \neq \mathbf{0}$ és $\gamma \neq \mathbf{0}$ együttható vektorokat. A számolásokat mindig (2.2)-ben definiált α vektorral végezzük el. Ha az övezeteket egy tartomány köré képezzük, akkor már az $r_0 > 0$ és $f_0^k > 0$ is igaz és a fenti tételek $i \geq 0$ esetén is teljesülnek. A (2.7) karakterisztikus egyenletnek minden gyöke nullától különböző valós szám. Az euklideszi mozaikok esetén minden gyöke 1, a hiperbolikus mozaik esetén csak egy legnagyobb abszolút értékű gyöke van, melyre igaz, hogy $z_1 > |z_k| \neq 0$ ($k = 2, \ldots, h$) és $z_1 > 1$. A vizsgált mozaikok esetén a $g_1 \neq 0$ feltétel is mindig teljesül. A rekurziók együtthatóinak meghatározása után a további számításokat számítógéppel, a *Maple V Release 5* szoftver alkalmazásával készültek, melyek a dolgozat végén találhatók. (A számításokat mindig az α vektorral határozzuk meg.) A β_j -k a karakterisztikus polinom együtthatóinak –1-szeresei (az 1 főegyütthatótól eltekintünk). A $g_j(i)$ együtthatókat pedig az $i = 1, \ldots, n$ értékek

(2.9) egyenletbe való behelyettesítésével számoljuk ki. A vizsgált hiperbolikus mozaikok esetén, az F.1. függelékben vizsgált általános esetek kivételével, a (2.7) minden gyöke egyszeres (h = n). Az $\{r_i\}_{i=1}^{\infty}$ rekurzív sorozat definiciójából nem következik, hogy csak egy **M** és csak egy **a**₁ határozná meg. Az $\{5, 3, 4\}$ szabályos mozaikra két **M** mátrixot és **a**₁ kezdő vektort is megadunk, melyek ugyanazt az $\{r_i\}_{i=1}^{\infty}$ sorozatot definiálják.

A fenti feltételek figyelembevételével kimondhatjuk a következőket.

2.2.5. Következmény. A 2.2.3. és a 2.2.4. tételekből következik, hogy szabályos mozaikok esetén $\lim_{1 \le i \to \infty} \frac{r_{i+1}}{r_i} = \lim_{1 \le i \to \infty} \frac{s_{i+1}}{s_i} = \lim_{1 \le i \to \infty} \frac{f_{i+1}^k}{f_i^k} = \lim_{1 \le i \to \infty} \frac{V_{i+1}}{V_i} = \lim_{1 \le i \to \infty} \frac{S_{i+1}}{S_i} = \lim_{1 \le i \to \infty} \frac{F_{i+1}^k}{F_i^k} \quad (k = 0, \dots, n-1).$

E fejezet összefoglalásaként a feltételeket és a későbbi számításokat figyelembe véve kapjuk a következő tételt.

2.2.6. Tétel. Egy szabályos mozaik kristály növekedési hányadosa a mozaik által meghatározott rekurzió **M** mátrixának a legnagyobb, abszolútértékben is a legnagyobb, valós sajátértéke.

3. fejezet

Kockamozaikok

A 3-dimenziós euklideszi térben az egyetlen szabályos mozaik a jólismert kockamozaik, melynek Schläfli szimbóluma $\{4, 3, 4\}$. A 3-dimenziós hiperbolikus térben is létezik egy kockamozaik, a $\{4, 3, 5\}$. Ebben a fejezetben e két mozaikot, és a 4-dimenziós megfelelőit, a $\{4, 3, 3, 4\}$ és a $\{4, 3, 3, 5\}$ hiperkockamozaikokat és duálisaikat vizsgáljuk.

3.1. {4,3,4} euklideszi kockamozaik

Tekintsük a 3-dimenziós euklideszi tér $\{4, 3, 4\}$ kockamozaikját. E mozaik minden tartománya egybevágó kocka ($\{4, 3\}$) és Ω csúcsalakzatai szabályos oktaéderek ($\{3, 4\}$). A 3.1. ábrán a mozaik egy részletét, illetve a rögzített P csúcsponthoz tartozó Ω_P -t láthatjuk.

A továbbiakban vizsgáljuk meg az 1. övezetet részletesebben. A Π_1 poliéder felületén csak három típusú csúcspont van. A_1 , amely 1 éltávolságra van P-től, B_1 2-re és C_1 3-ra. Az A_1 csúcspontok Ω_P csúcspontjai, a B_1 pontok Ω_P éleihez kapcsolódóan, élei mentén (a P pont és Ω_P éleinek síkjában) helyezkednek el, míg a C_1 pontok Ω_P lapjaihoz kapcsolódóan (a P pont és Ω_P lapjaihoz tartozó kocka P-vel ellentétes csúcsa). Ekkor megállapíthatjuk, hogy az A_1 pontok száma megegyezik Ω_P csúcspontjainak a számával, B_1 , illetve C_1 pontok száma megegyezik Ω_P éleinek, illetve lapjainak számával. Azaz $a_1 = 6, b_1 = 12$ és $c_1 = 8$, valamint $r_1 = 8, f_1^2 = 24$ és $f_1^1 = 48$.

3.1. ábra. A $\{4, 3, 4\}$ euklideszi kockamozaik 1. övezete.

Továbbá az A_1 pontokban négy darab 1. övezetbeli kocka csatlakozik egymáshoz (Ω_P -nek 4 olyan lapja van, amely ugyanazt az A_1 csúcspontot tartalmazza, valamint egy PA_1 mozaikélt 4 kocka vesz körül), illetve a P csúcsponthoz, B_1 -ben kettő (Ω_P -nek 2 olyan lapja van, amely ugyanazt az élt tartalmazza, valamint a P pont és Ω_P egy éle 2 kockát határoz meg) és C_1 -ben egy (a P pont és Ω_P egy lapja pontosan 1 kockát határoz meg).

A 2. övezet felületén is könnyedén össze tudjuk számolni az A_2 , B_2 , illetve C_2 pontok és a kockák számát (3.2. ábra) és láthatjuk, hogy az A_2 pontokban négy darab 2. övezetbeli kocka csatlakozik egymáshoz, B_2 -ben kettő és C_2 -ben egy. Ekkor $a_2 = 54$, $b_2 = 36$, $c_2 = 8$, $r_2 = 56$, $f_2^2 = 96$ és $f_2^1 = 192$. Valamint megállapíthatjuk, hogy Π_2 felületén csak A_2 , B_2 és C_2 típusú mozaik csúcspontok vannak, és felírhatjuk az alábbi összefüggéseket: $a_2 = a_1 + 2b_1 + 3c_1$, $b_2 = b_1 + 3c_1$, $c_2 = c_1$, $r_2 = a_1 + 2b_1 + \frac{13}{4}c_1$, $f_2^2 = a_1 + 3b_1 + \frac{27}{4}c_1$, $f_2^1 = 2a_1 + 6b_1 + \frac{27}{2}c_1$.

3.2. ábra. A $\{4, 3, 4\}$ euklideszi kockamozaik 2. övezete.

A továbbiakban megvizsgáljuk az *i*. övezet felületén levő mozaikcsúcspontok Ω alakzatait és ez alapján meghatározzuk a (i + 1). övezet felületén levő mozaikcsúcspontok típusát és számát.

A 3.3., 3.4. és 3.5. ábrákon az egyes pontokhoz (A_i, B_i, C_i) tartozó Ω alakzatok láthatók a mozaik kis részletével. A bal oldali ábrán a mozaik *i*. övezetének egy részlete van feltüntetve, a középsőn már az (i + 1). övezetbeli kockák is láthatók. A jobboldali ábrákon csak az Ω alakzatok láthatók, az *i*. övezethez tartozó lapjai vannak árnyalva. Ω_A nak van egyetlen olyan csúcspontja, W_{i-1} $(i \ge 1)$, hogy ez a csúcs és e csúcsot tartalmazó Ω_A élek, lapok, illetve e lapokhoz tartozó kockák az *i*. övezetben vannak. Ω_B -nek van egyetlen olyan éle, hogy ezen él és ezen élt tartalmazó lapok, illetve e lapokhoz tartozó kockák az *i*. övezetben vannak. Ω_C -nek csak egy lapja, illetve e laphoz tartozó kocka van az *i*. övezetben. Ezek a tulajdonságok abból következnek, hogy A_i , B_i , illetve C_i 1, 2, illetve 3 éltávolságra van az (i - 1). övezettől, vagy abból, hogy az A_i , B_i , illetve C_i pontokban 4, 2, illetve 1 darab *i*. övezetbeli kocka csatlakozik egymáshoz.

3.3. ábra. Egy A_i pont környezete és a hozzá tartozó $\Omega_A.$

3.4. ábra. Egy B_i pont környezete és a hozzá tartozó Ω_B .

3.5. ábra. Egy C_i pont környezete és a hozzá tartozó $\Omega_C.$

3.1.1. Segédtétel. A Π_{i+1} $(i \geq 1)$ poliéder felületén csak A_{i+1} , B_{i+1} és C_{i+1} típusú mozaikcsúcspont van.

BIZONYÍTÁS. Mivel a kocka bármely két csúcspontjának az élszámtávolsága legfeljebb 3, ezért az *i*. övezethez csatlakozó kockák csúcspontjai, mely az (i + 1). övezetet alkotják, 0, 1, 2 vagy 3 élszámtávolságra vannak az *i*. övezettől. Tehát vagy illeszkednek Π_i -re, vagy A_{i+1} , B_{i+1} vagy C_{i+1} típusú csúcspontok lesznek.

3.1.2. Segédtétel. $a_{i+1} = a_i + 2b_i + 3c_i \quad (i \ge 1).$

BIZONYÍTÁS. Az A_{i+1} pontok összeszámolásához az Ω alakzatok csúcspontjait osztályozzuk, hiszen azok vannak a tekintett ponttól 1 éltávolságra, a tekintett pont környezetében az A_{i+1} pontok közülük kerülhetnek ki.

Minden A_i pont (3.3. ábra) esetén Ω_A -nak 5 csúcspontja az *i*. vagy az (i-1). övezetben van (négy pont W_i és egy W_{i-1}). Tehát csak egy csúcspont lesz A_{i+1} pont, és ez csak a tekintett A_i ponthoz tartozik, csak tőle van 1 éltávolságra. Az összes A_i ponthoz tartozó A_{i+1} pontok száma így $1a_i$.

A B_i pontok esetén hasonlóan Ω_B -nek 4 csúcspontja az *i*. övezetben van (3.4. ábra), tehát a maradék kettő lesz A_{i+1} pont, amely csak a tekintett B_i ponthoz tartozik, csak tőle van pontosan egy éltávolságra. Az összes ilyen pont száma $2b_i$.

A C_i pontok esetén Ω_C -nek 3 csúcspontja az *i*. övezetben van (3.5. ábra), tehát a maradék három csúcspont lesz csak A_{i+1} pont, amely csak a tekintett C_i ponthoz tartozik. Az összes ilyen pont száma $3c_i$.

Összegezve a három részállítást kapjuk a segédtétel állítását. \blacksquare

3.1.3. Segédtétel. $b_{i+1} = b_i + 3c_i \quad (i \ge 1).$

BIZONYÍTÁS. A B_{i+1} pontok összeszámolásához az Ω alakzatok éleit osztályozzuk. Belátjuk, hogy csak olyan élei mentén lesz B_{i+1} pont, amelyeknek egyik végpontja sem illeszkedik a Π_i poliéder felületére, sőt egyik sem W_i vagy W_{i-1} pont.

Minden A_i pont (3.3. ábra) esetén Ω_A élei mentén csatlakozik kettő, a tekintett A_i csúcspontú kocka, valamint Ω_A minden éle mentén van egy pont, amely kettő éltávolságra van a tekintett A_i -től. Például az L pont, amely az MQ élhez tartozó A_iMLQ négyzet 4. csúcsa (A_i -vel átlós), vagy az N pont. Tehát a B_{i+1} pontok csak az ilyen 4. csúcspontok közül kerülhetnek ki. Ha az Ω_A valamely élének mindkét végpontja a Π_i poliéder felületén van, akkor az élhez tartozó négyzet 4. csúcspontja is a Π_i felületén van, nem B_{i+1} pont. Például az L pont. Ha csak az egyik végpontja van a Π_i felületén, akkor a hozzá tartozó, A_i ponttól kettő éltávolságra levő pont sem lesz B_{i+1} pont, mert van a Π_i felületén egy másik pont, melytől egy éltávolságra van. Például az N pont, mivel ez az M ponttól egy éltávolságra van (4 kocka csatlakozik az i. övezetben körülötte). Az ilyen jellegű pont A_{i+1} pont, melyet a 3.1.2. segédtétel során már beszámoltunk. Tehát Ω_A egyetlen éle mentén sem kapunk B_{i+1} pontot.

Egy B_i pont (3.4. ábra) esetén, hasonlóan az A_i pont vizsgálatához, Ω_B olyan élei mentén sem lesz B_{i+1} pont, amelynek valamely végpontja W_i . Viszont Ω_B -nek már van olyan éle, melynek egyik végpontja sem W_i . Így ezen élhez tartozó 4. csúcspont B_{i+1} pont, mivel kettő éltávolságra van B_i -től és nincs más W_i pont, amelytől egy vagy kettő éltávolságra lenne. Tehát minden B_i pont esetén csak egy B_{i+1} pontot tudunk összeszámolni, amely csak a tekintett B_i ponthoz tartozik. Összes B_i pont esetén b_i darabot.

 C_i pont (3.4. ábra) esetén ez előzőekhez hasonlóan Ω_C -nek 3 olyan éle van amelynek egyik végpontja sem W_i pont. Így az összes C_i ponthoz tartozó B_{i+1} pontok száma $3c_i$.

Összegezve kapjuk a segédtétel állítását. ■

3.1.4. Segédtétel. $c_{i+1} = c_i \quad (i \ge 1).$

BIZONYÍTÁS. A C_{i+1} pontok összeszámolásához az Ω alakzatok lapjait osztályozzuk. Belátjuk, hogy csak olyan lapjai mentén lesz C_{i+1} pont, amelyeknek egyik végpontja sem illeszkedik a Π_i poliéder felületére.

 Ω_A olyan lapja mentén melynek mindhárom csúcspontja W_i vagy W_{i-1} nem kapunk C_{i+1} pontot, mert e lapokhoz tartozó kocka A_i -től 3 éltávolságra levő csúcspontja az i. vagy az (i - 1). övezetben van (3.3. ábra). Olyan lapok mentén sem kapunk C_{i+1} pontot, amelynek csak kettő W_i csúcspontja van, mert a lapokhoz tartozó kocka A_i -től 3 éltávolságra levő csúcspontja valamely W_i ponttól 1 éltávolságra van. Így A_{i+1} pont lesz, melyet már beszámoltunk. Például a K pont, mivel ez az L ponttól egy éltávolságra van. Ω_A -nak csak e két típusú lapja van, tehát egyetlen A_i ponthoz sem tartozik C_{i+1} pont.

 B_i pontok esetén hasonlóan, Ω_B -nek olyan lapjai mentén nem lesz C_{i+1} pont, melynek kettő vagy három csúcspontja W_i pont. Létezik egy harmadik típusú lapja is, melynek csak 1 csúcspontja W_i pont (3.4. ábra). E lapok mentén sem kapunk C_{i+1} pontokat, mert a lapokhoz tartozó kocka B_i -től 3 éltávolságra levő csúcspontja valamely W_i ponttól 2 éltávolságra van. Így B_{i+1} pont lesz, melyet már beszámoltunk. Például az N pont, mivel ez az R ponttól 2 éltávolságra van. Tehát egyetlen B_i ponthoz sem tartozik C_{i+1} pont.

 C_i pontok esetén hasonlóan, Ω_C -nek olyan lapjai mentén nem lesz C_{i+1} pont, melynek valamely csúcspontja W_i pont (3.5. ábra). A maradék egy lap mentén (melynek csúcspontjai A_{i+1} pontok) viszont C_{i+1} pontot kapunk, amely csak a tekintett C_i ponttól van 3 éltávolságra. Számuk összesen c_i .

Összegezve kapjuk a segédtétel állítását. \blacksquare

A fenti 3.1.2., 3.1.3. és 3.1.4. segédtételek bizonyítása során a Π_{i+1} poliéder felületén levő minden mozaikbeli csúcspontot egyértelműen besoroltuk az A_{i+1} , B_{i+1} és C_{i+1} típusú csúcspontok valamelyikébe. Tehát – az indukciós feltevést használva, hogy a Π_i felületén csak A_i , B_i és C_i pontok vannak – a 3.1.1. segédtétel állítását, a Π_{i+1} poliéderre más úton is bebizonyítottuk.

3.1.5. Segédtétel. $r_{i+1} = a_i + 2b_i + \frac{13}{4}c_i \quad (i \ge 1).$

BIZONYÍTÁS. Az (i + 1). övezetbeli kockák összeszámolásához is az Ω alakzatok lapjait osztályozzuk. Minden, Π_i felületén lévő csúcspontot 8 kocka vesz körül. Közülük néhány az *i*. a többi az (i + 1). övezetben van. Pontosan azok a kockák lesznek az *i*. övezetben,

melyekhez tartozó Ω alakzatok lapja is az *i*. övezetben vannak. Az új, (i + 1). övezetbeli kockák több pont esetén is új kockának számítódhatnak, ezért őket részletesebben megvizsgáljuk.

Egy A_i pont esetén 4 kocka *i*. övezetbeli (melyekhez tartozó Ω_A lap mindhárom csúcsa W_i vagy W_{i-1} pont) és 4 új, (i + 1). övezetbeli (3.3. ábra). Ezek az új kockák nemcsak a tekintett A_i pont körberakásakor lesznek (i + 1). övezetbeli kockák. Mind a négy kocka hasonló típusú Ω_A laphoz tartozik. E lapok kettő csúcspontja W_i pont. Tehát bármelyik új kocka 4 pont esetén is új kockának tekintendő. Például Az A_i , M, L és a Q négyzethez tartozó új kockát mind a négy pont körberakásakor (i + 1). övezetbeli kockának tekintjük, ezért, hogy ne számoljuk be többszörösen, mindegyik pontnál a negyedét vesszük. Tehát egy A_i pont esetén 4 hasonló új kocka van, melyek 4 ponthoz is tartoznak. Ezért a számuk $\frac{4}{4}$. Így az összes A_i ponthoz tartozó (i + 1). övezetbeli kockák száma $\frac{4}{4}a_i$.

Minden B_i pontot 2 darab *i*. övezetbeli (melyekhez tartozó Ω_B lap mindhárom csúcsa W_i pont) és 6 új, (i + 1). övezetbeli kocka vesz körül (3.3. ábra). Az új kockák most sem csak a tekintett B_i pont körberakásakor lesznek (i + 1). övezetbeli kockák. Az a 4 kocka, amelyik Ω_B azon lapjaihoz tartozik, amelyiknek kettő csúcspontja W_i pont, A_i pont esetéhez hasonlóan 4 pont esetén is új kockának tekinthető. Tehát számuk a tekintett B_i esetén $\frac{4}{4}$. A maradék kettő kocka (melyekhez tartozó Ω_B lapoknak csak egy csúcspontja W_i pont) kettő-kettő pont esetén új kocka. Például $B_i R$ élhez tartozó új kocka az él mindkét végpontja körberakásakor is (i + 1). övezetbeli kockának tekintendő, így a többszörös számolás elkerülése miatt számukat felezzük. Tehát a hasonló típusú kockák száma a vizsgált B_i pont esetén $\frac{2}{2}$. Összegezve az összes B_i pontra: $(\frac{4}{4} + \frac{2}{2})b_i$.

A C_i pontok esetén már van olyan lapja is Ω_C -nek melynek egyik lapjának egyetlen csúcsa sem W_i , így e laphoz tartozó kocka csak a tekintett C_i ponthoz tartozik mint (i+1). övezetbeli kocka. Tehát az előzőekhez hasonlóan az (i + 1). övezetbeli kockák száma az összes C_i pontok esetén: $(\frac{3}{4} + \frac{3}{2} + \frac{1}{1})c_i = \frac{13}{4}c_i$.

Összegezve az eredményeket kapjuk a segédtétel állítását.

3.1.6. Segédtétel. $f_{i+1}^2 = a_i + 3b_i + \frac{27}{4}c_i$, $f_{i+1}^1 = 2a_i + 6b_i + \frac{27}{2}c_i$ $(i \ge 1)$.

BIZONYÍTÁS. A Π_i poliéderének felületére illeszkedő négyzetek (mozaiklapok) összeszámolásához az A_i , B_i és C_i pontokat és a Π_i felületén levő környezeteiket vizsgáljuk meg. Minden négyzetet 4 csúcspont határol. Ezért, ha egy négyzetet minden csúcspontjánál figyelembe akarunk venni és el akarjuk kerülni a többszörös számolást, akkor minden csúcs esetében a csúcshoz tartozó négyzetek számát negyedelnünk kell. Minden A_i és B_i ponthoz 4 lap, míg C_i -hez 3 mozaiklap csatlakozik a Π_i felületén. Tehát $f_i^2 = \frac{4}{4}a_i + \frac{4}{4}b_i + \frac{3}{4}c_i$. A 3.1.2., 3.1.3. és 3.1.4. segédtételeket felhasználva kapjuk, hogy $f_{i+1}^2 = a_{i+1} + b_{i+1} + \frac{3}{4}c_{i+1} =$ $(a_i + 2b_i + 3c_i) + (b_i + 3c_i) + (\frac{3}{4}c_i) = a_i + 3b_i + \frac{27}{4}c_i$.

Minden A_i , B_i , illetve C_i ponthoz 4, 4, illetve 3 él csatlakozik a Π_i felületén. Ezeknek az éleknek a számát osztani kell 2-vel, hogy ne számoljuk össze őket többszörösen. Ezért $f_i^1 = \frac{4}{2}a_i + \frac{4}{2}b_i + \frac{3}{2}c_i = 2f_i^2$, azaz $f_{i+1}^1 = 2a_i + 6b_i + \frac{27}{2}c_i$.

Más módon is meghatározhatjuk f_i^1 -t: minden lapot 4 él határol és minden élhez két lap csatlakozik, tehát $f_i^1 = \frac{4}{2}f_i^2$.

3.1.7. Megjegyzés.

a.) Az r_i és az f_i^k sorozatok (2.2) (13. old.) alakja: $r_i = a_i + \frac{1}{4}c_i, f_i^2 = a_i + b_i + \frac{3}{4}c_i, f_i^1 = 2a_i + 2b_i + \frac{3}{2}c_i, f_i^0 = a_i + b_i + c_i \ (i \ge 1).$

b.) Mivel c_1 osztható 4-gyel és minden a_i , b_i és c_i $(i \ge 1)$ egész szám, ezért r_i és f_i^k $(i \ge 1, k = 0, 1, 2)$ is egész.

c.) Az r_i és az f_i^k sorozatok egyszerűen, rekurzió nélkül is meg tudjuk határozni. Könnyen látható, hogy az egymást követő páros számok köbeinek különbsége adja az övezetek tartományainak számát, azaz $r_{i+1} = (2(i+1))^3 - (2i)^3 = 24i^2 + 24i + 8$, valamint $f_i^2 = 6(2i)^2 = 24i^2$, $f_i^1 = 48i^2$ $(i \ge 1)$.

A 3.1 táblázatban összefoglaljuk a $\{4,3,4\}$ kockamozaik vizsgált sorozatainak első 4 elemét.

$\{4, 3, 4\}$	a_i	b_i	c_i	f_i^0	f_i^1	f_i^2	$f_i^3 = r_i$
i = 1	6	12	8	26	48	24	8
i=2	54	36	8	98	192	96	56
i = 3	150	60	8	218	432	216	152
i = 4	294	84	8	386	768	384	296

3.2. $\{4, 3, 5\}$ hiperbolikus kockamozaik

A 3-dimenziós hiperbolikus térben is létezik kockamozaik ([5]). Ezen $\{4, 3, 5\}$ mozaik Ω csúcsalakzata ikozaéder $\{3, 5\}$. A 3.6. ábrán a mozaik 1. övezetét látjuk. E mozaikot ebben a fejezetben ZEITLER [36] módszerétől eltérően, a függelékben algebrai módszerekkel általánosan vizsgáljuk.

A Π_1 poliéder felületén most is csak három típusú csúcspont van. Az A_1 típusú csúcspontokban 5 darab 1. övezetbeli kocka csatlakozik egymáshoz, míg B_1 -ben, illetve C_1 -ben 2, illetve 1. A P ponttól egy éltávolságra lévő pontok, azaz az A_1 csúcspontok Ω_P csúcspontjai, a B_1 pontok Ω_P éleihez kapcsolódóan, élei mentén (a P pontnak az Ω_P éleire vonatkozó tükörképei), míg a C_1 pontok Ω_P lapjaihoz kapcsolódóan (a P pont és Ω_P lapjaihoz tartozó kocka P-vel átellenes csúcsa) helyezkednek el.

Most is megállapíthatjuk, hogy az A_1 pontok száma megegyezik Ω_P csúcspontjainak a számával, B_1 , illetve C_1 pontok száma megegyezik Ω_P éleinek, illetve lapjainak számával. Azaz $a_1 = 12$, $b_1 = 30$ és $c_1 = 20$, valamint $r_1 = 20$, $f_1^2 = 60$ és $f_1^1 = 120$.

Bármely A_i pont 1 éltávolságra van az (i-1). övezettől, tehát e mozaikél (a 3.7. ábrán a $W_{i-i}A_i$ él, amely nem éle a Ω_A -nak) közös éle az A_i csúcspontú *i*. övezetbeli kockáknak. Tehát e mozaik esetén is Ω_A -nak egy csúcspontját tartalmazó lapokhoz tartozó kockák vannak az *i*. övezetben. Minden A_i pont esetén 5 darab *i*. övezetbeli kocka csatlakozik A_i -hez. Bármely B_i pont 2 éltávolságra van az (i-1). övezettől. E két él egy mozaiklap, egy négyzet két éle. Tehát a B_i csúcspontú, *i*. övezetbeli kockáknak van egy közös lapjuk,

3.6. ábra. A {4,3,5} hiperbolikus kockamozaik 1. övezete.

azaz a kockák száma 2. Így e mozaik esetén is Ω_B -nek egy élét tartalmazó lapokhoz tartozó kockák vannak az *i*. övezetben (3.8. ábra). Minden C_i pont 3 éltávolságra van az (i-1). övezettől, e három él csak egy kocka három éle. Tehát csak egy *i*. övezetbeli kocka létezik, amelynek csúcspontja a C_i pont. Így Ω_C -nek csak egy lapjához tartozó kocka van az *i*. övezetben (3.8. ábra). E lapok vannak sötétebben árnyalva az egyes Ω alakzatok esetében a 3.7., 3.8. és 3.9. ábrákon.

A Π_i $(i \ge 1)$ poliéder felületén e mozaik esetén is csak A_i , B_i és C_i típusú mozaikcsúcspont van, a 3.1.1. segédtételhez (22. old.) hasonló okok miatt.

3.2.1. Segédtétel. $a_{i+1} = 6a_i + 8b_i + 9c_i$ $(i \ge 1)$.

BIZONYÍTÁS. Az A_{i+1} pontok összeszámolásához az Ω alakzatok csúcspontjait osztályozzuk a 3.1.2. segédtételhez hasonlóan.

A Π_{i+1} poliéder felületén A_i -től 1 éltávolságra levő pontok csak az Ω_A csúcspontjai közül kerülhetnek ki. Öt *i*. övezetbeli kocka csatlakozik A_i -hez, Ω_A -nak 5 lapja van az *i*. övezetben. A 3.7. ábrán Ω_A azon lapjai vannak árnyalva, melyekhez kapcsolódik az 5 darab *i*. övezetbeli kocka. Tehát Ω_A -nak 5 csúcspontja van az *i*. felületen, valamint egy az (i-1)-ediken. A maradék csúcspontjainak száma 6, melyek A_{i+1} pontok.

Minden Ω_B esetén kettő *i*. övezetbeli kocka csatlakozik egymáshoz (3.8. ábra), ezek Ω_B egy élét fogják közre, és így Ω_B -nek 4 csúcspontját már tartalmazzák. A többi 8 csúcspont van csak az (i + 1). övezetben, melyek egy éltávolságra vannak B_i -től, azaz A_{i+1} pontok, számuk 8.

Bármely Ω_C esetén egy *i*. övezetbeli kockára illeszkedik a C_i csúcspont (3.9. ábra), így Ω_C -nek 3 csúcspontja van az *i*. övezeten, csak a többi 9 lesz A_{i+1} .

Ezek az A_{i+1} pontok csak az Ω alakzatok megfelelő középpontjaitól vannak 1 éltávolságra, csak hozzájuk tartoznak.

3.2.2. Segédtétel. $b_{i+1} = 10a_i + 15b_i + 18c_i \quad (i \ge 1).$

BIZONYÍTÁS. A B_{i+1} pontok összeszámolásához a
z Ω alakzatok éleit osztályozzuk a 3.1.3.

3.7. ábra. Egy A_i pont környezete és a hozzá tartozó Ω_A .

3.8. ábra. Egy B_i pont környezete és a hozzá tartozó Ω_B .

3.9. ábra. Egy C_i pont környezete és a hozzá tartozó Ω_C .

segédtételhez hasonlóan. Az éppen vizsgált pont és a hozzá tartozó Ω alakzat bármely éle a mozaik egy négyzetét határozza meg. A 4. csúcspontok a vizsgált pont Ω éleire való tükörképei lesznek. E 4. csúcspontok közül kerülnek ki a lehetséges B_{i+1} pontok, amelyek az éppen vizsgált ponttól 2 éltávolságra levő pontok. Mégpedig csak olyan élek mentén lesznek B_{i+1} pontok, amelyeknek egyik végpontja sem illeszkedik a Π_i poliéder felületére, egyik végpontja sem W_i . Amelyiknek valamelyik végpontja illeszkedik a felületéhez, az ahhoz az élhez tartozó 4. csúcspont vagy A_{i+1} pont, vagy már az *i*. vagy az (i - 1). övezetben is megvolt. Például a 3.7. ábrán az *L* csúcspont egy *i*. övezetbeli kockának egy csúcspontja, az *S* pont viszont *M*-től 1 éltávolságra van. Az *S* pont *M* körberakásakor A_{i+1} típusú pont, melyet a 3.2.1. segédtételben már figyelembe vettünk. Az Ω_A alakzatnak 10 éle olyan melynek egyik csúcspontja sincs az *i*. övezeten, egyik sem W_i pont. Ezek mentén egy-egy B_{i+1} pontot kapunk, amelyek csak a vizsgált A_i ponttól vannak pontosan kettő éltávolságra.

Hasonlóan B_i , illetve C_i pont esetén Ω_B -nek, illetve Ω_C -nek 15, illetve 18 olyan éle van, melynek egyik csúcspontja sem W_i . Ezek mentén kapunk B_{i+1} pontokat.

3.2.3. Segédtétel. $c_{i+1} = 5a_i + 8b_i + 10c_i \quad (i \ge 1).$

BIZONYÍTÁS. A C_{i+1} pontok összeszámolásához a 3.1.4. segédtételhez hasonlóan az Ω alakzatok lapjait osztályozzuk. Csak olyan lapjai mentén lesz C_{i+1} pont, amelyeknek egyik végpontja sem illeszkedik a Π_i poliéder felületére. Ugyanis az ellenkező esetben a laphoz tartozó kockának a Ω középpontjától 3 éltávolságra levő csúcspontja a lap azon csúcsától kettő éltávolságra van, mely az *i*. övezet felületére illeszkedik. Így nem lehet C_{i+1} pont.

 Ω_A -nak 5, Ω_B -nek 8 és Ω_C -nek 10 olyan lapja van amelynek egyik végpontja sem W_i . Tehát a három esetben a C_{i+1} pontot száma 5, 8, illetve 10.

3.2.4. Segédtétel. $r_{i+1} = \frac{35}{4}a_i + 12b_i + \frac{55}{4}c_i \quad (i \ge 1).$

BIZONYÍTÁS. Az (i + 1). övezetbeli kockák összeszámolásához is az Ω alakzatok lapjait osztályozzuk a 3.1.5. segédtételhez hasonlóan.

Minden A_i pontot 20 kocka vesz körül. Egy A_i pont esetén 5 kocka *i*. övezetbeli (melyekhez tartozó Ω_A lap mindhárom csúcsa W_i pont) (3.7. ábra). A többi 15 kocka új, (i + 1). övezetbeli, de nem csak a tekintett A_i körberakása esetén lesz új kocka. 5 olyan lapja van Ω_A -nak melynek kettő csúcspontja W_i pont, a harmadik A_{i+1} . E lapokhoz tartozó új kockák 4 pont esetén is új kockának tekinthetők. Például Az A_i , M, L és Qnégyszöghöz tartozó új kockát mind a négy pont körberakásakor (i + 1). övezetbeli kockának tekintjük, ezért, hogy ne számoljuk be többszörösen, mindegyik pontnál a negyedét vesszük. Egy A_i pont esetén 5 hasonló új kocka van, melyek 4 ponthoz is tartoznak ezért a számuk: $5 \cdot \frac{1}{4}$. Továbbá Ω_A -nak 5 olyan lapja van, melynek egy csúcspontja W_i pont. E lapokhoz tartozó kockák kettő $(A_i \text{ és } W_i)$ pont esetén tekintendők (i + 1). övezetbeli kockának, ezért a vizsgált A_i pont esetén számukat osztjuk kettővel, tehát számuk $5 \cdot \frac{1}{2}$. Továbbá 5 olyan lapja van Ω_A -nak melynek egyik csúcspontja sem W_i pont. A hozzájuk tartozó kockák csak a tekintett A_i pont körberakásakor lesznek (i + 1). övezetbeli kockák. Számuk 5. Tehát az összes A_i ponthoz tartozó (i + 1). övezetbeli kockák száma $(\frac{5}{4} + \frac{5}{2} + 5)a_i = \frac{35}{4}a_i$. Minden B_i pontot 2 darab *i*. övezetbeli (melyekhez tartozó Ω_B lap mindhárom csúcsa W_i pont) és 18 új, (i + 1). övezetbeli kocka veszi körül (3.8. ábra). Az új kockák most sem csak a tekintett B_i pont körberakásakor lesznek (i + 1). övezetbeli kockák. Az a 4 kocka, amelyik Ω_B azon lapjaihoz tartozik, amelyiknek kettő csúcspontja W_i pont, A_i pont eseténz hasonlóan 4 pont esetén is új kockának tekinthető. Tehát számuk a tekintett B_i esetén $\frac{4}{4}$. Az a 6 kocka, amelyik Ω_B azon lapjaihoz tartozik, amelyiknek kettő csúcspontja W_i pont, 2 pont esetén is új kockának tekinthető. Számuk a tekintett B_i esetén $\frac{6}{2}$. A maradék 8 kocka csak a tekintett B_i ponthoz tartozik. Összegezve az (i + 1). övezetbeli kockák száma B_i pontok esetén $(\frac{4}{4} + \frac{6}{2} + 8)b_i = 12b_i$.

A C_i pontok esetén, az előzőekhez hasonlóan, Ω_C olyan lapjainak száma, melynek W_i csúcspontjainak száma kettő, egy, illetve egy sem, 3, 6, illetve 10. Így az összes C_i ponthoz tartozó (i + 1). övezetbeli kockák száma $(\frac{3}{4} + \frac{6}{2} + 10)c_i = \frac{55}{4}c_i$.

Összegezve az eredményeket kapjuk a segédtétel állítását. \blacksquare

3.2.5. Segédtétel.
$$f_{i+1}^2 = \frac{85}{4}a_i + 31b_i + \frac{147}{4}c_i$$
, $f_{i+1}^1 = \frac{85}{2}a_i + 62b_i + \frac{147}{2}c_i$ $(i \ge 1)$.

BIZONYÍTÁS. A Π_i poliéderének felületére illeszkedő négyzetek (mozaiklapok) összeszámolásához az A_i , B_i és C_i pontokat és a Π_i felületén levő környezetüket vizsgáljuk meg. Minden négyzetet 4 csúcspont határol. Ezért, ha egy négyzetet minden csúcspontjánál figyelembe akarunk venni és el akarjuk kerülni a többszörös számolást, minden csúcs esetében a csúcshoz tartozó négyzetek számát negyedelnünk kell. Minden A_i ponthoz 5 lap, B_i ponthoz 4, míg C_i -hez 3 mozaiklap csatlakozik a Π_i felületén. Tehát $f_i^2 = \frac{5}{4}a_i + \frac{4}{4}b_i + \frac{3}{4}c_i$. A 3.2.1., 3.2.2. és 3.2.3. segédtételek felhasználásával kapjuk, hogy $f_{i+1}^2 = \frac{5}{4}a_{i+1} + b_{i+1} + \frac{3}{4}c_{i+1} = \frac{5}{4}(6a_i + 8b_i + 9c_i) + (10a_i + 15b_i + 18c_i) + \frac{3}{4}(5a_i + 8b_i + 10c_i) = \frac{85}{4}a_i + 31b_i + \frac{147}{4}c_i$.

Minden lapot 4 él határol és minden élhez két lap csatlakozik, ezért a lapok számának a négyszerese az élek számának kétszeresével egyenlő. Tehát $f_i^1 = \frac{4}{2}f_i^2$.

3.2.6. Megjegyzés.

a.) Az r_i és f_i^k (k = 0, 1, 2) sorozatok (2.2) (13. old.) alakja: $r_i = \frac{5}{4}a_i + \frac{1}{4}c_i, f_i^2 = \frac{5}{4}a_i + b_i + \frac{3}{4}c_i, f_i^1 = \frac{5}{2}a_i + \frac{4}{2}b_i + \frac{3}{2}c_i, f_i^0 = a_i + b_i + c_i \ (i \ge 1).$

b.) Mivel a_1, b_1, c_1 4-gyel oszthatók és b_i együtthatói a 3.2.1. és 3.2.3. segédtételekben is oszthatók 4-gyel, és a 3.2.1., 3.2.2., 3.2.3.-ban szereplő többi együttható is egész, ezért indukcióval minden a_i, b_i és c_i $(i \ge 1)$ osztható 4-gyel, és egész. Ezért r_i és f_i^k $(i \ge 1, k = 0, 1, 2)$ is egész szám.

A 3.2 táblázatban összefoglaljuk a $\{4,3,5\}$ kockamozaik vizsgált sorozatainak első 4 elemét.

$\{4, 3, 5\}$	a_i	b_i	c_i	f_i^0	f_i^1	f_i^2	$f_i^3 = r_i$
i = 1	12	30	20	62	120	60	20
i=2	492	930	500	1922	3840	1920	740
i = 3	14892	27870	14900	57662	115320	57660	22340
i = 4	446412	835170	446420	1728002	3456000	1728000	669620

3.2. táblázat.

3.3. {4,3,3,4} 4-dimenziós euklideszi hiperkockamozaik

A 4-dimenziós euklideszi tér $\{4, 3, 3, 4\}$ hiperkockamozaikját a $\{4, 3, 3\}$ hiperkockák alkotják, melynek minden 3-dimenziós lapja, cellája a $\{4, 3\}$ kocka ([5]). Minden mozaikcsúcsponthoz tartozó Ω csúcsalakzat a $\{3, 3, 4\}$ keresztpolitóp (F.3. ábra ix. old.), melynek cellái tetraéderek ($\{3, 3\}$). (Az F.2. függelékben a szabályos testekről egy rövid összefoglaló olvasható.) A 3.10. ábrán Ω_P -t és a mozaik egy hiperkockáját láthatjuk az 1. övezetetből.

Az 1. övezet felületén csak A_1 , B_1 , C_1 és D_1 típusú pontok vannak, azaz a P ponttól Π_1 felületének a mozaikcsúcspontjai legfeljebb 4 éltávolságra van P-től. Az A_1 csúcspontok Ω_P csúcspontjai, a B_1 pontok Ω_P élei mentén (P élekre vett tükörképei), C_1 pontok Ω_P lapjai mentén helyezkednek el (a lapok csúcspontjai és a P pont által meghatározott 3-dimenziós kockák P-vel átellenes csúcspontjai), míg D_1 csúcspontok Ω_P celláihoz tartozóan (a P pont és Ω_P celláihoz tartozó hiperkockák P-vel átellenes csúcsai). Ekkor megállapíthatjuk, hogy az A_1 pontok száma megegyezik Ω_P csúcspontjainak a számával. B_1 , C_1 , illetve D_1 pontok száma megegyezik Ω_P éleinek, lapjainak, illetve celláinak számával. Azaz $a_1 = 8$, $b_1 = 24$, $c_1 = 32$ és $d_1 = 16$, valamint $r_1 = 16$.

Minden hiperkockát 8 kocka határol, közülük 4-nek közös csúcspontja a P pont, 4-nek a hiperkocka D_1 pontja. Tehát az 1. övezet határán az összes D_1 pontot tartalmazó 1. övezetbeli kocka van, azaz $f_1^3 = 4r_1 = 64$. Minden kockának 6 lapja van és minden laphoz 2 mozaikbeli kocka tartozik, így a kockák számából megkapjuk az 1. övezet határán levő lapok számát, azaz $f_1^2 = \frac{6}{2}f_1^3 = 192$. Az 1. övezet összes élének számából kivonjuk a P-ből indulókat, kapjuk $f_1^1 = 216 - 8 = 208$.

Továbbá az A_1 pontokban 8 darab 1. övezetbeli kocka csatlakozik egymáshoz, illetve a P csúcsponthoz, B_1 -ben 4, C_1 -ben 2 és D_1 -ben 1, mivel a keresztpolitópnak egy csúcsához, éléhez, lapjához és cellájához 8, 4, 2, illetve 1 cella illeszkedik.

3.10. ábra. A {4,3,3,4} euklideszi hiperkockamozaik 1. övezete.

A 3.11., 3.12., 3.13. és 3.14. ábrákon az egyes Ω alakzatok láthatók. Egy A_i pont 1 éltávolságra van az (i-1). övezettől, így az A_i csúcspontú, *i*. övezetbeli hiperkockáknak egy közös mozaikéle van. Ez a $W_{i-1}A_i$ mozaikél (3.11. ábra). Tehát Ω_A -nak van egyetlen olyan csúcspontja, a W_{i-1} ($i \geq 1$), hogy ez a csúcs és az ezen csúcsot tartalmazó Ω_A élek, lapok, cellák, illetve e cellákhoz tartozó hiperkockák az *i*. övezetben vannak. Hasonlóan Ω_B -nek van egyetlen olyan éle (a 3.12. ábrán vastagított), hogy ez az él és ezen élt tartalmazó lapok, cellák illetve e cellához tartozó hiperkockák az *i*. övezetben vannak. Ω_C -nek van egyetlen olyan lapja (a 3.13. ábrán árnyalt), hogy ez a lap és ezen lapot tartalmazó cellák, illetve e cellákhoz tartozó hiperkockák az *i*. övezetben vannak. Ω_D -nek csak egy cellája (a 3.14. ábrán árnyalt), illetve e cellához tartozó hiperkocka van az *i*. övezetben. Tehát egy A_i, B_i, C_i , illetve D_i pontban 8, 4, 2, illetve 1 darab *i*. övezetbeli hiperkocka csatlakozik egymáshoz.

3.3.1. Segédtétel. A Π_{i+1} $(i \ge 1)$ poliéder felületén csak A_{i+1} , B_{i+1} , C_{i+1} és D_{i+1} típusú mozaikcsúcspont van.

BIZONYÍTÁS. Mivel a hiperkocka bármely két csúcspontjának az élszám távolsága legfeljebb 4, ezért az *i*. övezethez csatlakozó kockák csúcspontjai, melyek az (i + 1). övezetet alkotják, 0, 1, 2, 3, vagy 4 élszámtávolságra vannak az *i*. övezettől. Tehát vagy illeszkednek Π_i -re, vagy A_{i+1} , B_{i+1} , C_{i+1} , vagy D_{i+1} típusú csúcspontok lesznek.

3.3.2. Segédtétel. $a_{i+1} = a_i + 2b_i + 3c_i + 4d_i \quad (i \ge 1).$

BIZONYÍTÁS. Az A_{i+1} pontok összeszámolásához most is az Ω alakzatok csúcspontjait osztályozzuk.

Minden A_i pont (3.11. ábra) esetén Ω_A -nak a W_{i-1} csúcspontot tartalmazó éleinek másik 6 csúcspontja W_i pont. Tehát csak egy 1 csúcspont lesz A_{i+1} pont, és ez csak a tekintett A_i ponthoz tartozik, csak tőle van 1 éltávolságra.

A B_i pontok esetén hasonlóan Ω_B -nek 6 csúcspontja az *i*. övezetben van (3.12. ábra), tehát a maradék kettő lesz A_{i+1} pont, amely csak a tekintett B_i ponthoz tartozik.

A C_i pontok esetén Ω_C -nek 5 csúcspontja az *i*. övezetben van (3.13. ábra), tehát a maradék három csúcspont lesz csak A_{i+1} pont, amely csak a tekintett C_i ponthoz tartozik.

A D_i pontok esetén Ω_D -nek 4 csúcspontja az *i*. övezetben van (3.14. ábra), tehát a maradék négy csúcspont lesz csak A_{i+1} pont, amely csak a tekintett D_i ponthoz tartozik.

Összegezve a négy részállítást kapjuk a segédtétel állítását.

3.3.3. Segédtétel. $b_{i+1} = b_i + 3c_i + 6d_i \quad (i \ge 1).$

BIZONYÍTÁS. A B_{i+1} pontok összeszámolásához most is az Ω alakzatok éleit osztályozzuk. A 3.1. fejezethez hasonlóan, csak olyan élei mentén lesz B_{i+1} pont, amelyeknek egyik végpontja sem illeszkedik a Π_i poliéder felületére. Amelyiknek valamelyik végpontja csatlakozik, az ahhoz az élhez tartozó 4. csúcspont vagy A_{i+1} pont, vagy már az *i*. vagy az (i-1). övezetben van.

Minden A_i pont (3.11. ábra) esetén Ω_A -nak minden éle tartalmaz W_i pont. Tehát egyetlen A_i ponthoz sem tartozik B_{i+1} pontot.

 B_i, C_i , illetve D_i pont esetén Ω_B -nek, Ω_C -nek illetve Ω_D -nek 1, 3 illetve 6 olyan éle van amelynek egyik végpontja sem W_i , melyek mentén B_{i+1} pontot kapunk.

3.3.4. Segédtétel. $c_{i+1} = c_i + 4d_i \quad (i \ge 1).$

BIZONYÍTÁS. A C_{i+1} pontok összeszámolásához az Ω alakzatok lapjait osztályozzuk. Csak olyan lapjai mentén lesz C_{i+1} pont, amelyeknek egyik végpontja sem illeszkedik a Π_i poliéder felületére.

 Ω_A -nak és Ω_B -nek nincsen olyan lapja, amelynek egyik csúcspontja sem W_i . Ω_C esetén a 3 darab A_{i+1} pont 1 lapot határoz meg, míg Ω_D esetén az A_{i+1} csúcspontok 4 lapot határoznak meg.

3.3.5. Segédtétel. $d_{i+1} = d_i$ $(i \ge 1)$.

BIZONYÍTÁS. A D_{i+1} pontok összeszámolásához az Ω alakzatok celláit osztályozzuk. Csak olyan cellái mentén lesz D_{i+1} pont, amelyeknek egyik végpontja sem illeszkedik a Π_i poliéder felületére. Ha valamelyik cellának valamelyik csúcspontja W_i pont, akkor a vizsgált cella mentén található pont nem lehet D_{i+1} pont, hiszen W_i -től legfeljebb 3 élre van. Csak Ω_D -nek létezik, és annak is csak 1 cellája, melynek egyik végpontja sem W_i pont.

3.3.6. Segédtétel. $r_{i+1} = a_i + 2b_i + \frac{13}{4}c_i + 5d_i \quad (i \ge 1).$

BIZONYÍTÁS. Az (i + 1). övezetbeli hiperkockák összeszámolásához az Ω alakzatok celláit osztályozzuk. Az összeszámolás a 3.1.5. és a 3.2.4. segédtételekhez hasonlóan történik. Csak az olyan cellákhoz kapcsolódóan lesznek új, (i+1). övezetbeli hiperkockák, melyeknek nem mind a négy csúcspontja van az i. övezetben. A W_i csúcspontot tartalmazó új hiperkockák nem csak a tekintett Ω középpontjának vizsgálatakor, hanem több pont esetén is új hiperkockák lesznek. Így minden hiperkockának csak olyan arányú részét számoljuk a vizsgált ponthoz, ahány ponthoz tartozik. Egy 3 darab W_i csúcspontot tartalmazó cella esetén a hiperkocka összesen 8 darab *i*. övezetbeli ponthoz, a 3 darab W_i csúcspont és az Ω (amelyhez a cella tartozik) középpontja által meghatározott kocka csúcsaihoz is tartozik (pl. a 3.11. ábrán jelölt hiperkocka az $A_i, W_i, L, W_i, M, Q, N$ és W_i pontokhoz), tehát a számukat nyolcadoljuk. Minden 2 darab W_i -t tartalmazó cella a W_i csúcspontok és az Ω középpontja által meghatározott négyzet csúcsához is tartozik, mint új cella. Ezért számukat negyedeljük. Olyan cellák, melyek az egy W_i csúcspontú lapokhoz tartoznak, az Ω középpontjához és a W_i -hez tartoznak, mint új cella. Ezért számukat felezzük. A W_i csúcspontot nem tartalmazó cellák mentén a hiperkockák csak az Ω középpontja esetén lesznek új hiperkockák.

Ekkor a fenti megállapításokat alkalmazva az egyes Ω alakzatokra, kapjuk az állítást, hogy $r_{i+1} = \frac{8}{8}a_i + (\frac{8}{8} + \frac{4}{4})b_i + (\frac{6}{8} + \frac{6}{4} + \frac{2}{2})c_i + (\frac{4}{8} + \frac{6}{4} + \frac{4}{2} + 1)d_i$.

3.3.7. Segédtétel. $f_{i+1}^3 = a_i + 3b_i + \frac{27}{4}c_i + \frac{27}{2}d_i$, $f_{i+1}^2 = 3a_i + 9b_i + \frac{81}{4}c_i + \frac{81}{2}d_i$ és $f_{i+1}^1 = 3a_i + 9b_i + \frac{41}{2}c_i + 42d_i$ $(i \ge 1)$.

BIZONYÍTÁS. Az (i+1). övezetet határoló kockák, mint 3-dimenziós lapok, összeszámolását a 3.1.6. és a 3.2.5. segédtételekhez hasonlóan végezzük el. Egy Ω_A esetén a középpontja, azaz az A_i pont és az Ω_A -nak W_i csúcspontjai összesen 8 kockát, 3-dimenziós mozaiklapot határoznak meg (3.11. ábra). (8 olyan háromszöglapja van Ω_A -nak, melynek mindhárom

3.11. ábra. A $\{4,3,3,4\}$ mozaik Ω_A alakzata.

3.12. ábra. A {4,3,3,4} mozaik Ω_B alakzata.

3.13. ábra. A {4,3,3,4} mozaik Ω_C alakzata.

3.14. ábra. A {4,3,3,4} mozaik Ω_D alakzata.

csúcsa W_i .) Tehát minden A_i pont 8 darab *i*. övezetbeli kockának is közös csúcsa. Ha ezeket a kockákat, mint az *i*. övezet felületére illeszkedő kockákat, mind a nyolc csúcspontjainál figyelembe vesszük (a további 7 is az *i*. övezet felületén van), akkor minden egyes csúcshoz csak a számuk nyolcadát számolhatjuk. Hasonlóan B_i -hez is 8 kocka csatlakozik az *i*. övezet felületén. Továbbá 6, illetve 4 darab *i*. övezetbeli kocka közös csúcsa egy C_i , illetve egy D_i pont. Így $f_i^3 = \frac{8}{8}a_i + \frac{8}{8}b_i + \frac{6}{8}c_i + \frac{4}{8}d_i$, azaz $f_{i+1}^3 = \frac{8}{8}(a_i + 2b_i + 3c_i + 4d_i) + \frac{8}{8}(b_i + 3c_i + 6d_i) + \frac{6}{8}(c_i + 4d_i) + \frac{4}{8}d_i = \frac{8}{8}a_i + \frac{24}{8}b_i + \frac{54}{8}c_i + \frac{108}{8}d_i$.

Valamint az *i*. övezet felületére illeszkedő lapok és élek esetén az Ω alakzatok $W_i W_i$ éleit és W_i csúcsait kell vizsgálni. (Ω_B esetén az NM élhez tartozó négyzetlap nincs az *i*. övezet határán, hiszen ezen élet az *i*. övezetbeli hiperkockák körbefogják.) Minden négyzetlap 4 csúcsponthoz, minden él két csúcsponthoz tartozik. Így $f_i^2 = \frac{12}{4}a_i + \frac{12}{4}b_i + \frac{9}{4}c_i + \frac{6}{4}d_i$, azaz $f_i^2 = 3f_i^3$ és $f_i^1 = \frac{6}{2}a_i + \frac{6}{2}b_i + \frac{5}{2}c_i + \frac{4}{2}d_i$, amelyekből az f_{i+1}^1 , f_{i+1}^2 kifejezését az f_{i+1}^3 esetéhez hasonlóan nyerjük.

3.3.8. Megjegyzés.

a.) Az r_i és f_i^k (k = 0, ...3) sorozatok (2.2) (13. old.) alakja: $r_i = a_i + \frac{1}{4}c_i$, $f_i^3 = a_i + b_i + \frac{3}{4}c_i + \frac{1}{2}d_i$, $f_i^2 = 3a_i + 3b_i + \frac{9}{4}c_i + \frac{3}{2}d_i$ $f_i^1 = 3a_i + 3b_i + \frac{5}{2}c_i + 2d_i$, $f_i^0 = a_i + b_i + c_i + d_i$ $(i \ge 1)$.

b.) Mivel a_1 , b_1 , c_1 és d_1 oszthatók nyolccal, ezért 3.3.2. – 3.3.5. miatt a_i , ..., d_i $(i \ge 1)$ is, és így a.) szerint r_i és f_i^k $(i \ge 1, k = 0, ..., 3)$ is egész.

c.) Az r_i rekurzió nélkül is meg tudjuk határozni. Könnyen látható, hogy az egymást követő páros számok negyedik hatványainak különbsége adja az övezetek tartományainak számát, azaz $r_{i+1} = (2(i+1))^4 - (2i)^4 = 64i^3 + 96i^2 + 64i + 16 \ (i \ge 1).$

A 3.3 táblázatban összefoglaljuk a $\{4, 3, 3, 4\}$ kockamozaik vizsgált sorozatainak első 4 elemét.

$\{4, 3, 3, 4\}$	a_i	b_i	c_i	d_i	f_i^0	f_i^1	f_i^2	f_i^3	$f_i^4 = r_i$
i = 1	8	24	32	16	80	208	192	64	16
i=2	216	216	96	16	544	1568	1536	512	240
i = 3	100	600	160	16	1776	5232	5184	1728	1040
i = 4	2744	1176	224	16	4160	12352	12288	4096	2800

3.3. táblázat.

3.4. {4,3,3,5} 4-dimenziós hiperbolikus hiperkockamozaik

A 4-dimenziós hiperbolikus tér $\{4, 3, 3, 5\}$ hiperkockamozaikját szintén a $\{4, 3, 3\}$ hiperkockák alkotják. Minden mozaikcsúcsponthoz tartozó Ω csúcsalakzat a $\{3, 3, 5\}$ 600-cella (F.7. ábra ix. old.), melynek cellái tetraéderek ($\{3, 3\}$) ([5]). (Az F.2. függelékben a szabályos testekről egy rövid összefoglaló olvasható.)

Mivel ezt a mozaikot is hiperkockák alkotják, ezért a $\{4, 3, 3, 4\}$ mozaikhoz hasonlóan az 1. övezet felületén csak A_1 , B_1 , C_1 és D_1 típusú pontok vannak (NÉMETH L. [22]). A 3.15. ábrán a 600-cellának csak egy részlete látható. (A 3.15. ábrán 1 csúcspont és a vele közös élű csúcspontok láthatók, melyek {3,5} ikozaédert alkotnak. A 600-cellának összesen 120 csúcspontja van.) Az A_1 csúcspontok Ω_P csúcspontjai, a B_1 pontok Ω_P élei mentén (Ptükörképe az élekre), C_1 pontok Ω_P lapjai mentén helyezkednek el (a lapok csúcspontjai és a P pont által meghatározott 3-dimenziós kockák P-vel átellenes csúcspontjai), míg D_1 csúcspontok Ω_P celláihoz tartozóan (a P pont és Ω_P celláihoz tartozó hiperkockák P-vel átlós csúcsai). Ekkor megállapíthatjuk, hogy az A_1 pontok száma megegyezik Ω_P csúcspontjainak a számával, B_1 , C_1 , illetve D_1 pontok száma megegyezik Ω_P éleinek, lapjainak, illetve celláinak számával. Azaz $a_1 = 120, b_1 = 720, c_1 = 1200$ és $d_1 = 600,$ valamint $r_1 = 600$. A {4,3,3,4} hiperkockamozaikhoz hasonlóan (30. old.) most is igaz, hogy $f_1^3 = 2400 = 4r_1, f_1^2 = \frac{6}{2}f_1^3$, és $f_1^1 = 7440$. Továbbá az A_1 pontokban, a PA_1 mozaikélhez kapcsolódóan 20 darab 1. övezetbeli kocka csatlakozik egymáshoz, illetve a Pcsúcsponthoz, B_1 -ben 5, C_1 -ben 2 és D_1 -ben 1, mivel a 600-cellának egy csúcsához, éléhez, lapjához és cellájához 20, 5, 2, illetve 1 cella illeszkedik.

3.15. ábra. A {4,3,3,5} hiperbolikus hiperkockamozaik 1. övezetének egy részlete.

A 3.16., 3.17., 3.18. és 3.19. ábrákon az egyes Ω alakzatok részletei láthatók. Ω_A -nak van egyetlen csúcspontja (W_{i-1}), hogy ez a csúcs és az ezen csúcsot tartalmazó Ω_A élek, lapok, cellák, illetve e cellákhoz tartozó hiperkockák az *i*. övezetben vannak. Ω_B -nek van egyetlen olyan éle (a 3.17. ábrán vastagított), hogy ez az él és ezen élt tartalmazó lapok, cellák illetve e cellához tartozó hiperkockák az *i*. övezetben vannak . A jobb oldali ábrán csak a W_i pontok vannak kiemelve. Ω_C -nek van egyetlen olyan lapja (a 3.18. ábrán árnyalt), hogy ez a lap és ezen lapot tartalmazó cellák, illetve e cellákhoz tartozó hiperkocka az *i*. övezetben van. Ω_D -nek csak egy cellája (a 3.19. ábrán árnyalt), illetve e cellához tartozó hiperkocka van az *i*. övezetben. Ezek a tulajdonságok abból következnek, hogy A_i , B_i , C_i , illetve D_i pontok 1, 2, 3, illetve 4 éltávolságra vannak az (i - 1). övezettől, illetve a megfelelő csúcspontokban 20, 5, 2, illetve 1 darab *i*. övezetbeli hiperkocka csatlakozik egymáshoz (a 3.3. fejezetben leírtak hasonló indoklása miatt).

A 3.3.1. lemmához hasonlóan a Π_i $(i \ge 1)$ poliéder felületén e mozaik esetén is csak A_i, B_i, C_i és D_i típusú mozaikcsúcspont van, hisz egy hiperkocka bármely két csúcspontja legfeljebb 4 éltávolságra van egymástól.

3.4.1. Segédtétel. $a_{i+1} = 107a_i + 113b_i + 115c_i + 116d_i$ $(i \ge 1)$.

BIZONYÍTÁS. Az A_{i+1} pontok összeszámolásához most is az Ω alakzatok csúcspontjait osztályozzuk.

Minden A_i pont (3.16. ábra) esetén Ω_A -nak a W_{i-1} csúcspontot tartalmazó éleinek másik 12 csúcspontja W_i pont. Tehát a többi 120 – 13 csúcspont lesz A_{i+1} pont, és ezek csak a tekintett A_i ponthoz tartoznak, csak tőle vannak 1 éltávolságra.

A B_i pontok esetén hasonlóan Ω_B -nek 7 csúcspontja az *i*. övezetben van (3.17. ábra), tehát a maradék 120 – 7 lesz A_{i+1} pont, amely csak a tekintett B_i ponthoz tartozik. A C_i pontok esetén Ω_C -nek 5 csúcspontja az *i*. övezetben van (3.18. ábra), tehát a maradék 120 – 5 csúcspont lesz csak A_{i+1} pont, amely csak a tekintett C_i ponthoz tartozik. A D_i pontok esetén Ω_D -nek 4 csúcspontja az *i*.1övezetben van (3.19. ábra), tehát a maradék 120 – 4 csúcspont lesz csak A_{i+1} pont, amely csak a tekintett D_i ponthoz tartozik.

3.4.2. Segédtétel. $b_{i+1} = 606a_i + 652b_i + 669c_i + 678d_i \quad (i \ge 1).$

BIZONYÍTÁS. A B_{i+1} pontok összeszámolásához most is az Ω alakzatok éleit osztályozzuk. Az előző fejezethez hasonlóan, csak olyan élei mentén lesz B_{i+1} pont, amelyeknek egyik

3.16. ábra. A $\{4,3,3,5\}$ mozaik Ω_A alakzatának egy részlete.

3.17. ábra. A $\{4,3,3,5\}$ mozaik Ω_B alakzatának egy részlete.

3.18. ábra. A $\{4,3,3,5\}$ mozaik Ω_C alakzatának egy részlete.

3.19. ábra. A $\{4,3,3,5\}$ mozaik Ω_D alakzatának egy részlete.

végpontja sem illeszkedik a Π_i poliéder felületére. Az egyes Ω alakzatoknál összeszámoljuk az olyan éleket melyeknek valamely végpontja W_i pont és számukat kivonjuk a 600-cella össz élszámából, 720-ból.

Minden A_i pont (3.16. ábra) esetén Ω_A -nak minden pontjából, így a 12 darab W_i és egy W_{i-1} pontjából is 12 él indul ki. Ez összesen 13 · 12, de így a 42 közös élt duplán számoltuk. Tehát W_i csúcspontú élek száma 13 · 12 – 42 = 114.

A B_i pontok esetén a 7 darab W_i csúc
spontból 7 · 12 él indul ki, de ekkor a duplán

számolt élek száma 16. Tehát W_i csúcspontú élek száma 7 · 12 – 16 = 68. A C_i pontok esetén az 5 darab W_i csúcspontból indul élek száma az előzőekhez hasonlóan 5 · 12 – 9 = 51, a D_i pontok esetén 4 · 12 – 6 = 42.

Összegezve az eredményeket kapjuk az állítást, $b_{i+1} = (720 - 114)a_i + (720 - 68)b_i + (720 - 51)c_i + (720 - 42)d_i$. ■

3.4.3. Segédtétel. $c_{i+1} = 970a_i + 1055b_i + 1088c_i + 1106d_i$ $(i \ge 1)$.

BIZONYÍTÁS. A C_{i+1} pontok összeszámolásához az Ω alakzatok 2-dimenziós lapjait osztályozzuk. Csak olyan lapjai mentén lesz C_{i+1} pont, amelyeknek egyik végpontja sem illeszkedik a Π_i poliéder felületére. Most is az olyan lapokat számoljuk össze, melyeknek valamely végpontja W_i pont és számukat kivonjuk a 600-cella össz lapszámából, 1200-ból.

Az Ω alakzatok bármely csúcspontját 30 és bármely élét 5 lap tartalmazza. Így Ω_A nak a 12 darab W_i pontjait multiplicitással összesen 12 · 30 lap tartalmazza. Ekkor az olyan éleket tartalmazó lapokat, amelyeknek mindkét végpontja W_i kétszeresen (vagy háromszorosan) számoltuk, ezért felét le kell vonnunk. Számuk 30 · 5, de ekkor az olyan lapokat számát, melyeknek mindhárom csúcspontja W_i , teljesen kivontuk, így, számukat, 20-at, hozzá kell adni az összeghez. Tehát W_i csúcspontú lapok száma $12 \cdot 30 - 30 \cdot 5 + 20 =$ 230. (Ez tartalmazza a W_{i-1} pontot tartalmazó lapokat is.)

 B_i pontok esetén, a 7 darab W_i pontot tartalmazó lapok össz száma multiplicitással 7 · 30. Ekkor a 16 · 5 darab olyan lapot, melyek olyan éleket tartalmaznak, melyeknek mindkét végpontja W_i kétszer számoltunk. Hogy a pontos értéket megkapjuk, az összeghez megint hozzá kell adni az olyan lapok számát, melyeknek mindhárom csúcspontja W_i pont. Ez 15. Tehát W_i csúcspontú lapok száma 7 · 30 – 16 · 5 + 15 = 145.

 C_i pontok esetén hasonlóan W_i csúc
spontú lapok száma $5\cdot 30-9\cdot 5+7=112,$ valamint
a D_i pontok esetén $4\cdot 30-6\cdot 5+4=94.$

Összegezve az eredményeket $c_{i+1} = (1200 - 230)a_i + (1200 - 145)b_i + (1200 - 112)c_i + (1200 - 94)d_i$.

3.4.4. Segédtétel. $d_{i+1} = 470a_i + 515b_i + 533c_i + 543d_i$ $(i \ge 1)$.

BIZONYÍTÁS. A D_{i+1} pontok összeszámolásához az Ω alakzatok celláit osztályozzuk. Csak olyan cellák mentén lesz D_{i+1} pont, amelyeknek egyik végpontja sem illeszkedik a Π_i poliéder felületére. Most is az olyan cellákat számoljuk össze, melyeknek valamely végpontja W_i pont és számukat kivonjuk a 600-cella össz cellaszámából, 600-ból.

Az Ω alakzatok bármely csúcspontját 20, bármely élét 5 és bármely lapját 2 cella tartalmazza. Így Ω_A -nak a W_i pontjait összesen 12 · 20 cella tartalmazza. Ekkor bizonyos cellákat kétszeresen vagy háromszorosan is beszámoltunk. Az olyan éleket tartalmazó cellákat, amelyeknek mindkét végpontja W_i legalább kétszeresen, az olyan lapokat tartalmazó cellákat, amelyeknek mindhárom végpontja W_i háromszorosan számoltuk. Ezért a 30 darab W_iW_i élhez tartozó 30 · 5 cellát kivonjuk, majd a 20 darab $W_iW_iW_i$ laphoz tartozó 20 · 2 cellát hozzáadjuk az összeghez. (Egy $W_iW_iW_i$ laphoz tartozó kettő cella helyett először 3 · 2-t számoltunk, majd az éleinél 3 · 2-t ki is vontunk, a végén hozzáadtuk a 2-t.) Így a W_{i-1} pontot tartalmazó cellák is egyszeresen be vannak számolva. Olyan cella nem létezik, amelynek mind a négy csúcspontja W_i pont lenne. Tehát W_i csúcspontú cellák száma $12 \cdot 20 - 30 \cdot 5 + 20 \cdot 2 = 130$.

 B_i pont esetén hasonlóan számolva kapjuk, hogy multiplicitással 7.20 cella van, melynek egyik csúcsa W_i , valamint 16.5, 15.2, illetve 5, melynek kettő, három vagy négy csúcspontja W_i pont. Így multiplicitás nélkül Ω_B -nek W_i csúcspontot tartalmazó celláinak a száma 7.20 – 16.5 + 15.2 – 5 = 85.

 C_i és D_i pontok esetén hasonlóan kapjuk a következő összegeket és $5 \cdot 20 - 9 \cdot 5 + 7 \cdot 2 - 2 = 67$, illetve $4 \cdot 20 - 6 \cdot 5 + 4 \cdot 2 - 1 = 57$.

Összegezve az eredményeket $d_{i+1} = (600 - 130)a_i + (600 - 85)b_i + (600 - 67)c_i + (600 - 57)d_i$. ■

3.4.5. Segédtétel. $r_{i+1} = 510a_i + \frac{2185}{4}b_i + \frac{1119}{2}c_i + \frac{1133}{2}d_i$, $f_{i+1}^3 = \frac{3975}{2}a_i + \frac{8585}{4}b_i + \frac{8825}{4}c_i + \frac{4477}{2}d_i$, $f_{i+1}^2 = \frac{11925}{2}a_i + \frac{25755}{4}b_i + \frac{26475}{4}c_i + \frac{13431}{2}d_i$ $f_{i+1}^1 = 6128a_i + \frac{13255}{2}b_i + \frac{13635}{2}c_i + 6920d_i$ $(i \ge 1)$.

BIZONYÍTÁS. Az összeszámolás a 3.3.6. segédtételhez hasonlóan történik. Egy Ω_A esetén figyelembe véve a 3.4.4 bizonyítását $20 \cdot 0 + \frac{20}{8} + \frac{30}{4} + \frac{60}{2} + (600 - 130) = 510$ hiperkocka tartozik egy A_i ponthoz. Továbbá B_i , C_i , illetve D_i esetén a hozzájuk tartozó hiperkockák száma $5 \cdot 0 + \frac{10}{8} + \frac{20}{4} + \frac{50}{2} + (600 - 85) = \frac{2185}{4}$, $2 \cdot 0 + \frac{6}{8} + \frac{15}{4} + \frac{44}{2} + (600 - 67) = \frac{1119}{2}$, illetve $1 \cdot 0 + \frac{4}{8} + \frac{12}{4} + \frac{40}{2} + (600 - 57) = \frac{1133}{2}$. Összegezve kapjuk az állítást.

A 3.3.7. segédtételhez hasonlóan f_{i+1}^k meghatározásához az *i*. övezet felületére illeszkedő hiperlapok, lapok és élek esetén az Ω alakzatok $W_iW_iW_i$ lapjait, W_iW_i éleit és W_i csúcsait kell vizsgálni. (Ω_B esetén az NM élhez tartozó négyzetlap nincs az *i*. övezet határán, hiszen ezen élet a *i*. övezetbeli hiperkockák körbefogják – l. 3.17. ábra.) Minden kocka 8 csúcsponthoz, minden négyzetlap 4 csúcsponthoz, minden él két csúcsponthoz tartozik. Tehát rendre 20, 10, 6, illetve 4 $W_iW_iW_i$ lapja van Ω_A , Ω_B , Ω_C , illetve Ω_D alakzatoknak. Így

 $f_i^3 = \frac{20}{8}a_i + \frac{10}{8}b_i + \frac{6}{8}c_i + \frac{4}{8}d_i, \text{ azaz } f_{i+1}^3 = \frac{20}{8}(107a_i + 113b_i + 115c_i + 116d_i) + \frac{10}{8}(107a_i + 113b_i + 115c_i + 116d_i) + \frac{4}{8}(107a_i + 113b_i + 115c_i + 116d_i) = \frac{3975}{2}a_i + \frac{8585}{4}b_i + \frac{8825}{4}c_i + \frac{4477}{2}d_i.$

Továbbá Ω_A , Ω_B , Ω_C , illetve Ω_D alakzatok megfelelő $W_i W_i$ éleinek és W_i csúcsainak száma 30, 15, 9, 6, illetve 12, 7, 5, 4. Tehát $f_i^2 = \frac{30}{4}a_i + \frac{15}{4}b_i + \frac{9}{4}c_i + \frac{6}{4}d_i$, azaz $f_i^2 = 3f_i^3$ és $f_i^1 = \frac{12}{2}a_i + \frac{7}{2}b_i + \frac{5}{2}c_i + \frac{4}{2}d_i$.

3.4.6. Megjegyzés.

a.) Az r_i és f_i^k (k = 0, ...3) sorozatok (2.2) (13. old.) alakja: $r_i = \frac{5}{2}a_i + \frac{1}{4}c_i, f_i^3 = \frac{5}{2}a_i + \frac{5}{4}b_i + \frac{3}{4}c_i + \frac{1}{2}d_i, f_i^2 = \frac{15}{2}a_i + \frac{15}{4}b_i + \frac{9}{4}c_i + \frac{3}{2}d_i, f_i^1 = 6a_i + \frac{7}{2}b_i + \frac{5}{2}c_i + 2d_i, f_i^0 = a_i + b_i + c_i + d_i$ $(i \ge 1).$

b.) Mivel a_1, b_1, c_1 és d_1 oszthatók nyolccal, ezért a_i, b_i, c_i, d_i $(i \ge 1)$ is és így r_i és f_i^k $(i \ge 1, 1 \le k \le 3)$ is egész.

A 3.4 – 3.6. táblázatokban összefoglaljuk
a $\{4,3,3,5\}$ kockamozaik vizsgált sorozatainak első 4 elemét.

$\{4, 3, 3, 5\}$	a_i	b_i	c_i	d_i
i = 1	120	720	1200	600
i=2	301800	1751760	2845200	1392600
i = 3	718981080	4172659920	6776646000	3316675800
i = 4	1712490229320	9938559168720	16140802146000	7899748243800

3.4. táblázat.

$\{4,3,3,5\}$	f_i^0	f_i^1	f_i^2	f_i^3
i = 1	2640	7440	7200	2400
i=2	6291360	17840160	17323200	5774400
i = 3	14984962800	42493162800	41262300000	13754100000
i = 4	35691599787840	101211400319040	98279700796800	78028438124997600

3.5. táblázat.

$\{4, 3, 3, 5\}$	$r_i = f_i^4$
i = 1	600
i=2	146580
i = 3	34916114200
i = 4	8316426109800

3.6. táblázat.

3.5. Tételek

3.5.1. Tétel.

- $i. \ A \ \{4,3,4\} \ mozaik \ eset \acute{e} ben \ \lim_{1 \le i \to \infty} \frac{V_{i+1}}{V_i} = \lim_{1 \le i \to \infty} \frac{S_{i+1}}{S_i} = \lim_{1 \le i \to \infty} \frac{F_{i+1}^k}{F_i^k} = 1 \ \acute{e} s \ \lim_{1 \le i \to \infty} \frac{V_i}{S_i} = 0 \ (k = 0, 1, 2).$
- $\begin{array}{ll} ii. \ A \ \{4,3,5\} \ mozaik \ eset \acute{e} ben \lim_{1 \leq i \to \infty} \frac{V_{i+1}}{V_i} = \lim_{1 \leq i \to \infty} \frac{S_{i+1}}{S_i} = \lim_{1 \leq i \to \infty} \frac{F_{i+1}^k}{F_i^k} = 15 + 4\sqrt{14} \approx 29.9666 \\ \acute{e} s \ \lim_{1 \leq i \to \infty} \frac{V_i}{S_i} = 4\sqrt{14} 14 \approx 0.9666 \ (k = 0, 1, 2). \end{array}$
- iii. A {4,3,3,4} mozaik esetében $\lim_{1 \le i \to \infty} \frac{V_{i+1}}{V_i} = \lim_{1 \le i \to \infty} \frac{S_{i+1}}{S_i} = \lim_{1 \le i \to \infty} \frac{F_{i+1}^k}{F_i^k} = 1 \text{ és}$ $\lim_{1 \le i \to \infty} \frac{V_i}{S_i} = 0 \ (k = 0, \dots, 3).$
- $iv. \ A \ \{4,3,3,5\} \ mozaik \ eset \acute{e} ben \ \lim_{1 \le i \to \infty} \frac{V_{i+1}}{V_i} = \lim_{1 \le i \to \infty} \frac{S_{i+1}}{S_i} = \lim_{1 \le i \to \infty} \frac{F_{i+1}^k}{F_i^k} \approx 2381.8277 \ \acute{e} s \\ \lim_{1 \le i \to \infty} \frac{V_i}{S_i} \ \approx 0.9996 \ (k = 0, \dots, 3).$

BIZONYÍTÁS.

- $i. A 3.1.2., 3.1.3. \text{ és } 3.1.4. \text{ segédtételekben szereplő } a_i, b_i \text{ és } c_i \text{ rekurzív sorozatok együtthat}$ hatóiból képezzük az $\mathbf{M} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$ mátrixot, melynek (minden) sajátértéke a $z_1 = 1.$ Ezért a 2.2.2., 2.2.3. és a 2.2.4. tételek (15 – 17. old.) eredményeként kapjuk, hogy $\lim_{1 \le i \to \infty} \frac{V_{i+1}}{V_i} = \lim_{1 \le i \to \infty} \frac{r_{i+1}}{r_i} = \lim_{1 \le i \to \infty} \frac{S_{i+1}}{S_i} = \lim_{1 \le i \to \infty} \frac{s_{i+1}}{s_i} = \lim_{1 \le i \to \infty} \frac{F_{i+1}^k}{F_i^k} = \lim_{1 \le i \to \infty} \frac{f_{i+1}^k}{f_i^k} = 1$ és $\lim_{1 \le i \to \infty} \frac{V_i}{S_i} = \lim_{1 \le i \to \infty} \frac{r_i}{s_i} = 0.$
- *ii.* A 3.2.1., 3.2.2. és 3.2.3. segédtételekben szereplő a_i , b_i és c_i rekurzív sorozatok együtthatóiból képezzük az $\mathbf{M} = \begin{pmatrix} 6 & 8 & 9 \\ 10 & 15 & 18 \\ 5 & 8 & 10 \end{pmatrix}$ mátrixot, melynek a sajátértékei¹: $z_1 = 15 + 4\sqrt{14}$, $z_2 = 15 4\sqrt{14}$, $z_3 = 1$. A 3.2.4. segédtételből kapjuk, hogy $\gamma^T = [\frac{35}{4} \ 12 \ \frac{55}{4}]$, így $\boldsymbol{\alpha}^T = [\frac{5}{4} \ 0 \ \frac{1}{4}]$.

Az $\{r_i\}_{i=1}^{\infty}$ sorozat r_1, r_2, r_3 elemét (3.2. táblázat, 29. old.) behelyettesítve (2.9)be g_1, g_2, g_3 -ra egy lineáris egyenletrendszert kapunk. Ebből $g_1 = \frac{90}{7} - \frac{45}{14}\sqrt{(14)} \neq 0$, $g_2 = \frac{90}{7} + \frac{45}{14}\sqrt{(14)}, g_3 = -\frac{40}{7}$. Tehát a 2.2.2. és a 2.2.3. tételeket alkalmazva kapjuk, hogy $\lim_{i \to \infty} \frac{V_{i+1}}{V_i} = \lim_{i \to \infty} \frac{r_{i+1}}{r_i} = \lim_{i \to \infty} \frac{S_{i+1}}{S_i} = \lim_{i \to \infty} \frac{s_{i+1}}{s_i} = 15 + 4\sqrt{14}$ és $\lim_{i \to \infty} \frac{V_i}{S_i} = \lim_{i \to \infty} \frac{r_i}{s_i} = \frac{15 + 4\sqrt{14} - 14}{15 + 4\sqrt{14}} = 4\sqrt{14} - 14$.

Az $\left\{f_i^k\right\}_{i=1}^{\infty} (k=0,1,2)$ sorozatok f_1^k, f_2^k, f_3^k elemét (3.2. táblázat) behelyettesítve (2.9)-be (r_i helyett f_i^k), k=0,1,2 esetekre egy-egy lineáris egyenletrendszert kapunk. Kiszámolva g_j -ket (j=1,2,3) a k=0 esetre kapjuk, hogy $g_1 = \frac{15}{7} \neq 0$, továbbá k=1 esetén $g_1 = \frac{30}{7} \neq 0$ és k=2 esetén $g_1 = \frac{15}{7} \neq 0$. Tehát a 2.2.4. tételt alkalmazva kapjuk, hogy $\lim_{i\to\infty} \frac{V_{i+1}}{V_i} = \lim_{i\to\infty} \frac{F_{i+1}^k}{F_i^k} = \lim_{i\to\infty} \frac{f_{i+1}^k}{f_i^k}$.

iii. A 3.1.2., 3.1.3. és 3.1.4. segédtételekben szereplő a_i, b_i és c_i rekurzív sorozatok együtt-

hatóiból képezzük az $\mathbf{M} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ mátrixot, melynek (minden) sajátértéke

a
$$z_1 = 1$$
. Ezért a 2.2.2., 2.2.3. és a 2.2.4. tételek eredményeként kapjuk, hogy $\lim_{i \to \infty} \frac{V_{i+1}}{V_i}$
= $\lim_{i \to \infty} \frac{r_{i+1}}{r_i} = \lim_{i \to \infty} \frac{S_{i+1}}{S_i} = \lim_{i \to \infty} \frac{s_{i+1}}{s_i} = \lim_{i \to \infty} \frac{F_{i+1}^k}{F_i^k} = \lim_{i \to \infty} \frac{f_{i+1}^k}{f_i^k} = 1$ és $\lim_{i \to \infty} \frac{V_i}{S_i} = \lim_{i \to \infty} \frac{r_i}{s_i} = 0$.

iv. A 3.2.1., 3.2.2. és 3.2.3. segédtételekben szereplő a_i, b_i és c_i rekurzív sorozatok együtt-/ 107 113 115 116 \

	~ .				1
hatáibál képezzük az M -	606	652	669	678	mátrizzat malamale a gaját
$\text{fiatofiof kepezzuk az } \mathbf{M} \equiv$	970	1055	1088	1106	matrixot, merynek a sajat-
	470	515	533	543 /	/

¹A számolások *Maple V Release 5*-tel készültek, melyek az F.3. függelékben találhatók.

értékei: $z_1 \approx 2381.827202, z_2 \approx 8.0476, z_3 \approx 0.00042, z_4 \approx 0.12426083$. A 3.2.4. segédtételből kapjuk, hogy $\boldsymbol{\gamma}^T = [510 \ \frac{2185}{4} \ \frac{1119}{2} \ \frac{1133}{2}]$, így $\boldsymbol{\alpha}^T = [\frac{5}{2} \ 0 \ \frac{1}{4} \ 0]$.

Az $\{r_i\}_{i=1}^{\infty}$ sorozat r_1 , r_2 , r_3 , r_4 elemét (3.6. táblázat, 40. old.) (2.9)-be való behelyettesítésével kapjuk, hogy $g_1 \approx 0.2584 \neq 0$, $g_2 \approx -2.1567$, $g_3 \approx 1208.07$, $g_4 \approx 11.11$. Tehát a 2.2.2. és a 2.2.3. tételeket alkalmazva kapjuk, hogy $\lim_{i \to \infty} \frac{V_{i+1}}{V_i} = \lim_{i \to \infty} \frac{r_{i+1}}{r_i} \approx 2381.82770$ és $\lim_{i \to \infty} \frac{V_i}{S_i} = \lim_{i \to \infty} \frac{r_i}{s_i} \approx 0.99958015$.

Az $\{f_i^k\}_{i=1}^{\infty}$ (k = 0, ..., 3) sorozatok f_1^k , f_2^k , f_3^k , f_4^k elemét (3.5. táblázat) behelyettesítve (2.9)-be $(r_i$ helyett f_i^k), k = 0, ..., 4 esetekre egy-egy lineáris egyenletrendszert kapunk. Kiszámolva g_j -ket (j = 1, ..., 4) a k = 0 esetre kapjuk, hogy $g_1 \approx 1.109 \neq 0$, továbbá k = 1, 2, 3 esetén $g_1 \approx 3.145 \neq 0$, $g_1 \approx 3.054 \neq 0$ és $g_1 \approx 1.018 \neq 0$. Tehát a 2.2.4. tételt alkalmazva kapjuk, hogy $\lim_{i \to \infty} \frac{V_{i+1}}{V_i} = \lim_{i \to \infty} \frac{F_{i+1}^k}{F_i^k}$

3.5.2. Megjegyzés. Az övezetek képzésekor kezdőelemnek egy tartományt is válaszhatunk. Ekkor a vizsgált rekurzív sorozatok kezdő elemei, így az sorozatok minden eleme is változik, de a vizsgált határértékek nem. A függelék tartalmazza a sorozatok első néhány elemét és a kiszámolt $g_1 \neq 0$ értékeket.

3.6. Duális mozaikok

A $\{4,3,4\}$ és a $\{4,3,3,4\}$ euklideszi mozaikok *önduális*ak, a hiperbolikus $\{4,3,5\}$ és $\{4,3,3,5\}$ mozaikok duálisai viszont a $\{5,3,4\}$ és az $\{5,3,3,4\}$ hiperbolikus mozaikok, melyek tartománya dodekaéder, illetve 120-cella ([5]).

Ekkor kimondhatjuk a következő tételt.

3.6.1. Tétel. A 3.5.1. tételben szereplő minden kockamozaik és duálisa estén a $\lim_{1 \le i \to \infty} \frac{V_i}{S_i},$ $\lim_{1 \le i \to \infty} \frac{V_{i+1}}{S_i}, \lim_{1 \le i \to \infty} \frac{S_{i+1}}{S_i} \text{ és } \lim_{1 \le i \to \infty} \frac{F_{i+1}^k}{F_i^k} \text{ határértékek megegyeznek.}$

BIZONYÍTÁS. A duális mozaikok esetén a 0. övezet a P középpontú D-V cella. Ezt jelöltük Π_0^* -gal. Az 1. övezet azokból az tartományokból áll, melyeknek van közös véges csúcspontja, éle, 2- vagy 3- dimenziós lapja a 0. övezettel. Mivel bármely A_1 pontnak egy közös mozaikéle, közös 1-dimenziós minimális lapja van a P ponttal, ezért D-V celláik metszete egy közös (d-1)-dimenziós lap.. Bármely B_1 pontnak van egy közös 2-dimenziós minimális mozaiklapja P-vel, két éltávolságra vannak egymástól, ezért a D-V celláik metszete egy közös d-2-dimenziós lap. Hasonlóan a C_1 , illetve a D_1 pontok D-V celláinak metszete a P pont D-V cellájával egy közös (d-3), illetve (d-4)-dimenziós lap (d = 3 esetén nincs D_1 pont). Tehát a duális mozaik első övezetét alkotó tartományok száma $a_1 + b_1 + c_1 + d_1$.

A duálmozaik (*i*). övezetét azok a D-V cellák alkotják, melyek középpontjai a Π_{i+1} felület határán levő mozaikcsúcspontok. Ezek az A_i , B_i , C_i , illetve D_i pontok.

(Az analog módon definiált A_i^* , B_i^* , C_i^* és D_i^* pontokat, illetve az a_i^* , b_i^* , c_i^* és d_i^* sorozatokat nem szükséges meghatároznunk.) Tehát az r_i , f_i^k -val analog módon definiált r_i^* , f_i^{*k} ($0 \le k \le d$, ahol most $0 \le i$) sorozatokra $r_i^* = f_i^{*d} = a_i + b_i + c_i + d_i = f_i^0$, $r_0^* = 1$. (3 dimenziós mozaik esetén $d_i = 0$.)

Továbbá minden (d-1)-dimenziós mozaiklaphoz (ami a D-V cellának is lapja) kettő tartomány (D-V cella) illeszkedik. Tehát a Π_{i+1}^* felületén annyi (d-1)-dimenziós mozaiklap van, ahány tartomány (D-V cella) (d-1)-dimenziós mozaiklapban kapcsolódik hozzá. Az ilyen tartományok az A_{i+1} középpontú D-V cellák. Így $f_i^{*d-1} = a_{i+1}$.

Hasonlóan a (d-2)-, illetve (d-3)-dimenziós lap mentén kapcsolódnak a B_{i+1} , illetve C_{i+1} középpontú cellák a Π_{i+1}^* felületéhez, tehát $f_i^{*d-2} = b_{i+1}$ és $f_i^{*d-3} = c_{i+1}$. Valamint d = 4 esetén $f_i^{*d-4} = d_{i+1}$.

Az r_{i+1}^* és f_{i+1}^{*k} rekurzív sorozatok a mozaikok esetén kifejezhetők, lineáris módon, az a_i, b_i, c_i és d_i sorozatokkal, felhasználva a 3.1 - 3.4. fejezetek segédtételeit. Tehát a duális mozaikhoz esetén az **M** mátrixok, így a sajátértékek is megegyeznek. Ekkor az r_i^* és f_i^{*k} sorozatok kezdőelemeit (2.9)-be (15. old.) beírva bizonyítható, hogy minden $g_1 \neq 0$. (A számolás a függelékben található arra az esetre is, ha az eredeti kockamozaik esetén a 0. övezet nem egy pont, hanem egy kocka.) Tehát a vizsgált határértékek is megegyeznek.

 $\begin{array}{l} \text{Tehát az } \{5,3,4\} \ \text{dodekaéder mozaik esetében } \lim_{i \to \infty} \frac{V_{i+1}}{V_i} = \lim_{i \to \infty} \frac{S_{i+1}}{S_i} = \lim_{i \to \infty} \frac{F_{i+1}^k}{F_i^k} = 15 + \\ 4\sqrt{14} \ \approx \ 29.9666 \ \text{és } \lim_{i \to \infty} \frac{V_i}{S_i} = \ 4\sqrt{14} - 14 \ \approx \ 0.9666 \ (i \ \geq \ 0, \ k = \ 0, 1, 2), \ \text{valamint az } \\ \{5,3,3,4\} \ 120 \text{-cella mozaik esetében } \lim_{i \to \infty} \frac{V_{i+1}}{V_i} = \lim_{i \to \infty} \frac{S_{i+1}}{S_i} = \lim_{i \to \infty} \frac{F_{i+1}^k}{F_i^k} \approx 2381.8277 \ \text{és } \lim_{i \to \infty} \frac{V_i}{S_i} \\ \approx 0.9996 \ (i \ge 0, \ k = 0, \dots, 3). \end{array}$

4. fejezet

Dodekaéder mozaikok

A 3-dimenziós hiperbolikus térben kétféle dodekaédermozaik létezik ([5]). Az $\{5,3,4\}$ és az $\{5,3,5\}$ mozaik. E mozaikok tartományai az $\{5,3\}$ dodekaéderek és Ω csúcsalakzatai a $\{3,4\}$ oktaéderek, illetve a $\{3,5\}$ ikozaéderek. Az övezeteket most is egy P pont körül hozzuk létre. Az 1. övezet felületén, a Π_1 poliéderen levő mozaikcsúcspontok legyenek A_1 , B_1 vagy C_1 típusúak, aszerint, hogy 1, 2 vagy több éltávolságra vannak P-től. Mivel a dodekaéder két csúcspontjának az éltávolsága lehet akár 5 is, a C_1 pontok is lehetnek Ptől 3, 4 vagy 5 éltávolságra is. (A 4.1. ábrán az $\{5,3,4\}$ mozaik 1. övezetének létrehozása látható. E fejezet ábráin az A_i pontokat \bigcirc -rel, a B_i -ket \square -tel, a C_i -ket \triangle -gel jelöljük.) Viszont a C_1 pontoknak közös tulajdonsága, hogy csak egy-egy 1. övezetbeli dodekaédernek a csúcsai. Továbbá, az A_1 pontok Ω_P csúcspontjai, míg a B_1 pontok Ω_P éleihez kapcsolódóan, élei mentén helyezkednek el. Most a kockamozaikokkal ellentétben minden él mentén 2 darab B_1 pont van, mert a dodekaéder lapjai ötszögek. A C_1 pontok Ω_P lapjaihoz tartoznak. Minden laphoz 10. Ekkor az A_1 , B_1 és C_1 pontok számát Ω_P csúcs-, éle- és lapszámának ismeretében összeszámolhatjuk.

Az övezetek létrehozása után az A_i , illetve a B_i pontok az *i*. övezetre illeszkedő, (i-1). övezettől 1, illetve 2 éltávolságra lévő mozaikcsúcspontok. Az *i*. övezet többi mozaikcsúcspontját jelöljök C_i -vel. Így azonos típushoz tartozó csúcspontokhoz azonos számú *i*. övezetbeli dodekaéder csatlakozik.

A függelékben algebrai módszerekkel újra megvizsgáljuk a dodekaédermozaikokat.

4.1. {5,3,4} hiperbolikus dodekaédermozaik

E mozaik esetén $a_1 = 6$, $b_1 = 12 \cdot 2 = 24$ és $c_1 = 8 \cdot 10 = 80$, valamint $r_1 = 8$, $f_1^2 = 8 \cdot 9 = 72$, $f_1^1 = 12 \cdot 3 + 8 \cdot 18 = 180$. Továbbá az A_1 pontokban 4 darab 1. övezetbeli dodekaéder csatlakozik egymáshoz, illetve a P csúcsponthoz, B_1 -ben 2 és C_1 -ben 1. Hasonlóan az *i*. övezet esetén 4 darab *i*. övezetbeli dodekaédernek közös csúcspontja egy A_i pont, 2-nek egy B_i pont és csak egynek minden C_i pont.

Az $\{5,3,4\}$ mozaikot már megvizsgáltuk, mint a $\{4,3,5\}$ hiperbolikus kockamozaik duálisa. De vizsgáljuk meg a dualitás figyelembe vétele nélkül is. Az összeszámlálási mód-

szerünket e mozaikra alkalmazva is belátjuk, hogy habár e mozaikhoz tartozó \mathbf{M} rekurzió mátrixa különbözik a duálisától, de a sajátértékei nem. (Lásd 4.1.2. Megjegyzés 48. old.)

4.1.1. Segédtétel. $a_{i+1} = a_i + 2b_i + 3c_i$, $b_{i+1} = 2a_i + 5b_i + 9c_i$, $c_{i+1} = 4a_i + 12b_i + 25c_i$ $(i \ge 1)$.

BIZONYÍTÁS. Az A_{i+1} , B_{i+1} , illetve C_{i+1} pontok összeszámolásához a 3. fejezethez hasonlóan most is az Ω alakzatok csúcspontjait, éleit, illetve lapjait osztályozzuk.

a.) Minden A_i pont (4.2. ábra) esetén Ω_A -nak egy csúcspontjához (W_{i-1}) tartozó lapok az *i*. övezetben vannak (és ugyanez igaz az ezekhez a lapokhoz tartozó dodekaéderekre, melyek közös mozaikéle az A_iW_{i-1}). Így 4 csúcspontja az *i*. és egy az (*i* - 1). övezetben van. Tehát csak a maradék egy csúcspont lesz A_{i+1} pont. Ω_B -nek egy éléhez tartozó két lap lesz az *i*. övezetben, tehát 6-4 darab A_{i+1} csúcsa van. Továbbá Ω_C -nek csak egy lapja van az *i*. övezetben, a C_i pontokhoz 6-3 darab A_{i+1} pont tartozik. Ezzel bebizonyítottuk ez első részét a tételnek.

4.1. ábra. Az {5, 3, 4} dodekaédermozaik 1. övezete.

4.2. ábra. $Az \{5, 3, 4\}$ mozaikhoz tartozó Ω alakzatok.

b.) Most osztályozzuk az Ω alakzatok éleit. Minden él mentén kettő olyan mozaikcsúcspont van, amely az éppen vizsgált ponttól, az Ω alakzat középpontjától kettő éltávolságra van. Közülük néhány azonban nem lehet B_{i+1} pont, mert vagy az *i*. övezetben, vagy valamely másik ponttól egy éltávolságra van, így A_{i+1} lesz. Továbbá néhány pont több *i*. övezet felületén levő ponttól is két éltávolságra van. Így ha mindegyikhez be akarjuk számolni, akkor egyik-egyik ponthoz csak egy részüket számolhatjuk. Most vizsgáljuk meg az éleket részletesen.

Az Ω alakzatok olyan élei mentén nem kapunk B_{i+1} pontokat, melyeknek mindkét végpontja W_i vagy W_{i+1} pont. Ezek az *i*. övezetben vannak. Például a 4.2. bal oldali ábrán a KL élhez tartozó mozaikötszög az *i*. övezet felületére illeszkedik.

Azon élek mentén, melyeknek csak az egyik csúcspontja W_i pont (a másik A_{i+1}), egy B_{i+1} pontot kapunk. Például a 4.2. bal oldali ábrán a KA_{i+1} él menten levő A_iKLMA_{i+1} mozaikötszög L csúcspontja 1 élszámra van a $K = W_i$ ponttól, ezért a Π_i -től is.Az L pomtot K körberakásakor A_{i+1} -nek soroltuk be. Az M pont viszont pontosan 2 élre van az éppen vizsgált A_i -től is és a K-tól is, tehát kétszeresen is B_{i+1} pont. Tehát, amikor a K pontot vizsgáljuk (ekkor a K pont lesz valamely Ω középpontja, az A_i pedig valamely csúcspontja és az LA_i lesz az az éle mely mentén ugyanezt az ötszöget vizsgáljuk), az M pontot akkor is B_{i+1} pontnak tekintjük. Hogy ne számoljuk be kétszeresen, ezért a pontnak csak felét számoljuk a vizsgált A_i -hez (másik felét majd a K-hoz). Ω_A -nak 4 ilyen éle van. Ω_A -nak más típusú éle nincs, tehát az összes A_i ponthoz $4 \cdot \frac{1}{2}a_i = 2a_i$ számú B_{i+1} pontot rendelünk.

 Ω_B -nek a 6 darab $W_i A_{i+1}$ típusú élén kívül 1 olyan éle is van, melyeknek egyik végpontja sem illeszkedik az *i*. övezet felületére ($A_{i+1}A_{i+1}$ típusú). Ezen élhez tartozó ötszög maradék két csúcspontja B_{i+1} pont, mindkettő csak az éppen vizsgált ponttól van pontosan kettő éltávolságra. Tehát az összes B_i esetén a B_{i+1} pontok száma ($6 \cdot \frac{1}{2} + 1 \cdot 2$) $b_i = 5b_i$.

 Ω_C -nek 6 darab $W_i A_{i+1}$ és 3 darab $A_{i+1} A_{i+1}$ típusú éle van. Tehát a B_{i+1} pontok száma a C_i pontok esetén $(6 \cdot \frac{1}{2} + 3 \cdot 2)c_i = 9c_i$. Ezzel bebizonyítottuk az második részét a tételnek.

c.) A C_{i+1} pontok meghatározásához az Ω alakzatok lapjait osztályozzuk. Minden laphoz egy dodekaéder tartozik. Ezek közül néhány az *i*. övezetben van (Ω_A esetén 4, Ω_B esetén 2 és Ω_C esetén csak egy), a többi az (*i* + 1). övezetet alkotja. Csak ezeken vannak C_{i+1} pontok. Ezek a dodekaéderek az Ω alakzatok olyan lapjai mentén csatlakoznak a

4.3. ábra. A $\{5,3,4\}$ mozaikhoz tartozó (i+1). övezetbeli dodekaéder típusok.

vizsgált ponthoz, melyek nem mindhárom csúcspontja W_i (vagy W_{i-1}).

Az A_i pont esetén Ω_A -nak 4 olyan lapja van, melynek kettő W_i és egy A_{i+1} csúcspontja van. A 4.3. bal oldali ábrán egy ilyen laphoz tartozó dodekaéder látható. Az X pont jelöli az éppen vizsgált Ω középpontját ($X = A_i, X = B_i, \text{ vagy } X = C_i$), a tőle 1 élszámtávolságra levő pontok az A_{i+1} , W_i és W_i pontok, melyek jelölve is vannak. Az X, $K = W_i$ és $N = W_i$ pontok által meghatározott ötszöglap másik két csúcspontja is az i. övezet felületén van, tehát azok is W_i pontok. (Tehát az ilyen dodekaédereknek egy lapja illeszkedik az i. övezet felületére. A 4.2. ábrán látható K, A_i, N csúcspontok megfelelnek a 4.3. bal oldali ábrabeli K, X, N pontoknak.)

Ezen 5 csúc
sponttól 1 élszámtávolságra levő dodeka
édercsúc
spontok A_{i+1} pontok, 2 élszámra levők B_{i+1} pontok, melyeket már megvizsgáltunk. A maradék 5 csúcspont legalább 3 élre van mindegyik *i*. övezetbeli csúcsponttól, tehát az *i*. övezettől is. Ezek C_{i+1} pontok lesznek, de nem csak az éppen vizsgált X pont esetén, hanem a másik 4 darab i. övezet felületén levő pont esetén is (mikor őket vizsgáljuk). Ezért számuknak csak az ötödét soroljuk be az éppen vizsgált ponthoz. (Az i. övezet felületén további csúcspontoktól is legalább 3 éltávolságra vannak a fenti C_{i+1} pontok, de ezek nincsenek egy dodekaéderen velük, így nem tartoznak hozzájuk.) Ω_A -nak más típusú lapja nincs, így az A_i pontokhoz $4 \cdot \frac{5}{5}a_i = 4a_i$ számú C_{i+1} pont tartozik.

 Ω_B -nek a 4 darab $W_i W_i A_{i+1}$ típusú lapon kívül van 2 olyan lapja is, melynek csak egy W_i csúcspontja van. E lapokhoz tartozó dodekaéder a 4.3. ábrán középen látható. Egy ilyen dodekaédernek két csúcsa, azaz egy éle illeszkedik az i. övezet felületére. Igy e dodekaéder csúcspontjai közül csak azok lehetnek C_{i+1} pontok, melyek mindkét ponttól $(A_i \text{ és } W_i)$ legalább 3 éltávolságra vannak. Az ilyen csúcspontok száma 8, és ezek mindkét i.övezetbeli ponthoz is tartoznak. Ω_B -nek más típusú lapja nincs, így a B_i pontokhoz $(4 \cdot \frac{5}{5} + 2 \cdot \frac{8}{2})b_i = 12b_i$ számú C_{i+1} pont tartozik.

Az Ω_C alakzatnak 3 darab $W_i W_i A_{i+1}$ és 3 darab $W_i A_{i+1} A_{i+1}$ típusú lapján kívül létezik egy $A_{i+1}A_{i+1}A_{i+1}$ típusú lapja is melynek egyik csúcspontja sem illeszkedik az *i*. felületre. A hozzá tartozó dodeka
éder (4.3. jobb ábra) mind a 10, C_i -től legalább 3 élre levő csúcspontja C_{i+1} pont és csak C_i -hez tartozik. Az összes C_{i+1} száma $(3 \cdot \frac{5}{5} + 3 \cdot \frac{8}{2} + 10)c_i =$ $25c_{i}$.

Mindezeket összegezve és figyelembe véve, hogy az (i + 1). övezet minden mozaik csúcspontját valamely típusba besoroltuk, kapjuk a segédtétel állítását. ■

4.1.2. Megjegyzés. Az {5,3,4} dodekaéder mozaik esetében meghatározott rekurzió

 $\mathbf{M} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 9 \\ 4 & 12 & 25 \end{pmatrix}$ mátrixának minden sajátértéke megegyezik a duális {4,3,5} kocka-

mozaikhoz tartozó rekurzió mátrixának sajátértékeivel.

Ez különben nyilvánvaló abból, hogy ha egy r_i $(i \ge 1)$ sorozat felírható a (2.9) alakban (15. old.), akkor pontosan egyféleképpen irható fel, és így a (2.9)-beli z_k gyökök, ill. $g_k(i)$, legfeljebb $m_k - 1$ fokú polinomok egyértelműen meghatározottak. Az ellenkező esetben ugyanis volna egy formálisan nem 0, de mégis minden $i \ge 1$ egészre 0-val egyenlő (2.9) alakú függvénye az *i*-nek. Akkor az ebben a (2.9) alakú függvényben szereplő z_k -k, deg $g_k(i) + 1$ multiplicitással, egy G(z) polinom gyökei. A G(z) polinomhoz tartozó lineáris rekurzió általános megoldása ekkor a $g_k(i)$ polinomok deg $g_k(i) + 1$ darab együtthatójától függ, lineárisan, mégpedig a $z_1^i \cdot 1, ..., z_1^i \cdot i^{\deg g_1}, ..., z_h^i \cdot 1, ..., z_h^i \cdot i^{\deg g_h}$ függvényeknek egy lineáris kombinációja, amely függvények között az indirekt feltevésünk értelmében van egy nem-triviális lineáris összefüggés. Ezért a lineáris rekurziónk megoldástere kisebb dimenziós $\sum_{k=1}^{h} (\deg g_k + 1) = \deg G(z)$ -nel. Másrészt viszont a lineáris rekurziónknak nyilván van deg G(z) számú lineárisan független megoldása, hiszen a rekurzív sorozat első deg G(z)tagját tetszőlegesen megadva, azokból az egész rekurzív sorozat egyértelműen megkapható. Ez az ellentmondás mutatja, hogy egy r_i $(i \geq 1)$ sorozat (2.9) alakban valóban legfeljebb egy módon állhat elő.

4.2. {5,3,5} hiperbolikus dodekaédermozaik

Most vizsgáljuk meg az önduális $\{5, 3, 5\}$ hiperbolikus dodekaédermozaikot a $\{5, 3, 4\}$ mozaikhoz hasonlóan. A mozaik 1. övezetére igaz (4.4. ábra), hogy $a_1 = 12, b_1 = 30 \cdot 2 = 60$ és $c_1 = 20 \cdot 10 = 200$, valamint $r_1 = 20, f_1^2 = 20 \cdot 9 = 180$ és $f_1^1 = 30 \cdot 3 + 20 \cdot 18 = 450$. Továbbá az A_1 pontokban 5 darab 1. övezetbeli dodekaéder csatlakozik egymáshoz, illetve a P csúcsponthoz, B_1 -ben 2 és C_1 -ben 1.

4.4. ábra. $Az \{5, 3, 5\}$ dodekaédermozaik 1. övezete.

4.2.1. Segédtétel. $a_{i+1} = 6a_i + 8b_i + 9c_i$, $b_{i+1} = 25a_i + 35b_i + \frac{81}{2}c_i$, $c_{i+1} = 75a_i + 108b_i + 127c_i$ $(i \ge 1)$.

BIZONYÍTÁS. A bizonyítás menete teljesen hasonló az előző, a 4.1.1. segédtétel bizonyításáéhoz, ezért csak nagyvonalakban írjuk le. A 4.5. ábra alapján könnyedén össze lehet számolni a megfelelő Ω alakzatok csúcsait, W_i -t tartalmazó, illetve nem tartalmazó éleit és lapjait.

Tehát az Ω_A , Ω_B , illetve Ω_C alakzatokhoz tartozó A_{i+1} pontok száma 6, 8, illetve 9.

4.5. ábra. $Az \{5, 3, 5\}$ mozaikhoz tartozó Ω alakzatok.

A vizsgált ponthoz tartozó Ω alakzatnak csak egy W_i csúcspontot tartalmazó éle mentén $\frac{1}{2}$, W_i -t nem tartalmazó éle mentén 2 darab B_{i+1} pontot kapunk. Tehát az Ω_A , Ω_B , illetve Ω_C alakzatokhoz tartozó B_{i+1} pontok száma $\frac{10}{2} + 2 \cdot 10 = 25$, $\frac{10}{2} + 2 \cdot 15 = 35$, illetve $\frac{9}{2} + 2 \cdot 18 = \frac{81}{2}$.

Ha az Ω alakzat lapjait osztályozzuk, a C_{i+1} pontokat tudjuk összeszámolni. Minden lap mentén, amely 2, 1, illetve 0 darab W_i csúcspontot tartalmaz, $\frac{5}{5}$, $\frac{8}{2}$, illetve 10 darab C_{i+1} pontot számolhatunk a tekintett Ω középpontjához (4.3. ábra). Tehát a C_{i+1} pontok száma A_i pontok esetén $5 \cdot \frac{5}{5} + 5 \cdot \frac{8}{2} + 5 \cdot 10 = 75$, B_i pontok esetén $4 \cdot \frac{5}{5} + 6 \cdot \frac{8}{2} + 8 \cdot 10 = 108$, valamint C_i pontok esetén $3 \cdot \frac{5}{5} + 6 \cdot \frac{8}{2} + 10 \cdot 10 = 127$.

Mindezeket összegezve kapjuk a segédtétel állítását. ■

4.2.2. Megjegyzés. Az $\{5,3,4\}$ dodekaéder mozaik esetében meghatározott rekurzió $\mathbf{M} = \begin{pmatrix} 6 & 8 & 9 \\ 25 & 35 & 40.5 \\ 75 & 108 & 127 \end{pmatrix}$ mátrixának minden sajátértéke valós, az egyetlen legnagyobb

abszolutértékű a $z_1 \approx 166.9940$. Az $\{5,3,5\}$ dodekaéder mozaik esetében az r_i sorozat elemeit, a $\lim_{1 \le i \to \infty} \frac{V_{i+1}}{V_i}$ és $\lim_{1 \le i \to \infty} \frac{V_i}{S_i}$ határértékeket a Függelékben, az F.1.6. tétel (v. old.) kapcsán határozzuk meg.

5. fejezet

Nem korlátos tartományú mozaikok

E fejezetben a nem korlátos tartományú $\{4, 4, 3\}, \{6, 3, 3\}, \{6, 3, 4\}$ és $\{6, 3, 5\}$ végtelen szabályos poliéderekkel képezett mozaikokat és az ezek felosztásával (VERMES [32], [33]) kapott aszimptotikus gúlákkal képezett mozaikokat, valamint 4-dimenziós megfelelőjüket ($\{4, 3, 4, 3\}$) és duálisaikat, a szabályos aszimptotikus poliéderekkel képezett mozaikokat ($\{3, 4, 4\}, \{3, 3, 6\}, \{4, 3, 6\}, \{5, 3, 6\}$ és $\{3, 4, 3, 4\}$) vizsgáljuk (NÉMETH [20], [21]). Itt is az előző fejezetek összeszámolási módszerét alkalmazzuk.

5.1. Aszimptotikus gúlákkal képezett mozaikok

A 3-dimenziós hiperbolikus térben szabályos aszimptotikus gúlának nevezzük azt a poliédert, amelynek egy lapja (alaplapja) szabályos sokszög, további élei a sokszög csúcspontjaiból kiinduló félegyenesek, amelyek a szabályos sokszög középpontján, annak síkjára merőlegesen áthaladó félegyenessel párhuzamosak (VERMES I. [32], [33]). Tehát a poliéder további lapjai (oldallapjai) egy végtelen távoli csúcsponttal rendelkező aszimptotikus háromszögek, melyek közös csúcsa az egyetlen végtelen távoli csúcsa az aszimptotikus gúlának. (Egy aszimptotikus gúlát úgy is megkaphatunk, ha egy szabályos gúlának a csúcspontját az alaplapra merőlegesen minden határon túlra távolítjuk – addig, amíg az oldalélei párhuzamosak nem lesznek.)

A 3-dimenziós hiperbolikus térben paraszférát érintő szabályos poliédernek az a végtelen poliédert nevezzük, melynek az egybevágó szabályos sokszöglapjai egy paraszférát érintenek. Az 5.1. ábrán egy ilyen végtelen, paraszférát érintő szabályos poliéder konstruálását láthatjuk. A $\{4, 4\}$ euklideszi síkmozaikot a paraszférán hozzuk létre. Ez lehetséges, mert e hiperbolikus térbeli felületnek a belső geometriája euklideszi. Ezután minden paraszférabeli négyzet középpontjában érintő síkokat tekintünk, melyek metszetei egybevágó érintő négyzeteket eredményeznek (amennyiben a paraszférán a négyzetmozaik oldalélei "nem túl nagyok"). A végtelen sok érintő négyzet összessége alkotja a $\{4, 4\}$ végtelen, paraszférát érintő szabályos poliédert. Tehát minden lapja ugyanazt a paraszférát érinti, minden csúcspontja is egy paraszférára illeszkedik. A paraszférát érintő szabályos poliéder középpontja a paraszféra középpontja, amely a végtelenben van. Még további két típusú, paraszférát érintő szabályos poliédert konstruálhatunk, mégpedig a $\{3, 6\}$ és a $\{6, 3\}$

5.1. ábra. Egy paraszférát érintő {4,4} szabályos poliéder.

típusút, hiszen az euklideszi síkon csak négyzettel, szabályos háromszöggel és szabályos hatszöggel képezhető szabályos mozaik. Ekkor a végtelen, paraszférát érintő szabályos poliéderek lapjai, mint alaplapok, és a beírt paraszféráik középpontjai, mint végtelenbeli csúcspontok, egy-egy szabályos aszimptotikus gúlát határoznak meg (5.1. ábra). Tehát minden paraszférát érintő szabályos poliéder feldarabolható végtelen sok szabályos aszimptotikus gúlára, de így csak a háromszög, négyszög, illetve a hatszög alapú aszimptotikus gúlákat kapjuk meg.

COXETER ([5]) megmutatta, hogy ha a végtelen, paraszférát érintő szabályos poliéderek lapjait megfelelő nagyságúra választjuk, akkor mozaikot alkothatunk velük. A négyzetlapú szabályos érintőpoliéderrel a {4,4,3} Schläfli szimbólumú mozaikot, a hatszöglapúval hármat is, a $\{6, 3, 3\}$, a $\{6, 3, 4\}$ és a $\{6, 3, 5\}$ mozaikokat, a háromszöglapúval viszont nem képezhetünk mozaikot. VERMES ([32], [33]) a szabályos aszimptotikus gúlákra bizonyított be hasonló tételt. Mégpedig, hogy a 3-dimenziós hiperbolikus térben van négy féle aszimptotikus gúla, melyekkel egy-egy mozaik képezhető. Az egyik egy négyoldalú aszimptotikus gúla, mely mozaikjához tartozó Ω alakzat a {4,3} hexaéder, a többi egy-egy hatoldalú aszimptotikus gúla, melyekhez tartozó mozaikok Ω alakzatai a {3,3} tetraéder, a {3,4} oktaéder, illetve a {3,5} ikozaéder. Látható, hogy a végtelen, paraszférát érintő szabályos poliédermozaikok felosztásával kaphatók a szabályos aszimptotikus gulákkal képezhető mozaik, ezért jelöljük őket $\{4, 4, 3\}_q$ -vel, $\{6, 3, 3\}_q$ -vel, $\{6, 3, 4\}_q$ -vel, illetve $\{6, 3, 5\}_q$ -vel. (A g index jelöli a gúlákra való feldarabolást.) Az egyes mozaikok esetén az alaplapok körülírt köreinek a sugara $\operatorname{arch} \sqrt{2}$, $\operatorname{arch} \frac{\sqrt{6}}{2}$, $\operatorname{arch} \sqrt{3}$, illetve $\operatorname{arch} \sqrt{\frac{9+3\sqrt{5}}{2}}$ (VERMES I. [32], [33]). Az aszimptotikus gúlák térfogata véges, melyek a Lobacsevszkij integrál segítségével kiszámolva rendre 0.30532188, 0.25373538, 0.63433848, illetve 1.02900996. Az aszimptotikus gúlák felszíne is véges melyek a ch $x = 1/\sin\phi$ (ϕ az x párhuzamossági szöge) egyenlet segítségével kiszámolt értékei a fenti sorrend szerint rendre a következők: 1.23095942, 0.67967382, 1.23095942, illetve 2.50509300 ([29, 549. old.], NÉMETH [21, 262. old.]).

5.1.1. Négyzet alapú aszimptotikus gúlákkal képezett mozaik

A négyzet alapú gúlákkal képezett mozaikok Ω csúcsalakzatai hexaéderek (NÉMETH [20], [21])). Először vizsgáljuk meg a P pontot körülövező 1. övezetet. az 5.2. ábra bal oldalán az 1. övezet négy aszimptotikus gúlája látható, melyek egy közös oldalél mentén csatlakoznak egymáshoz. A középső ábra két, közös alaplapú gúlát mutat be. A jobb oldali ábra pedig a teljes 1. övezetet, a Π_1 poliédert szemlélteti. A gúlák a P csúcspontot úgy fogják körül, hogy az alapjuk egyik csúcspontja a P pont, másik kettő az Ω_P egy élhez tartozó két csúcspontja, a negyedik pont pedig a P tükörképe erre az élre. A végtelenbeli csúcspontok a P kezdőpontú, Ω_P lapjaira merőleges félegyenesek végtelen távoli pontjai.

Az 1. övezetet 24 gúla alkotja és Ω_P minden egyes éléhez kettő gúla illeszkedik, továbbá minden lapjához négy és minden csúcsához pedig hat. Az A_1 pontok, P-től egy éltávolságra levő pontok csúcspontja, továbbá Ω_P minden éle mentén egy P-től két éltávolságra levő B_1 pontot kapunk. Tehát $a_1 = 8$, $b_1 = 12$, $r_1 = 24$, valamint $f_1^1 = 24$ és $f_1^2 = 48$.

Egy négyzet bármely két csúcsa legfeljebb két élszámtávolságra van egymástól, tehát e mozaik esetében is minden véges csúcs legfeljebb kettő véges éltávolságra van az előző övezettől, ezért Π_i ($i \ge 1$) felületére csak A_i és B_i típusú pontok illeszkednek, ahol A_i , ill. B_i a Π_i -nek a Π_{i-1} -től egy, ill. kettő véges éltávolságra levő csúcsait jelöli, míg a_i , ill. b_i ezek számát jelöli.

5.1.1. Segédtétel. $a_{i+1} = 4a_i + 6b_i$, $b_{i+1} = 3a_i + 7b_i$ $(i \ge 1)$.

BIZONYÍTÁS. Az A_{i+1} pontok most is az Ω alakzatok csúcspontjai közül kerülnek ki. Ω_A nak 3 csúcspontja W_i és egy W_{i-1} , ezért csak a maradék 4 lesz A_{i+1} (5.3. ábra), valamint Ω_B -nek 6 csúcspontja lesz A_{i+1} , a többi az *i*. övezet felületén van (5.4. ábra).

5.2. ábra. Az aszimptotikus gúlákkal képezett mozaik 1. övezete.

A B_{i+1} pontokat Ω élei mentén kaphatjuk meg, mindegyik mentén legfeljebb egyet. Olyan élek mentén nem kapunk B_{i+1} csúcsokat, amelyeknek valamelyik csúcspontja W_i . Például az 5.3. ábrán a RK élhez tartozó $A_i RLK$ négyzet L csúcspontja az R ponttól egy éltávolságra van, így az i. övezettől is. Tehát az L csúcspont R körberakásakor A_{i+1} , melyet már beszámoltunk. (Itt meg kell jegyeznünk, hogy az LK él $A_{i+1}A_{i+1}$ típusú.) A többi él mentén a négyzet 4. csúcsa az éppen vizsgált ponttól pontosan 2 véges éltávolságra van, és egyetlen más i. övezetbeli csúcsponttól sincs 1 vagy 2 véges éltávolságra. Így ezek a pontok csak az éppen vizsgált pont esetén lesznek B_{i+1} pontok. Tehát Ω_A alakzatnak 3, míg Ω_B -nek 7 olyan éle van, amely nem tartalmaz W_i pontot.

5.3. ábra. Az aszimptotikus gúlákkal képezett mozaik Ω_A alakzata.

5.4. ábra. Az aszimptotikus gúlákkal képezett mozaik Ω_B alakzata.

5.1.2. Segédtétel. $r_{i+1} = 12a_i + 18b_i \quad (i \ge 1).$

BIZONYÍTÁS. Az Ω_A minden éle mentén kettő gúla csatlakozik az A_i csúcsponthoz, tehát az új gúlák (az (i+1). övezethez tartozók) száma összesen $9 \cdot 2 = 18$. Az olyan élek mentén illeszkedő új gúlák, amelyeknek az egyik csúcspontja egy *i*. övezetbeli pont, nemcsak az A_i ponthoz tartoznak. Az 5.3. ábrán például az $A_i RLK$ négyzethez tartozó gúlák az Rpont körberakásával is új gúlák lesznek és az R ponthoz is tartoznak. Ezért, ha ezeket a gúlákat mindkét pontnál figyelembe vesszük, akkor az éppen vizsgált pont esetén csak a felét számoljuk. Összesen 6 ilyen él van, tehát a hozzájuk tartozó gúlák száma $(6 \cdot 2)/2$. Az *i*. övezetbeli W_i pontokhoz nem kapcsolódó Ω_A élek mentén a $3 \cdot 2$ új gúla csak az A_i ponthoz tartozik. Tehát a Π_i poliéder felületére illeszkedő összes A_i ponthoz tartozó új gúlák száma $(6 + 6)a_i$. Hasonlóan, egy B_i ponthoz tartozó új gúlák száma összesen $(4 \cdot 2)/2 + 7 \cdot 2 = 18$. A Π_i felületén levő összes B_i ponthoz tartozó új gúlák száma összesen $18b_i$.

Jelölje $n_i(A_iA_i)$, $n_i(A_iB_i)$, $n_i(B_iB_i)$ $(i \ge 1)$ a \prod_i felületen levő A_iA_i , A_iB_i , B_iB_i alakú véges elek számát.

5.1.3. Segédtétel.
$$n_i(A_iA_i) = \frac{3}{2}a_i - b_i, \ n_i(A_iB_i) = 2b_i, \ n_i(B_iB_i) = 0 \quad (i \ge 1).$$

BIZONYÍTÁS. Osztályozzuk a Π_i $(i \ge 1)$ felület véges mozaikéleit. A felületén minden B_i ponthoz két csúcspont csatlakozik véges gúlaél mentén. Ezek a pontok csak A_i pontok lehetnek, tehát $n_i(B_iB_i) = 0$ és $n_i(A_iB_i) = 2b_i$. Három csúcspont csatlakozik véges élben minden egyes A_i ponthoz, melyek vagy A_i , vagy B_i pontok. Kivonva az A_iB_i élek számát az A_i -hez csatlakozó élek számából $(3a_i)$, az A_iA_i élek számának a kétszeresét kapjuk. Tehát $n_i(A_iA_i) = \frac{3a_i-2b_i}{2}$.

5.1.4. Megjegyzés. Mivel a_i mindig páros, ezért $n_i(A_iA_i)$ is mindig egész.

A korábbiaktól eltérően, jelölje f_i^2 , ill. f_i^1 ($i \ge 1$) a Π_i poliéder lapjainak, ill. véges éleinek számát.

5.1.5. Segédtétel. $f_{i+1}^2 = 18a_i + 32b_i$, $f_{i+1}^1 = 9a_i + 16b_i$ $(i \ge 1)$.

BIZONYÍTÁS. Π_i véges éleinek száma az 5.1.3. segédtétel alapján $f_i^1 = n_i(A_iA_i) + n_i(A_iB_i) + n_i(B_iB_i) = \frac{3}{2}a_i - b_i + 2b_i = \frac{3}{2}a_i + b_i$. Használva az 5.1.1. segédtételt kapjuk: $f_{i+1}^1 = \frac{3}{2}a_{i+1} + b_{i+1} = 9a_i + 16b_i$.

 Π_i minden lapja egy aszimptotikus háromszög. Minden véges él mentén két lap csatlakozik és minden lap csak egy véges élhez tartozik, tehát Π_i lapjainak a száma a véges élei számának kétszerese, azaz $f_{i+1}^2 = 2f_{i+1}^1 = 18a_i + 32b_i$.

5.1.6. Megjegyzés.

a.) Ha az (i+1). felület $(i \ge 1)$ összes (véges és végtelen) élet is összeszámoljuk, akkor $\widehat{f}_{i+1}^1 = 9a_i + 16b_i + 3a_{i+1} + 2b_{i+1} = 9a_i + 16b_i + 18a_i + 32b_i = 27a_i + 48b_i = \frac{3}{2}f_{i+1}^2$.

b.) Az r_i és f_i^k (k = 0, 1, 2) sorozatok (2.2) (13. old.) alakja: $r_i = 3a_i, f_i^2 = 3a_i + 2b_i, f_i^1 = \frac{3}{2}a_i + b_i, f_i^0 = a_i + b_i$ $(i \ge 1).$

A vizsgált sorozatok első három elemét az 5.1. táblázat tartalmazza.

$\{4,4,3\}_g$	a_i	b_i	f_i^0	f_i^1	f_i^2	$f_i^3 = r_i$
i = 1	8	12	20	24	48	24
i=2	104	108	212	264	528	312
i = 3	1064	1068	2132	2664	5328	3192

5.1. táblázat.

5.1.2. Szabályos hatszög alapú aszimptotikus gúlákkal képezett mozaikok

A szabályos hatszög alapú gúlákkal képezett mozaikok Ω csúcsalakzata tetraéder, oktaéder vagy ikozaéder (NÉMETH L. [20], [21])). E csúcsalakzatoknak legyen c a csúcsainak száma (c = 4, 6, vagy 12), e az éleinek száma (e = 6, 12, vagy 30), m az egy csúcsba befutó élek száma (m = 3, 4, vagy 5).

Az A_1 csúcspontokban (amelyek 1 véges éltávolságra vannak P-től) 2m számú gúla csatlakozik P-hez. Jelöljük B_1 -gyel az olyan csúcspontokat melyek 2 vagy 3 véges éltávolságra vannak P-től. Ezekben kettő gúla csatlakozik P-hez, azaz egy közös gúlaalaplapja egyik csúcsa P. (Az 5.5. ábrán az oktaéder Ω alakzatú mozaik 1. övezetének két tartománya látható. Ω_P többi éle mentén is két-két alaplapban csatlakozó gúla helyezkedik el. Ezek összessége alkotja az 1. övezetet.) Ekkor Ω_P csúcspontjai lesznek az A_1 pontok (számuk c), továbbá Ω_P minden éle mentén 3 darab B_1 pontot kapunk, számuk 3e.

Az A_1 típusú pontokban m számú 1. övezetbeli aszimptotikus gúla csatlakozik egymáshoz, míg a B_1 típusú ponthoz csak 2. Minden A_1 pont m számú B_1 ponttal van összekötve véges éllel, és minden B_1 kettő B_1 -gyel, vagy egy A_1 -gyel és egy B_1 -gyel. Ekkor $a_0 = b_0 = r_0 = 0, a_1 = c, b_1 = 3e, r_1 = 2e, f_1^1 = 4e$ és $f_1^2 = 2f_1^1 = 8e$. Megállapíthatjuk, hogy az 1. övezet 2e számú gúlából áll. Az Ω_P minden éle mentén kettő, minden csúcsa mentén 2m és minden lapjához három gúla csatlakozik az 1. övezetben. A továbbiakban Π_1 köré övezeteket hozunk létre.

Az A_i pontok jelölik az *i*. övezet olyan mozaik csúcspontjait, amelynek az (i-1). övezettől való véges éltávolsága 1, és jelöljék B_i -k azokat a csúcsait, melyek 2 vagy 3 éltávolságra vannak. A számolásokban többnyire B_i azon tulajdonságát használjuk ki, hogy csak kettő *i*. övezetbeli aszimptotikus gúla kapcsolódik B_i -hez. (A többi az (i + 1). övezetben van.) Az A_i csúcspontokban mindig 2m számú gúla csatlakozik az *i*. övezetből.

E mozaikok esetén is az előbbi mozaikokhoz hasonlóan az *i*. övezet $(i \ge 1)$ felületén csak A_i és B_i csúcspontok vannak. Jelölje $n_i(A_iA_i), n_i(A_iB_i), n_i(B_iB_i)$ $(i \ge 1)$ a Π_i felületén levő A_iA_i, A_iB_i, B_iB_i alakú véges élek számát.

Továbbá láthatjuk, hogy $n_1(A_1A_1) = 0$ és tegyük fel, hogy $n_i(A_iA_i) = 0$. Be fogjuk

5.5. ábra. Az aszimptotikus gúlákkal képezett mozaik 1. övezete.

látni az 5.1.9. segédtételben, hogy $n_{i+1}(A_{i+1}A_{i+1}) = 0$. Tehát teljes indukcióval belátjuk, hogy egyetlen övezeten sincs A_iA_i típusú él.

5.1.7. Segédtétel. $a_{i+1} = (c - m - 1)a_i + (c - 2)b_i$ $(i \ge 1)$.

BIZONYÍTÁS. Az Ω alakzatok csúcspontjait osztályozva kapjuk, hogy egy A_i pont mindig *m* számú *i*. övezetbeli csúcsponttal és egy W_{i-1} ponttal csatlakozik közös gúlaéllel. Így az A_i -hoz tartozó Ω_A csúcsok közül c - (m + 1) lesz A_{i+1} az (i + 1). övezetben (5.6. ábra). Minden B_i pont kettő csúcsponthoz csatlakozik a Π_i felületén, ezért Ω_B alakzat A_{i+1} csúcspontjainak a száma c - 2 (5.7. ábra).

5.1.8. Segédtétel. $n_i(A_iB_i) = ma_i, n_i(B_iB_i) = -\frac{m}{2}a_i + b_i \quad (i \ge 1).$

BIZONYÍTÁS. Minden A_i csúcs m számú csúccsal van összekötve, ami az indukciós feltétel miatt csak B_i csúcs lehet, ezért az A_iB_i élek száma ma_i . Minden B_i csúcsból 2 véges él fut ki, amely A_iB_i , vagy B_iB_i típusú. A számuk összesen $2b_i$. A B_iB_i típusúakat így kétszer számoljuk, mert mindkét végénél figyelembe vettük. Tehát $2b_i = n_i(A_iB_i) + 2n_i(B_iB_i) = ma_i + 2n_i(B_iB_i)$, azaz $n_i(B_iB_i) = -\frac{m}{2}a_i + b_i$.

5.1.9. Segédtétel. $b_{i+1} = (3e - 2m^2 - m)a_i + (3e - 4m + 1)b_i$ és $n_{i+1}(A_{i+1}A_{i+1}) = 0$ $(i \ge 1).$

BIZONYÍTÁS. Most is az Ω alakzatok éleit osztályozzuk.

1) Kezdjük az Ω_A esetével.

Egy A_i pont körberakásával Ω_A minden *i*. övezetben létező éle $(W_{i-1}B_i)$ mentén a szabályos hatszög (mint egy gúla alapja) is az *i*. övezetben van, így nem tartozik hozzá B_{i+1} pont (5.6. ábra). Az ilyen élek száma *m*.

Két B_i pontot összekötő élhez egy B_{i+1} pont tartozik, mert a B_i pontok körberakásával a hozzá élben csatlakozó hatszögpontok A_{i+1} pontok lesznek. Az 5.6. ábrán az $A_i B_i UTSB_i$ hatszög U és S csúcspontjai A_{i+1} típusúak és a T egy B_{i+1} pont lesz. (Az 5.6. és az 5.7. ábrán az Ω_A élein a számok az élekhez tartozó B_{i+1} pontok számát jelölik.) A T pontot B_{i+1} pontnak tekintjük A_i , B_i és a másik B_i körberakása esetén is, ezért az ilyen pontok számának csak harmadát számoljuk az A_i ponthoz. Az ilyen élek száma m. A hozzájuk tartozó B_{i+1} pontok száma összesen $\frac{m}{3}a_i$.

A további élek közül azokhoz, amelyek csak egy B_i ponthoz kapcsolódnak kettő B_{i+1} pontot rendelhetünk hozzá, mivel az A_i és a B_i pontokhoz a hatszögek élben csatlakozó pontjai A_{i+1} pontok lesznek. Így a fennmaradó 2 új csúcspont B_{i+1} pont lesz, ezeket a pontokat az A_i és B_i pontok körberakása esetén is B_{i+1} pontnak tekintjük. Az ilyen élek száma m(m-3) (ilyen élek nem léteznek, ha Ω_A tetraéder), a hozzájuk tartozó összes B_{i+1} pont száma $\frac{2m(m-3)}{2}a_i$.

Az Ω_A többi éleinek száma e - m(m-1). Ezen élek mentén 3 darab B_{i+1} pont lesz, és ezek csak a jelenlegi A_i ponthoz tartoznak (csak akkor létezik ilyen él, ha Ω_A ikozaéder). Az összes ilyen B_{i+1} pont száma $3(e - m(m-1))a_i$.

2) Most rátérünk az Ω_B vizsgálatára.

Egy B_i pont körberakásával Ω_B -nek egy *i*. övezetbeli éle mentén nem lesz B_{i+1} pont. Ehhez az élhez tartozó csúcspontok W_i típusúak lehetnek (azaz A_i vagy B_i). Ezeket a csúcsokat R-rel és Q-val jelöljük az 5.7. ábrán.

A továbbiakban vizsgáljuk Ω_B azon éleit, amelyek ezekhez a pontokhoz csatlakoznak, figyelembe véve az indukciós feltételt, hogy nincs $A_i A_i$ él.

a.) Ha R egy A_i típusú pont. Először vizsgáljuk azoknak a lapoknak az éleit, melyek illeszkednek az RQ élre, például az RU élt, és azonkívül vizsgáljuk a B_iRGSTU hatszöget. Az i. övezetben az XR él gúlákkal volt körberakva, mert $R = A_i$ (ekkor $X = W_{i-1}$), ezért az XR-re illeszkedő alaphatszögek is az i. övezetben vannak (például az X, R, B_i , Q pontokra illeszkedő hatszög). Az egyik ilyen hatszög az X, R, G pontokra illeszkedő hatszög. Ezért a G csúcspont is az i. övezeten van. Mivel nincs A_iA_i él az i. övezeten z indukciós feltétel miatt, az R pont csak B_i pontokhoz csatlakozik véges gúlaélben. Tehát a G pont B_i típusú. A G pont körberakásakor az S pont egy A_{i+1} pont (az U pont is egy A_{i+1}). Tehát a T pont az egyedüli B_{i+1} pont. (A B_iRGSTU hatszög megfelel a $B_iA_iB_iSTU$ hatszögnek az 5.6. ábrán.) Tehát a T pontot három csúcspont (B_i, R és G) körberakásakor is B_{i+1} pontnak tekintjük. Létezik még egy R ponthoz csatlakozó RU-hoz hasonló él (RK él). Ezért $\frac{2}{3}$ darab B_{i+1} pontot számolunk az R ponthoz, mert az Ω_B két

5.6. ábra. Az aszimptotikus gúlákkal képezett mozaik Ω_A alakzata.

5.7. ábra. Az aszimptotikus gúlákkal képezett mozaik Ω_B alakzata.

hasonló éle csatlakozik *R*-ben. Annyi *R*-hez hasonló pont van a Π_i felületén, amennyi a B_iR -hez hasonló élek száma, azaz $n_i(A_iB_i)$. Így $\frac{2}{3}n_i(A_iB_i) = \frac{2}{3}ma_i$ darab B_{i+1} pontot számolunk a Π_{i+1} felületen az *R*-hez hasonló pontokhoz a felületen összesen. Két B_{i+1} pont tartozik a további m-3 élhez, melyek *R*-hez csatlakoznak (a B_i és *R* pontokhoz csatlakozó csúcsok A_{i+1} pontok), ezek a B_{i+1} és *R* pontokhoz egyaránt tartoznak. Tehát az ilyen pontok száma $\frac{2(m-3)}{2}$, összesen a Π_{i+1} felületen $n_i(A_iB_i)(m-3) = m(m-3)a_i$.

b.) Ha R egy B_i típusú pont. Az a) esettel ellentétben, most az R ponthoz csatlakozó m-1 számú él (az R-hez csatlakozó m él közül az RQ az i. övezetben van) mind azonos típusú. Két B_{i+1} pont tartozik mindegyikhez, melyeket B_{i+1} -gyel jelöljük két pont, B_i és R, körberakásakor is. Ezért a B_{i+1} pontok száma $\frac{2(m-1)}{2}$ egy R pontot tekintve. Így az összetartozó B_i és R típusú pontpárok száma a Π_i felületen kétszerese a B_iR típusú élek számának (az R pontot, mint B_i pontot, tekintve a B_i és R pontok szerepe felcserélődik), azaz $2n_i(B_iB_i)$. Tehát $2n_i(B_iB_i)(m-1) = (-ma_i + 2b_i)(m-1)$ darab B_{i+1} pontot számoltunk össze a Π_{i+1} felületen.

 Ω_B -nek a további éleinek (melyeknek nem csúcspontja R vagy Q) a száma e - 2m + 1 (az összes élek számából kivonjuk a Ω_B egy élének csúcspontjaihoz tartozó élek számát). Ezen élekhez három B_{i+1} pont tartozik és ezeket csak a tekintett B_i ponthoz számoljuk. Így a számuk összesen $3(e - (2m - 1))b_i$.

3) Összegezve az B_{i+1} pontokat, kapjuk:

$$b_{i+1} = \left(\frac{m}{3} + m(m-3) + 3e - 3m(m-1) + \frac{2m}{3} + m(m-3) - m(m-1)\right)a_i + (2(m-1) + 3e - 3(2m-1))b_i = (3e - 2m^2 - m)a_i + (3e - 4m + 1)b_i.$$

Látható, hogy van legalább egy B_{i+1} pont két A_{i+1} pont között Ω_A vagy Ω_B bármely éléhez tartozóan. Így nem létezik $A_{i+1}A_{i+1}$ típusú él a Π_{i+1} felületén, amivel az 5.1.7. segédtétel előtti bekezdés állítása indukcióval bizonyítást nyert.

A Π_{i+1} felületen minden véges mozaikcsúcspontot besoroltuk az A_{i+1} vagy B_{i+1} pontokat tartalmazó halmazba.

5.1.10. Segédtétel. $r_{i+1} = (2e - m^2 - m)a_i + (2e - 2m)b_i$ $(i \ge 1).$

BIZONYÍTÁS. Most is Ω_A és Ω_B éleit osztályozzuk az 5.1.9. segédtétel bizonyításának lépései szerint. Két gúla tartozik Ω_A és Ω_B minden egyes éléhez, de egyes élek mentén a gúlák több pont esetén is új gúlák lehetnek, ezért a az 5.1.9. segédtétel bizonyítása alapján számuknak csak törtrészét számitjuk be az éppen vizsgált ponthoz. (Az 5.8. ábrán Ω_A és Ω_B élein a számok az élekhez tartozó új gúlák számát jelölik multiplicitás nélkül.)

Egy A_i pontot körberakva Ω_A alakzat W_{i-1} pontban csatlakozó élei (melyek száma m) az i. övezetben vannak, ezért nem lesz új, (i + 1). övezetbeli gúla ezen élek mentén. Ezen élek másik csúcspontja mind B_i . Két új gúla tartozik minden élhez, amelynek mindkét csúcspontja B_i . Az ilyen él száma m. Ezek a gúlák két B_i ponthoz és az A_i ponthoz is tartoznak. Az A_i ponthoz számolt új gúlák száma $\frac{2m}{3}a_i$. Ω_A további éleinek száma, melyek az előző B_i pontokhoz csatlakoznak, m(m-3). A hozzájuk tartozó gúlák két csúcsponthoz is tartoznak (A_i és B_i), számuk $\frac{2m(m-3)}{2}a_i$. Ω_A maradék éleihez tartozó gúlák csak az A_i ponthoz tartoznak, ezért számuk $2(e - m(m - 1))a_i$. B_i pont körberakásával Ω_B -nek csak egy éle van az *i*. övezetben, melynek csúcspontjai W_i pontok.

a.) Ha R egy A_i típusú pont. Az Ω_B -nek R-hez csatlakozó RU és RK éleihez tartozó új gúlák három ponthoz is tartoznak, ezért a számuk összesen $n_i(A_iB_i)\frac{2\cdot 2}{3} = \frac{4}{3}ma_i$. A további (m-3) darab R-hez csatlakozó élhez tartozó gúlák két ponthoz tartoznak, a számuk $n_i(A_iB_i)\frac{2(m-3)}{2} = m(m-3)a_i$.

b.) Ha R egy B_i típusú pont. Az R ponthoz csatlakozó (m-1) élhez tartozó gúlák kettő ponthoz tartoznak, ezért a számuk $2n_i(B_iB_i)\frac{2(m-1)}{2} = -m(m-1)a_i + 2(m-1)b_i$. Ω_B további éleihez tartozó gúlák csak a tekintett B_i ponthoz tartoznak, összes számuk $2(e - (2m - 1))b_i$.

Összegezve az új gúlák számát:

$$r_{i+1} = \left(\frac{2m}{3} + m(m-3) + 2(e - (m(m-1))) + \frac{4}{3}m + m(m-3) - m(m-1)\right)a_i + (2(m-1)) + 2(e - (2m-1))b_i = (2e - m^2 - m)a_i + (2e - 2m)b_i.$$

Továbbra is jelölje f_i^2 , ill. f_i^1 $(i \ge 1)$ a Π_i poliéder lapjainak, ill. véges éleinek számát.

5.1.11. Segédtétel. $f_{i+1}^1 = (3e - \frac{5}{2}m^2 + \frac{m}{2}(c-3))a_i + (3e + 1 + \frac{m}{2}(c-10))b_i$, $f_{i+1}^2 = 2f_{i+1}^1$ $(i \ge 1)$.

BIZONYÍTÁS. A Π_i poliéder véges éleinek száma az 5.1.8. segédtétel alapján $f_i^1 = n_i(A_iA_i) + n_i(A_iB_i) + n_i(B_iB_i) = ma_i - \frac{m}{2}a_i + b_i = \frac{m}{2}a_i + b_i$. Használva az 5.1.7. és 5.1.9 segédtételeket kapjuk: $f_{i+1}^1 = \frac{m}{2}a_{i+1} + b_{i+1} = (3e - \frac{5}{2}m^2 + \frac{m}{2}(c-3))a_i + (3e + 1 + \frac{m}{2}(c-10))b_i$.

 Π_i minden lapja egy aszimptotikus háromszög. Minden véges él mentén két lap csatlakozik és minden lap csak egy véges élhez tartozik, tehát Π_i lapjainak a száma a véges élei számának kétszerese, azaz $f_{i+1}^2 = 2f_{i+1}^1$.

5.1.12. Megjegyzés. Ha az (i + 1). felület $(i \ge 1)$ összes (véges és végtelen) éleit is összeszámoljuk, akkor $\hat{f}_{i+1}^1 = n_{i+1}(A_{i+1}A_{i+1}) + n_{i+1}(A_{i+1}B_{i+1}) + n_{i+1}(B_{i+1}B_{i+1}) + ma_{i+1} + 2b_{i+1} = \frac{3}{2}f_{i+1}^2$.

Szabályos hatszög alapú aszimptotikus gúlákkal képezett mozaikok esetén helyettesítsük be Ω megfelelő m, c, e értékeit az 5.1.7., az 5.1.9., az 5.1.10. és az 5.1.11. segédtételekbe.

5.8. ábra. Az aszimptotikus gúlákkal képezett mozaik Ω_A és Ω_B alakzata.

Tetraéder esetén m = 3, c = 4, e = 6, oktaéder esetén m = 4, c = 6, e = 12 és ikozaéder esetén m = 5, c = 12, e = 30.

a.) Tetraéder esetén $a_{i+1} = 2b_i$, $b_{i+1} = -3a_i + 7b_i$, $r_{i+1} = 6b_i$, $f_{i+1}^1 = -3a_i + 10b_i$, $f_{i+1}^2 = -6a_i + 20b_i$, illetve $r_i = 3a_i$, $f_i^2 = 3a_i + 2b_i$, $f_i^1 = \frac{3}{2}a_i + b_i$, $f_i^0 = a_i + b_i$ $(i \ge 1)$.

b.) Okta
éder esetén $a_{i+1} = a_i + 4b_i$, $b_{i+1} = 21b_i$, $r_{i+1} = 4a_i + 16b_i$,
 $f_{i+1}^1 = 2a_i + 29b_i$, $f_{i+1}^2 = 4a_i + 58b_i$, illetve $r_i = 4a_i$,
 $f_i^2 = 4a_i + 2b_i$,
 $f_i^1 = 2a_i + b_i$,
 $f_i^0 = a_i + b_i$ ($i \ge 1$).

c.) Ikozaéder esetén $a_{i+1} = 6a_i + 10b_i$, $b_{i+1} = 35a_i + 71b_i$, $r_{i+1} = 30a_i + 50b_i$, $f_{i+1}^1 = 50a_i + 96b_i$, $f_{i+1}^2 = 100a_i + 192b_i$, illetve $r_i = 5a_i$, $f_i^2 = 5a_i + 2b_i$, $f_i^1 = \frac{5}{2}a_i + b_i$, $f_i^0 = a_i + b_i$ $(i \ge 1)$.

A vizsgált sorozatok első három elemét az 5.2. táblázat tartalmazza.

mozaik		a_i	b_i	f_i^0	f_i^1	f_i^2	$f_i^3 = r_i$
$\{6,3,3\}_g$	i = 1	4	18	12	24	48	12
	i=2	36	114	150	186	336	108
	i = 3	228	690	918	1032	2064	684
$\{6,3,4\}_g$	i = 1	6	36	42	48	96	24
	i=2	150	756	906	1056	2112	600
	i = 3	3174	15876	19050	22224	44448	12696
$\{6,3,5\}_g$	i = 1	12	90	102	120	240	60
	i=2	972	6810	7782	9240	18480	4860
	i = 3	73956	517530	591486	702360	1404720	369660

5.2. táblázat.

5.2. 4-dimenziós aszimptotikus gúlákkal képezett mozaik

A d-dimenziós hiperbolikus térben szabályos aszimptotikus gúlának nevezzük azt a poliédert, amelynek egy hiperlapja (alap-hiperlapja) (d-1)-dimenziós szabályos poliéder, további élei az alap-hiperlap csúcspontjaiból kiinduló félegyenesek, amelyek a szabályos poliéder középpontján, annak hipersíkjára merőlegesen áthaladó félegyenessel párhuzamosak. (A poliéder oldal-hiperlapjai egy-egy (d-1)-dimenziós szabályos aszimptotikus gúlát alkotnak.) Minden alap-hiperlap 2 szabályos aszimptotikus gúlát határoz meg, melyek végtelen távoli csúcspontjai az alap-hiperlap síkjára merőleges, az alap-hiperlap középpontján áthaladó egyenes végtelen távoli csúcspontjai. Az 5.9. ábrán egy $\{4,3\}$ alapú 4-dimenziós aszimptotikus gúla látható.

A 4-dimenziós hiperbolikus térben is van egy, a 3-dimenziós paraszféra köré képezhető végtelen szabályos poliéder, mellyel mozaikot lehet alkotni. Ez a $\{4, 3, 4, 3\}$ mozaik (COXE-TER [5]). A megkonstruálása a 3-dimenziós megfelelőjéhez (a $\{4, 4, 3\}$ mozaik) hasonló. A 3-dimenziós euklideszi tér egyetlen szabályos mozaikja a $\{4, 3, 4\}$ kockamozaik. E mozaik a 4-dimenziós hiperbolikus tér 3-dimenziós paraszféráján is mozaikot alkot, hiszen a paraszféra belső geometriája euklideszi. Ekkor minden tartomány (kocka) középpontjában vesszük a paraszférát érintő 3-dimenziós érintősíkokat. Ezen hipersíkok metszetei egybevágó hexaédereket határoznak meg (ha az alapmozaikot alkotó kockák "nem túl nagyok"), melyek mindegyike a paraszférát érinti. Az így kapott 4-dimenziós poliédert nevezzük a *a 3-dimenziós paraszférát érintő* $\{4, 3, 4\}$ szabályos poliédernek. (Hasonlóan definiálhatnánk az euklideszi *d*-dimenziós mozaikból kiindulva, a *d*-dimenziós paraszférát érintő szabályos poliéder.) Egy ilyen érintő poliéder lapjai (hexaéderek), és a beírt paraszféráik középpontjai, mint végtelen távoli csúcspontok, egy-egy 4-dimenziós szabályos aszimptotikus gúlát határoznak meg. Tehát az érintő poliéder feldarabolható végtelen sok 4-dimenziós szabályos aszimptotikus gúlára.

Ha a 3-dimenziós paraszférát érintő szabályos poliéder hiperlapjait megfelelő nagyságúra választjuk, akkor szabályos mozaikot képezhetünk velük ([5]). E mozaik Schläfli szimbóluma {4,3,4,3}, csúcsalakzata a {3,4,3} szimbólumú 24-cella (F.6. ábra ix. old.). A mozaik feldarabolásával a {4,3,4,3}_g-vel jelölt 4-dimenziós szabályos aszimptotikus gúlákkal képezett mozaikot kapjuk, melynek a csúcsalakzata szintén a {3,4,3} szimbólumú 24-cella. (A mozaik egy tartománya az 5.10. ábrán látható.)

5.9. ábra. Egy {4,3} alapú 4-dimenziós aszimptotikus gúla.

5.10. ábra. A $\{4,3,4,3\}_g$ mozaik 1. övezetének egy részlete.

A hexaéder alapú aszimptotikus gúlákkal képezett mozaik egy P csúcspont körüli 1. övezetét kétszer annyi gúla alkotja, mint Ω_P (2-dimenziós) lapjainak száma, azaz 192, mert minden lapjához 1 hexaéder, azaz 2 gúla csatlakozik. P-től egy véges mozaikél, azaz véges gúlaéltávolságra az Ω_P csúcsai vannak, melyeket A_1 -gyel jelölünk. Továbbá minden éle mentén van egy 2 éltávolságra levő mozaikcsúcspont, melyet B_1 -gyel jelölünk és minden (2-dimenziós) lapjához tartozóan egy 3 éltávolságra levő mozaikcsúcs, melyet C_1 -gyel jelölünk. Az A_i, B_i, C_i pontokat hasonlóan definiáljuk, a $\prod_{i=1}$ -től való éltávolság értékei szerint, azaz hogy ez 1, 2, vagy 3. A 24-cellának 24 csúcsa, 96 éle, 96 lapja és 24 cellája van (F.6. ábra ix. old.). Tehát $a_1 = 24, b_1 = 96, c_1 = 96, r_1 = 192$ és $f_1^2 = 3r_1 =$ 576, $f_1^1 = \frac{4}{2}f_1^2 = 1152$. A 24-cellát összetettsége miatt nehéz lenne látványosan ábrázolni, ezért a 3.4. fejezet ábráihoz hasonlóan az 5.10. ábrán (és e fejezet többi ábráján) Ω_P nek, a P középpontú 24-cellának csak egy részletét emeltük ki. E részleten az látható, hogy az aszimptotikus gúlák hogyan csatlakoznak P körül. A 24-cella egy csúcsával közös élű 8 csúcsa egy {4,3} hexaédert alkot. A 24-cellának egy csúcsához 12 lap tartozik (F.2. függelék, azaz egy A_1 csúcs körül $2 \cdot 12 = 24$ darab 1. övezetbeli gúla csatlakozik egymáshoz. A 24-cellának egy éléhez 4 lap tartozik, azaz egy B_1 csúcs körül $2 \cdot 4 = 8$ darab 1. övezetbeli gúla csatlakozik egymáshoz. Továbbá minden C_1 csúcs körül $2 \cdot 1 = 2$ darab egymáshoz csatlakozó 1. övezetbeli gúla van.

A továbbiakban most is hozzunk létre övezeteket és vizsgáljuk az egyes típusú mozaikcsúcspontok számát.

5.2.1. Segédtétel. $a_{i+1} = 15a_i + 19b_i + 21c_i$, $b_{i+1} = 44a_i + 63b_i + 75c_i$, $c_{i+1} = 36a_i + 54b_i + 68c_i$, $(i \ge 1)$.

BIZONYÍTÁS. A 24-cella esetén egy csúcsból kiinduló élek száma 8, azaz egy csúcshoz tartozó 12 lap összes csúcspontjának száma 1 + 8, tehát Ω_A -nak 8 csúcspontja W_i és egy W_{i-1} . Ezért csak a maradék 24-9 = 15 lesz A_{i+1} (5.11. ábra). A 24-cella egy éléhez tartozó lapok száma 3, tehát Ω_B -nak 2 + 3 csúcspontja W_i , azaz csak a maradék 24 - 5 = 19 lesz A_{i+1} csúcspont (5.12. ábra). Ω_C esetén egy lap 3 csúcspontja W_i , így az A_{i+1} csúcspontok száma 24 - 3 = 21 (5.13. ábra).

Az Ω alakzatok minden W_i csúcshoz kapcsoló élei mentén nem lesznek B_{i+1} pontok, hiszen ezekhez tartozó gúla csúcspontok a tekintett W_i -től 1 éltávolságra vannak. Összeszámoljuk az ilyen éleket mindhárom Ω esetén és csak a maradék élekhez tartozóan kapunk B_{i+1} pontokat.

 Ω_A esetén a W_i csúcsokból egymásba 12 él visz, W_{i-1} -be 8, továbbá mindegyikből még 4-4 él indul ki. Ez összesen $12 + 8 + 8 \cdot 4 = 52$. Tehát a B_{i+1} pontok száma 96 - 52 = 44. Ω_B esetén a W_i -ből kiinduló élek száma $1 + 6 + 2 \cdot 4 + 3 \cdot 6 = 33$, így a B_{i+1} pontok száma 96 - 33 = 63. Hasonlóan Ω_C esetén a B_{i+1} pontok száma $96 - (3 + 3 \cdot 6) = 75$.

A C_{i+1} pontok az Ω alakzatok olyan lapjai mentén lesznek, melyeknek egyik csúcspontja sem W_i pont. Mert ellenkezőleg az Ω középpontjától 3 éltávolságra levő mozaikcsúcspont valamelyik W_i -től 2 vagy 1 éltávolságra van. Tehát a W_i csúcsokhoz tartozó lapokat számoljuk össze először, majd számukat az Ω összes lapjának számából kivonjuk.

A 24-cella minden csúcsa 12 lapra illeszkedik, tehát Ω_A esetén a W_i csúcsokra 8 · 12 lap illeszkedik, de ekkor a $W_i W_i$ élekre illeszkedő lapokat kétszer számoltuk, így számukat

12 · 3 le kell vonnunk. Azaz 96 – $(8 \cdot 12 - 12 \cdot 3) = 36$ olyan lapja van Ω_A -nak melynek egyik csúcspontja sem W_i . Így egy A_i pont esetén 36 darab C_{i+1} pont lesz. Ω_B esetén a W_i csúcsokra 5·12 lap illeszkedik, de ekkor a W_iW_i élekre illeszkedő lapokat kétszer számoltuk, így számukat, 7 · 3-at, le kell vonnunk. Ekkor $W_iW_iW_i$ lapok számát viszont teljesen kivontuk, ezért számukat, 3-at, hozzáadjuk az összeghez. Tehát 96 – $(5 \cdot 12 - 7 \cdot 3 + 3) = 54$ darab C_{i+1} pont tartozik minden B_i ponthoz. Hasonlóan Ω_C esetén a B_i ponthoz száma 96 – $(3 \cdot 12 - 3 \cdot 3 + 1) = 68$. ■

5.11. ábra. A $\{4,3,4,3\}_g$ mozaik Ω_A alakzatának egy részlete.

5.12. ábra. A $\{4,3,4,3\}_g$ mozaik Ω_B alakzatának egy részlete.

5.13. ábra. A $\{4,3,4,3\}_g$ mozaik Ω_C alakzatának egy részlete.

5.2.2. Segédtétel. $r_{i+1} = 108a_i + 141b_i + 160c_i \quad (i \ge 1).$

BIZONYÍTÁS. A 4-dimenziós gúlák összeszámolásához az Ω alakzatok 2-dimenziós lapjait kell osztályoznunk aszerint, hogy hány W_i csúcsa van. Továbbá vegyük figyelembe, hogy minden laphoz egy kocka tartozik, mely két 4-dimenziós gúlának is alapja.

Az Ω_A alakzat W_{i-1} csúcsához tartozó 12 lapja (5.11. ábra) mentén a 4-dimenziós aszimptotikus gúlák az *i*. övezetben vannak, nem pedig az (i+1).-ben. Ω_A -nak a 12 darab $W_i W_i$ élhez tartozó, csak két W_i csúcsponttal rendelkező lapja van. Ezek által alkotott $12 \cdot 2 \cdot 2$ számú gúla összesen négy pont esetén is (i+1). övezetbeli gúláknak tekinthetők. Mégpedig a tekintett A_i és a két W_i pont, valamint e három pont esetén meghatározott négyzet negyedik csúcspontja esetén is. Tehát számukat vizsgált A_i esetén negyedeljük. Minden egyes W_i csúcsponthoz tartozó maradék 12 - 3 - 6 = 3 lap csak egy W_i pontot tartalmazó lapja Ω_A -nak. Az ezen lapokhoz tartozó $8 \cdot 3 \cdot 2$ gúla két pont, a vizsgált A_i és a W_i pont, esetén lesznek (i + 1). övezetbeli gúlák, ezért számukat a vizsgált pont esetén felezzük. Az Ω maradék 96 - 12 - 24 - 24 = 36 lapjához tartozó gúlák csak a tekintett A_i pont esetén lesznek új gúlák. Összegezve kapjuk, hogy egy A_i pont esetén az (i + 1). övezetbeli gúlák száma $(0 \cdot 12 \cdot 2) + \frac{24 \cdot 2}{4} + \frac{24 \cdot 2}{2} + 36 \cdot 2 = 108$.

Hasonlóan számolva az Ω_B , illetve Ω_C alakzat esetén az (i+1). övezetbeli gúlák száma (5.12. és 5.13. ábra): $(0 \cdot 3 \cdot 2) + \frac{6 \cdot 2 \cdot 2}{4} + \frac{(3 \cdot 7 + 2 \cdot 3) \cdot 2}{2} + (96 - 42) \cdot 2 = 141$, illetve $(0 \cdot 1 \cdot 2) + \frac{3 \cdot 2 \cdot 2}{4} + \frac{3 \cdot (12 - 5) \cdot 2}{2} + (96 - 28) \cdot 2 = 160$. Összegezve a számolásokat kapjuk a tétel állítását.

5.2.3. Megjegyzés. Az r_i sorozatok (2.2) (13. old.) alakja: $r_i = 6a_i + \frac{1}{2}c_i$ $(i \ge 1)$.

Az 5.3. táblázat a mozaik a_i, b_i, c_i és r_i sorozatainak első négy elemét tartalmazza.

$\{4,3,4,3\}_g$	a_i	b_i	C_i	r_i
i = 1	24	96	96	192
i=2	4200	14304	12576	31488
i = 3	598872	2029152	1778784	4482624
i = 4	84891432	287595744	252090912	635394048

5.3. táblázat.

5.3. Végtelen, paraszférát érintő szabályos poliéderekkel képezett mozaikok

Az 51. oldalon bevezetett 3-dimenziós végtelen poliéderekkel alkotott mozaikok esetén is tudunk övezeteket definiálni. Jelöljük \tilde{r}_i -vel az *i*. övezet tartományainak számát. Legyen a 0. övezet a P pont. Álljon az 1. övezet azokból a végtelen, paraszférát érintő szabályos poliéderekből, melyek csúcspontként tartalmazzák (körbefogják) a P pontot. (Ez az övezet tartalmazza a megfelelő aszimptotikus gúlákkal képezett mozaik 1. övezetét, a P-t körbefogó gúlákat.) Jelöljük *l*-lel a mozaik csúcsalakzatának a lapjai számát. (Ez rendre 6, 4, 8 vagy 20.) A P pont körberakásához pontosan annyi végtelen, paraszférát érintő szabályos poliéderre van szükség, ahány lapja van a megfelelő csúcsalakzatnak. Ekkor $\tilde{r}_1 = l$. Az *i*. övezet ismerete esetén álljon az (i + 1). övezet azokból a végtelen poliéderekből, melyeknek van közös véges csúcsa Π_i -vel (körülfogják Π_i -t). Ezek a végtelen poliéderek tartalmazzák azokat az aszimptotikus gúlákat a gúlamozaik (i + 1). övezetéből, melyeknek nincsen közös lapja Π_i -vel. (Amelyiknek van közös lapja, azt a gúlát már tartalmazza valamelyik korábbi végtelen poliéder, így Π_i is.) Tehát $\tilde{r}_{i+1} = (l-m)a_i + (l-2)b_i \ (i \ge 1),$ azaz \tilde{r}_{i+1} kifejezhető, lineárisan, az 5.1. fejezetben értelmezett a_i és b_i rekurzív sorozatokkal. (Az \tilde{r}_i sorozat csak $i \ge 2$ esetén fejezhető ki az a_i és b_i sorozatokkal.) Az 5.4. táblázat \tilde{r}_i első négy elemét tartalmazza.

A 4-dimenziós {4,3,4,3} mozaikra a fenti gondolatmenethez hasonlóan beláthatjuk, hogy az egyes övezetek tartományainak száma kifejezhető, lineárisan, az 5.2. fejezetben meghatározott a_i , b_i és c_i rekurzív sorozatokkal. Az első övezetet alkotó szabályos végtelen poliéderek száma a {3,4,3} szimbólumú 24-cella lapjainak számával egyenlő, azaz $\tilde{r}_1 = 24$. Egy A_i pont esetén a 24-cella lapjainak számából le kell vonnunk a 24-cella egy csúcsához tartozó cellák számát, B_i , illetve C_i pont esetén az egy élhez, illetve az egy laphoz tartozó cellák számát. Így $\tilde{r}_{i+1} = (24 - 6)a_i + (24 - 3)b_i + (24 - 2)c_i$, ahol $i \ge 1$ ($\tilde{r}_i = \frac{228}{115}a_i + \frac{-36}{115}b_i + \frac{13}{230}c_i$, ahol $i \ge 2$). Az 5.4. táblázat \tilde{r}_i első négy elemét tartalmazza.

Egy végtelen, paraszférát érintő szabályos poliéder térfogata végtelen, hogy a vizsgált határértékeket értelmezhessük a térfogataikat tekintsük egységnek (vagy az egyes övezetek térfogatai helyett csak az övezetek tartományainak a számával számoljunk).

\tilde{r}_i	$\{4, 4, 3\}$	$\{6, 3, 3\}$	$\{6, 3, 4\}$	$\{6, 3, 5\}$	$\{4, 3, 4, 3\}$
i = 1	6	4	8	20	24
i=2	72	40	240	1800	4560
i = 3	744	264	5136	137160	652656
i = 4	7464	1608	107952	10424520	92525136

5.4. táblázat.

5.4. Szabályos aszimptotikus poliéderekkel képezett mozaikok

Szabályos aszimptotikus poliédernek nevezünk egy olyan aszimptotikus poliédert a 3-dimenziós hiperbolikus térben, melynek a lapjai egybevágó szabályos aszimptotikus sokszögek (minden csúcspontja végtelen távoli, a középpontja véges pont), valamint a csúcsalakzatai is egybevágóak és szabályosak. Mind az 5 véges szabályos poliéderből (tetraéder, oktaéder, hexaéder, dodekaéder, ikozaéder) tudunk szabályos aszimptotikus poliédert konstruálni. Tekintsünk egy véges szabályos poliédert és a középpontjából "nagyítsuk" fel akkorára, hogy a csúcspontok végtelen távoli pontok legyenek (a közös csúcspontú élekből párhuzamos egyenesek lesznek), ekkor egy szabályos aszimptotikus poliédert kapunk. Az 5.14. ábrán egy P középpontú, 3-dimenziós aszimptotikus oktaéder látható. A 4-dimenziós hiperbolikus térben hasonló definícióval 6 féle szabályos aszimptotikus poliédert kapunk (v.ö. ix. oldal F.2. – F.7. ábrák).

5.14. ábra. A {3,4,4} mozaik egy tartománya, a 0. övezet.

A 3-dimenziós hiperbolikus térben az aszimptotikus ikozaéder kivételével mindegyik szabályos aszimptotikus poliéderrel képezhetünk egy-egy mozaikot, a $\{3, 4, 4\}$ szabályos aszimptotikus oktaéder-, a $\{3, 3, 6\}$ szabályos aszimptotikus tetraéder-, a $\{4, 3, 6\}$ szabályos aszimptotikus hexaéder- és a $\{5, 3, 6\}$ szabályos aszimptotikus dodekaéder mozaikot (COXETER [5]). Ezek rendre a $\{4, 4, 3\}$, $\{6, 3, 3\}$, $\{6, 3, 4\}$ és $\{6, 3, 5\}$ végtelen, paraszférát érintő szabályos poliéderekkel képezett mozaikok duálisai. A 4-dimenziós térben csak az aszimptotikus 24-cellával létezik mozaik ([5]). Ez a $\{3, 4, 3, 4\}$ mozaik, amely duálisa a $\{4, 3, 4, 3\}$ végtelen, (3-dimenziós) paraszférát érintő szabályos poliéderekkel képezett mozaiknak. A szabályos aszimptotikus poliédermozaikokat az aszimptotikus gúlákkal képezett mozaikok duálisaiként is megkaphatjuk, ha minden véges csúcspontjának vesszük a D-V celláját. Az 5.14. ábrán a $\{4, 4, 3\}_g$, négyzet alapú aszimptotikus gúlákkal képezett mozaik P csúcspontjához tartozó szabályos aszimptotikus oktaéder látszik, amely az 0. övezetét alkotja a $\{3, 4, 4\}$ mozaiknak.

A szabályos aszimptotikus poliéderek térfogata véges, melyek közelítő értékei rendre 3.66386238, 1.01494161, 5.07470803, illetve 20.58019935. A szabályos aszimptotikus poliéderek felszíne is véges melyek $8 \cdot \pi$, $4 \cdot \pi$, $6 \cdot 2\pi$, illetve $12 \cdot 3\pi$, a fenti sorrend szerint ([29, 549. old.], NÉMETH [21, 262. old.]).

5.5. Tételek

5.5.1. Tétel.

i. Négyzet alapú aszimptotikus gúlákkal képezett mozaik esetén $\lim_{1 \le i \to \infty} \frac{V_i}{S_i} = 0.9$ és $\lim_{1 \le i \to \infty} \frac{V_{i+1}}{V_i} = \lim_{1 \le i \to \infty} \frac{F_{i+1}^k}{F_i^k} = 10 \ (k = 0, 1, 2).$ Szabályos hatszög alapú aszimptotikus gúlákkal képezett mozaikok esetén $\lim_{1 \le i \to \infty} \frac{V_i}{S_i} = 0.9$

 $\frac{5}{6}, \frac{20}{21}, \text{ illetve } \frac{75}{76} \text{ és } \lim_{1 \le i \to \infty} \frac{V_{i+1}}{V_i} = \lim_{1 \le i \to \infty} \frac{F_{i+1}^k}{F_i^k} = 6, 21, \text{ illetve 76, tetraéder, oktaéder, illetve ikozaéder } \Omega \text{ alakzat esetén } (k = 0, 1, 2).$

ii. A 4-dimenziós, hexaéder alapú, aszimptotikus gúlákkal képezett mozaik esetén $\lim_{1 \le i \to \infty} \frac{V_i}{S_i} = 0.992971 \text{ és } \lim_{1 \le i \to \infty} \frac{V_{i+1}}{V_i} = 141.728617.$

BIZONYÍTÁS. A 3.5.1. tétel (40. old.) bizonyításához hasonlóan járunk el, felhasználjuk a 2.2.2. – a 2.2.4. tételt (15. – 17. old.).

i. Használva a segédtételeket kapjuk, hogy négyzet alapú aszimptotikus gúlákkal képezett mozaik esetén $\mathbf{M} = \begin{pmatrix} 4 & 6 \\ 3 & 7 \end{pmatrix}$, melynek sajátértékei $z_1 = 10$ és $z_2 = 1$. Szabályos hatszög alapú aszimptotikus gúlákkal képezett mozaikok esetén, ha az Ω – tetraéder, akkor $\mathbf{M} = \begin{pmatrix} 0 & 2 \\ -3 & 7 \end{pmatrix}$, mely sajátértékei $z_1 = 6$ és $z_2 = 1$. – oktaéder, akkor $\mathbf{M} = \begin{pmatrix} 1 & 4 \\ 0 & 21 \end{pmatrix}$, mely sajátértékei $z_1 = 20$ és $z_2 = 1$. – ikozaéder, akkor és $\mathbf{M} = \begin{pmatrix} 6 & 10 \\ 35 & 71 \end{pmatrix}$, mely sajátértékei $z_1 = 76$ és $z_2 = 1$.

Az M sajátértékeire mind a négy esetben teljesül, hogy $|z_1| > z_2 = 1$. Az i = 1, 2értékekre (2.9)-ből (15. old.) kapjuk az

egyenletrendszert. Ebből $g_1 = \frac{r_2 - r_1}{(z_1 - 1)z_1} \neq 0$, mert $r_1 \neq r_2$ (sőt $r_i = g_1 z_i^i + g_2$ szigorúan monoton növekvő, hiszen $r_2 - r_1 > 0$ miatt valójában $g_1 > 0$). Ugyanígy r_i helyett f_i^k -ra (k = 0, 1, 2) is fennáll $g_1 \neq 0$.

Tehát a négyzet alapú aszimptotikus gúlákkal képezett mozaikok esetén $\lim_{1 \le i \to \infty} \frac{V_i}{S_i}$ = $\frac{9}{10}$, $\lim_{1 \le i \to \infty} \frac{V_{i+1}}{V_i} = \lim_{1 \le i \to \infty} \frac{F_{i+1}^k}{F_i^k} = 10$. Továbbá a szabályos hatszög alapú aszimptotikus gúlákkal képezett mozaikok esetén rendre $\lim_{1 \le i \to \infty} \frac{V_i}{S_i} = \frac{5}{6} = 0.8\dot{3}$,

 $\lim_{1 \le i \to \infty} \frac{V_{i+1}}{V_i} = \lim_{1 \le i \to \infty} \frac{F_{i+1}^k}{F_i^k} = 6 \text{ és } \lim_{1 \le i \to \infty} \frac{V_i}{S_i} = \frac{20}{21} \approx 0.9524, \quad \lim_{1 \le i \to \infty} \frac{V_{i+1}}{V_i} = \lim_{1 \le i \to \infty} \frac{F_{i+1}^k}{F_i^k} = 21,$
illetve $\lim_{1 \le i \to \infty} \frac{V_i}{S_i} = \frac{75}{76} \approx 0.9868 \text{ és } \lim_{1 \le i \to \infty} \frac{V_{i+1}}{V_i} = \lim_{1 \le i \to \infty} \frac{F_{i+1}^k}{F_i^k} = 76.$

 $\begin{array}{ll} \textit{ii. Az 5.2.1. segédtételben szereplő } a_i, b_i \text{ és } c_i \text{ rekurzív sorozatok együtthatóiból képezzik az } \mathbf{M} = \begin{pmatrix} 15 & 19 & 21 \\ 44 & 63 & 75 \\ 36 & 54 & 68 \end{pmatrix} \text{ mátrixot. E mátrix sajátértékei } z_1 \approx 141.728617, \\ z_2 \approx 3.683 \text{ és } z_3 \approx 0.0554. \text{ Az } r_i \text{ sorozathoz tartozó } g_1 \approx 1.5747 \neq 0. \text{ Tehát} \\ \lim_{1 \leq i \to \infty} \frac{V_i}{S_i} \approx 0.992971 \text{ és } \lim_{1 \leq i \to \infty} \frac{V_{i+1}}{V_i} \approx 141.728617. \blacksquare \end{array}$

5.5.2. Tétel. A végtelen, paraszférát érintő szabályos poliéderekkel képezett mozaikok esetén vizsgálta $\lim_{2 \le i \to \infty} \frac{V_i}{S_i} = \lim_{2 \le i \to \infty} \frac{\tilde{r}_i}{\tilde{r}_1 + \dots + \tilde{r}_i}$, illetve $\lim_{2 \le i \to \infty} \frac{V_{i+1}}{V_i} = \lim_{2 \le i \to \infty} \frac{\tilde{r}_{i+1}}{\tilde{r}_i}$ határértékek és a nekik megfelelő aszimptotikus gúlákkal képezett mozaikok esetén vizsgált $\lim_{1 \le i \to \infty} \frac{V_i}{S_i}$, illetve $\lim_{1 \le i \to \infty} \frac{V_{i+1}}{V_i}$ határértékek megegyeznek.

BIZONYÍTÁS. A bizonyítást az 5.5.1. tételt alapján végezzük el. A paraszférát érintő poliéderekkel képezett mozaikok esetén a rekurziót leíró **M** mátrixok, így azok sajátértékei is, megegyeznek a megfelelő duális mozaikokéval. Továbbá a 3-dimenziós paraszférát érintő poliéderekkel képezett mozaikok esetén ({4, 4, 3}, {6, 3, 3}, {6, 3, 4}, {6, 3, 5}) $g_1 = \frac{\tilde{r}_3 - \tilde{r}_2}{(z_1 - 1)z_1} \neq 0$ (, mert $\tilde{r}_3 \neq \tilde{r}_2$), valamint 4-dimenziós paraszférát érintő poliéderekkel képezett mozaik, esetén az \tilde{r}_i sorozathoz tartozó (2.9) formulában ($2 \leq i \leq 4$) z_1 gyök mellett álló $g_1 \approx 0.2293 \neq 0$. Majd a 2.2.2. tételt felhasználásával, bizonyítottuk a tételt.

5.5.3. Tétel. A vizsgált határértékek szabályos aszimptotikus poliéderekkel képezett mozaikok ($\{3, 4, 4\}$, $\{3, 3, 6\}$, $\{4, 3, 6\}$, $\{5, 3, 6\}$, $\{3, 4, 3, 4\}$) esetén, megegyeznek a duálisaik megfelelő határértékeivel.

BIZONYÍTÁS. A 3.6. fejezet (42. old.) bizonyítási lépéseit alkalmazva és figyelembe véve az 5.5.1. tételt bizonyítjuk a tételt. (A szükséges számolások, beleértve a $g_1 \neq 0$ egyenlőtlenségeket is, a függelékben találhatók.)

6. fejezet

Szabályos hasábokkal képezett mozaikok

A 3-dimenziós hiperbolikus térben szabályos hasábnak nevezzük azt a konvex poliédert, amelyet a következőképpen kapunk. Egy S alapsíkon felveszünk egy szabályos sokszöget, majd a csúcspontjaiba merőleges egyeneseket állítunk az alapsíkra és tekintjük ezen egyenesek alapsíktól mindkét irányba h távolságra levő pontjait. Ezek a pontok, mint csúcspontok, egy szabályos hasábot határoznak meg (VERMES I. [32], [33]). A 6.1. ábra egy négyzet alapú szabályos hasábot szemléltet. A szabályos hasáb csúcspontjai egy, az alapsíktól h távolságra levő hiperszféra (távolságfelület) két köpenyére illeszkednek. A fedőlapok középpontjai k, (k < h) távolságra vannak az alapsíktól, tehát a fedőlapok egy k távolságú hiperszférát érintenek. A hasáboknak két típusú éle van. Nevezzük az alapsíkjukra merőleges 2h hosszúságú éleket oldaléleknek, a többit alapéleknek.

Vegyünk fel egy S síkon egy $\{p,q\}$ szabályos mozaikot $(\frac{1}{p} + \frac{1}{q} < \frac{1}{2})$. Minden tartományához határozzunk meg egy szabályos hasábot. Ezek az egybevágó hasábok egy "réteget" hoznak létre, és a hasábok közös szimmetria síkja az S sík. (A 6.2. ábrán az S alapsíkon felvett $\{4,5\}$ hiperbolikus síkmozaikból származtatott szabályos hasábok egy rétegének származtatása látható.

6.1. ábra. Egy négyzet alapú szabályos hasáb.

6.2. ábra. Szabályos hasábokból képezett mozaikok képzése.

VERMES ([32], [33]) bebizonyította, hogy bizonyos típusú szabályos hasábokkal a 3-dimenziós hiperbolikus térben mozaikok képezhetők. Ha a szabályos hasábokkal mozaikot képezünk, akkor minden P csúcspontban a mozaik Ω_P csúcsalakzatai – amelyeket, az eddigiektől eltérően, csak az alapélek figyelembevételével definiálunk (tehát az oldaléleket figyelmen kívül hagyjuk) – egybevágó szabályos poliéderek lesznek. Az egy közös oldaléllel rendelkező – amely oldalélnek egyik végpontja a P pont – hasábok alkotják az Ω_P egy lapjához tartozó hasábokat. Az egy közös alapéllel rendelkező – amely alapélnek egyik csúcspontja a P – hasábok pedig az Ω_P egy csúcsához tartozó hasábokat alkotják. (A 6.3. ábra bal oldalán a {6,4} síkmozaikból származtatott, hatszögalapú hasábmozaik egy közös oldaléllel rendelkező részlete – a negyedik tartomány takart – látható.) Mivel a lehetséges Ω csúcsalakzatnak (tetraéder, oktaéder, ikozaéder, hexaéder, dodekaéder) 3-, 4-, vagy 5-szög lapjai vannak, ezért a térbeli mozaik létezésének egy szükséges feltétele, hogy az S alapsíkon felvett $\{p, q\}$ mozaik egy csúcsában 3, 4, vagy 5 tartomány csatlakozzon egymáshoz (q = 3, 4, vagy 5). Az $\frac{1}{p} + \frac{1}{q} < \frac{1}{2}$ feltételből következik, ha q = 3 (Ω tetraéder, oktaéder, ikozaéder), akkor p > 6, ha q = 4 (Ω hexaéder), akkor p > 4, ha q = 5 (Ω dodekaéder), akkor p > 3. VERMES ([32], [33]) bebizonyította, hogy a fenti feltételnek eleget tevő minden síkmozaik esetén létezik egy-egy szabályos hasábmozaik. Az elmondottakból látható, hogy csak a háromszög alapú hasábokkal nem képezhető a hiperbolikus térben mozaik.

A továbbiakban jelöljük az Ω alakzatok csúcsainak számát *c*-vel, éleinek számát *e*-vel, lapjainak számát *l*-lel, az egy közös csúccsal rendelkező lapjainak számát *m*-mel. E fejezetben megkülönböztetjük az alap- és oldaléltávolságot.

A 6.3. ábra szabályos hatszög alapú hasábokkal képezett mozaik egy-egy részletét láthatjuk, ha a hozzá tartozó csúcsalakzat hexaéder (p = 6, q = 4).

Egy P csúcspont körül hozzuk létre most is az övezeteket. Az 1. övezetbeli hasábok azon csúcsait, melyek egy alapéltávolságra vannak P-től, azaz 2m számú 1. övezetbeli hasáb tartozik hozzájuk, jelöljük A_1 -gyel, a hozzájuk alapélek mentén csatlakozó csúcspontokat B_1 -gyel (2 vagy több alapéltávolságra van P-től). Továbbá jelöljük C_1 -gyel azokat

6.3. ábra. Egy hatszög alapú hasábmozaik egy részlete.

a csúcspontokat, melyek 1 oldaléltávolságra van P-től, azaz q számú 1. övezetbeli hasáb csatlakozik hozzájuk, az A_1 , illetve a B_1 pontokhoz oldalélben csatlakozó pontokat D_1 , illetve E_1 -gyel (1 oldaléltávolságra van A_1 -től, illetve B_1 -től). Egy P pont körberakásával keletkező Π_1 poliéder 2e számú hasábból áll. A felületén c számú A_1 pont, (p-3)e számú B_1 pont, l számú C_1 pont, mc = ql számú D_1 pont és 2(p-3)e számú E_1 pont található.

Hozzuk létre a további övezeteket. A Π_i felület azon mozaikcsúcspontjait melyekhez 2m számú *i*. övezetbeli hasáb tartozik (1 alapéltávolságra van Π_{i-1} -től) jelöljük A_i -vel, a hozzájuk alapélek mentén csatlakozó csúcspontokat B_i -vel (mindig kettő *i*. övezetbeli hasáb tartozik hozzájuk). Jelöljük C_i -vel azokat a csúcspontokat, amelyek *q* számú *i*. övezetbeli hasábnak közös csúcsai (1 oldaléltávolságra vannak Π_{i-1} -től,) az A_i , illetve a B_i pontokhoz oldalélben csatlakozó csúcsokat D_i -vel, illetve E_i -vel (egy D_i pont kettő, míg egy E_i csak egy *i*. övezetbeli hasáb csúcspontja).

Az *i*. övezethez rendelt a_i , b_i , c_i , d_i , e_i a megfelelő jelű, *i*. övezet felületén levő mozaikcsúcspont számát jelöli. Ekkor $a_1 = c$, $b_1 = (p-3)e$, $c_1 = l$, $d_1 = ma_1$, $e_1 = 2b_1$, $r_1 = 2e$ és mc = ql azonosságokból kapjuk, hogy $c_1 = l = \frac{m}{q}c = \frac{m}{q}a_1$. Megállapíthatjuk, hogy minden B_i ponthoz 2 darab E_i pont csatlakozik oldaléllel, azaz $e_i = 2b_i$. Továbbá minden A_i -hez m számú, oldaléllel csatlakozó D_i , és minden C_i -hez q számú, alapéllel csatlakozó D_i tartozik, azaz $d_i = ma_i = qc_i$, amiből $c_i = \frac{m}{q}a_i$. Tehát a c_i , d_i és az e_i rekurzív sorozatokat lineáris módon kifejezhetjük az a_i és b_i sorozatokkal.

Az 1. övezet felületén csak a fent definiált öt típusú pont van. Tegyük fel, hogy az i. övezet felületén sincs más típusú pont. Az összeszámolások után belátjuk, hogy az (i + 1). övezet felületén sem lesz más típusú pont.

Az n_i jelöléseket az 5.1.1. és 5.1.2. fejezetbeli értelemben használjuk.

6.1. Segédtétel. $n_i(A_iB_i) = ma_i$, $n_i(B_iB_i) = b_i - \frac{m}{2}a_i$, $n_i(D_iE_i) = 2ma_i$, $n_i(E_iE_i) = 2b_i - ma_i$ $(i \ge 1)$.

BIZONYÍTÁS. Minden A_i csúcshoz m számú B_i csúcs csatlakozik az i. övezetben, így az A_iB_i élek száma ma_i . Minden B_i csúcsból kettő alapél fut ki, amely A_iB_i vagy B_iB_i típusú. A számuk összesen $2b_i$. Így a B_iB_i éleket kétszer számoltuk, mert mindkét végénél figyelembe vettük. Ezért $n_i(A_iB_i) + 2n_i(B_iB_i) = 2b_i$, azaz $n_i(B_iB_i) = b_i - \frac{ma_i}{2}$. Továbbá, minden A_iB_i , illetve B_iB_i élhez kettő D_iE_i , illetve E_iE_i él tartozik, azaz $n_i(D_iE_i) = 2ma_i$, illetve $n_i(E_iE_i) = 2b_i - ma_i$.

6.2. Megjegyzés. Az $n_i(A_iA_i) = 0$, mert a hasábok alapsokszöge legalább négyszög $(p \ge 4)$.

A továbbiakban a képletek bonyolultsága miatt jelentse x_{i+1}^Y az *i*. övezet felületén levő Y típusú pontokhoz tartozó X_{i+1} típusú pontok számát. Ekkor például $a_{i+1} = a_{i+1}^A + a_{i+1}^B + \cdots + a_{i+1}^E$. Továbbá r_{i+1}^Y (azaz $r_{i+1}^A, ..., r_{i+1}^E$) jelentse mindazon (i + 1). övezetbeli hasábok számát, amelyeket egy $A_i, ..., E_i$ pontnál veszünk figyelembe (azaz amely hasábnak egy csúcsa az $A_i, ..., E_i$ pont). Itt, a 3.1.5. Segédtétel bizonyításához hasonlóan, bármely (i + 1). övezetbeli hasábot annak egy $A_i, ..., E_i$ csúcsánál csak $\frac{1}{x}$ multiplicitással veszünk figyelembe, ahol x az adott hasábhoz illeszkedő $A_i, ..., E_i$ típusú pontok összes száma. Ekkor $r_{i+1}^A, ..., r_{i+1}^E$ jelenti egy $A_i, ..., E_i$ ponthoz illeszkedő összes (i + 1). övezetbeli hasábot a saját, előbb definiált multiplicitásával véve.

6.3. Segédtétel.
$$a_{i+1}^A = (c - (m+1))a_i$$
 $(i \ge 1)$.

$$\begin{aligned} Ha \ q &= 3, \ akkor \ b_{i+1}^A \ = \ \left(\frac{m(p-5)}{3} + \frac{m(m-3)(p-4)}{2} + (e-m(m-1))(p-3)\right)a_i, \\ r_{i+1}^A \ &= \ 2\left(\frac{m}{3} + \frac{m(m-3)}{2} + (e-m(m-1))\right)a_i. \\ Ha \ q &> 3, \ akkor \ b_{i+1}^A \ &= \ \left(\frac{m(m-1)(p-4)}{2} + (e-m^2)(p-3)\right)a_i, \\ r_{i+1}^A \ &= \ 2\left(\frac{m(m-1)}{2} + (e-m^2)\right)a_i. \end{aligned}$$

BIZONYÍTÁS. Minden A_i csúcshoz m számú B_i csúcs csatlakozik az i. övezet felületén, így Ω_A -nak már m + 1 csúcspontja létezik az i. övezetben (6.4. ábra). Tehát az A_{i+1} pontok száma az Ω_A többi csúcspontjainak számával (tetraéder csúcsalakzat esetén nincs ilyen csúcspont), c - (m + 1)-gyel egyenlő. Az (i + 1). övezet felületen összesen $a_{i+1}^A = (c - (m + 1))a_i$.

 Ω_A éleinek vizsgálatával állapítjuk meg az A_i csúcsponthoz tartozó hasábok, azon a B_{i+1} csúcsok számát, melyek az élek típusától függően több ponthoz is tartozhatnak.

Először azt az esetet vizsgáljuk, ha q = 3 (6.4. ábra). A B_i pontokat összekötő m számú él mentén kapott 2m számú, (i + 1)-dik övezetbeli hasáb alapjának (amely egy

6.4. ábra. A mozaik egy Ω_A csúcsalakzata q = 3 esetén.

6.5. ábra. A mozaik egy Ω_A csúcsalakzata q = 4 esetén.

p-szög), a tekintett A_i , a két B_i csúcspontokon kívül van két A_{i+1} pontja is. Ezen A_{i+1} pontokat a két B_i körberakásával kapjuk. A p-szög további p-5 számú csúcspontja B_{i+1} pont, melyek az A_i -hez tartoznak (6.4. ábra). Ezek a csúcspontok vannak kettő vagy több alapéltávolságra a vizsgált A_i -től. Ezen élek mentén a hasábok és a B_{i+1} pontok is a három i. övezetbeli ponthoz is tartoznak (a tekintett A_i , és a két B_i), így számukat osztjuk 3-mal. A B_i pontokhoz csatlakozó többi m(m-3) számú él (csak oktaéder és ikozaéder csúcsalakzat esetén) mentén p-4 számú B_{i+1} csúcspont van, amelyek, akár a hasábok, kettő ponthoz is tartoznak (a tekintett A_i , és a B_i), így számukat felezzük. A fennmaradó e - (m(m-1)) számú él (csak ikozaéder csúcsalakzat esetén) mentén p-3 számú B_{i+1} csúcspont lesz és ezek csak az A_i ponthoz tartoznak a hasábokkal együtt. Összegezve kapjuk a segédtétel állítását q = 3 esetre.

Másodszor azt az esetet vizsgáljuk, ha q > 3 (6.5. ábra). A B_i csúcspontokhoz csatlakozó m(m-1) számú él mentén p-4 darab B_{i+1} pont lesz, amelyek, akár csak a hasábok, kettő ponthoz is tartoznak. Így számukat felezzük. A fennmaradó többi $e - m^2$ számú él mentén p - 3 számú B_{i+1} pont lesz és ezek csak az A_i ponthoz tartoznak a hasábokkal együtt. Összegezve kapjuk a segédtétel állítását q > 3 esetre. **6.4. Segédtétel.** $a_{i+1}^B = (c-2)b_i \quad (i \ge 1),$

$$\begin{split} b_{i+1}^B &= (e - (2m - 1))(p - 3)b_i + \frac{2n_i(A_iB_i)(p - 5)}{3} + \frac{n_i(A_iB_i)(m - 3)(p - 4)}{2} + \\ &+ \frac{2n_i(B_iB_i)(m - 1)(p - 4)}{2}, \\ r_{i+1}^B &= 2(e - (2m - 1))b_i + \frac{2 \cdot 2n_i(A_iB_i)}{3} + \frac{2n_i(A_iB_i)(m - 3)}{2} + \frac{2 \cdot 2n_i(B_iB_i)(m - 1)}{2} \end{split}$$

BIZONYÍTÁS. Minden B_i csúcshoz csatlakozik kettő *i*. övezetbeli pont, amely lehet A_i vagy B_i . A 6.6. ábrán ezeket *R*-rel és *Q*-val jelöltük. Tehát az A_{i+1} pontok száma c-2, azaz $a_{i+1}^B = (c-2)b_i$.

Az RQ élhez csatlakozó élek mentén kapott B_{i+1} pontok száma, függ a testszöglet csúcspontjának típusától. Vizsgáljuk a Q csúcspontot.

a.) Ha Q csúcspont A_i típusú, akkor hozzá kapcsolódó 2 él mentén (az *i*. övezetbeli élre illeszkedő lapok A_i -re illeszkedő élei) p-5 darab B_{i+1} pont lesz, mert a $Q = A_i$ hez a vizsgált B_i -n kívül még egy *i*. övezetbeli B_i pont is csatlakozik, és mindkét B_i -hez csatlakozik egy-egy A_{i+1} pont is. Így az élek mentén keletkező *p*-szögek p-5 pontja lesz B_{i+1} pont. Ezek a B_{i+1} pontok mindhárom *i*. övezetbeli ponthoz tartoznak, tehát számukat harmadoljuk. Az összes ilyen él száma a Π_i felületén $2n_i(A_iB_i)$, a B_{i+1} pontok száma $\frac{2}{3}n_i(A_iB_i)(p-5)$. A $Q = A_i$ -re illeszkedő többi m-3 él mentén p-4 számú B_{i+1} pont lesz, melyek csak a $Q = A_i$ -hez és a vizsgált B_i ponthoz tartoznak. Számuk összesen $\frac{1}{2}n_i(A_iB_i)(m-3)(p-4)$.

b.) Ha Q csúcspont B_i típusú, akkor a hozzá kapcsolódó m-1 számú él mentén p-4 számú B_{i+1} pont keletkezik. Ezek a B_{i+1} pontok mindkettő i. övezetbeli B_i ponthoz tartoznak, tehát számukat felezzük. Az összes ilyen él száma a Π_i felületén $2n_i(B_iB_i)(m-1)$.

Az R és Q csúcsokhoz nem csatlakozó e - (2m - 1) él mentén p - 3 számú B_{i+1} pont van, amelyek csak a vizsgált B_i ponthoz tartoznak.

Összegezzük a kapott B_{i+1} pontok számát.

6.6. ábra. A mozaik egy Ω_B csúcsalakzata q = 3 esetén.

6.7. ábra. A mozaik egy Ω_C csúcsalakzata q = 3 esetén.

Minden új, (i + 1). övezetbeli él mentén csatlakozik 2 hasáb, melyek az egyes élek mentén mindig annyi ponthoz tartoznak, mint a B_{i+1} pontok. Figyelembe véve a B_{i+1} pontokra kapott kifejezéseket, kapjuk a segédtétel állítását.

6.5. Segédtétel. $a_{i+1}^C = (c-q)c_i \quad (i \ge 1),$

$$b_{i+1}^C = \left(\frac{q(m-2)(p-4)}{2} + (e-q(m-1))(p-3)\right)c_i,$$

$$r_{i+1}^C = \left(\frac{2q(m-2)}{2} + 2(e-q(m-1) + \frac{p}{q})\right)c_i.$$

BIZONYÍTÁS. Minden C_i csúcsnál Ω_C -nek már egy lapja mentén léteznek a hasábok (6.7. ábra), így $a_{i+1}^C = (c-q)c_i$. A D_i csúcsokhoz illeszkedő q(m-2) számú él mentén p-4 számú B_{i+1} pont és kettő hasáb van, de a C_i ponton kívül ezek egy-egy D_i ponthoz is tartoznak. Így számukat felezzük. A többi e - q(m-1) él mentén a p-3számú B_{i+1} pont és a két hasáb csak a C_i ponthoz tartozik. Az *i*. övezetbeli élek mentén még egy-egy új hasáb is csatlakozik, amely az élhez tartozó összes *i*. övezetbeli csúcshoz is tartozik, ezért számukat osztjuk *q*-val. Így kapjuk a segédtétel állítását.

6.6. Segédtétel. $a_{i+1}^D = (c-3)d_i$ $(i \ge 1)$.

$$\begin{aligned} Ha \ q &= 3, \ akkor \ b_{i+1}^{D} \ = \ \left(\frac{p-5}{3} + \frac{2(m-2)(p-4)}{2} + \frac{(m-2)(p-4)}{2} + \frac{(m-2)(p-4)}{2} + \right. \\ &+ (e-3(m-1))(p-3) \Big) d_i, \\ r_{i+1}^{D} \ &= \ 2 \left(\frac{1}{p} + \frac{1}{3} + \frac{2(m-2)}{2} + \frac{m-2}{2} + (e-3(m-1)) \right) d_i. \\ Ha \ q &> 3, \ akkor \ b_{i+1}^{D} \ &= \ \left(\frac{2(m-1)(p-4)}{2} + \frac{(m-2)(p-4)}{2} + \frac{(m-2)(p-4)}{2} + \frac{(e-(m+2(m-1)))(p-3) \right) d_i, \\ r_{i+1}^{D} \ &= \ 2 \left(\frac{1}{p} + \frac{2(m-1)}{2} + \frac{m-2}{2} + (e-(m+2(m-1))) \right) d_i. \end{aligned}$$

6.8. ábra. A mozaik egy Ω_D csúcsalakzata q = 3 esetén.

6.9. ábra. A mozaik egy Ω_A csúcsalakzata q = 4 esetén.

BIZONYÍTÁS. Minden D_i csúcsnál Ω_D -nek már két egymáshoz csatlakozó éle mentén közös alapon létezik egy-egy hasáb (6.8. ábra), így $a_{i+1}^D = (c-3)d_i$. Ezen két élhez tartozó másik két hasáb az *i*. övezetbeli hasábhoz lapban csatlakozik, azaz a *p* ponthoz is tartoznak. A további vizsgálatot megint ketté kell választanunk.

Ha q = 3 (6.8. ábra). Az $E_i E_i$ élhez p - 5 számú B_{i+1} pont és 2 új hasáb tartozik, amelyek a vizsgált D_i és a két E_i pontokhoz is tartoznak. Az E_i pontokhoz tartozó további 2(m-2) él mentén két új hasáb és p-4 számú B_{i+1} pont keletkezik, melyek két ponthoz is tartoznak. A C_i ponthoz tartozó m-2 új él mentén szintén p-4 számú B_{i+1} pont lesz az (i+1). övezetben, melyek szintén két ponthoz is tartoznak. Az Ω_D fennmaradó további e - 3(m-1) éle mentén keletkező új hasábok és B_{i+1} pontok, melyek száma p-3, csak a D_i ponthoz tartoznak. Összegezve kapjuk a segédtétel állítását q = 3 esetre.

Ha q > 3 (6.9. ábra). Az E_i pontokhoz tartozó 2(m-1) új él mentén két új hasáb és p-4 számú B_{i+1} pont keletkezik, melyek két ponthoz is tartoznak. A C_i ponthoz tartozó m-2 új él mentén p-4 számú B_{i+1} pont és két hasáb lesz és számukat harmadoljuk. A további e - (m + 2(m - 1)) él mentén keletkező új hasábok és B_{i+1} pontok, melyek száma p-3, csak a D_i ponthoz tartoznak. Összegezve kapjuk a segédtétel állítását q > 3 esetre. ■

6.10. ábra. A mozaik egy Ω_E csúcsalakzata q = 3 esetén.

6.7. Segédtétel. $a_{i+1}^E = (c-2)c_i \quad (i \ge 1),$

$$b_{i+1}^{E} = (e - (2m - 1))(p - 3)e_{i} + \frac{n_{i}(D_{i}E_{i})(p - 5)}{3} + \frac{n_{i}(D_{i}E_{i})(m - 2)(p - 4)}{2} + \frac{2n_{i}(E_{i}E_{i})(m - 1)(p - 4)}{2},$$

$$r_{i+1}^{E} = \left(\frac{1}{p} + 2(e - (2m - 1))\right)e_{i} + \frac{2n_{i}(D_{i}E_{i})}{3} + \frac{2n_{i}(D_{i}E_{i})(m - 2)}{2} + \frac{2 \cdot 2n_{i}(E_{i}E_{i})(m - 1)}{2}.$$

BIZONYÍTÁS. Minden E_i csúcsnál egy *i*. övezetbeli hasáb létezik (6.10. ábra). Ezért $a_{i+1}^E = (c-2)e_i$. A hozzá alaplapban csatlakozó új hasáb (az $\Omega_E i$. övezetbeli éléhez tartozó másik hasáb) *p* ponthoz is tartozik. A régi élhez csatlakozó élek mentén kapott B_{i+1} pontok száma, hasonlóan az Ω_B vizsgálatához, függ az Ω_E csúcspontjának típusától.

Ha a csúcspont D_i típusú, akkor a hozzá kapcsolódó egyik él mentén (amely Ω_E azon lapjára illeszkedik, amelyhez az *i*. övezetbeli hasáb is) p - 5 számú B_{i+1} pont lesz, mert a D_i pontokhoz csatlakozik a vizsgált E_i ponton kívül még egy *i*. övezetbeli E_i pont is, és mindkettőhöz csatlakozik egy-egy A_{i+1} pont is. Ezek a B_{i+1} pontok mindhárom *i*. övezetbeli ponthoz tartoznak, tehát számukat harmadoljuk. Az összes ilyen él száma a Π_i felületén $n_i(D_iE_i)$, az B_{i+1} pontok száma $\frac{1}{3}n_i(D_iE_i)(p-5)$. A D_i -re illeszkedő többi él mentén p - 4 számú B_{i+1} pont lesz. Számuk összesen $\frac{1}{2}n_i(D_iE_i)(m-2)(p-4)$.

Ha a csúcspont E_i típusú, akkor a hozzá kapcsolódó m-1 számú él mentén p-4 számú B_{i+1} pont lesz. Ezek a B_{i+1} pontok mindkettő *i*. övezetbeli ponthoz tartoznak, tehát számukat felezzük. Az összes ilyen él száma a Π_i felületén $2n_i(E_iE_i)(m-1)$.

A további e - (2m - 1) él mentén, a hasábok és a p - 3 számú B_{i+1} pont csak a vizsgált E_i ponthoz tartoznak. Összegezve kapjuk a segédtétel állítását.

6.8. Megjegyzés. A c_{i+1} , d_{i+1} és az e_{i+1} sorozattagokat az a_{i+1} és a b_{i+1} sorozattagokból szintén meghatározhatjuk. Az (i+1). övezeten A_{i+1} , B_{i+1} , C_{i+1} , D_{i+1} és E_{i+1} típusú pontokon kívül más típusú pont nincs, az összes csúcspontot besoroltuk valamelyik típusba.

6.9. Tétel. Szabályos hasábokkal képezett mozaikok esetén ($p \le 10$)

- i. ha a csúcsalakzat tetraéder, akkor $p \ge 7$ -re $\lim_{\substack{1 \le i \to \infty \\ v_i = z_{11} = z_{11} = z_{11} = z_{11} = 3p - 4 + \frac{6}{p} + \frac{1}{p}\sqrt{9p^4 + 24p^3 - 335p^2 + 204p + 36}$ és $\lim_{1 \le i \to \infty} \frac{V_i}{S_i} = \frac{z_{11} - 1}{z_{11}}$.
- $\begin{array}{ll} \textit{ii. ha a csúcsalakzat oktaéder, akkor } p \geq 7\text{-}re \\ & \lim_{1 \leq i \to \infty} \frac{V_{i+1}}{V_i} = z_{12} = \frac{39}{4}p 13 + \frac{33}{2p} + \frac{1}{4p}\sqrt{1521p^4 + 1248p^3 29084p^2 + 26400p + 4356p^3 + 26400p + 26400p + 4356p^3 + 26400p + 26400p + 4356p^3 + 26400p + 26600p + 2660$
- iii. ha a csúcsalakzat ikozaéder, akkor $p \ge 7$ -re $\lim_{1 \le i \to \infty} \frac{V_{i+1}}{V_i} = z_{13} = \frac{69}{2}p - 48 + \frac{51}{p} + \frac{3}{2p}\sqrt{529p^4 - 184p^3 - 5576p^2 + 7480p + 1156}} \quad és$ $\lim_{1 \le i \to \infty} \frac{V_i}{S_i} = \frac{z_{13} - 1}{z_{13}}.$
- $\begin{array}{l} \textit{iv. ha a csúcsalakzat hexaéder, akkor } p \geq 5\text{-}re \\ \lim_{1 \leq i \to \infty} \frac{V_{i+1}}{V_i} = z_{14} = 12p 16 + \frac{16}{p} + \frac{\sqrt{3}}{3p}\sqrt{432p^4 343p^3 4459p^2 + 5664p + 768} \ \textit{és} \\ \lim_{1 \leq i \to \infty} \frac{V_i}{S_i} = \frac{z_{14} 1}{z_{14}}. \end{array}$
- $\begin{array}{l} v. \ ha \ a \ cs\acute{u}csalakzat \ dodeka\acute{e}der, \ akkor \ p \geq 4-re \\ \lim_{1 \leq i \to \infty} \frac{V_{i+1}}{V_i} = z_{15} = 39p 50 + \frac{50}{p} + \frac{\sqrt{3}}{3p} \sqrt{4563p^4 6245p^3 25289p^2 + 56100p + 7500} \\ es \ \lim_{1 \leq i \to \infty} \frac{V_i}{S_i} = \frac{z_{15} 1}{z_{15}}. \end{array}$

BIZONYÍTÁS. Összegezzük a 6.3 – 6.7. segédtételek eredményeit, majd alkalmazzuk a $c_i = \frac{m}{q}a_i, d_i = ma_i, e_i = 2b_i$ ismereteket. A megfelelő algebrai átalakítások után a csúcsalakzatok adatait behelyettesítjük és alkalmazzuk a 2.2. fejezet tételeit, így kapjuk a fenti határértékeket. A számításokat terjedelmük miatt a függelékben közöljük és a konkrét értékeket (köztük $g_1 \neq 0$ bizonyítását) csak $p \leq 10$ esetekre számoltuk ki.

6.10. Megjegyzés.

a) Az 1.2. és az 1.3. táblázat (10. old.) a $\lim_{1 \le i \to \infty} \frac{V_{i+1}}{V_i}$ és a $\lim_{1 \le i \to \infty} \frac{V_i}{S_i}$ néhány értékét $(p \le 10)$ mutatja p és Ω függvényében.

b) Megjegyezzük, hogy a 6.9. tételbeli $z_{11}, ..., z_{15}$ kifejezések p > 10 eseten is sajátértékei a megfelelő mátrixnak, így a mátrix legnagyobb abszolutértékű sajátértékének abszolut értéke legalább ekkora. Tegyük fel, hogy p > 10 esetén is $g_1 \neq 0$. Akkor $\lim_{p \to \infty} \lim_{i \to \infty} \frac{V_{i+1}}{V_i} = \infty$

 $\text{és } \lim_{p \to \infty} \lim_{i \to \infty} \frac{V_i}{S_i} = 1.$

Irodalomjegyzék

- [1] Böhm J. Hertel E., Polyedergeometrie in n-dimensionalen Räumen konstanter Krümmung, Birkhäuser, Basel, 1981.
- [2] Böröczky K., Gömbkitöltések állandó görbületű terekben I-II., Mat. Lapok 25, 3-4 (1974), 265-306, Mat. Lapok 26, 1-2 (1975), 67-90.
- [3] Bravais, A, Abhandlung über die Systeme von regelmässig auf einer Ebene oder im Raum vertheilten Punkten,(1848). Ostwalds Klassiker, N.90, Leipzig, 1891.
- [4] Coxeter, H.S.M., Discrete groups generated by reflections, Ann. Math., II. Sec. 35 (1934), 588-621.
- [5] Coxeter, H.S.M., Regular honeycombs in hyperbolic space, Proc. Int. Congress of Math. Amsterdam, Vol. III. (1954), 155-169.
- [6] Coxeter, H.S.M., *Regular polytopes*, 3 ed. Chelsea, New York, 1973.
- [7] Coxeter, H.S.M. Moser, W.O.J., Generators and Relations for Discrete Groups, 4th ed., Springer, Berlin-Heidelberg-New York, 1980.
- [8] Coxeter, H.S.M., A geometriák alapjai, Műszaki Könyvkiadó, Budapest, 1987.
- [9] Dress, A.W.M., Presentation of discrete groups, acting on simply connected manifolds in terms of parametrized systems of Coxeter matrices – A systematic approach, Advances in Math. Vol. 63 (1987), 196-212.
- [10] Grünbaum, B. Shephard, G.C., *Tilings and Patterns*, W.H. Freeman and Company, New York, 1987.
- [11] Fedorov, E.S., Nacsalo Ucsenija o Figurah, St.Petersburg, 1885.
- [12] Fedorov, E.S, Symmetry of regular systems of figures, Proc. St.Petersburg, Mineral.
 Soc. 28 (1891), 1-146 (oroszul) Reguläre Plan- und Raumtheilung Abh. K. Bayer
 Akad. d. Wiss. 11 (1899), 465-588.
- [13] Fejes Tóth, G., New results in the theory of packing and covering, Convexity and its applications, ed. P.M. Gruber and J.M. Wills, Birkhäuser Verlag (1983), 318-349.
- [14] Fejes Tóth, L., *Regular Figures*, Akadémiai Kiadó, Budapest, 1964.

- [15] Heppes, A. Molnár, J., Újabb eredmények a diszkrét geometriában I-III., Matematikai Lapok, XI. 4. Bp. (1960), 331-355, Matematikai Lapok, XIII. 1-2. Bp. (1962), 39-72, Matematikai Lapok, XVI. 1-2. Bp. (1965), 19-41.
- [16] Horváth, J., Über die regulären Mosaiken der hyperbolischen Ebene, Ann. Univ. Sci., Budapest. Eötvös Sect. Math. 7 (1964), 49-53.
- [17] Im Hof, H.-C., Napier cycles and hyperbolic Coxeter groups, Bull. Soc. Math. Belg. Sér. A 42 (1990), 523-545.
- [18] Kárteszi, F., Eine Bemerkung über das Dreiecksnetz der hyperbolischen Ebene, Publ. Math. Debrecen, 5 (1957), 142-146.
- [19] Molnár E., Some old and new aspects on the crystallographic groups, Periodica Polytechnica Ser. Mech. Eng. Vol. 36, Nos. 3-4 (1992), 191-218.
- [20] Németh L., Combinatorial examination of the mosaic with asymptotical square pyramids, Proceedings of Symposium on Computational Geometry SCG'2002, Vol. 11., Bratislava (2002), 56-59.
- [21] Németh L., Combinatorial examination of mosaics with asymptotic pyramids and their reciprocals in 3-dimensional hyperbolic space, Studia Sci. Math. Hungar. 43 (2), (2006), 247-264.
- [22] Németh L., On the 4-dimensional hyperbolic hypercube mosaic, Publ. Math., Debrecen, (közlésre elfogadva).
- [23] Prékopa, A., Valószínűségelmélet műszaki alkalmazásokkal, Műszaki könyvkiadó, Budapest, 1962.
- [24] Rózsa, P., Lineáris algebra és alkalmazásai, Tankönyvkiadó, Budapest, 1991.
- [25] Schoenflies, A., Kristallsysteme und Kristallstruktur, Teubner, Leipzig, 1891.
- [26] Schwarzenberger, R.L.E., N-dimensional crystallography, Pitman Adv. Publ. Program, San Francisco-London-Melbourne, 1980.
- [27] Shorey, T.N. Tijdeman. R., Exponential diophantine equations, Cambridge University Press, 1986.
- [28] Stillwell, J., The story of the 120-cell, Notices of Amer. Math. Soc. 48 (2001), 17-24.
- [29] Szirmai, J., The optimal ball and horoball packings of the Coxeter tilings in the hyperbolic 3-space, Beitr. Algebra Geom. 46(2) (2005), 545-558.
- [30] Vermes, I., A hiperbolikus sík lefedése aszimptotikus sokszögekkel, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 20 (1971) 341-347.

- [31] Vermes, I., Über die Parkettierungsmöglichkeit der hyperbolischen Ebene durch nicht-total asymptotische Vielecke. Wissenschaftliche Zeitschrift der Martin-Luther-Universität Halle, 1 (1971), 9-13.
- [32] Vermes, I., Über die Parkettierungsmöglichkeit des dreidimensionalen hyperbolischen Raumes durch kongruente Polyeder, Studia Sci. Math. Hungar. 7 (1972), 267-287.
- [33] Vermes, I., Síkbeli és térbeli hiperbolikus mozaikok vizsgálata, Kandidátusi értekezés, Budapest, 1971.
- [34] Vinberg, E.B. Shvartsman, O.V., Discrete groups of motions of spaces of constant curvature, in Geometry II. Encyclopaedia of Math. Sci., Springer-Verlag, 1991.
- [35] Weyl, H., Szimmetria, Gondolat, Budapest, 1982.
- [36] Zeitler, H., Über eine Parkettierung des dreidimensionalen hyperbolischen Raumes, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 12 (1969), 3-10.

Függelék

F.1. Korlátos tartományú szabályos mozaikok

F.1.1. 3-dimenziós korlátos tartományú szabályos mozaikok

Tekintsük a 3-dimenziós euklideszi és a 3-dimenziós hiperbolikus tér azon $\{p, q, r\}$ mozaikjait, melyek tartománya korlátos. Az euklideszi tér $\{4, 3, 4\}$ mozaikja ilyen, a hiperbolikus térben pedig a $\{4, 3, 5\}$ kockamozaik, az $\{5, 3, 4\}$ és az $\{5, 3, 5\}$ dodekaédermozaik, illetve a $\{3, 5, 3\}$ ikozaéder mozaiknak van korlátos tartománya ([5]).

Nevezzük egy $\{p, q, r\}$ mozaik k-dimenziós lapjának a középpontját k-pontnak. Ekkor a 0-pontok a mozaik csúcspontjai, az 1-pontok az élfelező pontok, a 2-pontok a lapközéppontok és a 3-pontok a mozaik tartományainak a testközéppontjai. Azok a 0-, 1-, 2- és 3-pontok egy 0123-tetraédert határoznak meg, melyeknek van közös tartományuk, a 0-, 1-, és 2-pontoknak van egy közös lapjuk, míg a 0- és 1-pontoknak van egy közös élük. E tetraédert nevezzük a mozaik karakterisztikus szimplexének. Az F.1. ábrán a $\{4, 3, 4\}$ mozaik egy részlete és a mozaik egy karakterisztikus szimplex 01-éléhez tartozó lapszög $\frac{\pi}{r}$, tehát az él mentén 2r számú karakterisztikus szimplex csatlakozik egymáshoz. A 03-él mentén a mozaik forgásszimmetriája q, a karakterisztikus szimplex lapszöge $\frac{\pi}{q}$ és 2q számú szimplex kapcsolódik egymáshoz ezen él mentén. A 23-él mentén a forgásszimmetria p, a lapszög $\frac{\pi}{p}$ valamint 2p számú szimplex csatlakozik egymáshoz. A karakterisztikus szimplex többi éle mentén a mozaik forgásszimmetriája 2, a lapok szöge pedig $\frac{\pi}{2}$ és az egymáshoz kapcsolódó karakterisztikus szimplexek száma 4. A mozaik bármely két karakterisztikus szimplex tükrözések egymás utáni alkalmazásával egymásba vihető ([34]).

F.1. ábra. A $\{p,q,r\} = \{4,3,4\}$ mozaik karakterisztikus szimplexe.

Tetszőleges k-pontot csúcspontként tartalmazó szimplexek a k-pont körül egy szimplexövezetet hoznak létre, a k-pontot tartalmazó tartományok (a k-pont a közös k-dimenziós lapjuk középpontja) pedig a k-pont körüli mozaikövezetet.

Definíció. Jelentse k_x^y az x-pont körüli szimplexövezet y-pontjainak számát, g_x^y az x-pont körüli mozaikövezet y-pontjainak számát $(x, y \in \{0, 1, 2, 3\})$.

F.1.1. Segédtétel. A k_x^y értékeit a $\mathbf{K} = (k_x^y)$, $x, y \in \{0, 1, 2, 3\}$ mátrix adja, ahol $U = \frac{4}{\frac{1}{r} + \frac{1}{q} - \frac{1}{2}}$ és $V = \frac{4}{\frac{1}{r} + \frac{1}{q} - \frac{1}{2}}$.

$$\mathbf{K} = (k_x^y) = \begin{pmatrix} 1 & \frac{V}{2r} & \frac{V}{4} & \frac{V}{2q} \\ 2 & 1 & r & r \\ p & p & 1 & 2 \\ \frac{U}{2q} & \frac{U}{4} & \frac{U}{2p} & 1 \end{pmatrix} \begin{pmatrix} 0. \ sor \\ 1. \ sor \\ 2. \ sor \\ 3. \ sor \\ y. \ oszlop \end{pmatrix}$$

BIZONYÍTÁS. Tekintsünk egy 0-pontot. A mozaik transzformációcsoportjának vegyük a 0-pontot helybenhagyó részcsoportját. E véges (gömbi) jólismert csoport rendje $V = \frac{4\pi}{\frac{r}{r} + \frac{q}{q} - \frac{\pi}{2}} = \frac{4}{\frac{1}{r} + \frac{1}{q} - \frac{1}{2}} = \frac{8rq}{4 - (r-2)(q-2)}$. Tehát a 0-pont körüli szimplexek száma V. E szimplexövezetben csak egyetlen 0-pont van, az öv középpontja, azaz $k_0^0 = 1$. Minden 01-él mentén 2r számú szimplex csatlakozik. Ha a 0-pont körüli szimplexek számát elosztjuk 2r-rel, megkapjuk a 0-pont körüli 1-pontok számát. Ekkor $k_0^1 = \frac{V}{2r}$. Hasonlóan $k_0^2 = \frac{V}{4}$ és $k_0^3 = \frac{V}{2q}$.

A többi pont körül is hozzunk létre egy-egy szimplexövet és az előzőhöz hasonlóan számoljuk ki a k_x^y értékeket. Az 1-pont körüli szimplexek száma 4r, ekkor $k_1^0 = 2, k_1^1 = 1, k_1^2 = r, k_1^3 = r$.

A 2-pont körüli szimplexek száma 4p, ekkor $k_2^0 = p, k_2^1 = p, k_2^2 = 1, k_2^3 = 2.$

A 3-pont körüli szimplexek száma, megint a véges gömbi csoport rendje is, $U = \frac{4\pi}{\frac{\pi}{p} + \frac{\pi}{q} - \frac{\pi}{2}} = \frac{4}{\frac{1}{p} + \frac{1}{q} - \frac{1}{2}} = \frac{8pq}{4 - (p-2)(q-2)}$, és $k_3^0 = \frac{U}{2q}$, $k_3^1 = \frac{U}{4}$, $k_3^2 = \frac{U}{2p}$, $k_3^3 = 1$.

F.1.2. Megjegyzés. Általánosan a k_x^y értéket az x-pontot és az xy-élt tartalmazó karakterisztikus szimplexek számának hányadosa adja.

F.1.3. Megjegyzés. A k_x^y definíciójából adódik, hogy a **K** mátrixot a következő módon is meghatározhatjuk:

$$\mathbf{K} = \begin{pmatrix} 1 & \operatorname{csúcs}\{q, r\} & \operatorname{\acute{e}l}\{q, r\} & \operatorname{lap}\{q, r\} \\ 2 & 1 & r & r \\ p & p & 1 & 2 \\ \operatorname{csúcs}\{p, q\} & \operatorname{\acute{e}l}\{p, q\} & \operatorname{lap}\{p, q\} & 1 \end{pmatrix},$$
(F.1)

ahol csúcs $\{q, r\}$, él $\{q, r\}$, illetve lap $\{q, r\}$ a 3-dimenziós $\{q, r\}$ szabályos test (2-dimenziós szférikus mozaik) csúcsainak, éleinek, illetve lapjainak számát jelenti.

$$\mathbf{F.1.4. Segédtétel.} \ g_x^y = \sum_{j=\max\{x,y\}}^3 (-1)^{3-j} k_x^j \cdot k_j^y, \ mátrix \ alakban \\ \mathbf{G} = (g_x^y) = \begin{pmatrix} V\left(\frac{U}{4q^2} + \frac{1}{r} - \frac{p}{4}\right) - 1 & V\left(\frac{U}{8q} + \frac{1}{2r} - \frac{p}{4}\right) & V\left(\frac{U}{4pq} - \frac{1}{4}\right) & V\frac{1}{2q} \\ r\left(\frac{U}{2q} - p\right) + 2 & r\left(\frac{U}{4} - p\right) + 1 & r\left(\frac{U}{2p} - 1\right) & r \\ \frac{U}{q} - p & \frac{U}{2} - p & \frac{U}{p} - 1 & 2 \\ \frac{U}{2q} & \frac{U}{4} & \frac{U}{2p} & 1 \end{pmatrix},$$

ahol x a sorindex, y az oszlopindex, $U = \frac{4}{\frac{1}{p} + \frac{1}{q} - \frac{1}{2}}$ és $V = \frac{4}{\frac{1}{r} + \frac{1}{q} - \frac{1}{2}}$.

BIZONYÍTÁS. Tekintsünk egy x-pontot és az x-pont körüli mozaikövet. E mozaikövezetet úgy is megkapjuk, hogy az x-pont körüli szimplexöv 3-pontjai köré egy-egy szimplexövet hozunk létre. (Egy 3-pont körüli szimplexöv a mozaik egy tartományát adja.) Ezek összessége, uniója adja az x-pont körüli tartományokból álló övezetet. Számoljuk össze ezen mozaikövezet y-pontjait.

Az egyes pontok összeszámolásánál a kombinatorikai szita-formulát alkalmazzuk, amely a következő:

SZITA-FORMULA. [23, 41. old.] Legyenek adottak az A_j $(j \in \{1, 2, ..., n\})$, véges elemű halmazok, akkor uniójuk elemeinek számára igaz, hogy

$$\left| \bigcup_{j=1}^{n} A_{j} \right| = \sum_{j=1}^{n} |A_{j}| - \sum_{\substack{j_{1}, j_{2}=1\\j_{1} < j_{2}}}^{n} |A_{j_{1}} \cap A_{j_{2}}| + \sum_{\substack{j_{1}, j_{2}, j_{3}=1\\j_{1} < j_{3} < j_{3}}}^{n} |A_{j_{1}} \cap A_{j_{2}} \cap A_{j_{3}}| - \cdots$$
(F.2)
$$\cdots + (-1)^{n-1} |A_{j_{1}} \cap A_{j_{2}} \cap \cdots \cap A_{j_{n}}|$$

Az x-pont körüli y-pontok számának összeszámolásakor először meghatározzuk a tartományok y-pontjait, majd a többszörösen számolt pontokat számát kivonjuk.

Először tekintsünk egy 0-pontot. Határozzuk meg a 0-pont körüli mozaikövezet 0-pontjainak számát, azaz g_0^0 -t. A 0-pont körüli szimplexövezet 3-pontjainak száma k_0^3 . Ezen 3-pontok köré egy-egy szimplexövezetet hozunk létre. Ezen szimplexövek száma is k_0^3 és uniójuk lesz a 0-pont körüli mozaikövezet. Minden 3-pont körüli szimplexövezet k_3^0 számú 0-pontot, azaz mozaikcsúcspontot tartalmaz. Tehát multiplicitással összesen $k_0^3 \cdot k_3^0$.

Ekkor néhány 0-pontot többszörösen számoltunk. Mindet annyiszorosan, ahány tartomány közös csúcspontja, azaz minden 0-pontot annyiszorosan, ahány 3-pont körüli szimplexövezetnek is eleme. Ha egy 0-pont két tartománynak is közös csúcspontja, akkor e 0pont a kezdő 0-pontot is tartalmazó mozaiklap egyik csúcspontja. Az ilyen mozaiklapok száma megegyezik a középpontjaik számával, k_0^2 -vel. Ekkor az előbbi szorzatba legalább kétszeresen számoltuk be őket, ezért számukat, $k_0^2 \cdot k_2^0$ -t, levonjuk.

A közös 1-ponttal rendelkező tartományok közös csúcspontjait először r-szer számoltuk össze, majd r-szer le is vontuk, így ezek számát, $k_0^1 \cdot k_0^0$ -át, az összeghez hozzá kell adnunk. Ekkor a kezdő 0-pont duplán szerepel az összegben, ezért számát, azaz $k_0^0 \cdot k_0^0$ -át levonjuk. Összegezve a számolásunkat kapjuk, hogy

$$g_0^0 = k_0^3 \cdot k_3^0 - k_0^2 \cdot k_2^0 + k_0^1 \cdot k_1^0 - k_0^0 \cdot k_0^0 = \frac{V}{2q} \frac{U}{2q} - \frac{V}{4}p + \frac{V}{2r}2 - 1 = V\left(\frac{U}{4q^2} + \frac{1}{r} - \frac{p}{4}\right) - 1.$$

A rögzített 0-pont körüli mozaikövezet 1-pontjainak számát, azaz g_0^1 -t hasonlóan határozzuk meg. Minden szomszédos 3-pont körül veszünk egy szimplexövezetet, ezek 1pontjainak, azaz éleinek számának az összege multiplicitással $k_0^3 \cdot k_3^1$. A közös lapok mentén kapott éleket többszörösen számoltuk, ezért számukat, $k_0^2 \cdot k_2^1$ -t levonjuk. Ekkor a 0-pontot tartalmazó éleket teljesen levontuk, ezért számukat, $k_0^1 \cdot k_1^1$ -t, az összeghez hozzáadjuk. Így kapjuk a most csak 3 tagú összeget:

$$g_0^1 = k_0^3 \cdot k_3^1 - k_0^2 \cdot k_2^1 + k_0^1 \cdot k_1^1 = \frac{V}{2q} \frac{U}{4} - \frac{V}{4} p + \frac{V}{2r} = V\left(\frac{U}{8q} + \frac{1}{2r} - \frac{p}{4}\right).$$

A rögzített 0-pont körüli mozaikövezet lapjainak, azaz 2-pontjainak számát $k_0^3 \cdot k_3^2$ adja, ha a duplán számolt lapok számát, $k_0^2 \cdot k_2^2$ -t levonjuk.

$$g_0^2 = k_0^3 \cdot k_3^2 - k_0^2 \cdot k_2^2 = V\left(\frac{U}{4pq} - \frac{1}{4}\right).$$

Valamint a 0-pont körüli 3-pontok száma $g_0^3 = k_0^3 \cdot k_3^3 = \frac{V}{2q}$.

Láthatjuk, ha egy mozaikövezet 0-pontjainak (csúcspontjainak) a számát vizsgáljuk, akkor meg kell vizsgálnunk őket a csúcsokon, az éleken, a lapokon és a tartományokon is. Ha a mozaikövezet 1-pontjait (éleit) vizsgáljuk, akkor ezek számának meghatározásához az éleket, a lapokat és a tartományokat kell figyelembe venni. A 2-pontok (lapok) esetén a lapokat és a tartományokat, míg a 3-pontok esetén csak a tartományok számát vizsgáljuk. Így a g_x^y értékeit meghatározó összeg tagjainak száma különböző.

A további értékek kiszámolásánál is a szita-formulát alkalmazva kapjuk, hogy

$$\begin{array}{ll} g_{1}^{0} = k_{1}^{3} \cdot k_{3}^{0} - k_{1}^{2} \cdot k_{2}^{0} + k_{1}^{1} \cdot k_{1}^{0} = r\left(\frac{U}{2q} - p\right) + 2 & g_{1}^{2} = k_{1}^{3} \cdot k_{3}^{2} - k_{1}^{2} \cdot k_{2}^{2} = r\left(\frac{U}{2p} - 1\right) \\ g_{1}^{1} = k_{1}^{3} \cdot k_{3}^{1} - k_{1}^{2} \cdot k_{2}^{1} + k_{1}^{1} \cdot k_{1}^{1} = r\left(\frac{U}{4} - p\right) + 1 & g_{1}^{3} = k_{1}^{3} \cdot k_{3}^{3} = r \\ g_{2}^{0} = k_{2}^{3} \cdot k_{3}^{0} - k_{2}^{2} \cdot k_{2}^{0} = \frac{U}{q} - p & g_{2}^{2} = k_{2}^{3} \cdot k_{3}^{2} - k_{2}^{2} \cdot k_{2}^{2} = \frac{U}{p} - 1 \\ g_{1}^{2} = k_{3}^{3} \cdot k_{3}^{1} - k_{2}^{2} \cdot k_{2}^{1} = \frac{U}{2} - p & g_{2}^{3} = k_{3}^{3} \cdot k_{3}^{3} = 2 \\ g_{3}^{0} = k_{3}^{3} \cdot k_{3}^{0} = \frac{U}{2q} & g_{3}^{2} = k_{3}^{3} \cdot k_{3}^{2} = \frac{U}{2p} \\ g_{3}^{1} = k_{3}^{3} \cdot k_{3}^{1} = \frac{U}{4} & g_{3}^{2} = k_{3}^{3} \cdot k_{3}^{2} = 1 \end{array}$$

Tehát általánosan $g_x^y = \sum_{j=\max\{x,y\}}^3 (-1)^{3-j} k_x^j \cdot k_j^y$, valamint a kapott értékeket összesítjük egy $\mathbf{G} = (g_x^y)$ mátrixban.

A továbbiakban tekintsük a mozaik egy csúcspontját, azaz egy-egy 0-pontot és hozzunk létre köré mozaikövezeteket a bevezetőben (7. old.) leírtaknak megfelelően.

Definíció. Nevezzük *i-együttes*nek az 1., a 2., ..., (i - 1). és az *i*. mozaikövezet unióját. Jelöljük v_i^k -val az *i*-együttes *k*-pontjainak számát. Legyen ez vektor alakban $\mathbf{v}_i = (v_i^0 \ v_i^1 \ v_i^2 \ v_i^3)^T$.

Mivel a 0. mozaikövezet egy 0-pont, ezért $\mathbf{v}_0 = (1 \ 0 \ 0 \ 0)^T$. Tegyük fel, hogy ismerjük az *i*-együttes *k*-pontjainak számát, azaz \mathbf{v}_i -t. A továbbiakban határozzuk meg rekurzív

módon az (i + 1)-együttes k-pontjainak számát, azaz \mathbf{v}_{i+1} -et, az *i*-együttes k-pontjai számának ismeretében.

F.1.5. Tétel. $\mathbf{v}_{i+1} = \mathbf{M}\mathbf{v}_i, i \ge 0, ahol \mathbf{M} = \mathbf{G}^T \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$

BIZONYÍTÁS. A bizonyítás során most is a szita módszert alkalmazzuk. Az *i*-együttes minden mozaikcsúcspontja, azaz 0-pontja körül hozzunk létre egy mozaikövezetet. Ezen 1. övezetek összessége, uniója, adja az (i+1)-együttest. Számoljuk össze először az (i+1)-együttes 0-pontjait. A definícióbeli jelöléssel az *i*-együttesben v_i^0 számú 0-pont van. Minden egyes 0-pont körüli 1. mozaikövezetben g_0^0 számú 0-pont van. Így az (i+1)-együttesben multiplicitással számolva $g_0^0 v_i^0$ számú 0-pont van. Az *i*-együttesben közös éleken levő csúcspontok esetén az élhez tartozó tartományok csúcspontjait, azaz az 1-pontok körüli 1. mozaikövezetek 0-pontjait, többszörösen számoltuk be. Így számukat, $g_1^0 v_i^1$ levonjuk az előző szorzatból. Ekkor az *i*. együttesben a közös lapokhoz tartozó tartományok csúcspontjainak száma, azaz a 2-pontok körüli 1. mozaikövezetek 0-pontjainak számát vontuk ki többszörösen az összegből. Ezt, $g_2^0 v_i^2$ -t hozzá kell adnunk. Most viszont minden *i*-együttesbeli 3-pont körüli 0-pont számát, azaz $g_3^0 v_i^3$ -t le kell vonnunk. Így az (i+1)-együttes 0-pontjainak pontos számát kapjuk, mely összegezve $v_{i+1}^0 = g_0^0 v_i^0 - g_1^0 v_i^1 + g_2^0 v_i^2 - g_3^0 v_i^3$.

A többi pont számának a kiszámítását hasonlóan végezzük el a szita-formula segítségével. A kiszámolás általános formulája a következő: $v_{i+1}^k = g_0^k v_i^0 - g_1^k v_i^1 + g_2^k v_i^2 - g_3^k v_i^3$, $k \in \{0, 1, 2, 3\}$, azaz

$$v_{i+1}^k = \sum_{j=0}^3 (-1)^j g_j^k v_i^j, \quad k \in \{0, 1, 2, 3\}.$$

Ebből kapjuk a $\mathbf{v}_{i+1} = \mathbf{M}\mathbf{v}_i$ egyenletrendszer **M** mátrixát.

F.1.6. Tétel. Egy $\{p, q, r\}$ korlátos tartományú euklideszi vagy hiperbolikus mozaik esetén, a 0-adik mozaikövezetet egy mozaikcsúcspontnak véve,

- *i. a mozaik* (i + 1). mozaikövezetbeli tartományainak számát az $r_{i+1} = v_{i+1}^3 v_i^3$ formában kapjuk $(i \ge 0)$.
- ii. $\lim_{1 \le i \to \infty} \frac{V_{i+1}}{V_i} = z_1 \text{ és } \lim_{1 \le i \to \infty} \frac{V_i}{S_i} = \frac{z_1 1}{z_1}, \text{ ahol } z_1 > 1 \text{ a mozaikhoz tartozó } \mathbf{M} \text{ mátrix legnagyobb abszolútértékű sajátértéke.}$

$$\{4,3,4\} \ mozaik \ eset \ ere \ \lim_{1 \le i \to \infty} \frac{V_{i+1}}{V_i} = 1 \ \ es \ \lim_{1 \le i \to \infty} \frac{V_i}{S_i} = 0.$$

$$\{4,3,5\} \ mozaik \ eset \ ere \ \lim_{1 \le i \to \infty} \frac{V_{i+1}}{V_i} = 15 + 4\sqrt{14} \ \ es \ \lim_{1 \le i \to \infty} \frac{V_i}{S_i} = \frac{14 + 4\sqrt{14}}{15 + 4\sqrt{14}} = 4\sqrt{14} - 14.$$

$$\{5,3,4\} \ mozaik \ eset \ ere \ \lim_{1 \le i \to \infty} \frac{V_{i+1}}{V_i} = 15 + 4\sqrt{14} \ \ es \ \lim_{1 \le i \to \infty} \frac{V_i}{S_i} = \frac{14 + 4\sqrt{14}}{15 + 4\sqrt{14}} = 4\sqrt{14} - 14.$$

$$\{5,3,5\} \ mozaik \ eset \ ere \ \lim_{1 \le i \to \infty} \frac{V_{i+1}}{V_i} = \frac{167}{2} + \frac{13}{2}\sqrt{165} \ \ es \ \lim_{1 \le i \to \infty} \frac{V_i}{S_i} = \frac{165 + 13\sqrt{165}}{167 + 13\sqrt{165}} = \frac{13}{2}\sqrt{165} - \frac{165}{2}$$

$$\{3,5,3\} \ mozaik \ eset \ ere \ \lim_{1 \le i \to \infty} \frac{V_{i+1}}{V_i} = \frac{47}{2} + \frac{21}{2}\sqrt{5} \ \ es \ \lim_{1 \le i \to \infty} \frac{V_i}{S_i} = \frac{45 + 21\sqrt{5}}{47 + 21\sqrt{5}} = \frac{21}{2}\sqrt{5} - \frac{45}{2}.$$

$$(A \ k\ddot{o}zelit\ddot{o} \ ert \ ekk \ az \ 1.1. \ tablazatban - 10. \ old. - talalhatok.)$$

BIZONYÍTÁS.

- *i.* Mivel a v_i^3 érték az *i*-együttes 3-pontjainak, azaz tartományainak a számát adja, ezért a $v_{i+1}^3 v_i^3$ érték megegyezik az (i+1). mozaikövezetbeli tartományok számával.
- *ii.* A 2.2. fejezet tételei alapján az egyes mozaikok esetén meghatározzuk az **M** mátrix sajátértékeit, melyek mind valósak, közülük z_1 az egyetlen legnagyobb (abszolut értékben is). Majd a $g_1 \neq 0, g_2, g_3$ és g_4 értékek kiszámolása után meghatározzuk a határértékeket. A pontos számítások az F.3. függelék 2. részében találhatók, melyek *Maple V Release 5*-tel készültek.

A {4,3,5} hiperbolikus kockamozaik esetén részletesen $\mathbf{K} = \begin{pmatrix} 1 & 12 & 30 & 20 \\ 2 & 1 & 5 & 2 \\ 4 & 4 & 1 & 2 \\ 8 & 12 & 6 & 1 \end{pmatrix}$, $\mathbf{M} = \begin{pmatrix} 63 & -22 & 12 & -8 \\ 132 & -41 & 20 & -12 \\ 90 & -25 & 11 & -6 \\ 20 & -5 & 2 & -1 \end{pmatrix}$, az \mathbf{M} mátrix sajátértékei: $15 + 4\sqrt{14}$, $15 - 4\sqrt{14}$, 1, 1, $\mathbf{v}_0 = \begin{pmatrix} (1 & 0 & 0)^T \\ 90 & -25 & 11 & -6 \\ 20 & -5 & 2 & -1 \end{pmatrix}$, az \mathbf{M} mátrix sajátértékei: $15 + 4\sqrt{14}$, $15 - 4\sqrt{14}$, 1, 1, $\mathbf{v}_0 = \begin{pmatrix} (1 & 0 & 0)^T \\ 98130 & 23100 \end{pmatrix}^T$, $\mathbf{v}_1 = (63 & 132 & 90 & 20)^T$, $\mathbf{v}_2 = (1985 & 4464 & 3240 & 760)^T$, $\mathbf{v}_3 = (59647 & 134676 \\ 98130 & 23100 \end{pmatrix}^T$, $\mathbf{v}_4 = (1787649 & 037088 & 2942160 & 692720)^T$, $\mathbf{v}_5 = (\dots & 20759140)^T$, $r_0 = 0$, $r_1 = 20$, $r_2 = 740$, $r_3 = 22540$, $r_4 = 669620$ és $g_1 \approx 0.83 \neq 0$.

F.1.7. Megjegyzés.

a.) A mozaikövezetek 0. övezete lehet egy mozaikcsúcspont, egy mozaikél, egy mozaiklap, illetve egy mozaik tartomány is, ekkor $\mathbf{v}_0 = (1\ 0\ 0\ 0)^T$, $\mathbf{v}_0 = (2\ 1\ 0\ 0)^T$, $\mathbf{v}_0 = (p\ p\ 1\ 0)^T$, illetve $\mathbf{v}_0 = (\frac{U}{2q}\ \frac{U}{4}\ \frac{U}{2p}\ 1)^T$. Továbbá, ha a 0. övezetnek a mozaik egy elemének a középpontját választjuk, azaz $\mathbf{v}_0 = (0\ 0\ 0\ 1)^T$, akkor az 1. övezet a mozaik egy eleme, azaz $r_1 = 1$, lesz.

b.) A kapott eredmények megegyeznek ZEITLER [36], a 3.5.1.tétel (40. old.) valamint a 4.1.2. tétel (48. old.) eredményeivel.

c.) Az {5,3,5} (v.ö. a 4.2.2. megjegyzés - 50. old.) és a {3,5,3} mozaikok esetén a $\lim_{1 \le i \to \infty} \frac{V_{i+1}}{V_i}$ és a $\lim_{1 \le i \to \infty} \frac{V_i}{S_i}$ határértékeket csak e függelékben határoztuk meg (F.1.6. tétel).

F.1.2. 2-dimenziós korlátos tartományú szabályos mozaikok

Az euklideszi 2-dimenziós síkon a {3,6}, a {6,3} és a {4,4} mozaik, a hiperbolikus síkon pedig végtelen sok {p,q} $\left(\frac{1}{p} + \frac{1}{q} < \frac{1}{2}\right)$ korlátos tartományú mozaik létezik.

Egyszerűen kiszámolható, hogy

$$\mathbf{K} = \begin{pmatrix} 1 & q & q \\ 2 & 1 & 2 \\ p & p & 1 \end{pmatrix}, \quad \mathbf{M} = \begin{pmatrix} pq - 2q + 1 & -2p + 2 & p \\ pq - q & -2p + 1 & p \\ q & -2 & 1 \end{pmatrix}.$$

Az euklideszi esetekben az **M** mátrixok minden sajátértéke 1, hiperbolikus esetekben pedig c = (p-2)(q-2) - 2 (> 2) jelölés mellett $z_1 = \frac{c+\sqrt{c^2-4}}{2}$, $z_2 = 1$, $z_3 \frac{c-\sqrt{c^2-4}}{2}$, melyekre $z_1 > z_2 = 1 > z_3 > 0$. Továbbá $\mathbf{v}_0 = (1 \ 0 \ 0)^T$ esetén $r_1 = q$, $r_2 = (p-2)q^2 + (3-2p)q$. (A számolások az F.3. függelékben részletesen megtalálhatók.)

A továbbiakban indirekt módon belátjuk, hogy $r_i = g_1 z_1^i + g_2 z_2^i + g_3 z_3^i$ $(i \ge 1)$ esetén $g_1 \ne 0$. Ehhez tegyük fel, hogy $g_1 = 0$. Ekkor $i \rightarrow \infty$ -re $r_i = g_2 + g_3 z_3^i \rightarrow g_2$. Mivel r_i minden *i*-re egész, ezért a sorozat határértéke, azaz g_2 , is egész. Ebből viszont $g_3 = 0$

adódik. Tehát $r_i = g_2$ konstans sorozat $i \ge 1$ esetén. Ez viszont nem igaz, mert például $r_2 > r_1$. Az utolsó egyenlőtlenség a kövekező módon látható be: $r_2 - r_1 = (p-2)q^2 + (2-2p)q = q((p-2)q - 2(p-2) - 2) = q((p-2)(q-2) - 2) = q \cdot c > 0$, amely p > 2, q > 2 és c > 2 miatt igaz. Így ellentmondásra jutottunk.

Tehát a hiperbolikus sík szabályos mozaikokjai esetén az **M** mátrix egyetlen legnagyobb abszolut értékű, pozitív valós z_1 sajátértéke adja a kristály növekedési hányadost. Továbbá a $\frac{z_1-1}{z_1} = \frac{2-c+\sqrt{c^2-4}}{2}$ hányados természetesen megegyezik a KÁRTESZI F. [18] és HORVÁTH J. [16] cikkeiben megadott (l. Bevezetés – 7. old.) határértékkel. (Megjegyezzük, hogy a fentnevezett cikkekben a 0-dik övezet – az ittenitől eltérően – egy tartomány. Erre az esetre vonatkozó értékek is megtalálhatók az F.3. függelékben, valamint ekkor $r_2 - r_1 = p(q-2)(c+1) > 0$ szintén teljesül.)

F.1.3. 4-dimenziós korlátos tartományú szabályos mozaikok

A fenti gondolatmenet 4-dimenziós korlátos tartományú mozaikok esetére is általánosíthatjuk. A 4-dimenziós euklideszi térben a $\{4, 3, 3, 4\}$ mozaik, 4-dimenziós hiperbolikus térben pedig a $\{3, 3, 3, 5\}$, az $\{5, 3, 3, 3\}$, a $\{4, 3, 3, 5\}$, az $\{5, 3, 3, 4\}$ és az $\{5, 3, 3, 5\}$ mozaik korlátos tartományú.

F.1.8. Tétel. Egy $\{p, q, r, s\}$ szimbólumú mozaikok esetére a korábbi **K** mátrixot a következő formában határozhatjuk meg:

$$\mathbf{K} = (k_x^y) = \begin{pmatrix} 1 & cs\acute{u}cs\{q,r,s\} & \acute{el}\{q,r,s\} & lap\{q,r,s\} & cella\{q,r,s\} \\ 2 & 1 & cs\acute{u}cs\{r,s\} & \acute{el}\{r,s\} & lap\{r,s\} \\ cs\acute{u}cs\{p\} & \acute{el}\{p\} & 1 & cs\acute{u}cs\{s\} & \acute{el}\{s\} \\ cs\acute{u}cs\{p,q\} & \acute{el}\{p,q\} & lap\{p,q\} & 1 & 2 \\ cs\acute{u}cs\{p,q,r\} & \acute{el}\{p,q,r\} & lap\{p,q,r\} & cella\{p,q,r\} & 1 \end{pmatrix},$$

ahol csúcs{p,q,r}, él{p,q,r}, lap{p,q,r}, cella{p,q,r}, a {p,q,r} 4-dimenziós szabályos poliéder (3-dimenziós gömbi mozaik) csúcsainak, éleinek, lapjainak, celláinak a számát jelenti. Továbbá a korábbi analógiájára: $\mathbf{G} = (g_x^y) = \sum_{j=\max\{x,y\}}^{4} (-1)^{4-j} k_x^j \cdot k_j^y$, amiből

$$\mathbf{M} = \mathbf{G}^T \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \quad \acute{es} \quad \mathbf{v}_{i+1} = \mathbf{M} \mathbf{v}_i, \ i \ge 0.$$

BIZONYÍTÁS. Analóg a 3-dimenziós esettel.

A 4-dimenziós $\{p, q, r, s\}$ mozaikokhoz tartozó **M** mátrixok és a mátrixok sajátértékei, a \mathbf{v}_i vektorsorozat $\mathbf{v}_0 = (1 \ 0 \ 0 \ 0)^T$ kezdőelemmel, a $g_1 \neq 0$, illetve a $\lim_{1 \leq i \to \infty} \frac{V_{i+1}}{V_i}$ és $\lim_{1 \leq i \to \infty} \frac{V_i}{S_i}$ határértékek meghatározása szintén a Maple V-tel készültek. A számolások az F.3. függelékben részletesen megtalálhatók. Az 1.1. táblázatban (10. old.) a megfelelő közelítő értékek megtalálhatók. Természetesen a már korábban is kiszámolt (35. old.) $\{4, 3, 3, 5\}$ 4-dimenziós hiperkocka mozaikhoz tartozó határérték megegyeznek a most kiszámolt határértékekkel.

F.2. 4-dimenziós szabályos poliéderek adatai

E fejezetben a 4-dimenziós szabályos poliéderek néhány adatai találhatók ([8], [28]), melyeket felhasználtunk a dolgozat során. Az F.1.1. tételben (ii. old.) kiszámolt **K** mátrix 4-dimenziós szabályos poliéderek (3-dimenziós gömbi mozaikok) esetére is meghatározhatók. Ekkor egy szabályos poliéderhez tartozó $\mathbf{K} = \{k_{i,j}\}_{d\times d}$ mátrix $k_{i,j}$ eleme megadja, hogy a szabályos poliéder *i*-dimenziós lapjához hány *j*-dimenziós lap illeszkedik. (A sorokat és az oszlopokat 0-tól indexeljük.) Így e mátrixot hívhatjuk a poliéder *illeszkedési mátrix*ának is.

$\{3, 3, 3\} - 5$ -cella, szimplex		
csúcsok száma: élek száma: lapok száma: cellák száma:	$5 \\ 10 \\ 10 \\ 5$	$\mathbf{K} = \begin{pmatrix} 1 & 4 & 6 & 4 \\ 2 & 1 & 3 & 3 \\ 3 & 3 & 1 & 2 \\ 4 & 6 & 4 & 1 \end{pmatrix}$
$\{4,3,3\}$ – 8-cella, hiperkock	ca	
csúcsok száma: élek száma: lapok száma: cellák száma:	16 32 24 8	$\mathbf{K} = \begin{pmatrix} 1 & 4 & 6 & 4 \\ 2 & 1 & 3 & 3 \\ 4 & 4 & 1 & 2 \\ 8 & 12 & 6 & 1 \end{pmatrix}$
$\{3,3,4\}$ – 16-cella, keresztp	olitóp	
csúcsok száma: élek száma: lapok száma: cellák száma:	8 24 32 16	$\mathbf{K} = \begin{pmatrix} 1 & 6 & 12 & 8 \\ 2 & 1 & 4 & 4 \\ 3 & 3 & 1 & 2 \\ 4 & 6 & 4 & 1 \end{pmatrix}$
$\{3, 4, 3\} - 24$ -cella		
csúcsok száma: élek száma: lapok száma: cellák száma:	24 96 96 24	$\mathbf{K} = \begin{pmatrix} 1 & 8 & 12 & 6 \\ 2 & 1 & 3 & 3 \\ 3 & 3 & 1 & 2 \\ 6 & 12 & 8 & 1 \end{pmatrix}$
$\{5,3,3\} - 120$ -cella		
csúcsok száma: élek száma: lapok száma: cellák száma:	600 1200 720 120	$\mathbf{K} = \begin{pmatrix} 1 & 4 & 6 & 4 \\ 2 & 1 & 3 & 3 \\ 5 & 5 & 1 & 2 \\ 20 & 30 & 12 & 1 \end{pmatrix}$
$\{3,3,5\} - 600$ -cella		
csúcsok száma: élek száma: lapok száma: cellák száma:	120 720 1200 600	$\mathbf{K} = \begin{pmatrix} 1 & 12 & 30 & 20 \\ 2 & 1 & 5 & 5 \\ 3 & 3 & 1 & 2 \\ 4 & 6 & 4 & 1 \end{pmatrix}$

F.2. ábra. A $\{3,3,3\}$ szimplex.

F.5. ábra. A $\{4,3,3\}$ hiperkocka.

F.3. ábra. A $\{3, 3, 4\}$ keresztpolitóp.

F.4. ábra. $Az \{5, 3, 3\}$ 120-cella.

F.6. ábra.A $\{3,4,3\}$ 24-cella.

F.7. ábra.A $\{3,3,5\}$
 $600\mathchar`-cella.$

F.3. Számítások