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Abstract
In the present thesis a new approach for the statistical analysis of Hidden
Markov Models (HMM-s), in particular for the analysis of the maximum-
likelihood estimate, is laid down. Useful connection between the estimation
theory of HMM-s and linear stochastic systems is established via the theory
of L-mixing processes.

Our analysis is applicable to HMM-s with a general state-space and read-
out space, assuming that the state process satis�es the Doeblin's condition.
The key technical results give conditions for the functions of the input-output
process of a non-linear stochastic systems to be L-mixing. This is then
applied to HMM-s extended by the �lter process. Several applications are
presented: we state a strong approximation theorem for �nite state HMM-
s, we give an on-line estimation procedure, and we deal with the �xed-gain
estimation of HMM-s and apply the results for change detection.
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Chapter 1

Introduction

A Hidden Markov Model (HMM) is a discrete-time �nite-state homogenous
Markov chain observed through a discrete-time memoryless invariant chan-
nel. The channel is characterized by a �nite set of transition densities indexed
by the states of the Markov chain. These densities may be members of any
parametric family such as Gaussian, Poisson, etc. The initial distribution
of the Markov chain, the transition matrix, and the densities of the channel
may depend on some parameter that characterizes the HMM.

Hidden Markov Models have become a basic tool for modelling stochastic
systems with a wide range of applications in such diverse areas as nano-
tecnology [31], quantized Gaussian linear regression [17, 18], telecommunica-
tion [52], speech recognition [30], switching systems [16, 20], �nancial math-
ematics [13] and protein research [53].

A good introduction to HMM-s with recent results is given in [15]. An
extension of HMM-s allowing dynamic memory is presented in [49].

The estimation of the dynamics of a Hidden Markov Model is a basic
problem in applications. The �rst fundamental result is due to Baum and
Petrie for �nite state Markov chains with �nite-range read-outs [5]. Their
analysis relies on the Shannon-Breiman-McMillan theorem, and exploits the
�niteness of both the state-space X and the read-out space Y . Strong consis-
tency of the maximum-likelihood estimator for �nite-state and binary read-
out HMM-s has been established by Araposthatis and Marcus in [1]. An
important technical tool, the exponential forgetting of the predictive �lter
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1. INTRODUCTION 2

has also been established. Strong consistency of the maximum-likelihood
estimator for continuous read-out space has been �rst proven by Leroux in
[41] using the subadditive ergodic theorem. An extensive study of HMM-s
with �nite state-space and continuous read-out-space has been carried out by
LeGland and Mevel in [40] and [39] using the theory of geometric ergodicity
for Markov chains. These results have been extended to compact state space
and continuous read-out space by Douc and Matias in [9]. Strong consis-
tency for the maximum-likelihood estimate for continous-time HMM-s with
�nite state-space and Gaussian read-out has been established by Moore and
Elliott using martingale-theory in [14]. Adaptive control of HMM-s has been
considered in Duncan et al. [11].

A key element in the statistical analysis of HMM-s is a strong law of
large numbers for the log-likelihood function. All the listed tools are quite
powerful and applicable under very weak conditions to derive strong laws of
large numbers. The most fertile approach seems to be that of LeGland and
Mevel, based on the use of geometric ergodicity, and leading to results such
as CLT or convergence of recursive estimators.

However, it is known from the statistical theory of linear stochastic sys-
tems that these classical results of statistics are not always su�ciently infor-
mative to answer natural questions like the performance of adaptive predic-
tors. This has been pointed out by Gerencsér and Rissanen in [28], see also
[26]. In fact, the performance analysis of adaptive predictors and controllers
has lead prompted research in deriving strong approximation results for es-
timators of linear stochastic systems. For o�-line estimators the strongest
result on such a strong approximation is given in [24].

A main technical tool for deriving these results is the concept of L-mixing
processes, developed in [23], a generalization of what is known as exponen-
tially stable processes, introduced by Caines and Rissanen in [48] and Ljung
[42]. This is a concept which, in its motivation, strongly exploits the stability
and the linear algebraic structure of the underlying stochastic system.

A simple, but important observation is that using a random mapping
representation of HMM-s (which goes back to Borkar [8], see also [33]), the
concept of L-mixing naturally extends for HMM-s. Thus e.g. if the state-
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process satis�es the Doeblin-condition, then any �xed bounded measurable
function of a Hidden Markov process will result in an L-mixing process, see
Theorem 3.2.1 below.

Although the state space and the read-out space of a general HMM may
have no algebraic structure, the �lter process is known to be generated by
a non-linear algebraic recursion, known as the Baum-equation, with the ob-
servation process as the input process. Uniform exponential stability of this
non-linear dynamic system has been investigated in several papers, see e.g.
[2], [40]. This stability property will play a major role in establishing L-
mixing of the extended HMM.

The structure of the thesis is the following: Chapter 2 contains the de�-
nitions and an overview of known related results. In Chapter 3 the key tech-
nical tools are given for general non-linear stochastic systems that exhibit
uniform exponential stability, driven by a Markov-process, giving conditions
under which a �xed static function of the input-output process will be L-
mixing. The application of the results of Chapter 3 to HMM-s will be given
in Chapter 4. HMM-s with �nite state-space and general read-out space,
under Doeblin-condition for the state-process will be given in Section 4.1.
To conclude Section 4.1 we compare our conditions with those of [40] that
ensure geometric ergodicity of the extended process. The results of Section
4.1 are extended to HMM-s with general compact state space in Section 4.2.

In further chapters applications of our results in the statistical analysis
of HMM-s are presented. In Chapter 5 the recursive estimation of HMMs is
investigated. In Chapter 6 we state a strong approximation theorem for �nite
state HMM-s, inspired by [24]. This �ne characterization of the estimator
process is not of purely academic interest: it plays a key role in the analysis
of the e�ect of statistical uncertainty and in certain problems of stochastic
complexity, see e.g. [26].

In Chapter 7 we follow the same route as in Chapter 6, but this time
for Hidden Markov Models with �xed gain or forgetting rate λ. We also
establish an explicit formula for the error term. In Chapter 8, using the
above representation of the error term, we investigate the e�ect of parameter
uncertainty on the performance of an adaptive encoding procedure. Using
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this result and ideas from the theory of stochastic complexity, a change point
detection method for HMM-s is developed.



Chapter 2

Preliminaries

2.1 Hidden Markov Models
We consider Hidden Markov Models with a general state space X and a
general observation or read-out space Y . Both are assumed to be Polish
spaces, i.e. they are complete, separable metric spaces, equipped with their
respective Borel-�elds. Throughout the dissertation capital letters with lower
index n, such as (Xn), will denote discrete-time processes on the positive axis,
i.e. n ∈ N, if not otherwise stated.

De�nition 2.1.1 The pair (Xn, Yn) is a Hidden Markov process if (Xn) is a
homogenous Markov process with state space X and the observation sequence
(Yn) is conditionally independent and identically distributed given the σ-�eld
generated by the process (Xn).

Example 2.1.2 Assume that the observations are of the form

Yn = h(Xn) + εn,

for any integer n ≥ 0, where {εn, n ≥ 0} is a Gaussian white noise sequence
independent of the Markov process {Xn, n ≥ 0}, and h : X → R is measur-
able.

To illustrate the basic concepts let the state space of the Hidden Markov
Model be �nite now, i.e. |X | = N . The results for general compact state
space are discussed in Section 4.2.

5



2. PRELIMINARIES 6

Let Q∗ be the transition probability matrix of the unobserved Markov
process (Xn), i.e.

Q∗
ij = P (Xn+1 = j|Xn = i),

where ∗ indicates that we take the true value of the corresponding unknown
quantity. Throughout the dissertation we deal with parametric problems,
i.e. the unknown quantities depend on a parameter. The true value of the
parameter (or the unknown quantities) is the one which is used to generate
the process.

If Y is �nite, say |Y| = M , then conditional independence can be written
as

P (Yn = yn, . . . Y0 = y0|Xn = xn, . . . X0 = x0) =

n∏
i=0

P (Yi = yi|Xi = xi).

In this case we will use the following notation:

P (Yk = y|Xk = x) = b∗x(y).

Continuous read-outs will be de�ned by taking the following conditional den-
sities:

P (Yn ∈ dy|Xn = x) = b∗x(y)λ(dy), (2.1)

where λ is a �xed nonnegative, σ-�nite measure. Let us introduce the fol-
lowing notations:

B∗(y) = diag(b∗i(y)),

where i = 1, . . . , N and

b∗(y) = (b∗1, . . . , b∗N)T .

For notational convenience we write Q > 0 if all the elements of the
transition probability matrix are strictly positive.

A key quantity in estimation theory is the predictive �lter de�ned by

p∗jn+1 = P (Xn+1 = j|Yn, . . . , Y0).
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Writing p∗n+1 = (p∗1n+1, . . . , p
∗N
n+1)

T , we know from [5] that the �lter process
satis�es the Baum-equation

p∗n+1 = π(Q∗T B∗(Yn)p∗n), (2.2)

both in discrete and continuous read-out cases, where π is the normalizing
operator: for x ∈ RN , x ≥ 0, x 6= 0 set π(x)i = xi/

∑N
j=1 xj. Here p∗j0 =

P (X0 = j).
In practice, the transition probability matrix Q∗ and the initial proba-

bility distribution p∗0 of the unobserved Markov chain (Xn) as well as the
conditional probabilities b∗i(y) of the observation sequence (Yn) are possibly
unknown. For this reason we consider the Baum-equation in a more general
sense:

pn+1 = π(QT B(Yn)pn), (2.3)

with initial condition p0 = q, where Q ∈ RN×N is a stochastic matrix,
B(y) = diag(bi(y)) is a collection of conditional probabilities, and q ∈ RN is
a probability vector, i.e. qi ≥ 0 for i = 1, . . . N and

∑N
i=1 qi = 1.

We will take an arbitrary probability vector q as initial condition, and
the solution of the Baum equation will be denoted by pn(q).

From the statistical point of view it is crucial whether the Baum equa-
tion is exponentially stable, i.e. the distance between iterates pn(q) and
pn(q′) goes to zero exponentially fast, where q, q′ are arbitrary initializations.
This has been established in [40] for continuous read-outs under appropriate
conditions.

Proposition 2.1.3 Assume that Q > 0 and bx(y) > 0 for all x, y. Let q, q′

be any two initializations. Then for some 0 < δ < 1,

‖pn(q)− pn(q′)‖TV ≤ C(1− δ)n‖q − q′‖TV , (2.4)

where ‖ · ‖TV denotes the total variation norm.

That is, the �lter forgets its initial condition with an exponential rate. An
essential feature of the result is that ‖q−q′‖TV shows up in the upper bound,
see [2]. We note that Proposition 2.1.3 is a purely linear algebraic statement,
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i.e. there is no need for probability. We also note that the total variation
norm is not required in this result as the vectors pn(q) ∈ RN are in a �nite
dimensional space. We will need the total variation norm when the state
space is not �nite, see Section 4.2.

If Q is only primitive, i.e. Qr > 0 with some positive integer r > 1, then
(2.4) holds with a random C, see [40].

Let D be a non-empty, open subset of Rr. Consider the following estima-
tion problem: let Q(θ) and b(θ) be parameterized by θ ∈ D, and let

Q∗ = Q(θ∗), b∗ = b(θ∗).

Usually the entries of Q are included in θ.
For the log-likelihood function we have

log p(y0, . . . yn, θ) =
n−1∑

k=1

log p(yk|yk−1, . . . y0, θ) + log p(y0, θ). (2.5)

The k-th term in (2.5) for k ≥ 1 can be written as

log
∑

i

bi(yk, θ)P (Xk−1 = i|yk−1, . . . , y0, θ) = log
∑

i

bi(yk, θ)p
i
k(θ).

Now write
g(y, p, θ) = log

∑
i

bi(y, θ)pi(θ), (2.6)

then we have

log p(yN , . . . , y0, θ) =
N∑

k=1

g(yk, pk, θ) + log p(y0, θ). (2.7)

A standard step in proving consistency of the maximum likelihood esti-
mator is to show that

lim
N→∞

1

N
log p(y0, . . . yN , θ) (2.8)

exists almost surely (uniformly in θ), see [42].
The limit of (2.8) was investigated in various setup in the literature. An

overview is presented in the next section.
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2.2 Entropy Ergodic Theorems
We review ergodic theorems for the sample entropy and relative entropy den-
sities of HMM-s. The fundamental ergodic theorem for the sample entropy
of a stationary ergodic �nite state process, not necessarily an HMM, is given
by the Shannon-Breiman-McMillan theorem. Let (Yn) denote such a process
and let PY denote its distribution. Let p(y1, . . . yn) denote the n-dimensional
probability mass function induced by PY . The theorem states that

lim
n→∞

− 1

n
log p(Y1, . . . Yn) = H(Y ) PY − a.s.,

where
H(Y ) = lim

n→∞
1

n
EPY

(− log p(Y1, . . . Yn))

is the entropy rate of (Yn)

This theorem implies for a �nite state �nite read-out HMM:

lim
n→∞

− 1

n
log p(Y1, . . . , Yn; θ∗) = H(θ∗) Pθ∗-a.s.

The Shannon-Breiman-McMillan theorem has been generalized by Bar-
ron to non-discrete processes , see [4]. Let (Yn) be a stochastic process on
a probability space (Ω,B, P ). Suppose that the joint distribution Pn for
(Y1, . . . , Yn) has a probability density function pn(y1, . . . , yn) with respect to
a σ-�nite measure Mn. Let p(Yn+1|Y1, . . . , Yn) denote the conditional density
for n ≥ 1. Then we have

Proposition 2.2.1 (Barron 1985, [4]) If (Yn) is a stationary ergodic process
and there exists an integer m such that for all n ≥ m

E log p(Yn+1|Y1, . . . Yn) > −∞,

then the sequence of relative entropy densities 1
n

log pn(Y1, . . . , Yn) converges
almost surely to the relative entropy rate, i.e.

lim
n→∞

1

n
log pn(Y1, . . . Yn) = D,

where
D = lim

n→∞
E log p(Yn+1|Y1, . . . Yn).
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Let Pθ denote a distribution of the misspeci�ed Hidden Markov Model
and let p(y1, . . . , yn, θ) denote the induced n-dimensional density. A central
question in estimation problems is the ergodic theorem for log p(Y1, . . . , Yn, θ),
i.e. the existence of the limit

lim
n→∞

1

n
log p(Y1, . . . , Yn, θ), (2.9)

where (Yn) is a stationary ergodic HMM with distribution Pθ∗ . Leroux proved
the existence of a limit (2.9) for a stationary ergodic general HMM, see [41].

Proposition 2.2.2 (Leroux 1992, [41]) Assume that the Markov chain (Xn)

is irreducible and aperiodic and observation conditional densities satisfy

Eθ∗(| log b(Y1, θj(θ
∗))|) < ∞ for j = 1, . . . N.

Then
lim

n→∞
1

n
log p(Y1, . . . , Yn, θ) = H(θ, θ∗) Pθ∗ − a.s.,

where
H(θ, θ∗) = lim

n→∞
1

n
Eθ∗(log p(Y1, . . . , Yn, θ) < ∞.

The theorem is proved using Kingman's ergodic theorem for subadditive
processes (see [41]).

Similar ergodic theorems for relative entropy densities of several exten-
sions of standard HMM-s were recently proved under suitable conditions.
Francq and Roussignol [20] studied stationary ergodic switching autoregres-
sive processes with �nite-state Markov regime de�ned by

Zn = g(Zn−1, Xn, θ) + h(Vn, Sn, θ), (2.10)

where Zn is a sequence of r-dimensional random vectors, Xn is a �nite-
state Markov chain, Vn is a sequence of i.i.d. k-dimensional random vectors
independent of Xn, g(·, ·, ·) and h(·, ·, ·) are measurable functions from Rr ×
X × Θ to Rr and from Rk × X × Θ to Rr, respectively. They proved an
ergodic theorem for the normalized conditional log-likelihood

1

n
log p(Z1, . . . , Zn|z0, θ)
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by expressing the conditional density as a product of random matrices and
then applying the Furstenberg and Kesten ergodic theorem, see [21]. The
sequence converges almost surely to the upper Lyapunov exponent of the
sequence of auxiliary random matrices. The standard HMM is a special case
of (2.10) which corresponds to g(·, ·, ·) ≡ 0.

Krishnamurty and Rydén studied stationary ergodic switching autore-
gressive processes with �nite-state Markov regime described by

Yn = g(Yn−r, . . . , Yn−1, Xn,Wn, θ),

where (Yn) is a scalar process, g is an arbitrary measurable function, and
(Wn) is a scalar i.i.d. process. They arrived at a similar ergodic theorem
for the normalized conditional log-likelihood using also Kingman's ergodic
theorem following Leroux, see [34].

For misspeci�ed HMM-s, de�ned in Section 2.1, the predictive �lter (pn)
is not a Markov chain under Pθ∗ , but the triplet (state, observation, wrong
predictive �lter) is a Markov chain. Let Zn = (Xn, Yn, pn) denote this ex-
tended Markov chain. LeGland and Mevel proved geometric ergodicity of
the Markov chain Zn and showed existence of a unique invariant distribution
under suitable conditions. In particular, this property implies an ergodic
theorem for �nite-state general HMMs similar to (2.9).

Douc and Matias [9] extended this approach to a general HMM with a
compact state space that is not necessarily �nite. They developed an ergodic
theorem for an HMM with arbitrary, not necessarily stationary initial state
density.

Douc, Moulines and Rydén [10] studied general forms of switching autore-
gressive processes with a compact state space that is not necessarily �nite.
They proved an ergodic theorem similar to (2.9) for almost sure and L1

convergence of the normalized conditional log-likelihood of the observation
sequence. They relied on uniform exponential forgetting of the initial distri-
bution of the inhomogeneous Markov chain representing the states given the
observation sequence.
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2.3 L-mixing processes
In this section an overview of L-mixing processes is presented. The concept
of L-mixing introduced by László Gerencsér [23] seemed to be a very powerful
tool in the analysis of linear stochastic systems. Establishing a connection
between HMM-s and linear stochastic systems this technique became the
main technical tool analyzing Hidden Markov Models in this thesis.

Let a probability space (Ω,F , P ) be given. Consider an Rm-valued sto-
chastic process (Xn), n ≥ 0 de�ned on (Ω,F , P ). From now on we do not
make explicit reference to (Ω,F , P ) any more.

De�nition 2.3.1 We say that the stochastic process (Xn), n ≥ 0 is M-
bounded if for all 1 ≤ q < ∞

Mq(x) = sup
n≥0

E
1
q |Xn|q < ∞.

If (Xn) is M -bounded we shall also write Xn = OM(1). Similarly if cn is a
positive sequence we write Xn = OM(cn) if Xn/cn = OM(1).

This de�nition extends to parameter-dependent stochastic processes
(Xn(θ)), n ≥ 0. Let D ⊂ Rp be an open domain. A parameter-dependent
stochastic process (Xn(θ)), n ≥ 0 is a sequence of measurable mappings for
n ≥ 0 from (Ω×D,F ⊗B(D)) to (R,B(R)). Here B(D) denotes the σ-�eld
of Borel-sets of D. For each �xed n, (Xn(θ)) can be considered as a random
�eld over D. In this case we require

Mq(x) = sup
n≥0,θ∈D

E
1
q |Xn(θ)|q < ∞.

We say that a sequence of random variables Xn tends to a random variable
X in the M -sense if for all q ≥ 1 we have

lim
n→∞

E
1
q |Xn −X|q = 0.

Let (Fn), n ≥ 0 be a family of monotone increasing σ-�elds and (F+
n ),

n ≥ 0 be a monotone decreasing family of σ-�elds. We assume that for all
n ≥ 0, Fn and F+

n are independent. A standard example is

Fn = σ{ei : i ≤ n} F+
n = σ{ei : i > n}, (2.11)

where (ei), i ≥ 0 is an independent sequence of random variables.
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De�nition 2.3.2 A stochastic process (Xn), n ≥ 0 is L-mixing with respect
to (Fn,F+

n ), if it is Fn-adapted, M-bounded, and for 1 ≤ q < ∞ and τ ∈ Z+

γq(τ) = sup
n≥τ

E
1
q |Xn − E(Xn|F+

n−τ )|q

is such that
Γq(x) =

∞∑
τ=0

γq(τ) < ∞.

The de�nition extends to parameter-dependent stochastic processes. We
say that a stochastic process (Xn(θ)), n ≥ 0 is L-mixing with respect to
(Fn,F+

n ) uniformly in θ, if it is Fn

⊗B(D)-adapted, M -bounded and and
for 1 ≤ q < ∞ and τ ∈ Z+

γq(τ) = sup
n≥τ,θ∈D

E
1
q |Xn(θ)− E(Xn(θ)|F+

n−τ )|q

is such that
Γq(x) =

∞∑
τ=0

γq(τ) < ∞.

In subsequent discussions we often speak about L-mixing processes without
making explicit reference to (Fn,F+

n ), provided that this does not lead to
ambiguity. A basic example of L-mixing processes is obtained as follows: let
(en), n ≥ 0, en ∈ Rk, be an M -bounded, independent sequence of random
variables and de�ne a vector-valued process (yn) by

xn+1 = Axn + Ben yn = Cxn

with A ∈ Rn×n stable, B ∈ Rn×k, C ∈ Rp×n and x0 = 0. It is easy to see
that the process (yn), n ≥ 0 is L-mixing with respect to the (Fn,F+

n ) de�ned
in (2.11).

To verify that a given process (Xn) is L-mixing, the de�nition requires
the computation of E(Xn|F+

n−τ ). However, a much simpler method is to �nd
just any F+

n−τ -measurable random variable, which approximates Xn with
reasonable accuracy, and then use the following lemma (see Lemma 2.1 in
[23]).
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Lemma 2.3.3 Let ξ, η be two random variable with �nite moments of all
orders. Let F ′ ⊂ F be some σ-�eld and let η be an F ′-measurable random
variable. Then for all 1 ≤ q < ∞ we have

E
1
q |ξ − E(ξ|F ′)|q ≤ 2E

1
q |ξ − η|q.

The lemma implies that for τ ≤ τ ′ we have

E
1
q |Xn − E(Xn|F+

n−τ ′)|q ≤ 2E
1
q |Xn − E(Xn|F+

n−τ )|q.

It follows that, although γq(τ) is in general not monotone decreasing in τ ,
we have for 1 ≤ q < ∞, τ ≤ τ ′

γq(τ
′) ≤ 2γq(τ).

A fundamental technical tool in estimation theory is the following moment
inequality given in [23] (Theorem 1.1).

Theorem 2.3.4 (Gerencsér 1989, [23]) Let (Xn), n ≥ 0 be a real-valued
L-mixing process with EXn = 0 for all n and let (fn) be a deterministic
sequence. Then we have for all 1 ≤ m < ∞

E
1

2m |
N∑

n=0

fnXn|2m ≤ Cm

( N∑
n=0

f 2
n

)1/2
M

1/2
2m (x)Γ

1/2
2m (x),

where Cm depends only on m. We can take Cm = 4(2m− 1)1/2.

Two applications of this theorem are given below. In the �rst we take fn = 1

for all n. In the second the process (Xn) is subject to exponential smoothing.

Theorem 2.3.5 (Gerencsér 1989, [23]) Let (Xn), n ≥ 0 be a real-valued
L-mixing process with EXn = 0 for all n. Then we have for all 1 ≤ m < ∞

E
1

2m | 1
N

N∑
n=0

Xn|2m ≤ CmN1/2M
1/2
2m (x)Γ

1/2
2m (x),

where Cm = 4(2m− 1)
1
2 . In short, N−1

∑N
n=0 Xn = OM(N1/2).
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Theorem 2.3.6 (Gerencsér 1989, [23]) Let (Xn), n ≥ 0 be an L-mixing
process with EXn = 0 for all n. Then for any 0 < λ < 1 and for all
1 ≤ m < ∞ we have

E
1

2m |
N∑

n=1

(1− λ)N−nλXn|2m ≤ Cmλ1/2M
1/2
2m (x)Γ

1/2
2m (x),

where Cm = 4(2m− 1)1/2. In short,
∑N

n=1(1− λ)N−nλXn = O(λ1/2).

An important technical tool is an inequality that provides an upper bound
for the maximal value of random �elds. Let (Xn(θ)) be a random �eld de�ned
for θ ∈ D ⊂ Rp. Let α > 0, and de�ne another random �eld (4Xn/4αθ) by

(4Xn/4αθ)(θ, θ + h) = |Xn(θ + h)−Xn(θ)|/|h|α,

for n ≥ 0, θ 6= θ + h ∈ D.

De�nition 2.3.7 The random �eld (Xn(θ)) is M-Hölder-continuous in θ

with exponent α, if the process (4Xn/4αθ) is M-bounded, i.e. if for all
1 ≤ q < ∞ we have

Mq(4Xn/4αθ) = sup
n≥0,θ 6=θ+h∈D

E
1
q |Xn(θ + h)−Xn(θ)|q/|h|α < ∞.

If α = 1 then we say that Xn(θ) is M-Lipschitz-continuous.

Let (Xn(θ)) be a measurable, separable, M -bounded random �eld that is
M -Hölder-continuous in θ with exponent α for θ ∈ D. By Kolmogorov's
theorem [32] the realizations of (Xn(θ)) are continuous in θ with probability
1, hence for D0 ⊂ D being a compact domain, we can de�ne for almost all ω

X∗
n = max

θ∈D0

|Xn(θ)|.

An upper bound could be given for the moments of the process (X∗
n), see

Theorem 3.4 in [23].

Theorem 2.3.8 (Gerencsér 1989, [23]) Assume that (Xn(θ)) is a measur-
able, separable, M-bounded random �eld, which is M-Hölder-continuous with
exponent α for θ ∈ D ⊂ Rp. Then we have for all q ≥ 1 and r > p/α

E
1
q (X∗

n)q ≤ C(Mqr(X) + Mqr(4X/4αθ)),

where C depends only on α, p, q, r and D, D0.
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A useful application of the above result is obtained by combining it with
Theorem 2.3.5 to get the following uniform version of Theorem 2.3.5, see
Theorem 1.2 in [23].

Theorem 2.3.9 (Gerencsér 1989, [23]) Let (Xn(θ)), n ≥ 0 be a zero-mean,
measurable and separable stochastic process. Assume that Xn and 4Xn/4αθ

are L-mixing uniformly in θ for θ ∈ D ⊂ Rp and let D0 be as above. Then
we have for all m ≥ 1 and r > p/α

E
1

2m max
θ∈D0

| 1
N

N∑
n=1

Xn(θ)|2m ≤ CN−1/2
(
M ′

2mr(x)Γ′2mr(x)
)1/2

,

where

M ′
2m(x) = M2m(x) + M2m(4x/4αθ) and Γ′2m(x) = Γ2m(x) + Γ2m(4x/4αθ),

and C depends only on α, p,m, r and the domains D, D0. In short we can
write

max
θ∈D0

|N−1

N∑
n=1

Xn(θ)| = OM(N−1/2).

From here a uniform law of large numbers can easily be derived using Mar-
kov's inequality and a Borel-Cantelli argument:

Theorem 2.3.10 (Gerencsér 1989, [23]) Let (Xn(θ)), n ≥ 0, D0 be as
above. Then we have almost surely

lim
N→∞

max
θ∈D0

| 1
N

N∑
n=1

Xn(θ)| = 0.

Combining Theorem 2.3.6 and 2.3.8 we have a similar result for the case
when Xn is subject to exponential smoothing:

Theorem 2.3.11 (Gerencsér 1989, [23]) Let Xn(θ) be an L-mixing process
uniformly in θ ∈ D such that EXn(θ) = 0 for all n ≥ 0, θ ∈ D and assume
that (4Xn/4θ) is also L-mixing, uniformly in θ, θ + h ∈ D. Let 0 < λ < 1,
then we get

sup
θ∈D∗

∣∣∣∣∣
n∑

n=1

(1− λ)N−nλXn(θ)

∣∣∣∣∣ = OM(λ1/2).



Chapter 3

Exponentially stable systems

3.1 Representation of Markov processes
Consider a Polish space X and a sequence of independent, [0, 1]-uniform
random variables (Un) on a probability space (Ω,F ,Q). Let f be a Borel
measurable deterministic function f : X × [0, 1] −→ X . Then the sequence
(Xn) de�ned by

Xn = f(Xn−1, Un−1), X0 = x

is a Markov chain, where x ∈ X is an arbitrary initialization.
A converse result is given in the following proposition:

Proposition 3.1.1 Let (Xn) be a Markov process on a Polish space X with
transition probabilities P (x,G), x ∈ X , G ∈ B(X ). Then there exists a Borel
measurable function f : X × [0, 1] −→ X such that, with U being uniform in
[0, 1] over some probability space (Ω,F ,Q), for all x ∈ X and G ∈ B(X ) we
have

P (x,G) = Q{f(x, U) ∈ G}.
For the proof, see [33]. In the sequel we will denote the random mapping
f(·, Un−1) by Tn, i.e. for x ∈ X

Tnx = f(x, Un−1). (3.1)

The process de�ned by Xn+1 = Tn+1Xn, X0 = x is Markov, if X0 is indepen-
dent of (Tn), n ≥ 1.

17
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The representation can be given in a constructive way but it should be
noted that it is not unique. This representation plays a key role in the
subsequent analysis.

Next we are going to introduce the notion of Doeblin-condition, see [7]:

De�nition 3.1.2 Let (Xn) be a Markov chain with state space X . If there
exists an integer m ≥ 1, δ > 0 and some probability measure ν on B(X ) such
that

Pm(x,A) ≥ δν(A)

is valid for all x ∈ X and A ⊂ B(X ), then we say that the Doeblin-condition
is satis�ed.

Here δ can be interpreted as the weight of the i.i.d. factor of the Markov
chain. The following lemma, see [7], shows the relation between the Doeblin-
condition and the representation of the Markov chain.

Lemma 3.1.3 (Bhattacharya-Waymire 1999, [7]) Let (Xn) be a Markov
chain. The Doeblin-condition is valid with m = 1 if and only if there exists
a representation such that Q(Tn ∈ Γc) ≥ δ, where Γc is the set of constant
mappings.

Proof. First let us assume that there exists a representation (Tn). In this
case P (x,A) = Q(T1x ∈ A) ≥ Q(T1x ∈ A|T1 ∈ Γc)Q(T1 ∈ Γc) ≥ ν(A)δ,
where ν(·) = Q(T1x ∈ ·|T1 ∈ Γc) is the probability measure.

On the other hand assume that the Doeblin-condition is valid. In this
case we choose a random element ξ in X with distribution ν and then de�ne
Tx = ξ for all x with probability δ and Tx = Tx with probability 1 − δ,
where T is obtained from a representation of a Markov chain with kernel
function

P (x, A)− δν(A)

(1− δ)
= P (x,A).

¥

Proposition 3.1.4 (Bhattacharya-Waymire 1999, [7]) Assume that the Doeb-
lin-condition holds with m = 1 for a Markov chain (Xn). Then there exists
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an invariant distribution π, and

|P n(x,A)− π(A)| ≤ (1− δ)n for ∀A ∈ B(X ). (3.2)

Proof. Let (Tn) be the representation of the process. Consider the two-
sided extension (Tn)∞n=−∞. Due to Lemma 3.1.3 the limit lim

n
T0 ◦ · · · ◦ T−nη

exists with probability 1, because Q(Tk ∈ Γc) ≥ δ > 0, and so with proba-
bility 1 there exists k such that Tk ∈ Γc, and after using a constant mapping
the process T0 . . . T−nη does not depend on n any longer. Furthermore, the
limit is independent from η ∈ X .

Let lim
n

T0 . . . T−nη = X∗
0 . In this case

X∗
0 = lim

n
T0 . . . T−nη = T0T−1 . . . T−kη,

where the random k is such that T−k ∈ Γc. Therefore

T1X
∗
0 = T1T0 . . . T−kη = lim

n
T1T0 . . . T−nη

Thus we obtained that the distribution π of X∗
0 is invariant. So

|P n(x,A)− π(A)| = |P (Xn ∈ A)− P (Yn ∈ A)| =

= |E(χA(Xn)− χA(Yn))| ≤ P (Xn 6= Yn),

where Xn = Tn . . . T1X0 and Yn = Tn . . . T1X
∗
0 .

On the other hand, P (Xn 6= Yn) ≤ Q(Tk /∈ Γc, k ≤ n) ≤ (1− δ)n, so the
statement is proved.

¥

Now let (Xn, Yn) be a Hidden Markov process and assume that both the
state space X and the observed space Y are Polish. The following lemma is
the �rst new result of the thesis.

Lemma 3.1.5 Assume that the Doeblin-condition holds with m = 1 for the
Markov chain (Xn). Then the Doeblin-condition holds for (Xn, Yn) as well.

Proof. Let (Tn) be the representation of the Markov chain as in Lemma
3.1.3. It means that there exists a sequence of i.i.d. mappings (Tn) such that
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Xn+1 = Tn+1Xn with Q(Tn ∈ Γc) ≥ δ > 0 and (Tn) is independent from the
starting point X0.

Let P (x,G) be the read-out transition kernel of the original Markov chain
(Xn), where x ∈ X and G ∈ B(Y). By Proposition 3.1.1 there is a Borel
measurable function g : X × [0, 1] → Y such that, with V being uniform in
[0, 1] over some probability space (Ω,F ,Q′), for all x ∈ X and G ∈ B(Y)

we have P (x,G) = Q′{g(x, V ) ∈ G}. Consider a sequence of i.i.d uniformly
distributed random variables (Vn) and let us denote the random mapping
g(·, Vn−1) by Un. Thus we have Yn = UnXn and

Yn+1 = Un+1Tn+1Xn.

It is easy to see that the random mapping
(

T
UT

)
is a representation for

(
X
Y

)
.

Obviously, if Tn ∈ Γc(X → X ) then UnTn ∈ Γc(X → Y), and thus

Q×Q′{
(

T

UT

)
∈ Γc{X × Y → X × Y}} ≥ δ,

and taking into account Lemma 3.1.3, the lemma follows.
¥

Remark 3.1.6 Let (Xn) be a Markov chain. The Doeblin-condition is valid
with m ≥ 1 if and only if there exists a representation such that

Q(Tn . . . Tn−m+1 ∈ Γc) ≥ δ,

where Γc is the set of constant mappings. Thus Proposition 3.1.4 and Lemma
3.1.5 also valid if the Doeblin-condition holds for m ≥ 1.

In the subsequent statements we always consider the case m = 1 for
simplicity.

3.2 Markov chains and L-mixing processes
Consider an input-output system as follows: Let the input process be a
Markov chain which satis�es the Doeblin condition and the output process
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is generated through a bounded measurable function. Then the Doeblin
condition is not satis�ed for the output process. Indeed, the output process
in not necessarily a Markov chain. In the following theorem we prove that
the output process is L-mixing.

Theorem 3.2.1 Let (Xn) be a Markov chain with state space X , where X
is a Polish space, and assume that the Doeblin condition is valid for m = 1.
Furthermore let g : X −→ R be a bounded, measurable function. Then the
process

Un = g(Xn)

is L-mixing.

Proof. Let
Fn = σ{X0, Tk : k ≤ n},
F+

n = σ{Tk : k ≥ n + 1}.
Let n ≥ m and n − m = τ . To approximate the process g(Xn), �rst we
approximate Xn by X+

n,m, where

X+
n,m = Tn . . . Tm+1X

∗, (3.3)

and X∗ is a constant. Obviously X+
n,m is F+

m measurable. Furthermore

P (Xn 6= X+
n,m) ≤ Q(Tk is not constant for m + 1 ≤ k ≤ n) ≤

(1− δ)n−m.

So
E1/q‖g(Xn)− g(X+

n,m)‖q ≤ 2KP 1/q(Xn 6= X+
n,m) ≤

2K(1− δ)
n−m

q ,

where K is an upper bound for |g|. Due to Lemma 2.3.3 we have

γq(τ, U) ≤ 4K(1− δ)
τ
q ,

and thus
Γq(U) ≤ 4K

1

1− (1− δ)
1
q

,

and the statement is proved. ¥
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3.3 Exponentially stable random mappings I.
Now we formulate a general concept of exponential stability motivated by
Proposition 2.1.3. Let X be an arbitrary abstract measurable space, and let
Z be a closed subset of a Banach space (e.g. Z ⊂ L1(R) can be the set of
density functions). Let f : X × Z −→ Z be a Borel-measurable function,
and for a �xed sequence (xn)n≥0, xn ∈ X consider the recursion

zn+1 = f(xn, zn), z0 = ξ. (3.4)

Let the solution be denoted by zn(ξ). To simplify the notations we drop the
dependence on the sequence (xn).

De�nition 3.3.1 The mapping f is uniformly exponentially stable if for ev-
ery sequence (xn)n≥0, xn ∈ X

‖zn(ξ)− zn(ξ′)‖ ≤ C(1− %)n‖ξ − ξ′‖, (3.5)

where C > 0, 1 > % > 0 are independent of the sequence (xn).

Under reasonable technical conditions this condition is satis�ed for the Baum-
equation and its derivatives, see [40]. Let z(n,m, ξ) denote the solution of
(3.4) initialized at zm = ξ with m ≤ n. Let us consider an arbitrary discrete
sequence de�ned by recursion of the form

zn+1 = fn(zn) (3.6)

with the same starting point z0 = ξ. Extending a simple analytical lemma
given in [22] from continuous to discrete time we get

Lemma 3.3.2 For the sequence (zn) and (zn) we have

zn − zn =

n−1∑
m=0

(z(n,m + 1, f(xm, zm))− z(n,m + 1, fm(zm))).
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Proof. Due to the de�nition of zn and zn we have

zn = z(n, 1, f(x0, z0)) and zn = z(n, n, fn−1(zn−1))

Using
z(n,m + 1, fm(zm)) = z(n, m + 2, f(xm+1, zm+1)),

for m = 0, . . . , n− 2, we obtain the statement of the lemma. ¥

A trivial corollary is the following key lemma:

Lemma 3.3.3 For the solution of (3.4) we have

zn = ξ +
n−1∑
m=0

(z(n,m + 1, f(xm, ξ))− z(n,m + 1, ξ)).

Proof. Let f be the constant mapping, so that zn ≡ ξ. Due to Lemma
3.3.2 we have

zn = ξ +
n−1∑
m=0

(z(n,m + 1, f(xm, ξ))− z(n,m + 1, ξ)).

¥

De�ne the process (Zn) by

Zn+1 = f(Xn, Zn), Z0 = ξ, (3.7)

where (Xn) is a Markov chain satisfying the Doeblin condition. Due to
Proposition 3.1.4 an invariant distribution of (Xn) exists. Let us denote it
by π . To prove M -boundedness of (Zn) we impose following conditions:

Condition 3.3.4 Let the distribution of X0 be π0. Assume

dπ0

dπ
≤ C1.

Condition 3.3.5 Assume for all ξ ∈ Z and for any q ≥ 1

Eπ‖Z1(ξ)‖q ≤ K1(ξ) < ∞,
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or, equivalently, ∫

X

‖f(x, ξ)‖qdπ(x) ≤ K1(ξ) < ∞, (3.8)

where π is the unique stationary distribution of (Xn) and K1(·) is a measur-
able function.

Lemma 3.3.6 Assume Condition 3.3.4. Then we have

dπn

dπ
≤ C1 for all n. (3.9)

Proof. For an arbitrary set A ⊂ X

πn(A) =

∫

X

χAdπn =

∫

X

P n(x,A)dπ0 ≤

≤
∫

X

P n(x,A)C1dπ = C1π(A),

since π is the stationary distribution, so the lemma is proved. ¥

Lemma 3.3.7 Assume Condition 3.3.4 and 3.3.5. Then we have

E‖f(Xn, ξ)‖q ≤ K1(ξ)C1. (3.10)

Proof. We have

E‖f(Xn, ξ)‖q =

∫

X

‖f(x, ξ)‖qdπn ≤

∫

X

‖f(x, ξ)‖qC1dπ ≤ K1(ξ)C1,

due to Lemma 3.3.6 and Condition 3.3.5. ¥

Lemma 3.3.8 Let the mapping f(x, z) be uniformly exponentially stable,
and let Condition 3.3.4 and 3.3.5 hold. Then the process (Zn) de�ned by
(3.7) with any �xed constant Z0 = ξ is M-bounded.
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Proof. Using Lemma 3.3.3 and the exponential stability of f we have

‖Zn‖ ≤ ‖ξ‖+
n−1∑
m=0

C(1− %)n−m−1‖f(Xm, ξ)− ξ‖. (3.11)

Since q ≥ 1 and f(Xm, ξ) is M -bounded, we have

E
1
q ‖Zn‖q ≤

‖ξ‖+
n−1∑
m=0

C(1− %)n−m−1(E
1
q ‖f(Xm, ξ)‖q + ‖ξ‖) ≤

‖ξ‖+ C((K1(ξ)C1)
1
q + ‖ξ‖)1

%
,

so the lemma is proved. ¥

Consider now processes of the form Vn = g(Xn, Zn), where g is a measurable
function. We need the following technical condition:

Condition 3.3.9 g(x, z) is a measurable function on X × Z such that it is
Lipschitz-continuous in z for every x with an x-independent Lipschitz con-
stant L.

Theorem 3.3.10 Consider the process (Xn, Zn), where (Xn) satis�es the
Doeblin-condition with m = 1, and (Zn) is de�ned by (3.7) with a uniformly
exponentially stable mapping f and an arbitrary constant initial condition ξ.
Assume that X0 is independent of {Tn}, n ≥ 1, and Conditions 3.3.4 and
3.3.5 hold. Furthermore let g(x, z) be a bounded function satisfying Condition
3.3.9 Then

Vn = g(Xn, Zn)

is an L-mixing process.

Remark 3.3.11 Theorem 3.3.10 is valid also if the Doeblin-condition for
(Xn) with m > 1 is assumed.
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Proof. The process Vn = g(Xn, Zn) is obviously M -bounded. Now let n ≥
m, τ = n−m, Fn,F+

n , and X+
n,m be the same as in the proof of Proposition

3.2.1, except that the distribution of X∗ be stationary (independent of Ti)
and

F+
n = σ{X∗, Ti : i ≥ n + 1}.

Let an approximation of (Zn) be de�ned recursively by

Z+
k+1,m = f(X+

k,m, Z+
k,m), (3.12)

where Z+
m,m = z∗ is a constant.

Obviously, Z+
n,m is F+

m-measurable. Let m′ = n − [ τ
2
] and let B denote

the event that no coupling occurs in the interval (m,m′]:

B = {ω : for m < k ≤ m′ Tk(ω) /∈ Γc}.

Due to the Doeblin-condition

P (B) ≤ (1− δ)m′−m = (1− δ)[ τ
2
].

Now consider the event

BC = {ω : ∃k, m < k ≤ m′ Tk(ω) ∈ Γc}.

On BC we have X+
k,m = Xk for all k ≥ m′. Consider the following process:

Z+
k+1,m = f(Xk, Z

+
k,m) for m′ < k ≤ n, (3.13)

with starting point at time m′ Z+
m′,m.

The process (Zk) considered for m′ ≤ k ≤ n satis�es

Zk+1 = f(Xk, Zk) with starting point at time m′ Zm′ .

On the set BC by the exponential stability of f we have

‖Z+
n,m − Zn‖ ≤ C(1− %)[ τ

2
]‖Z+

m′,m − Zm′‖. (3.14)

Obviously for q ≥ 1

E
1
q ‖g(Xn, Zn)− g(X+

n,m, Z+
n,m)‖q ≤
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E
1
q (χB‖g(Xn, Zn)− g(X+

n,m, Z+
n,m)‖q)

+E
1
q (χBC‖g(Xn, Zn)− g(Xn, Z

+
n,m)‖q). (3.15)

As g(x, z) is bounded, the �rst term on the right hand side can be bounded
from above trivially

E
1
q (χB‖g(Xn, Zn)− g(X+

n,m, Z+
n,m)‖q) ≤

E
1
q (χB(2K)q) = 2KP

1
q (B), (3.16)

where ‖g(x, z)‖ ≤ K.
Consider the second term of the expression (3.15).

E
1
q (χBC‖g(Xn, Zn)− g(Xn, Z

+
n,m)‖q) ≤

E
1
q ‖g(Xn, Zn)− g(Xn, Z

+
n,m)‖q ≤

E
1
q (L‖Zn − Z+

n,m‖)q ≤
E

1
q (LC(1− %)[ τ

2
]‖Z+

m′,m − Zm′‖)q =

LC(1− %)[ τ
2
]E

1
q ‖Z+

m′,m − Zm′‖q (3.17)

The second inequality is due to the Lipschitz-continuity of g, and the third
inequality follows from (3.14). Using the Minkowski inequality, Condition
3.3.5 and Lemma 3.3.8 (the distribution of X∗ is stationary) we have that
Zm′ and Z+

m′,m are M -bounded

E
1
q ‖Z+

m′,m − Zm′‖q ≤ E
1
q ‖Z+

m′,m‖q + E
1
q ‖Zm′‖q ≤ S, (3.18)

and so

E
1
q ‖g(X+

n , Z+
m,n)− g(Xn, Zn)‖q ≤ 2K(1− δ)

[τ/2]
q + K ′(1− %)[τ/2], (3.19)

where K ′ = LCS.
Now we are going to apply Lemma 2.3.3 and obtain

γq(τ) ≤ 2(2K(1− δ)
[τ/2]

q + K ′(1− %)[τ/2]). (3.20)

Thus
Γ(q) =

∞∑
τ=0

γq(τ) ≤
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∞∑
τ=0

(4K(1− δ)
[τ/2]

q + 2K ′(1− %)[τ/2]) < ∞, (3.21)

hence the claim of the theorem follows. ¥

In some applications Condition 3.3.9 is too strong. Hence we should
weaken this condition as follows:

Condition 3.3.12 g(x, z) is a measurable function on X ×Z such that it is
Lipschitz-continuous in z for every x with an x-dependent Lipschitz constant
L(x) such that all the moments of L(x) exists with respect to the stationary
distribution of the Markov chain (Xn), i.e. for all q ≥ 1

∫

X

|L(x)|qdπ(x) < Lq
q < ∞.

Theorem 3.3.13 Consider the process (Xn, Zn), where (Xn) satis�es the
Doeblin-condition with m = 1, and (Zn) is de�ned by (3.7) with a uniformly
exponentially stable mapping f and an arbitrary constant initial condition ξ.
Assume that X0 is independent of {Tn}, n ≥ 1, and Conditions 3.3.4 and
3.3.5 hold. Furthermore let g(x, z) be a bounded function satisfying Condition
3.3.12 Then

Vn = g(Xn, Zn)

is an L-mixing process.

Proof. There is only one place, (3.17), where we have used the Lipschitz
continuity, Condition 3.3.9, of g(x, z). Let us replace (3.17) with the following
train of thought:

E
1
q ‖g(Xn, Zn)− g(Xn, Z+

n,m)‖q ≤ E
1
q (L(Xn)‖Zn − Z+

n,m‖)q ≤

E
1
2q |L(Xn)|2qE

1
2q ‖Zn − Z+

n,m‖)2q

by Condition 3.3.12 and the Hölder inequality. Using Lemma 3.3.6 we have
∫

X

|L(x)|2qdπn(x) ≤
∫

X

|L(x)|2qC1dπ(x)
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Thus we have
E

1
q (χBC‖g(Xn, Zn)− g(Xn, Z

+
n,m)‖q) ≤

C
1
2q

1 L2qC(1− %)[ τ
2
]E

1
2q (‖Z+

m′,m − Zm′‖)2q

and can continue the proof of Theorem 3.3.10 from (3.17). ¥

3.4 Exponentially stable random mappings II.
Considering that our motivation is to prove that g(yk, pk) in (2.7) is an L-
mixing process observe that g is not necessarily bounded due to the logarithm
function, see (2.6). Thus, in this section we consider an extension of Theorem
3.3.10 for unbounded function g.

We need the following conditions for the function g.

Condition 3.4.1 Assume that for all q ≥ 1
∫

X

sup
z∈Z

‖g(x, z)‖qdπ(x) ≤ Mq < ∞. (3.22)

Lemma 3.4.2 Conditions 3.3.4 and 3.4.1 imply that the process g(Xn, Zn)

is M-bounded, i.e. for all q ≥ 1

E‖g(Xn, Zn)‖q < ∞. (3.23)

Proof. Let us denote the distribution of (Xn, Zn) by µn.

E‖g(Xn, Zn)‖q =

∫

X×Z

‖g(x, z)‖qdµn(x, z) ≤

∫

X×Z

sup
z∈Z

‖g(x, z)‖qdµn(x, z) =

∫

X

sup
z∈Z

‖g(x, z)‖qdπn(x) ≤

∫

X

sup
z∈Z

‖g(x, z)‖qC1dπ(x) ≤ MqC1. (3.24)

¥

We are going to generalize Theorem 3.3.10 to unbounded function g.
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Theorem 3.4.3 Consider the process (Xn, Zn), where (Xn) satis�es the Doeb-
lin-condition with m = 1, and let (Zn) be de�ned by (3.7) with a uniformly
exponentially stable mapping f and an arbitrary constant initial condition
Z0 = ξ. Assume that X0 is independent of {Tn}, n ≥ 1, and Conditions
3.3.4 and 3.3.5 hold. Furthermore assume that Condition 3.3.9, 3.4.1 is
satis�ed for the function g(x, z). Then

Vn = g(Xn, Zn)

is an L-mixing process.

Proof. The proof is analogous to the proof of Theorem 3.3.10. Consider the
expression (3.15). The estimation of the second part is the same. Consider
the �rst term. By the Hölder inequality we get

E
1
q (χB‖g(Xn, Zn)− g(X+

n,m, Z+
n,m)‖q) ≤

(E
1
2 (χB)2E

1
2‖g(Xn, Zn)− g(X+

n,m, Z+
n,m)‖2q)

1
q . (3.25)

Due to the Minkowski inequality we have

E
1
2q (‖g(Xn, Zn)− g(X+

n , Z+
n,m)‖)2q ≤

E
1
2q ‖g(Xn, Zn)‖2q + E

1
2q ‖g(X+

n , Z+
n,m)‖2q. (3.26)

Both E
1
2q ‖g(Xn, Zn)‖2q and E

1
2q ‖g(X+

n , Z+
n,m)‖2q can be majorized by Lemma

3.4.2. (note that (X+
n ) is a stationary process, which implies that the condi-

tions of Lemma 3.4.2 are satis�ed). Thus the right hand side of (3.25) can
be majorized by

P
1
2q (B)(2M2qC1)

1
2q ≤ 2K1P

1
2q (B). (3.27)

Let us turn back to the proof of Theorem 3.3.10. In the present case inequal-
ity (3.19) is replaced by

E
1
q ‖g(X+

n , Z+
m,n)− g(Xn, Zn)‖q ≤ 2K1(1− δ)

[τ/2]
2q + K ′(1− %)[τ/2]. (3.28)

Then we can continue the proof as in Theorem 3.3.10. ¥
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Remark 3.4.4 Theorem 3.4.3 holds if the Doeblin-condition holds with m >

1.

Following Theorem 3.3.13 we can weaken Condition 3.3.9 to 3.3.12. Then
we get the following statement.

Corollary 3.4.5 Consider the process (Xn, Zn), where (Xn) satis�es the
Doeblin-condition with m = 1, and let (Zn) be de�ned by (3.7) with a uni-
formly exponentially stable mapping f and an arbitrary constant initial condi-
tion Z0 = ξ. Assume that X0 is independent of {Tn}, n ≥ 1, and Conditions
3.3.4 and 3.3.5 hold. Furthermore assume that Condition 3.3.12, 3.4.1 is
satis�ed for the function g(x, z). Then

Vn = g(Xn, Zn)

is an L-mixing process.

In the following we give some remarks on Condition 3.4.1. We start with a
lemma on the existence of a stationary distribution for the process (Xn, Zn).

Lemma 3.4.6 Assume that the Doeblin-condition holds with m ≥ 1 for the
Markov process (Xn), f is uniformly exponentially stable mapping and Con-
dition 3.3.5 holds. Then the process (Xn, Zn) has a stationary distribution.

Proof. De�ne X−n as the limit

X−n = lim
k→∞

T−n ◦ · · · ◦ T−n−kη, (3.29)

with any �xed η, similar to Proposition 3.1.4. It has been shown in the proof
of Proposition 3.1.4 that the limit is well-de�ned. It is easy to see that the
process (X−n) is stationary. Denote the mapping f(xn, ·) : Z −→ Z by fxn

and set
Z∗

0 = lim
n

fX−1 ◦ · · · ◦ fX−nξ. (3.30)

We prove that the limit exists. Take a realization of (X−n) denoted by (x−n).
Consider the di�erence

‖fx−1 ◦ · · · ◦ fx−nξ − fx−1 ◦ · · · ◦ fx−mξ‖, (3.31)
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where n < m. Using notations like in Lemma 3.3.2 with ϕ = z(−n−1,−m−
1, ξ) we have

‖fx−1 ◦ · · · ◦ fx−nξ − fx−1 ◦ · · · ◦ fx−mξ‖ =

‖fx−1 ◦ · · · ◦ fx−nξ − fx−1 ◦ · · · ◦ fx−nϕ‖ ≤
C(1− %)n‖ξ − ϕ‖, (3.32)

where the last inequality is due to the exponential stability of f . Thus

E
1
q ‖fX−1 ◦ · · · ◦ fX−nξ − fX−1 ◦ · · · ◦ fX−mξ‖q ≤

C(1− %)n
(‖ξ‖+ E

1
q ‖Z(−n− 1,−m− 1, ξ)‖q

)
, (3.33)

and by Lemma 3.3.8 the sequence fx−1 ◦ · · · ◦ fx−nξ is Cauchy in Lq-norm,
hence it converges. Thus Z∗

0 is well-de�ned when convergence is interpreted
in Lq-norm for any q ≥ 1. Consider now the pair

X0 = lim
n

T0 ◦ T−1 ◦ · · · ◦ T−nη, (3.34)

Z∗
0 = lim

n
fX−1 ◦ · · · ◦ fX−nξ. (3.35)

We prove that the distribution of (X0, Z
∗
0) is invariant, i.e. it is the same as

the distribution of (T1X0, fX0Z
∗
0). Let X1 = T1X0 and Z1 = fX0Z

∗
0 As

X1 = T1 lim
n

T0 ◦ · · · ◦ T−nη = T1 ◦ T0 ◦ T−1 ◦ · · · ◦ T−kη,

where k is such that T−k ∈ Γc. Therefore

X1 = lim
n

T1 ◦ T0 ◦ · · · ◦ T−nη

as in Proposition 3.1.4, and

Z1 = fX0Z
∗
0 = fX0 ◦ lim

n
fX1 ◦ · · · ◦ fX−nξ =

lim
n

fX0 ◦ · · · ◦ fX−nξ, (3.36)

since fX0 is continuous in z. Thus the distribution of (X0, Z
∗
0) is the same as

the distribution of (X1, Z1), the statement is proved. ¥
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According to Lemma 3.4.6 under the conditions of Theorem 3.4.3 a sta-
tionary distribution of the process (Xn, Zn) exists. Let this stationary distri-
bution be denoted by µ and for an arbitrary initialization let the distribution
of (Xn, Zn) be µn. If we replace Condition 3.4.1 with the following conditions
then Lemma 3.4.2 still holds true: the Radon-Nikodym derivative of µ0 w.r.t.
µ is bounded, say

dµ0

dµ
≤ K. (3.37)

and ∫

X×Z

‖g(x, z)‖qdµ(x, z) ≤ M ′
q. (3.38)

(3.37) implies Condition 3.3.4 and we have (see Lemma 3.3.6)

dµn

dµ
≤ K for all n,

thus indeed
E‖g(Xn, Zn)‖q ≤ KM ′

q. (3.39)

Condition 3.4.1 is motivated by Legland and Mevel [40]. This condition
is easier to use when we wish to analyze the log-likelihood function as it will
be seen in Chapter 4 .

3.5 Exponentially stable random mappings III.
For strong approximation results we will need the L-mixing property of the
derivative process ∂

∂θ
log p(yn|yn−1, . . . y0, θ). Since the conditions of Theorem

3.4.3 are not satis�ed for this derivative process we need an extension of
Theorem 3.4.3. Consider now the process Vn = g(Xn, Zn), where g : X×Z →
R is a measurable function and (Xn, Zn) is de�ned as in (3.7). We change
Condition 3.3.9 to the following technical condition:

Condition 3.5.1 Let g(x, z) be a measurable function on X × Z such that
for every x with an x-dependent Lipschitz constant L(x) we have

|g(x, z1)− g(x, z2)| ≤ L(x)‖z1 − z2‖(‖z1‖+ ‖z2‖).
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Furthermore assume that



∫

X

|L(x)|qdπ(x)




1/q

< Lq < ∞

for all q ≥ 1, where π(x) is the stationary distribution of the Markov chain
(Xn).

Furthermore we weaken Condition 3.4.1.

Condition 3.5.2 Assume that for all q ≥ 1
∫

X

sup
z∈Z

(‖g(x, z)‖
‖z‖+ 1

)q

dπ(x) ≤ Mq < ∞. (3.40)

A version of Lemma 3.5.3 is the following.

Lemma 3.5.3 Conditions 3.3.4,3.3.5 and 3.5.2 imply that the process
g(Xn, Zn) is M-bounded, i.e. for all q ≥ 1

E‖g(Xn, Zn)‖q < ∞. (3.41)

Proof.

E‖g(Xn, Zn)‖q =

∫

X×Z

(‖g(x, z)‖
‖z‖+ 1

)q

(‖z‖+ 1)qdµn(x, z) ≤




∫

X×Z

(‖g(x, z)‖
1 + ‖z‖

)2q

dµn(x, z)




1/2 


∫

X×Z

(1 + ‖z‖)2qdµn(x, z)




1/2

≤




∫

X×Z

(
sup
z∈Z

‖g(x, z)‖
1 + ‖z‖

)2q

dµn(x, z)




1/2

E1/2(1 + ‖Zn‖)2q =




∫

X

(
sup
z∈Z

‖g(x, z)‖
1 + ‖z‖

)2q

dπn(x)




1/2

E1/2(1 + ‖Zn‖)2q ≤

≤ M q
2qC1C2. (3.42)

We have used here that Zn is M -bounded by Lemma 3.3.8, i.e. E1/2(1 +

‖Zn‖)2q ≤ C2 and dπn

dπ
≤ C1 by Lemma 3.3.6.

¥
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Theorem 3.5.4 Consider the process (Xn, Zn), where (Xn) satis�es the Doeb-
lin-condition with m = 1, and let (Zn) be de�ned by (3.7) with a uniformly
exponentially stable mapping f and an arbitrary constant initial condition
Z0 = ξ. Assume that X0 is independent of {Tn}, n ≥ 1, and Conditions
3.3.4 and 3.3.5 hold. Furthermore assume that Conditions 3.5.1, 3.5.2 are
satis�ed for the function g(x, z). Then

Vn = g(Xn, Zn)

is an L-mixing process.

Proof. The process Vn = g(Xn, Zn) is M -bounded by Lemma 3.5.3. For
the L-mixing property we follow the same route as in the proof of Theorem
3.3.10. Let us repeat the proof up to the inequality (3.15).

Consider the second term of the right hand side of (3.15).

E
1
q (χBC‖g(Xn, Zn)− g(Xn, Z

+
n,m)‖q) ≤

E
1
q ‖g(Xn, Zn)− g(Xn, Z+

n,m)‖q ≤
E

1
q (L‖Zn − Z+

n,m‖(‖Zn‖+ ‖Z+
n,m‖))q ≤(

E
1
3q (L)3q

)(
E

1
3q ‖Zn − Z+

n,m‖3q
)(

E
1
3q (‖Zn‖+ ‖Z+

n,m‖)3q
)

≤

L3qE
1
3q (C(1− %)[ τ

2
]‖Z+

m′,m − Zm′‖)3q
(
E

1
3q ‖Zn‖3q + E

1
3q ‖Z+

n,m‖3q
)

≤

Cq(1− %)[ τ
2
]
(
E

1
3q ‖Z+

m′,m‖3q + E
1
3q ‖Zm′‖)3q

)(
E

1
3q ‖Zn‖3q + E

1
3q ‖Z+

n,m‖3q
)

The second inequality is due to Condition 3.5.1, the third inequality is due to
the Hölder inequality, and the fourth inequality follows from the exponential
stability of f .

Using that Z+
m′,m, Zm′ , Zn and Z+

n,m are M -bounded, see Lemma 3.5.3,
we have

E
1
q (χBC‖g(Xn, Zn)− g(Xn, Z

+
n,m)‖q) ≤ K ′(1− %)[τ/2]. (3.43)

Consider now the �rst term of the right hand side of (3.15).
By the Hölder inequality we get

E
1
q (χB‖g(Xn, Zn)− g(X+

n,m, Z+
n,m)‖q) ≤
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(E
1
2 (χB)2E

1
2‖g(Xn, Zn)− g(X+

n,m, Z+
n,m)‖2q)

1
q . (3.44)

Due to Minkowski inequality we have

E
1
2q (‖g(Xn, Zn)− g(X+

n , Z+
n,m)‖)2q ≤

E
1
2q ‖g(Xn, Zn)‖2q + E

1
2q ‖g(X+

n , Z+
n,m)‖2q (3.45)

and by Lemma 3.5.3 the right hand side of (3.44) is majorized by

P
1
2q (B)(2M q

2qC1C2)
1
2q ≤ 2KP

1
2q (B).

Thus we have

E
1
q (χB‖g(Xn, Zn)− g(X+

n,m, Z+
n,m)‖q) ≤ 2KP

1
2q (B). (3.46)

Adding (3.43) and (3.46) we get

E
1
q ‖g(X+

n , Z+
m,n)− g(Xn, Zn)‖q ≤

2K(1− δ)
[τ/2]
2q + K ′(1− %)[τ/2]. (3.47)

The end of the proof is similar to the proof of Theorem 3.3.10.
¥

3.6 On-line estimation
In this section we lay the foundation of the analysis of the convergence of
recursive estimation in Hidden Markov Models. For this purpose we inves-
tigate Markov processes generated by exponentially stable mappings. First
we present the general scheme of Benveniste, Metivier and Prioret, see [6]
introduced for investigating stochastic approximation algorithms, then verify
the assumptions of [6] for our model class.
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3.6.1 The BMP scheme
In this section we present the basics of the theory of recursive estimation de-
veloped by Benveniste, Metivier and Priouret, BMP henceforth (see Chapter
2, Part II. of [6]).

Let a family of transition probabilities {Πθ, θ ∈ D ⊂ Rd} on U be given,
where U is a Polish space. Let us denote the metric by d. Note that in [6] U
is Rn, but the results can be generalized for complete separable metric space.
Let D be an open set. Assume that for any θ ∈ D there exists a unique
invariant probability measure, say µθ. Let (Un(θ)) be a Markov-chain such
that its initial state U0(θ) has distribution µθ. Let H(θ, u) be a mapping
from Rd × U to Rd. Then the basic estimation problem of the BMP-theory
is to solve the equation

Eµθ
H(θ, U(θ)) = 0.

Assume that a solution θ∗ ∈ D exists.

The BMP-scheme. The recursive estimation procedure to solve the above
equation is then de�ned as

θn+1 = θn +
1

n
H(θn, Un), (3.48)

where Un is the time-varying process de�ned by

P (Un+1 ∈ A|Fn) = Πθn(Un, A).

Here Fn is the σ-�eld of events generated by the random variables U0, . . . , Un

and A is any Borel subset of X .
To specify the class of functions H for which the theory is developed con-

sider a Lyapunov function V : U → R+ and de�ne for real-valued functions
g on U and any p ≥ 0 the norms

||g||p := sup
u

|g(u)|
1 + V (u)p

,

and
||∆g||p = sup

u1 6=u2

|g(u1)− g(u2)|
d(u1, u2)(1 + V (u1)p + V (u2)p)

.
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Introduce the class of functions

C(p) = { g : g is continuous and ||g||p < ∞}.

and
Li(p) = { g : ||∆g||p < +∞}.

Note that Li(p) ⊆ C(p + 1) for any p ≥ 0.
Conditions of BMP. All but one condition will be formulated in terms

of the Markov chain {Un(θ) : n ≥ 0} for a �xed θ ∈ D with an arbitrary
non-random initial value U0(θ) = u. The conditions are as follows. The real
number p ≥ 0 is �xed all over the conditions A1.-A3. below.

A1. For any compact subset Q ⊂ D there exists a constant K = K(Q) such
that for all θ ∈ Q, n ≥ 0 and U0(θ) = u ∈ U :

∫
Πn

θ (u, dy)(1 + V (y)p+1) ≤ K(1 + V (u)p+1).

A2. For any compact subset Q of D there exist constants K = K(Q) and
0 < ρ < 1 such that for all g ∈ Li(p), any θ ∈ Q,n ≥ 0 and u, u′ ∈ U :

|Πn
θ g(u)− Πn

θ g(u′)| ≤
≤ K||∆g||p ρnd(u, u′)(1 + V (u)p + V (u′)p).

Conditions A1 and A2 imply geometric ergodicity of the Markov chains
in the following sense: for any θ ∈ D, u ∈ U and any g ∈ C(p + 1) there
exists a Γθg such that

|Πn
θ g(u)− Γθg| ≤ ||g||p+1ρ

n(1 + V (u)p+1).

A key contribution of the BMP theory is that the above geometric ergod-
icity is derived by verifying conditions on a much more convenient class of
test functions, namely Li(p). It follows that there exists a unique invariant
measure µθ such that

Γθg =

∫
g(u)dµθ(du)

for g ∈ C(p + 1).
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A3. For any compact subset Q of D there exists a constant K = K(Q) such
that for all g ∈ Li(p), any θ, θ′ ∈ Q and n ≥ 0, u ∈ U :

|Πn
θ g(u)− Πn

θ′g(u)| ≤ K||∆g||p |θ − θ′|(1 + V (u)p+1).

In other words the kernels Πn
θ are supposed to be Lipschitz-continuous, uni-

formly in n, with respect to the parameter θ when applied to a small set of
test functions Li(p).

Let D0 ⊂ D be a �xed compact truncation domain such that θ∗ ∈ intD0.
De�ne the stopping time

τ = inf{n : θn+1 /∈ D0}.

In addition let ε be a �xed small positive number, and de�ne

σ = inf{n : |θn − θn−1| > ε}.

The stability of the time-varying process Xn is enforced by stopping it at
τ ∧ σ.

A4. For any compact subset Q of D there exists a constant K = K(Q) such
that for any n ≥ 0 and arbitrary starting values θ ∈ Q, u ∈ U

Eθ,u{I(n < τ ∧ σ)(1 + V (Un+1)
p+1} ≤ K(1 + V (u)p+1)

Regularity of the function H is required in the next condition:

A5. For any compact subset Q of D there exists a constant K = K(Q) such
that for all θ, θ′ ∈ Q

|H(θ, u)| ≤ K(1 + V (u)p+1)

|H(θ, u)−H(θ′, u)| ≤ K|θ − θ′|(1 + V (u)p+1)

||∆H(θ, ·)||p ≤ K.

Remark: In fact it is su�cient to require the above condition for ΠθHθ, thus
H may be discontinuous.

Since H(θ, ·) ∈ Li(p) we may set as above

h(θ) = lim
n→∞

Πn
θ H(θ, Un(θ)) = Eµθ

H(θ, U(θ)).
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The associated ODE is then given by

θ̇s = h(θs). (3.49)

To ensure the convergence of the SA-procedure we require global asymp-
totic stability of the associated ODE by assuming the existence of a Lyapunov
function:

A6. There exists a real-valued C2-function Ũ on D such that

(i) Ũ(θ∗) = 0, Ũ(θ) > 0 for all θ ∈ D\{θ∗}
(ii) Ũ ′(θ)h(θ) < 0 for all θ ∈ D\{θ∗}
(iii) Ũ(θ) →∞ if θ → ∂D or |θ| → ∞.

Theorem 13, p. 236 of [6] yields the following convergence result.

Theorem 3.6.1 (Benveniste-Métivier-Priouret 1990, [6]) Assume that Con-
ditions A1 - A6 are satis�ed, and ε is su�ciently small. Let θ ∈ intD0, Um =

u ∈ U , and consider the stopped process θ◦n = θn∧τ∧σ. Then for any 0 < λ < 1

there exist constants B and s such that for all m ≥ 0 we have lim θ◦n = θ∗

with probability at least

1−B(1 + V (u)s)
+∞∑

n=m+1

n−1−λ.

3.6.2 Application for exponentially stable nonlinear sys-
tems

In this subsection conditions (A1)-(A3) are veri�ed for exponentially stable
nonlinear systems. Let X be a Polish space and Z be a closed subset of a
separable Banach space. Let us denote the metric on X by dX .

Consider an exponentially stable random mapping f , see De�nition 3.3.1,
and de�ne the process (Zn) by

Zn+1 = f(Xn, Zn, θ), Z0 = ξ, (3.50)
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where (Xn) is a Markov chain which satis�es the Doeblin condition. Let

Xn+1 = TnXn, (3.51)

where (Tn) is a sequence of i.i.d. random mappings, see (3.1). Let Un =

(Xn, Zn) ∈ X × Z = U . De�ne the metric on U by

d(u, u′) = ‖z − z′‖+ dX (x, x′), (3.52)

where u = (x, z) and u′ = (x′, z′), and let the Lyapunov function be

V (u) = ‖z‖. (3.53)

In the following subsection conditions (A1)-(A3) are veri�ed for the pro-
cess Un de�ned above.

Veri�cation of BMP conditions

By Proposition 3.1.4 a stationary distribution of Xn exists. Let us denote it
by π. For assumption (A1) we need two conditions: the �rst one ensures that
there are no states in "large distances", the second one is (A1) for one-step
when X0 has an invariant distribution.

Condition 3.6.2 Let the distribution of X1 be π1. Assume
dπ1

dπ
≤ C1.

Condition 3.6.3 Assume for all ξ ∈ Z and for p ≥ 1

Eπ‖Z1(ξ)‖p ≤ K1(1 + ‖ξ‖p),

or equivalently ∫

X

‖f(x, ξ)‖pdπ(x) ≤ K1(1 + ‖ξ‖p). (3.54)

Note that Condition 3.6.2 is a modi�ed version of Condition 3.3.4. As in
assumptions (A1)-(A3) the initialization is always a �xed value and we need
it for each initialization, Condition 3.3.4 is not realistic. Condition 3.6.3 is a
special case of Condition 3.3.5.
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Theorem 3.6.4 Consider a process Un = (Xn, Zn) de�ned by (3.7), where
f is an exponentially stable mapping and Xn is a Markov chain satisfying
the Doeblin condition. Assume that Conditions 3.6.2 and 3.6.3 are satis�ed.
Then assumption (A1) holds, i.e. there exists positive constant K such that
for all n ≥ 0, u ∈ U and θ ∈ Q:

Eu,θ(|V (Un)|p+1) ≤ K(1 + |V (u)|p+1).

Proof. Similar to Lemma 3.3.6 we have that Condition 3.6.2 implies that

dπn

dπ
≤ C1 for all n. (3.55)

Repeating the arguments of Lemma 3.3.7 we have that

E‖f(Xn, ξ)‖q ≤ K1(1 + ‖ξ‖p)C1, (3.56)

and similarly to Lemma 3.3.8 we have that

E‖Zn‖p ≤ K(1 + ‖ξ‖p). (3.57)

By the de�nition of the function V , see (3.53), we get the statement from
(3.57). ¥

Since we have not used the metric property in Theorem 3.6.4 X can be any
measurable abstract space. Furthermore, we have used the Doeblin property
only for the existence of a stationary distribution of the Markov chain (Xn).

For assumption (A2) we need two more conditions for the stability of the
process (Xn).

Condition 3.6.5 Assume that f is Lipschitz continuous in x, i.e.

‖f(x1, z)− f(x2, z)‖ ≤ LdX (x1, x2)

Condition 3.6.6 Assume that for the process (Xn) we have

EdX (Xn, X
′
n) ≤ KdX (X0, X

′
0)
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Theorem 3.6.7 Consider a process Un = (Xn, Zn) de�ned by (3.7), where
f is an exponentially stable mapping and Xn is a Markov chain satisfying
the Doeblin condition. Assume that Conditions 3.6.2, 3.6.3, 3.6.5 and 3.6.6
are satis�ed. Then assumption (A2) holds, i.e. there exist positive constants
K, p and 0 < ρ < 1 such that for all g ∈ Li(p), θ ∈ Q, n ≥ 0 and u, u′ ∈ U :

|Πn
θ g(u)− Πn

θ g(u′)| ≤ Kρn‖∆g‖Vp(1 + |V (u)|p + |V (u′)|p)d(u, u′)

For the proof of Theorem 3.6.7 we need a lemma �rst.

Lemma 3.6.8 Consider a process Un = (Xn, Zn) de�ned by (3.7), where f

is an exponentially stable mapping. Assume that Conditions 3.6.5 and 3.6.6
are satis�ed. Then we have

Ed(Un, U ′
n) ≤ Kd(u0, u

′
0),

where K is independent of n.

Proof. By de�nition

d(un, u
′
n) = ‖zn − z′n‖+ dX (xn, x

′
n).

To estimate ‖zn−z′n‖ we use the idea of Lemma 3.3.2, but this time zn and z′n
are not generated with the same sequence (xn). To highlight the generating
sequence (xn) we introduce the following notations. For k ≥ i let

zi
k = f(i, k, z′i, x

n−1
1 )

be the sequence starting from z′i at step i with the generating process (xn).
Note that zi

i = z′i. With this notation we have

zn − z′n = (zn − z0
n) +

n−1∑
i=0

(zi
n − zi+1

n ),

i.e.
‖zn − z′n‖ ≤ ‖zn − z0

n‖+
n∑

i=1

‖zi−1
n − zi

n‖. (3.58)
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By the exponential stability of f we have

‖zi−1
n − zi

n‖ ≤ Cρn−i‖zi
i − zi−1

i ‖, (3.59)

and
‖zn − z0

n‖ ≤ Cρn‖z0 − z′0‖. (3.60)

Furthermore,

‖zi
i − zi−1

i ‖ = ‖f(z′i−1, x
′
i−1)− f(z′i−1, xi−1)‖ ≤

LdX (xi−1, x
′
i−1) (3.61)

by Condition 3.6.5. Using (3.59), (3.60) and (3.61) inequality (3.58) implies
that

‖zn − z′n‖ ≤ Cρn‖z0 − z′0‖+
n∑

i=1

Cρn−iLdX (xi−1, x
′
i−1).

Taking the expectation of both sides and considering Condition 3.6.6 we get
the lemma. ¥

Let us turn to the proof of Theorem 3.6.7.
Proof. (Theorem 3.6.7) For g ∈ Li(p) we have

|g(un)− g(u′n)| ≤ ‖∆g‖pd(un, u′n)(1 + |V (un)|p + |V (u′n)|p). (3.62)

Let A = {ω : Tk(ω) ∈ Γc for k ≤ n/2}. From Lemma 3.1.3 we have
P (A) = 1 − (1 − δ)n/2. On A we have xk = x′k for all n/2 ≤ k ≤ n. Thus
from the de�nition of d and the exponential stability of the mapping f we
have on the set A

d(un, u
′
n) = |zn − z′n| ≤ Cρn/2|zn/2 − z′n/2| =

Cρn/2d(un/2, u
′
n/2).

Taking the expectation of both sides of (3.62) and considering that
Ed(Un/2, U

′
n/2) ≤ d(u0, u

′
0) (see Lemma 3.6.8 and Theorem 3.6.4) we have

EχA|g(Un)− g(U ′
n)| ≤ ‖∆g‖pCρn/2d(u, u′)(1 + |V (u)|p + |V (u′)|p). (3.63)



3. EXPONENTIALLY STABLE SYSTEMS 45

Consider now the complement of A. We have P (Ac) = (1− δ)n/2. Taking
the expectation of (3.62) on the set Ac and using Lemma 3.6.8 we have

EχAc |g(Un)−g(U ′
n)| ≤ (1−δ)n/2‖∆g‖pd(u, u′)(1+|V (u)|p+|V (u′)|p) (3.64)

Adding (3.63) and (3.64) we �nish the proof.
¥

For assumption (A3) we need the smoothness of f with respect to the
parameter θ. Assume that f : X×Z×Θ → Z is a Borel-measurable function,
di�erentiable in θ and for any �x θ the function f(·, ·, θ) is exponentially
stable.

Theorem 3.6.9 Consider a process Un = (Xn, Zn) de�ned by (3.7), where f

is an exponentially stable mapping which is smooth is θ, and Xn is a Markov
chain satisfying the Doeblin condition. Assume that Conditions 3.6.2 and
3.6.3 are satis�ed. Then assumption (A3) holds, i.e. there exist positive
constants K, p such that for all g ∈ Li(p), u ∈ U , n ≥ 0 and θ, θ′ ∈ Q:

|Πn
θ g(u)− Πn

θ′g(u)| ≤ K‖∆g‖Vp(1 + |V (u)|p)|θ − θ′|

We start with a very important lemma which states that if the exponen-
tially stable mapping f is smooth in the parameter θ then the derivative
process ∂zn/∂θ is also an exponentially stable process.

Lemma 3.6.10 Let f be a uniformly exponentially stable mapping smooth
in θ. Then the derivative process wn = ∂zn

∂θ
is also exponentially stable, i.e.

we have
‖wn(η)− wn(η′)‖ ≤ C(1− %)n‖η − η′‖, (3.65)

where η = ∂ξ
∂θ

and η′ = ∂ξ′
∂θ
.

Proof. Let the derivative of zn with respect to the initial condition ξ be
vn, i.e. vn = ∂zn

∂ξ
. Then we have

vn = fz(zn−1, xn−1, θ)vn−1. (3.66)

Note that xn and θ do not depend on the initialization ξ.
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De�ne v′n = ∂wn

∂η
. For the derivative of wn with respect to the initialization

we have
v′n = fz(zn−1, xn−1, θ)v

′
n−1 (3.67)

We used that xn and θ do not depend on the initialization η.
Comparing (3.66) and (3.67) we have that if the �lter process is exponen-

tially stable then the same property holds for its derivative. ¥

Proof. (Theorem 3.6.9) Fix ω ∈ Ω. Consider the derivative of g(xn, zn) with
respect to the parameter θ:

∂g(xn, zn)

∂θ
=

∂g

∂zn

∂zn

∂θ
.

Since g ∈ Li(p) we have that

‖ ∂g

∂zn

‖ ≤ ‖∆g‖(1 + |V (un)|)

and by Lemma 3.6.10 we have

‖∂zn

∂θ
‖ < K,

for a �x K > 0 (independent of the sequence (xn)). Here we have used that
for a �x ω the sequence (xn) is �xed. Thus we have for a �x ω

‖∂g(xn, zn)

∂θ
‖ ≤ ‖∆g‖(1 + |V (un)|)K

Taking the expectation of both sides and using Theorem 3.6.4 we get the
proof. ¥

We conclude this section with the following theorem.

Theorem 3.6.11 Consider a process Un = (Xn, Zn) de�ned by (3.7), where
f is an exponentially stable mapping and Xn is a Markov chain satisfying
the Doeblin condition. Assume that Conditions 3.6.2, 3.6.3, 3.6.5 and 3.6.6
are satis�ed. Then assumptions (A1)-(A3) hold.

Thus we get that if assumption (A5) is satis�ed for a function H, and we
have a Lyapunov function satisfying (A6) then convergence result Theorem
3.6.1 holds for the algorithm (3.48).

We apply Theorem 3.6.11 for Hidden Markov Models in Chapter 5



Chapter 4

Application to Hidden Markov
Models

This chapter demonstrates the relevance of the previous results for the es-
timation of Hidden Markov Models. Consider a Hidden Markov Process
(Xn, Yn), where the state space X is �nite and the observation space Y is
possibly continuous, i.e. let Y be a general measurable space with a σ-�eld
B(Y) and a σ-�nite measure λ. In practice Y is usually a measurable subset
of Rd. Although the results of this chapter are valid for a general read-out
space, we will assume that Y is a measurable subset of Rd and λ is the
Lebesgue-measure. Assume that the transition probability matrix and the
conditional read-out densities are positive, i.e. Q∗ > 0 and b∗i(y) > 0 for
all i, y. Then the process (Xn, Yn) satis�es the Doeblin-condition. Indeed,
Q∗ > 0 implies the Doeblin condition for the Markov chain (Xn) and if the
Doeblin condition is satis�ed for (Xn) then it is also satis�ed for the pair
(Xn, Yn). Note that if the Doeblin condition is satis�ed for a Markov chain
then an invariant distribution exists for the process, see Proposition 3.1.4.

Let the invariant distribution of (Xn) be ν and the invariant distribution
of (Xn, Yn) be π. Note that (Xn, Yn) corresponds to (Xn) and (pn) corre-
sponds to (Zn) in Chapter 3.

π({i}, dy) = νib
∗i(y)λ(dy). (4.1)

47
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The logarithm of the likelihood function is
n−1∑

k=1

log p(yk|yk−1, . . . y0, θ) + log p(y0, θ), (4.2)

where D is a domain and θ ∈ D parameterizes the transition matrix Q and
the conditional read-out densities bi(y). Usually the entries of Q are included
in θ. The k-th term in (4.2) for k ≥ 1 can be written as

log
N∑

i=1

bi(yk, θ)P (i|yk−1, . . . , y0, θ) = log
N∑

i=1

bi(yk, θ)p
i
k(θ).

Now de�ne g as

g(y, p) = log
N∑

i=1

bi(y)pi, (4.3)

then we have

log p(yn, . . . , y0, θ) =
n∑

k=1

g(yk, pk) + log p(y0, θ). (4.4)

Although the problem is thought of as a parametric one, to simplify the
notations we will drop the parameter θ in this chapter. Instead, the true value
of the corresponding unknown quantity is indicated by ∗ and the running
value is denoted by letters without ∗.

The parameter dependence will be used from Chapter 6 on.

4.1 Estimation of Hidden Markov Models
A central question in estimation problems is proving the ergodic theorem for
(2.9), see Chapter 2, which is equivalent to the existence of the limit

lim
n→∞

1

n

n∑

k=1

g(yk, pk). (4.5)

Let the running value of the transition probability matrix Q and the
running value of the conditional read-out densities be all positive, i.e. Q > 0,
bi(y) > 0, respectively.
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With the notation pi
n = P (Xn = i|Yn−1, . . . , Y0) we have

pn+1 = π(QT B(Yn)pn) = f(Yn, pn).

We use capital letters for random variables and lower cases for their real-
izations, i.e. X is a random variable and x is a realization of X. The only
exception is p, where the meaning depends on the context.

Theorem 4.1.1 Consider a Hidden Markov Model (Xn, Yn), where the state
space X is �nite and the observation space Y is a measurable subset of Rd.
Let Q,Q∗ > 0 and bi(y), b∗i(y) > 0 for all i, y. Let the initialization of
the process (Xn, Yn) be random, where the Radon-Nikodym derivative of the
initial distribution π0 w.r.t the stationary distribution π is bounded, i.e.

dπ0

dπ
≤ K. (4.6)

Assume that for all i, j ∈ X and q ≥ 1

∫
| log bj(y)|qb∗i(y)λ(dy) < ∞. (4.7)

Then the process g(Yn, pn) is L-mixing.

Proof. Identify (Xn, Yn) with (Xn) and (pn) with (Zn) in Theorem 3.4.3.
The exponential stability of f follows from Proposition 2.1.3. As pn is a
probability vector Condition 3.3.5 is trivially satis�ed.

We prove that Condition 3.4.1 is satis�ed. Let [x]− = max{−x, 0} and
[x]+ = max{x, 0}. On one hand

N∑
j=1

bj(y)pj ≥ min
i

bi(y),

leads to

[log
N∑

j=1

bj(y)pj]− ≤ [log min
i

bi(y)]−,

or
[g(y, p)]− ≤ max

i
[log bi(y)]− ≤ max

i
| log bi(y)|. (4.8)
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On the other hand the inequality
N∑

j=1

bj(y)pj ≤ max
i

bi(y),

leads to

[log
N∑

j=1

bj(y)pj]+ ≤ [log max
i

bi(y)]+,

or
[g(y, p)]+ ≤ max

i
[log bi(y)]+ ≤ max

i
| log bi(y)|. (4.9)

Since the right hand sides in (4.8) and (4.9) are independent of p we get

sup
p
|g(y, p)| ≤ max

i
| log bi(y)|. (4.10)

Combining (4.7) and (4.10) we get that for all i ∈ X
∫ (

sup
p
|g(y, p)|q

)
b∗i(y)λ(dy) < ∞. (4.11)

Since
∫

sup
p
|g(y, p)|qdπ =

N∑
i=1

νi

∫ (
sup

p
|g(y, p)|q

)
b∗i(y)λ(dy), (4.12)

the �niteness of the left hand side follows.
Now, only Condition 3.3.9 remained to be checked, i.e. that g(y, p) =

log
∑
i

bi(y)pi is Lipschitz-continuous in p with Lipschitz constant independent
of y. For an arbitrary �xed y ∈ Y we have

‖∂g(y, p)

∂p
‖ = ‖ 1

N∑
j=1

bj(y)pj

(b1(y), . . . bN(y))T‖ ≤ (4.13)

√
N max

i
bi(y)

N∑
j=1

bj(y)pj

≤
√

N max
i

1

pi
=
√

N(min
i

pi)−1. (4.14)

It is easy to see that pi has a positive lower bound. Let

ε = min
i,j

qij > 0. (4.15)
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Due to the Baum-equation (2.3) we have

pn+1 = π(QT B(yn)pn) =
QT B(yn)pn

1T QT B(yn)pn

,

where 1T = (1, . . . , 1)T . As Q is a stochastic matrix, 1T QT B(yn)pn =

1T B(yn)pn, and due to (4.15)

QT B(yn)pn ≥ ε11T B(yn)pn.

Thus
pn+1 ≥ ε11T B(yn)pn

1T B(yn)pn

= ε1 (4.16)

and we get

‖∂g(y, p)

∂p
‖ ≤

√
N

ε
. (4.17)

Hence the function g(y, p) is Lipschitz continuous and thus Theorem 3.4.3
implies that g(Yn, pn) is an L-mixing process. ¥

Remark 4.1.2 Since the positivity of Q implies that the stationary distribu-
tion of (Xn) is strictly positive in every state and the densities of the read-outs
are strictly positive, (4.6) is not a strong condition. For example for the ran-
dom initialization we can take a uniform distribution on X and an arbitrary
set of λ a.e. positive density functions bi

0(y).

To analyze the asymptotic properties of (4.5) consider the following lemma.

Lemma 4.1.3 Consider a Hidden Markov Model (Xn, Yn), where the state
space X is �nite and the observation space Y is a measurable subset of Rd.
Let Q,Q∗ > 0 and bi(y), b∗i(y) > 0 for all i, y. Let the initialization of
the process (Xn, Yn) be random, where the Radon-Nikodym derivative of the
initial distribution π0 w.r.t the stationary distribution π is bounded, i.e.

dπ0

dπ
≤ K. (4.18)

Assume that for all i, j ∈ X and q ≥ 1
∫
| log bj(y)|qb∗i(y)λ(dy) < ∞. (4.19)
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Then the limit
lim

n→∞
Eg(Yn, pn)

exists.

Proof. Let us go back to the proof of Lemma 3.4.6. Identify (Xn, Yn)

with (Xn) and (pn) with (Zn) in Lemma 3.4.6. Furthermore let us identify
the initialization of the true process (Xn, Yn) with η and the initialization
of the predictive �lter with ξ. By the proof of Lemma 3.4.6 we have that
(Xn, Yn, pn) converges in law to the stationary distribution. Thus it is enough
to prove that the sequence g(Yn, pn) is uniformly bounded in Lq (q > 1) norm.

Using the fact that

min
j

bj(yn) ≤ bT (yn)pn ≤ max
j

bj(yn),

we have that
g(Yn, pn) ≤ max

j
| log bj(Yn)|.

Let us denote the distribution of (Xn, Yn) by πn. Considering condition (4.18)
and Lemma 3.3.6 we have that

E| log bj(Yn)|q ≤ K max
i

∫
| log bj(y)|qb∗i(y)λ(dy).

Thus condition (4.19) implies the uniform boundedness of g(Yn, pn) in Lq

norm. ¥

Theorem 4.1.4 Consider a Hidden Markov Model (Xn, Yn), where the state
space X is �nite and the observation space Y is a measurable subset of Rd.
Let Q,Q∗ > 0 and bi(y), b∗i(y) > 0 for all i, y. Let the initialization of
the process (Xn, Yn) be random, where the Radon-Nikodym derivative of the
initial distribution π0 w.r.t the stationary distribution π is bounded, i.e.

dπ0

dπ
≤ K. (4.20)

Assume that for all i, j ∈ X and q ≥ 1
∫
| log bj(y)|qb∗i(y)λ(dy) < ∞. (4.21)
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Then the limit
lim

n→∞
1

n

n∑

k=1

g(Yk, pk)

exists almost surely.

Proof. Under the conditions of Theorem 4.1.1 g(Yn, pn) is an L-mixing
process. Normalizing this process we have that

g(Yn, pn)− Eg(Yn, pn)

is also L-mixing. According to Theorem 2.3.5 the law of large numbers is
valid for this process. Combining this with the results of Lemma 4.1.3, we
have that

lim
n→∞

1

n

n∑

k=1

g(Yk, pk)

also exists almost surely. ¥

Consider now a �nite state-�nite read-out HMM. This case follows from
Theorem 4.1.1, but the integrability condition (4.7) is simpli�ed due to the
discrete measure.

Theorem 4.1.5 Consider a Hidden Markov Model (Xn, Yn), where X and
Y are �nite. Assume that Q,Q∗ > 0 and bi(y), b∗i(y) > 0 for all i, y. Then
with a random initialization on X ×Y we have that g(Yn, pn) is an L-mixing
process.

Finally, we compare our results with those of Legland and Mevel, [40]. For
easier reference we restate the results of [40] collecting the relevant conditions.

Proposition 4.1.6 (Legland-Mevel 2000, [40]) Consider a Hidden Markov
Process (Xn, Yn), where the state space X is �nite and the observation space Y
is continuous. Let the transition probability matrix of the unobserved Markov
chain be primitive and the conditional read-out densities be positive, i.e. let
there exist a positive integer r such that Q∗r > 0, and let b∗i(y) > 0, respec-
tively. For the running parameter assume also that Qr > 0 and bi(y) > 0 for
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all i. Furthermore, assume that for all i ∈ X
∫ max

j∈X
bj(y)

min
j∈X

bj(y)
b∗i(y)λ(dy) < ∞, (4.22)

and for all i, j ∈ X
∫
| log bj(y)|b∗i(y)λ(dy) < ∞. (4.23)

Then the process g(Yn, pn) is geometrically ergodic.

Geometric ergodicity also implies the existence of limit in (4.5).

Remark 4.1.7 Inequality (4.22) is a Lipschitz condition in the mean in
the following sense. Due to (4.13) for an arbitrary �x y ∈ Y the function
‖∂g(y, p)/∂p‖ is bounded uniformly in p

‖∂g(y, p)

∂p
‖ ≤

√
N max

i

bi(y)∑
j

bj(y)pj
≤
√

N
maxi b

i(y)

minj bj(y)

since
∑
j

pj = 1, thus L(y) =
√

N maxi b
i(y)/ minj bj(y) is an y-dependent

Lipschitz constant. Condition (4.22) states that the Lipschitz constant L(y)

is bounded in average.

Now we demonstrate that our result applies in certain cases where Propo-
sition 4.1.6 does not.

Example: Consider an example with �nite state space X and read-out
space R. Assume that the process (Xn) satis�es the Doeblin-condition with
m = 1 and let the running value of the transition probability matrix be
positive, i.e. Q > 0. Let the read-outs be continuous with normal density
functions, i.e.

bi(y) =
1√
2πσi

exp(−(y −mi)
2

2σi

),

where (mi, σi)s are the parameters. Assume that σ1 ≤ · · · ≤ σN . Denote the
true parameter by (m∗

i , σ
∗
i ). Since log bi(y) is quadratic in y, (4.7) is satis�ed
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as all moments of the normal distribution exist. Hence Theorem 4.1.4 is
applicable, and the limit of the log-likelihood function (4.5) exists.

On the other hand, Condition (4.22) of Proposition 4.1.6 may not be
satis�ed if σ1 < σN . Indeed, for large y-s the integrand of (4.22) is

C exp

(
−(y −mN)2

2σ2
N

+
(y −m1)

2

2σ2
1

− (y −m∗
i )

2

2(σ∗i )2

)
,

where C is a constant, and this expression is integrable only if

− 1

σ2
N

+
1

σ2
1

− 1

(σ∗i )2
< 0

for all i, i.e. if
(σ∗i )

2 >
(σ1σN)2

(σN)2 − (σ1)2
. (4.24)

4.2 Extension to general state space
In Section 4.1 we investigated the case when the state space X is �nite. We
consider now a general compact state space. Let (Xn) be a Markov chain
on a compact set K ⊂ X , where X is a Polish space, and B(K) is the
associated Borel σ-�eld. Let us �x a σ-�nite dominating measure on X . Let
Q∗(x,A) (x ∈ K, A ∈ B(K)) be the Markov transition kernel of the chain,
see [44]. The observations (Yn) are conditionally independent and identically
distributed given (Xn) with conditional densities b∗xn(y), see (2.1), where the
read-out space Y is assumed to be a Polish space. Let the initial distribution
of (Xn) be P ∗

0 .
Assume that the densities bx(y) are with respect to the same σ-�nite

measure λ and the transition kernel Q has a density q with respect to the
σ-�nite dominating measure µ on X . Furthermore, it is assumed that the
initial distribution of (Xn) has a density p0 with respect to µ.

Consider the predictive density function, i.e. the density of the condi-
tional distribution of Xn given (Yi)

n−1
i=0 . Using the Baum-equation, see (2.3),

we have the following recursion for the density of the predictive �lter:

pn+1(x) =

∫
u
q(u, x)bu(Yn)pn(u)dµ(u)∫

u
bu(Yn)pn(u)dµ(u)

.
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In this section we will use the following notation: for any measurable
function f on (K,B(K), µ) de�ne

ess sup(f) = inf{M ≥ 0 : µ({M < |f |}) = 0}

and if f is non-negative,

ess inf(f) = sup{M ≥ 0 : µ({M > |f |}) = 0}.

For y ∈ Y de�ne
δ(y) =

ess supx bx(y)

ess infx bx(y)
(4.25)

ε =
ess infx,x′ q(x, x′)
ess supx,x′ q(x, x′)

. (4.26)

The following statement, which is an adaptation of Proposition 2.1.3,
shows the exponential memorylessness of the predictive density function, see
[9].

Proposition 4.2.1 (Douc-Matias 2001, [9]) Suppose that 0 < ε. Let p′0 and
p′′0 be any two initial density functions of X0 with respect to the measure µ.
Then

‖pn(p′0)− pn(p′′0)‖L1 ≤ C(1− ε)n‖p′0 − p′′0‖L1 . (4.27)

4.2.1 Estimation of HMMs: continuous state space
Assume that the Markov chain (Xn) has an invariant distribution ν. This
implies that the density of the invariant distribution of the pair (Xn, Yn) is

π(x, y) = bx(y)ν(x).

The logarithm of the likelihood function is
n−1∑

k=1

log

(∫

K

bx(Yk)pkµ(dx)

)
,

and de�ne the function g as

g(y, p) = log

(∫

K

bx(y)p(x)µ(dx)

)
, (4.28)
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similarly to (4.3).
The following theorem is a modi�ed version of Theorem 4.1.1.

Theorem 4.2.2 Consider a Hidden Markov Model (Xn, Yn), where the state
space K ⊂ X is a compact subset of a Polish space X and the observation
space Y is a measurable subset of Rd. Assume that ε > 0 in (4.26). Fur-
thermore assume that the Doeblin condition is satis�ed for the Markov chain
(Xn). Let the initialization of the process (Xn, Yn) be random such that the
Radon-Nikodym derivative of the initial distribution π0 w.r.t the stationary
distribution π is bounded, i.e.

dπ0

dπ
≤ K. (4.29)

Assume that for all q ≥ 1

ess sup
x

∫
| log ess sup

x′
bx′(y)|qb∗x(y)λ(dy) < ∞. (4.30)

and
ess sup

x

∫
|δ(y)|q b∗x(y)λ(dy) < ∞ (4.31)

Then the process g(Yn, pn) is L-mixing.

Remark 4.2.3 By Lemma 3.1.5 and Proposition 3.1.4 the Doeblin condition
for the Markov chain implies the existence of an invariant distribution for
the pair (Xn, Yn).

Proof. (Theorem 4.2.2) Identify (Xn, Yn) with (Xn) and (pn) with (Zn) in
Corollary 3.4.5. The exponential stability of f follows from Proposition 4.2.1.
As pn is a conditional density function Condition 3.3.5 is trivially satis�ed.

We prove that Condition 3.4.1 is satis�ed. For this we should check
whether

∫
sup

p

∣∣∣∣log

(∫

K

bx(y)p(x)µ(dx)

)∣∣∣∣
q

b∗x(y)p∗(x)λ(dy)µ(dx) < ∞ (4.32)

is true for all q ≥ 1. Using that

ess inf
x′

bx′(y) <

∫

K

bx(y)p(x)µ(dx) < ess sup
x′

bx′(y),
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it is enough to show that both
∫ ∣∣∣∣log

(
ess sup

x′
bx′(y)

)∣∣∣∣
q

b∗x(y)p∗(x)λ(dy)µ(dx)

and ∫ ∣∣∣log
(
ess inf

x′
bx′(y)

)∣∣∣
q

b∗x(y)p∗(x)λ(dy)µ(dx)

are �nite.
∫ ∣∣∣∣log

(
ess sup

x′
bx′(y)

)∣∣∣∣
q

b∗x(y)p∗(x)λ(dy)µ(dx) <

ess sup
x

∫
| log ess sup

x′
bx′(y)|qb∗x(y)λ(dy) < ∞

by condition (4.30) and using the de�nition of δ(y) in (4.25) and the fact
that |a− b|q ≤ 2q(|a|q + |b|q) we have

∫ ∣∣∣log
(
ess inf

x′
bx′(y)

)∣∣∣
q

b∗x(y)p∗(x)λ(dy)µ(dx) <

∫
2q

(∣∣∣∣log(ess sup
x′

bx′(y))

∣∣∣∣
q

+ |log δ(y)|q
)

b∗x(y)p∗(x)λ(dy)µ(dx) <

2qess sup
x

∫
| log ess sup

x′
bx′(y)|qb∗x(y)λ(dy)+

2qess sup
x

∫
|log δ(y)|q b∗x(y)λ(dy) < ∞

by condition (4.30) and (4.31). For the second term we have used that
δ(y) ≥ 1, thus | log δ(y)|q ≤ |δ(y)|q. Thus we have that (4.32) holds indeed.

To �nish the proof we have to check the Lipschitz continuity of g(y, p) in
p for all y ( see Condition 3.3.12). Consider the de�nition of g in (4.28)

|g(y, p1)− g(y, p2)| =
∣∣∣∣log

(∫

K

bx(y)p1(x)µ(dx)

)
− log

(∫

K

bx(y)p2(x)µ(dx)

)∣∣∣∣ =

∣∣∣∣log

∫
K

bx(y)p1(x)µ(dx)∫
K

bx(y)p2(x)µ(dx)

∣∣∣∣ (4.33)

As | log A| = | log 1/A| for A > 0 assume that the numerator is greater then
the denominator.
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Using the fact that log x ≤ x − 1 for x > 1 we can estimate (4.33) from
above by

∣∣∣∣∣

(∫
K

bx(y)p1(x)µ(dx)
)− (∫

K
bx(y)p2(x)µ(dx)

)
∫

K
bx(y)p2(x)µ(dx)

∣∣∣∣∣ ≤

ess sup
x′

bx′(y)
(∫

K
|p1(x)− p2(x)|µ(dx)

)

ess inf
x′

bx′(y)
≤

δ(y)‖p1 − p2‖L1 ,

i.e. the function g(y, p) is Lipschitz-continuous in p for all y and all the
moments of the Lipshitz constant exists by (4.31).

Thus the conditions of Corollary 3.4.5 are satis�ed and the process
g(Yn, pn) is L-mixing.

¥

Let us turn to the analyze of the asymptotic properties of (4.5). The
following lemma is similar to Lemma 4.1.3.

Lemma 4.2.4 Consider a Hidden Markov Model (Xn, Yn), where the state
space K ⊂ X is a compact subset of a Polish space X and the observation
space Y is a measurable subset of Rd. Assume that ε > 0 in (4.26). Fur-
thermore, assume that the Doeblin condition is satis�ed for the Markov chain
(Xn). Let the initialization of the process (Xn, Yn) be random such that the
Radon-Nikodym derivative of the initial distribution π0 w.r.t the stationary
distribution π is bounded, i.e.

dπ0

dπ
≤ K. (4.34)

Assume that for all q ≥ 1

ess sup
x

∫
| log ess sup

x′
bx′(y)|qb∗x(y)λ(dy) < ∞ (4.35)

and
ess sup

x

∫
|log δ(y)|q b∗x(y)λ(dy) < ∞ (4.36)
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Then the limit
lim

n→∞
Eg(Yn, pn)

exists.

Proof. We follow the arguments of Lemma 4.1.3. Identify (Xn, Yn) with
(Xn) and (pn) with (Zn) in Lemma 3.4.6. Furthermore let us identify the
initialization of the true process (Xn, Yn) with η and the initialization of the
predictive �lter with ξ. By the proof of Lemma 3.4.6 we have that (Xn, Yn, pn)

converges in law to the stationary distribution. Thus it is enough to prove
that the sequence g(Yn, pn) is uniformly bounded in Lq (q > 1) norm.

Note that

ess inf
x

bx(yn) ≤
∫

bx(yn)pn(x)µ(dx) ≤ ess sup
x

bx(yn)

and
| log ess inf

x
bx(yn)| ≤ | log ess sup

x
bx(yn)|+ | log δ(yn)|.

Let us denote the distribution of (Xn, Yn) by πn. Considering condition (4.34)
and Lemma 3.3.6 we have that

E| log ess sup
x

bx(yn)|q ≤ Kess sup
x

∫
| log ess sup

x′
bx′(y)|qb∗x(y)λ(dy).

and
E| log δ(yn)|q ≤ Kess sup

x

∫
| log δ(y)|qb∗x(y)λ(dy)

Thus conditions (4.35) and (4.36) imply the uniform boundedness of
g(Yn, pn) in Lq norm.

¥

Theorem 4.2.5 Consider a Hidden Markov Model (Xn, Yn), where the state
space K ⊂ X is a compact subset of a Polish space X and the observation
space Y is a measurable subset of Rd. Assume that ε > 0 in (4.26). Fur-
thermore assume that the Doeblin condition is satis�ed for the Markov chain
(Xn). Assume that for all q ≥ 1

ess sup
x

∫
| log ess sup

x′
bx′(y)|qb∗x(y)λ(dy) < ∞. (4.37)
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and
ess sup

x

∫
|δ(y)|q b∗x(y)λ(dy) < ∞ (4.38)

Then the limit
lim

n→∞
1

n

n∑

k=1

g(Yk, pk)

exists almost surely.

At the end of this section we compare our results with those of Douc and
Matias, [9].

Proposition 4.2.6 (Douc-Matias 2001, [9]) Consider a Hidden Markov Pro-
cess (Xn, Yn), where the state space X is compact and the observation space
Y is continuous. Assume that 0 < ε < 1,

ess sup
x

∫
ess sup

x′
| log bx′(y)|qb∗x(y)λ(dy) < ∞. (4.39)

for some q > 0 and

ess sup
x

∫
|δ(y)| b∗x(y)λ(dy) < ∞ (4.40)

Then the limit 1
n

n∑
k=1

g(Yk, pk) exists almost surely.

The proof is based on the geometric ergodicity of the process g(Yn, pn).



Chapter 5

Recursive Estimation of Hidden
Markov Models

In this paragraph we consider Hidden Markov Models with �nite state-space
and �nite read-out space.

Consider the following estimation problem: let Q and b be parameterized
by θ ∈ D, where D is a compact subset of Rr and let

Q∗ = Q(θ∗), b∗ = b(θ∗).

In this case θ is often the parameter of the model parameterizing the
transition matrix Q and the conditional read-out probabilities bi(y). Usually
the entries of Q are included in θ.

Consider the parameter-dependent Baum-equation

pn+1(θ) =
QT (θ)B(yn, θ)pn(θ)

b(yn, θ)Tpn(θ)
= Φ1(yn,pn, θ), (5.1)

To simplify the notations we drop the dependence on the parameter θ.
Di�erentiating pn+1 with respect to θ we have

Wn+1 = QT

(
I − B(yn)pne

T

bT (yn)pn

)
B(yn)Wn

bT (yn)pn

+ F, (5.2)

where
F =

QT
θ B(yn)pn

bT (yn)pn

+ QT

(
I − B(yn)pne

T

bT (yn)pn

)
β(yn)pn

bT (yn)pn

,

62
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Wn = ∂pn

∂θ
and β(yn) = ∂B(yn)

∂θ
.

In a compact form

Wn+1 = Φ2(yn,pn,Wn, θ). (5.3)

Thus for a �x θ, un = (Xn, Yn,pn,Wn, θ) is a Markov chain.
Let the score function be

ϕn(θ) =
∂

∂θ
log p(yn|yn−1, . . . , y0, θ).

Using that
log p(yn|yn−1, . . . , y0, θ) = log bT (y)pn,

see (4.3), we get
ϕn =

β(yn)pn + Wnb(yn)

b(yn)Tpn

. (5.4)

Let
H(θ, u) = H(θ, x, y,p,W ) =

β(y, θ)p + Wb(y, θ)

b(y, θ)Tp
, (5.5)

and consider the following adaptive algorithm.

θn+1 = θn +
1

n + 1
H(θn, xn, yn,pn,W n), (5.6)

pn+1 = Φ1(yn,pn, θn), (5.7)

W n+1 = Φ2(yn,pn, W n, θn). (5.8)

For the convergence of this algorithm we use the approach of Benveniste,
Metivier and Priouret, see Theorem 3.6.1 and [6]. In the following we verify
the conditions of Theorem 3.6.11

Consider a Hidden Markov Model with �nite state space and �nite read-
out space.

Assume that Q(θ) and b(θ) are smooth functions of the parameter, i.e.
the second derivatives exist.

Theorem 5.0.7 Consider a Hidden Markov Model with �nite state space
and �nite read-out space. Assume that Q∗ > 0, b∗x(y) > 0, and Q(θ) > 0,
bx(y, θ) > 0 for all x, y and θ ∈ D, where D is a compact subset of Rd. Then
assumptions (A1)-(A3) of Section 3.6.1 are satis�ed.
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Proof. Identify Xn of Theorem 3.6.11 with (Xn, Yn) and Zn of Theorem
3.6.11 with (pn,Wn). Then the mapping f of Theorem 3.6.11 is identi�ed
with the pair (Φ1, Φ2). Exponentially stability of the pair (Φ1, Φ2) is implied
by Proposition 2.1.3 and Lemma 3.6.10. The Doeblin condition and Condi-
tion 3.6.2 is satis�ed for the process (Xn, Yn) since Q∗ > 0 and b∗x(y) > 0.
Conditions 3.6.3 and 3.6.5 are trivially satis�ed for �nite state space and
�nite read-out space if Q(θ) > 0 and bx(y) > 0 for all x, y. Condition 3.6.6
is automatically satis�ed for �nite systems. ¥

Let us investigate assumption (A5).

Theorem 5.0.8 Consider a Hidden Markov Model with �nite state space
and �nite read-out space. Assume that Q∗ > 0, b∗x(y) > 0, and Q(θ) > 0,
bx(y, θ) > 0 for all x, y and θ ∈ D, where D is a compact subset of Rd. Then
assumption (A5) of Section 3.6.1 is satis�ed.

Proof. Noting that by the condition bx(y, θ) > 0 we have that bx(y, θ) > ε,
since the read-out space is �nite and D is a compact domain. Thus we have

bT (y, θ)p > ε,

and using the de�nition of H, see (5.5), assumption (A5) follows by the
smoothness of b(y, θ) and Q(θ) . ¥

Note that if the state space and the read-out space are �nite then as-
sumption (A4) is trivially satis�ed.

Assumption (A6) is very hard even for linear stochastic systems. Let us
identify

h(θ) = lim
n→∞

E
∂

∂θ
log p(Yn|Yn−1, . . . Y0, θ) (5.9)

This limit exists, see Theorem 6.2.3, and assume that the following identi�-
ability condition is satis�ed, see also Condition 6.3.2:

Condition 5.0.9 The equation

h(θ) = 0

has exactly one solution in D, namely θ∗.
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Note that h(θ) is identi�ed with Wθ(θ, θ
∗) in (6.26).

Condition 5.0.9 implies assumption (A6) in a small domain. Thus we
conclude with the following theorem as an application of Theorem 3.6.1.

Theorem 5.0.10 Consider a Hidden Markov Model with �nite state space
and �nite read-out space. Assume that Q∗ > 0, b∗x(y) > 0, and Q(θ) > 0,
bx(y, θ) > 0 for all θ, x, y. Assume Condition 5.0.9. Then the algorithm
de�ned by (5.6), (5.7), (5.8) converges to the true value θ∗ with probability
arbitrary close to 1.



Chapter 6

Strong Estimation of Hidden
Markov Models

6.1 Parametrization of the Model
In this chapter the rate of convergence of the parameter is investigated. Let
G ⊂ Rr be an open set, D ⊂ G be a compact set, and D∗ ⊂ intD be another
compact set, where intD denotes the interior of D. Assume that for the true
value of the parameter we have θ∗ ∈ D∗. Furthermore, assume that for an
estimation of the parameter of the Hidden Markov Model we have θ ∈ D.
We will refer to D∗ and D as compact domains.

Consider the following estimation problem: let Q and b be parameterized
by θ ∈ D and let

Q∗ = Q(θ∗), b∗ = b(θ∗).

In this paragraph we always consider �nite state-space and continuous read-
out space. Although the results of this chapter are valid for a general read-out
space, we will always assume that Y is a measurable subset of Rd and λ is
the Lebesgue-measure, similarly to Chapter 4. Assume that the densities
bx(y, θ) are with respect to the Lebesgue measure λ.

In the �nite case (when both X and Y are �nite) θ is often the parameter
of the model parameterizing the transition matrix Q and the conditional
read-out probabilities bi(y). Usually the entries of Q are included in θ.

66
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6.2 L-mixing property of the derivative process
For strong approximation theorems we will need that the derivative processes
∂k

∂θk log p(yn, yn−1, . . . , y0, θ), where k = 1, 2, 3 are L-mixing. We only prove
our statement for the �rst derivative, i.e. when k = 1, for k = 2, 3 the
proofs are very similar. Throughout this section we will assume that Q(θ)

and bx(y, θ) are smooth functions in the parameter θ ∈ G.
For y ∈ Y de�ne

δ(y) =
max

x
bx(y)

min
x

bx(y)
(6.1)

and

δ′(y) =
max

x
‖∂bx(y)/∂θ‖

min
x

bx(y)
(6.2)

Theorem 6.2.1 Consider a Hidden Markov Model (Xn, Yn), where the state
space X is �nite and the observation space Y is a measurable subset of Rd. Let
Q,Q∗ > 0 and bi(y), b∗i(y) > 0 for all i, y. Assume that Q(θ) and bi(y, θ) are
continuously di�erentiable functions in the parameter θ. Let the initialization
of the process (Xn, Yn) be random, where the Radon-Nikodym derivative of
the initial distribution π0 w.r.t the stationary distribution π is bounded, i.e.

dπ0

dπ
≤ K. (6.3)

Assume that ∫
|δ(y)|qb∗i(y)λ(dy) < ∞, (6.4)

∫
|δ(y)′|qb∗i(y)λ(dy) < ∞. (6.5)

Then
∂

∂θ
log p(yn|pn−1, . . . p0, θ)

is L-mixing.

Proof. To simplify the notations we drop the dependence on the parameter
θ. Using the notations of Chapter 5 we have

∂

∂θ
log p(yn|pn−1, . . . p0) =

∂

∂θ
log bT (yn)pn =

β(yn)pn + Wnb(yn)

bT (yn)pn

,
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where Wn = ∂pn

∂θ
and β(yn) = ∂b(yn)

∂θ
, see (5.4).

Identify (Xn, Yn) with (Xn) and (pn, Wn) with (Zn) in Theorem 3.5.4.
According to (5.1) and (5.3) let f be (Φ1, Φ2). Finally, let us de�ne g as

g(xn, yn, pn,Wn) =
β(yn)pn + Wnb(yn)

bT (yn)pn

.

Thus we should check the conditions of Theorem 3.5.4. The exponential
stability of f follows from Proposition 2.1.3 and Lemma 3.6.10.

We prove Condition 3.5.2. For this consider the following lemma.

Lemma 6.2.2

‖β(y)p + Wb(y)

bT (y)p
‖ ≤ δ(y)‖W‖+ δ′(y)

Proof. To simplify the expressions here we give the proof when dim Θ = 1:

‖ β(y)p

bT (y)p
‖ ≤

max
x

(∂bx(y)/∂θ)

min
x

bx(y)
= δ′(y), (6.6)

since p is a probability vector. On the other hand
∥∥∥∥
Wb(y)

bT (y)p

∥∥∥∥ ≤
max

x
bx(y)‖W‖

min
x

bx(y)
= δ(y)‖W‖. (6.7)

¥

Lemma 6.2.2 and conditions (6.4), (6.5) imply Condition 3.5.2.
Let us turn to Condition 3.5.1. To prove that this condition is satis�ed

we should consider the di�erence
∥∥∥∥
β(y)p1 + W1b(y)

bT (y)p1

− β(y)p2 + W2b(y)

bT (y)p2

∥∥∥∥ ,

where p1, p2 are probability vectors and W1,W2 are matrices. To simplify the
expressions here we consider the case when dim Θ = 1. In this case β(y) and
W are row vectors. We have

∥∥∥∥
β(y)p1 + W1b(y)

bT (y)p1

− β(y)p2 + W2b(y)

bT (y)p2

∥∥∥∥ ≤
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∥∥∥∥
β(y)p1

bT (y)p1

− β(y)p2

bT (y)p2

∥∥∥∥ +

∥∥∥∥
W1b(y)

bT (y)p1

− W2b(y)

bT (y)p2

∥∥∥∥ .

Consider the �rst term:
∥∥∥∥

β(y)p1

bT (y)p1

− β(y)p2

bT (y)p2

∥∥∥∥ ≤
∥∥∥∥
β(y)(p1 − p2)

bT p1

+
β(y)p2(b

T p2 − bT p1)

bT p1bT p2

∥∥∥∥ ≤

δ′(y)‖p1 − p2‖+ δ(y)δ′(y)‖p1 − p2‖.
Let us consider the second term.

∥∥∥∥
W1b(y)

bT (y)p1

− W2b(y)

bT (y)p2

∥∥∥∥ =

∥∥∥∥
bT (y)(W1 −W2)

bT p1

− bT (y)(p1 − p2)

bT (y)p1

bT (y)W2

bT (y)p2

∥∥∥∥ ≤

δ(y)‖W1 −W2‖+ δ(y)2‖p1 − p2‖‖W2‖,
by (6.7). Thus we have that

∥∥∥∥
β(y)p1 + W1b(y)

bT (y)p1

− β(y)p2 + W2b(y)

bT (y)p2

∥∥∥∥ ≤ (‖p1 − p2‖+ ‖W1 −W2‖)∗

(δ(y) + δ2(y) + δ′(y) + δ(y)δ′(y))(‖p1‖+ ‖p2‖+ ‖W1‖+ ‖W2‖)
and by (6.4) and (6.5) Condition 3.5.1 is satis�ed.

To �nish the proof we should check that Condition 3.3.5 is valid. Since
p1 is a probability vector, it is enough to prove the validity of this condition
for W1. Consider

W1 = QT

(
I − B(y)peT

bT (y)p

)
B(y)W

bT (y)p
+ F, (6.8)

where
F =

QT
θ B(y)p

bT (y)p
+ QT

(
I − B(y)peT

bT (y)p

)
β(y)p

bT (y)p
,

see (5.2). Here p,W are arbitrary initializations. Similar to the previous
proofs we have

‖W1‖ ≤ ‖Q‖δ(y)(‖W‖+ 1) + δ(y)‖Qθ‖+ ‖Q‖δ′(y)(1 + δ(y)). (6.9)

Due to conditions (6.4) and (6.5) the moments of W1 exist. ¥

In applications we need that the limit of the expectation of the derivative
process exists, see (5.9) or (6.26).
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Theorem 6.2.3 Consider a Hidden Markov Model (Xn, Yn), where the state
space X is �nite and the observation space Y is a measurable subset of Rd. Let
Q,Q∗ > 0 and bi(y), b∗i(y) > 0 for all i, y. Assume that Q(θ) and bi(y, θ) are
continuously di�erentiable functions in the parameter θ. Let the initialization
of the process (Xn, Yn) be random, where the Radon-Nikodym derivative of
the initial distribution π0 w.r.t the stationary distribution π is bounded, i.e.

dπ0

dπ
≤ K. (6.10)

Assume that ∫
|δ(y)|qb∗i(y)λ(dy) < ∞. (6.11)

and ∫
|δ(y)′|qb∗i(y)λ(dy) < ∞. (6.12)

Then the limit
lim

n→∞
E

∂

∂θ
log p(yn|yn−1, . . . y0, θ)

exists.

Proof. We follow the arguments of Lemma 4.1.3. Identify (Xn, Yn) with
(Xn) and (pn,Wn) with (Zn) in Lemma 3.4.6. Note that by Lemma 3.6.10
the process (pn,Wn) is exponentially stable. Furthermore let us identify the
initialization of the true process (Xn, Yn) with η and the initialization of
the process (pn,Wn) with ξ. By the proof of Lemma 3.4.6 we have that
(Xn, Yn, pn,Wn) converges in law to the stationary distribution. Thus it is
enough to prove that

β(Yn)pn + Wnb(Yn)

bT (Yn)pn

is uniformly bounded in Lq (q > 1) norm.
From (6.6) and (6.7) we have that

β(Yn)pn + Wnb(Yn)

bT (Yn)pn

≤ δ′(Yn) + δ(Yn)‖Wn‖.

From Lemma 3.3.8 we have the M -boundedness of Wn (the conditions of
the lemma are satis�ed, see (6.10) and (6.9)) with an arbitrary initialization.
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Furthermore by condition (6.10) and Lemma 3.3.6 we have that

E|δ′(Yn)|q ≤ K

∫
|δ(y)|qb∗i(y)λ(dy)

and
E|δ′(Yn)|q ≤ K

∫
|δ(y)′|qb∗i(y)λ(dy).

Thus using the Hölder inequality and conditions (6.11), (6.12) we have
the uniform boundedness of β(Yn)pn+Wnb(Yn)

bT (Yn)pn
in Lq norm. ¥

Let us turn to the second and the third derivatives. De�ne

δ2(y) =
max

x
bx(y)

(min
x

bx(y))2

δ′2(y) =
max

x
‖∂bx(y)/∂θ‖

(min
x

bx(y))2

δ′′2(y) =
max

x
‖∂2bx(y)/∂θ2‖

(min
x

bx(y))2

Theorem 6.2.4 Consider a Hidden Markov Model (Xn, Yn), where the state
space X is �nite and the observation space Y is a measurable subset of Rd.
Let Q,Q∗ > 0 and bi(y), b∗i(y) > 0 for all i, y. Assume that Q(θ) and bi(y, θ)

are two times continuously di�erentiable functions in the parameter θ. Let the
initialization of the process (Xn, Yn) be random, where the Radon-Nikodym
derivative of the initial distribution π0 w.r.t the stationary distribution π is
bounded, i.e.

dπ0

dπ
≤ K. (6.13)

Assume that ∫
|δ2(y)|qb∗i(y)λ(dy) < ∞, (6.14)

∫
|δ′2(y)|qb∗i(y)λ(dy) < ∞, (6.15)

∫
|δ′′2(y)|qb∗i(y)λ(dy) < ∞. (6.16)
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Then
∂2

∂θ2
log p(yn|pn−1, . . . p0, θ)

is L-mixing and the limit

lim
n→∞

E
∂2

∂θ2
log p(yn|yn−1, . . . y0, θ)

exists.

De�ne

δ3(y) =
max

x
bx(y)

(min
x

bx(y))4

δ′3(y) =
max

x
‖∂bx(y)/∂θ‖

(min
x

bx(y))4

δ′′3(y) =
max

x
‖∂2bx(y)/∂θ2‖

(min
x

bx(y))4

δ′′′3 (y) =
max

x
‖∂3bx(y)/∂θ3‖

(min
x

bx(y))4

Theorem 6.2.5 Consider a Hidden Markov Model (Xn, Yn), where the state
space X is �nite and the observation space Y is a measurable subset of Rd. Let
Q,Q∗ > 0 and bi(y), b∗i(y) > 0 for all i, y. Assume that Q(θ) and bi(y, θ) are
three times continuously di�erentiable functions in the parameter θ. Let the
initialization of the process (Xn, Yn) be random, where the Radon-Nikodym
derivative of the initial distribution π0 w.r.t the stationary distribution π is
bounded, i.e.

dπ0

dπ
≤ K. (6.17)

Assume that ∫
|δ3(y)|qb∗i(y)λ(dy) < ∞, (6.18)

∫
|δ′3(y)|qb∗i(y)λ(dy) < ∞, (6.19)

∫
|δ′′3(y)|qb∗i(y)λ(dy) < ∞, (6.20)
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∫
|δ′′′3 (y)|qb∗i(y)λ(dy) < ∞. (6.21)

Then
∂3

∂θ3
log p(yn|pn−1, . . . p0, θ)

is L-mixing and the limit

lim
n→∞

E
∂3

∂θ3
log p(yn|yn−1, . . . y0, θ)

exists.

6.3 Characterization theorem for the error
In this section the rate of convergence of the parameter is investigated. Let
G ⊂ Rr be an open set, D ⊂ G be a compact set, and D∗ ⊂ intD be another
compact set, where intD denotes the interior of D. Assume that for the true
value of the parameter we have θ∗ ∈ D∗. Furthermore, assume that for an
estimation of the parameter of the Hidden Markov Model we have θ ∈ D.
We will refer to D∗ and D as compact domains.

Consider a Hidden Markov Model (Xn, Yn), where the state space X
is �nite and the observation space Y is a measurable subset of Rd. Let
Q(θ), Q∗ > 0 and bi(y, θ), b∗i(y) > 0 for all i, y. Let the initialization of
the process (Xn, Yn) be random, where the Radon-Nikodym derivative of the
initial distribution π0 w.r.t the stationary distribution π is bounded, i.e.

dπ0

dπ
≤ K. (6.22)

Assume that for all i, j ∈ X , θ ∈ D and q ≥ 1

∫
| log bj(y, θ)|qb∗i(y)λ(dy) < ∞. (6.23)

To estimate the unknown parameter we use the maximum-likelihood
(ML) method. Let the log-likelihood function be

LN =
N∑

n=1

log p(Yn|Yn−1, . . . , Y0, θ).
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We shall refer to this as the cost function associated with the ML estimation
of the parameter. The right hand side depends on θ∗ through the sequence
(Yn). To stress the dependence of LN on θ and θ∗ we shall write LN =

LN(θ, θ∗). The ML estimation θ̂N of θ∗ is de�ned as the solution of the
equation

∂

∂θ
LN(θ, θ∗) = LθN(θ, θ∗) = 0 (6.24)

More exactly θ̂N is a random vector such that θ̂N ∈ D for all ω and if the
equation (6.24) has a unique solution in D, then θ̂N is equal to this solution.
By the measurable selection theorem such a random variable does exist.

Let us introduce the asymptotic cost function

W (θ, θ∗) = lim
n→∞

Eθ∗ log p(Yn|Yn−1, . . . , Y0, θ). (6.25)

In Lemma 4.1.3 we have proved that this limit exists for all θ ∈ D.
Assume that the function W (θ, θ∗) is smooth in the interior of D, i.e. the
third derivative exists. Under the conditions of Theorem 6.2.3 and 6.2.4 we
have

Wθ(θ, θ
∗) = lim

n→∞
Eθ∗

∂

∂θ
log p(Yn|Yn−1, . . . , Y0, θ), (6.26)

and for the Fisher-information matrix we have

I∗ = Wθθ(θ
∗, θ∗) =

lim
n→∞

Eθ∗

(
(

∂

∂θ
log p(yn|yn−1, . . . , y0, θ

∗))T (
∂

∂θ
log p(yn|yn−1, . . . , y0, θ

∗))
)

.

Remark 6.3.1 Note that Wθ(θ
∗, θ∗) = 0.

Consider the following identi�ability condition:

Condition 6.3.2 The equation

Wθ(θ, θ
∗) = 0

has exactly one solution in D, namely θ∗.

We are going to prove a characterization theorem for the error term of
the o�-line ML estimation following the arguments of [24].
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Theorem 6.3.3 Consider a Hidden Markov Model (Xn, Yn), where the state
space X is �nite and the observation space Y is a measurable subset of Rd.
Let Q,Q∗ > 0 and bi(y), b∗i(y) > 0 for all i, y. Assume that conditions of
Theorem 4.1.1, 6.2.1, 6.2.4, 6.2.5 are satis�ed. Let θ̂N be the ML estimate
of θ∗. Furthermore assume that the identi�ability condition 6.3.2 is satis�ed.
Then

θ̂N − θ∗ = −(I∗)−1 1

N

N∑
n=1

∂

∂θ
log p(Yn|Yn−1, . . . , Y0, θ

∗) + OM(N−1), (6.27)

where I∗ is the Fisher-information matrix.

For the proof we need several lemmas.

Lemma 6.3.4 The process

un(θ, θ∗) =
∂

∂θ
log p(Yn|Yn−1, . . . Y0, θ)− E

∂

∂θ
log p(Yn|Yn−1, . . . Y0, θ)

is uniformly L-mixing in (θ, θ∗).

Proof. For a �x θ the process un(θ, θ∗) is L-mixing due to Theorem
6.2.1 and Theorem 6.2.3. Considering that in Proposition 2.1.3 in the right
hand side of (2.4) C depends on the parameter θ continuously and by the
smoothness conditions on Q(θ) and bi(θ) we have that in the proof of the L-
mixing property in Theorem 3.5.4 the left hand side of (3.47) is a continuous
function of θ. Since D is a compact domain this implies the uniform L-mixing
property. ¥

Similarly to Lemma 6.3.4 Theorem 6.2.4 and 6.2.5 imply the following
lemmas.

Lemma 6.3.5 The process

uθn(θ, θ∗) =
∂2

∂θ2
log p(Yn|Yn−1, . . . Y0, θ)− E

∂2

∂θ2
log p(Yn|Yn−1, . . . Y0, θ)

is uniformly L-mixing in (θ, θ∗).



6. STRONG ESTIMATION OF HMM-S 76

Lemma 6.3.6 The process

uθn(θ, θ∗) =
∂3

∂θ3
log p(Yn|Yn−1, . . . Y0, θ)− E

∂3

∂θ3
log p(Yn|Yn−1, . . . Y0, θ)

is uniformly L-mixing in (θ, θ∗).

Lemma 6.3.7 Assume Wθ(θ, θ
∗) = 0 has a single solution θ = θ∗ in D

(that is, assume the identi�ability condition 6.3.2). Then for any d > 0 the
equation (6.24) has a unique solution in D such that it is also in the sphere
{θ : |θ − θ∗| < d} with probability at least 1 − O(N−s) for any s > 0 where
the constant in the error term O(N−s) = CN−s depends only on d and s.

Proof. We show �rst that the probability to have a solution outside the
sphere {θ : |θ − θ∗| < d} is less than O(N−s) with any s > 0. Indeed, the
equation Wθ(θ, θ

∗) = 0 has a single solution θ = θ∗ in D, thus for any d > 0

we have

d′ = inf{|Wθ(θ, θ
∗)| : θ ∈ D, θ∗ ∈ D∗, |θ − θ∗| ≥ d} > 0

since Wθ(θ, θ
∗) is continuous in (θ, θ∗) and D ×D∗ is compact. Therefore if

a solution of (6.24) exists outside the sphere {θ : |θ− θ∗| < d} then we have
for

δLθN = sup
θ∈D,θ∗∈D∗

| 1
N

LθN(θ, θ∗)−Wθ(θ, θ
∗)|

the inequality δLθN > d′. Due to Lemma 6.3.4 and 6.3.5 the process

un(θ, θ∗) =
∂

∂θ
log p(Yn|Yn−1, . . . Y0, θ)− E

∂

∂θ
log p(Yn|Yn−1, . . . Y0, θ)

and the process

uθn(θ, θ∗) =
∂2

∂θ2
log p(Yn|Yn−1, . . . Y0, θ)− E

∂2

∂θ2
log p(Yn|Yn−1, . . . Y0, θ)

are L-mixing processes uniformly in (θ, θ∗).
Since Eun(θ, θ∗) = 0 Theorem 2.3.9 is applicable, i.e.

sup
θ∈D,θ∗∈D∗

∣∣∣∣∣
1

N
LθN(θ, θ∗)− 1

N

N∑
n=1

E
∂

∂θ
log p(Yn|Yn−1, . . . Y0, θ)

∣∣∣∣∣ = OM(N−1/2).
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Observe that

δn = E
∂

∂θ
log p(Yn|Yn−1, . . . Y0, θ)−Wθ(θ, θ

∗) = O(αn) (6.28)

with some 0 < α < 1. Indeed if the initial value of the predictive �lter
process is from a stationary distribution then δn = 0. On the other hand the
e�ects of nonstationary initial values decay exponentially, see Theorem 6.2.3
and Lemma 3.4.6. Thus we have

δLθN = OM(N−1/2),

therefore
P (δLθN > d′) = O(N−s)

with any s by Markov's inequality.
Let us now consider the random variable

δLθθN = sup
θ∈D,θ∗∈D0

∥∥∥∥
1

N
LθθN(θ, θ∗)−Wθθ(θ, θ

∗)

∥∥∥∥ .

By the same argument as above we have

δLθθN = OM(N−1/2), (6.29)

therefore
P (δLθθN > d′′) = O(N−s)

for any d′′ > 0 and hence for the event

AN = {ω : δLθN < d′, δLθθN < d′′} (6.30)

we have for N big enough

P (AN) > 1−O(N−s) (6.31)

with any s > 0. But on AN the equation (6.24) has a unique solution
whenever d′ and d′′ are su�ciently small. Indeed by Condition 6.3.2 the
equation Wθ(θ, θ

∗) = 0 has a unique solution in D and hence the existence of
a unique solution of (6.24) can easily be derived from the following version
of the implicit function theorem.
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Lemma 6.3.8 Let Wθ(θ), δWθ(θ), θ ∈ D ⊂ Rp be Rp-valued continuously
di�erentiable functions, let for some θ∗ ∈ D0 ⊂ D, Wθ(θ

∗) = 0, and let
Wθθ(θ

∗) be non-singular. Then for any d > 0 there exists positive numbers
d′, d′′ such that

|δWθ(θ)| < d′ and ‖δWθθ(θ)‖ < d′′

for all θ ∈ D0 implies that the equation Wθ(θ) + δWθ(θ) = 0 has exactly one
solution in a neighborhood of radius d of θ∗.

¥

Lemma 6.3.9 We have

θ̂N − θ∗ = OM(N−1/2).

Proof. Consider the Taylor-series expansion of LθN(θ, θ∗) around θ = θ∗

and evaluate the value of the function at θ = θ̂N . Then we have

LθN(θ̂N , θ∗) = LθN(θ∗, θ∗) + (θ̂N − θ∗)

1∫

0

LθθN

(
(1− λ)θ∗ + λθ̂N , θ∗

)
dλ = 0

(6.32)
First we prove that

LθN(θ∗, θ∗) = OM(N1/2). (6.33)

Note that ∂
∂θ

log p(Yn|Yn−1, . . . Y0, θ
∗) is a martingal di�erence process. In-

deed, ∫

Y

(
∂

∂θ
log p(y|yn−1, . . . , y0, θ

∗)
)

p(y|yn−1, . . . y0, θ
∗)dy =

∫

Y

∂

∂θ
p(y|yn−1, . . . y0, θ

∗)dy =
∂

∂θ

∫

Y

p(y|yn−1, . . . y0, θ
∗)dy = 0. (6.34)

Here we have used that p(y|yn−1, . . . y0, θ) is a density function and D is
a compact domain, thus the uniform integrability condition for the class
p(y|yn−1, . . . y0, θ) is satis�ed.
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For (6.33) we use the Burkholder's inequality for martingales, see Theo-
rem 2.10 in [29]:

E1/q| 1√
N

N∑
n=1

∂

∂θ
log p(Yn|Yn−1, . . . Y0, θ

∗)|q ≤

CE1/q

(
1√
N

N∑
n=1

(
∂

∂θ
log p(Yn|Yn−1, . . . Y0, θ

∗))2

)q/2

Taking the square of both sides and using the triangle inequality for the
Lq/2 norm of the right hand side we get

E2/q| 1√
N

N∑
n=1

∂

∂θ
log p(Yn|Yn−1, . . . Y0, θ

∗)|q ≤

C2 1

N

N∑
n=1

E2/q| ∂

∂θ
log p(Yn|Yn−1, . . . Y0, θ

∗)|q.

M -boundedness of the process ∂
∂θ

log p(Yn|Yn−1, . . . Y0, θ
∗) follows from The-

orem 6.2.1, thus we get (6.33).
Let us now investigate the integral. Since the function W is smooth we

have for 0 ≤ λ ≤ 1 on the set AN (de�ned in (6.30))

‖Wθθ(θ
∗ + λ(θ̂N − θ∗), θ∗)−Wθθ(θ

∗, θ∗)‖ < C|θ̂N − θ∗| < Cd (6.35)

Hence if d is su�ciently small then the positive de�niteness of Wθθ(θ
∗, θ∗)

implies that
1∫

0

Wθθ

(
(1− λ)θ∗ + λθ̂N , θ∗

)
dλ > cI

with some positive c. Since on AN

∥∥∥∥∥∥
1

N

1∫

0

LθθN

(
(1− λ)θ∗ + λθ̂N , θ∗

)
dλ−

1∫

0

Wθθ

(
(1− λ)θ∗ + λθ̂N , θ∗

)
dλ

∥∥∥∥∥∥
< d′′
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it follows that if d′′ is su�ciently small then denoting the minimal eigenvalue
of a matrix by λmin we have

λmin




1∫

0

LθθN

(
(1− λ)θ∗ + λθ̂N , θ∗

)
dλ


 > c > 0,

i.e.
∥∥∥∥∥∥∥




1∫

0

LθθN

(
(1− λ)θ∗ + λθ̂N , θ∗

)
dλ



−1

∥∥∥∥∥∥∥
< CN−1 (6.36)

on AN with a nonrandom constant C.
Considering equation (6.32) and that the �rst term is OM(N1/2) (see

(6.33)) we have that

χAN
(θ̂N − θ∗) = OM(N−1/2). (6.37)

Using (6.31) and the fact that |θ̂N − θ∗| is bounded we have

χAc
N
(θ̂N − θ∗) = OM(N−s) (6.38)

with any s > 0.
Combining (6.37) and (6.38) we get the lemma. ¥

Proof. (Theorem 6.3.3) According to Lemma 6.3.9 the inequality (6.35)
can be improved by OM(N−1/2). Thus we get after integration with respect
to λ that

∥∥∥∥∥∥

1∫

0

Wθθ

(
(1− λ)θ∗ + λθ̂N , θ∗

)
dλ−Wθθ(θ

∗, θ∗)

∥∥∥∥∥∥
= OM(N−1/2)

On the other hand from (6.29) we have
∥∥∥∥∥∥

1

N

1∫

0

LθθN

(
(1− λ)θ∗ + λθ̂N , θ∗

)
dλ−

1∫

0

Wθθ

(
(1− λ)θ∗ + λθ̂N , θ∗

)
dλ

∥∥∥∥∥∥
=

OM(N−1/2).
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Hence we �nally get
∥∥∥∥∥∥

1

N

1∫

0

LθθN

(
(1− λ)θ∗ + λθ̂N , θ∗

)
dλ−Wθθ(θ

∗, θ∗)

∥∥∥∥∥∥
= OM(N−1/2)

Considering that on AN (6.36) is satis�ed and the fact that Wθθ(θ
∗, θ∗) >

0 we have

∥∥∥∥∥∥∥




1∫

0

LθθN

(
(1− λ)θ∗ + λθ̂N , θ∗

)
dλ



−1

− 1

N
W−1

θθ (θ∗, θ∗)

∥∥∥∥∥∥∥
= OM(N−3/2).

(6.39)
Consider (6.32) on the set AN . We have

χAN
(θ̂N − θ∗) = −χAN




1∫

0

LθθN

(
(1− λ)θ∗ + λθ̂N , θ∗

)
dλ



−1

LθN(θ∗, θ∗).

Taking into account estimation (6.39) we get that

χAN
(θ̂N − θ∗) = −χAN

(
1

N
W−1

θθ (θ∗, θ∗) + OM(N−3/2)

)
LθN(θ∗, θ∗)

and (6.33) implies that

χAN
(θ̂N − θ∗) = −χAN

1

N
W−1

θθ (θ∗, θ∗)LθN(θ∗, θ∗) + OM(N−1).

Considering (6.31) and (6.33) we have

(1− χAN
)

1

N
W−1

θθ (θ∗, θ∗)LθN(θ∗, θ∗) = OM(N−1/2),

which implies that

χAN
(θ̂N − θ∗) = W−1

θθ (θ∗, θ∗)
1

N
LθN(θ∗, θ∗) + OM(N−1)

Combining this with (6.38) and using the de�nition of W−1
θθ (θ∗, θ∗) and

LθN(θ∗, θ∗) we get the proof of Theorem 6.3.3.
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¥

A key point here is that the error term is OM(N−1). This ensures that
all basic limit theorems, that are known for the dominant term, which is a
martingale, are also valid for θ̂N − θ∗.

Let us consider now the case when the read-out space is �nite. For this
consider Theorems 6.2.1, 6.2.4, 6.2.5 when Y is �nite. We restate these
theorems in this special case as a corollary.

Corollary 6.3.10 Consider the Hidden Markov Model (Xn, Yn), where X
and Y are �nite. Let Q(θ), Q∗ > 0 and bi(y, θ), b∗i(y) > 0 for all i, y. Assume
that Q and b are smooth in θ, i.e. the third derivatives exist. Then

∂

∂θ
log p(yn|pn−1, . . . p0, θ),

∂2

∂θ2
log p(yn|pn−1, . . . p0, θ)

and
∂3

∂θ3
log p(yn|pn−1, . . . p0, θ)

are L-mixing processes and the limits

lim
n→∞

E
∂

∂θ
log p(yn|yn−1, . . . y0, θ), lim

n→∞
E

∂2

∂θ2
log p(yn|yn−1, . . . y0, θ),

and
lim

n→∞
E

∂2

∂θ2
log p(yn|yn−1, . . . y0, θ),

exist.

Using Corollary 6.3.10 we conclude this section with a version of Theorem
6.3.3 when the state-space and the read-out space are �nite.

Theorem 6.3.11 Consider the Hidden Markov Model (Xn, Yn), where X
and Y are �nite. Let Q(θ), Q∗ > 0 and bi(y, θ), b∗i(y) > 0 for all i, y. Assume
that Q and b are smooth in θ, i.e. the third derivatives exist. Let θ̂N be the
ML estimate of θ∗. Assume that the identi�ability condition 6.3.2 is satis�ed.
Then

θ̂N − θ∗ = −(I∗)−1 1

N

N∑
n=1

∂

∂θ
log p(Yn|Yn−1, . . . , Y0, θ

∗) + OM(N−1), (6.40)

where I∗ is the Fisher-information matrix.



Chapter 7

Estimation with forgetting

Let G ⊂ Rr be an open set, D ⊂ G be a compact set, and D∗ ⊂ intD be
another compact set, where intD denotes the interior of D. Assume that for
the true value of the parameter we have θ∗ ∈ D∗. Furthermore, assume that
for an estimation of the parameter of the Hidden Markov Model we have
θ ∈ D.

Consider a Hidden Markov Model (Xn, Yn), where the state space X
is �nite and the observation space Y is a measurable subset of Rd. Let
Q(θ), Q∗ > 0 and bi(y, θ), b∗i(y) > 0 for all i, y. Let the initialization of
the process (Xn, Yn) be random, where the Radon-Nikodym derivative of the
initial distribution π0 w.r.t the stationary distribution π is bounded, i.e.

dπ0

dπ
≤ K. (7.1)

Assume that for all i, j ∈ X , θ ∈ D and q ≥ 1

∫
| log bj(y, θ)|qb∗i(y)λ(dy) < ∞. (7.2)

If the dynamics changes slowly in time, then we should adapt to the
actual system. But then the estimation procedure must be modi�ed: instead
of cumulating past data we must gradually forget them. Forgetting past data
is technically realized by using exponential forgetting in the o�-line case.

To estimate the unknown parameter we use the modi�ed maximum-
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likelihood method: let θ̂N(λ) be the estimator of θ∗ obtained by minimizing

N∑
n=1

(1− λ)N−nλ log p(yn|yn−1, . . . , y0; θ), (7.3)

with 0 < λ < 1. Here λ is the so-called forgetting factor: small value of λ

means slow forgetting.
Let

Lλ
N(θ, θ∗) =

N∑
n=1

(1− λ)N−nλ log p(Yn|Yn−1, . . . , Y0, θ).

We shall refer to this as the cost function associated with the modi�ed
ML estimation of the parameter. The right hand side depends on θ∗ through
the sequence (Yn).

It is easy to see that the cost function can be computed recursively as
follows:

Lλ
N(θ, θ∗) = (1− λ)Lλ

N−1(θ, θ
∗) + λ log p(YN |YN−1, . . . , Y0, θ),

i.e. the correction term corresponding to the latest observation enters the
cost function always with the same �xed weight. This representation of the
cost function justi�es the terminology "�xed gain estimation".

The modi�ed ML estimation θ̂N(λ) of θ∗ is de�ned as the solution of the
equation

∂

∂θ
Lλ

N(θ, θ∗) = Lλ
θN(θ, θ∗) = 0 (7.4)

More exactly θ̂N(λ) is a random vector such that θ̂N(λ) ∈ D for all ω and
if the equation (7.4) has a unique solution in D, then θ̂N(λ) is equal to this
solution. By the measurable selection theorem such a random variable does
exist.

Consider the following notations introduced in Chapter 6: let the asymp-
totic cost function be

W (θ, θ∗) = lim
n→∞

Eθ∗ log p(Yn|Yn−1, . . . , Y0, θ). (7.5)
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Assume that the function W (θ, θ∗) is smooth in the interior of D. We
have

Wθ(θ
∗, θ∗) = lim

n→∞
Eθ∗

∂

∂θ
log p(Yn|Yn−1, . . . , Y0, θ

∗) = 0,

and for the Fisher-information matrix we have

I∗ = Wθθ(θ
∗, θ∗) =

lim
n→∞

Eθ∗

(
(

∂

∂θ
log p(yn|yn−1, . . . , y0, θ

∗))T (
∂

∂θ
log p(yn|yn−1, . . . , y0, θ

∗))
)

.

Combining Theorem 4.1.1 and the results of Section 6.2 with the tech-
niques of [25] we have a version of Theorem 6.3.3:

Theorem 7.0.12 Under the conditions of Theorem 6.3.3 we have

θ̂N(λ)− θ∗ = −I(θ∗)−1

N∑
n=1

(1− λ)N−nλ
∂

∂θ
log p(Yn|Yn−1, . . . Y0, θ

∗) + rN ,

where 0 < α < 1, rN = OM(λ) + OM(αN), and I(θ∗) is the Fischer-
information matrix.

Theorem 7.0.12 implies that for the covariance matrix we have

E(θ̂n−1 − θ∗)(θ̂n−1 − θ∗)T =
λ

2
I(θ∗)−1 + O(λ3/2) + o(1). (7.6)

Lemma 7.0.13 Assume Wθ(θ, θ
∗) = 0 has a single solution θ = θ∗ in D

(that is, assume the identi�ability condition 6.3.2). Then for any d > 0 and
s > 0 the equation (7.4) has a unique solution in D for N > c/λ, where c is
a deterministic constant, such that it is also in the sphere {θ : |θ− θ∗| < d}
with probability at least 1− c′λs. Here the constants depend only on d and s.

Proof. We show �rst that the probability to have a solution outside the
sphere {θ : |θ − θ∗| < d} is less than c′λs with any s > 0 for N > c/λ.
Indeed, the equation Wθ(θ, θ

∗) = 0 has a single solution θ = θ∗ in D, thus
for any d > 0 we have

d′ = inf{|Wθ(θ, θ
∗)| : θ ∈ D, θ∗ ∈ D∗, |θ − θ∗| ≥ d} > 0
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since Wθ(θ, θ
∗) is continuous in (θ, θ∗) and D ×D∗ is compact. Therefore if

a solution of (7.4) exists outside the sphere {θ : |θ − θ∗| < d} then we have
for

δLλ
θN = sup

θ∈D,θ∗∈D∗
|Lλ

θN(θ, θ∗)−Wθ(θ, θ
∗)|

the inequality δLλ
θN > d′.

Due to Lemma 6.3.4 and 6.3.5 the process

un(θ, θ∗) =
∂

∂θ
log p(Yn|Yn−1, . . . Y0, θ)− E

∂

∂θ
log p(Yn|Yn−1, . . . Y0, θ)

and the process

uθn(θ, θ∗) =
∂2

∂θ2
log p(Yn|Yn−1, . . . Y0, θ)− E

∂2

∂θ2
log p(Yn|Yn−1, . . . Y0, θ)

are L-mixing processes uniformly in (θ, θ∗).
Since Eun(θ, θ∗) = 0 Theorem 2.3.11 is applicable, i.e.

sup
θ∈D,θ∗∈D∗

|Lλ
θN(θ, θ∗)−

N∑
n=1

(1− λ)N−nλE
∂

∂θ
log p(Yn|Yn−1, . . . Y0, θ)| =

OM(λ1/2) (7.7)

De�ne the error term δn as in (6.28). We have that δn = O(αn), and the
error process δn through an exponentially smoothing �lter results the output
process order of magnitude O((1− λ)N) for small λ at time N , i.e. for small
λ (1− λ > α)

N∑
n=1

(1− λ)N−nλδn = O((1− λ)N).

Using the fact that
N∑

n=1

(1− λ)N−nλ = 1− (1− λ)N+1

we have

|
N∑

n=1

(1− λ)N−nλE
∂

∂θ
log p(Yn|Yn−1, . . . Y0, θ)−Wθ(θ, θ

∗)| =
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|
N∑

n=1

(1− λ)N−nλδn + (1− λ)N+1Wθ(θ, θ
∗)| = O((1− λ)N) (7.8)

Combining (7.7) and (7.8) we have

δLλ
θN = OM(λ1/2) + O((1− λ)N).

Here the second term on the right hand side is deterministic. Therefore,
with some c > 0 that for N > c/λ we have that O((1 − λ)N) < d′/2 and
hence P (δLλ

θN > d′) ≤ P (OM(λ1/2) > d′/2) = O(λs) with any s by Markov's
inequality, thus the proposition at the beginning of the proof follows.

Let us now consider the random variable

δLλ
θθN = sup

θ∈D,θ∗∈D0

∥∥Lλ
θθN(θ, θ∗)−Wθθ(θ, θ

∗)
∥∥ .

By the same argument as above we have

δLλ
θθN = OM(λ1/2) + O((1− λ)N) (7.9)

and
P (δLλ

θθN > d′′) = O(λs)

for any d′′ > 0 and N > c/λ. Hence for the event

Aλ
N = {ω : δLλ

θN < d′, δLλ
θθN < d′′} (7.10)

we have with any s > 0 and N > c/λ

P (Aλ
N) > 1−O(λs). (7.11)

But on Aλ
N the equation (7.4) has a unique solution whenever d′ and d′′ are

su�ciently small. Indeed by Condition 6.3.2 the equation Wθ(θ, θ
∗) = 0 has

a unique solution in D and hence the existence of a unique solution of (7.4)
can easily be derived from the implicit function theorem, see Lemma 6.3.8.
¥
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Lemma 7.0.14 We have

θ̂N(λ)− θ∗ = OM(λ1/2) + OM((1− λ)N).

Proof. Consider the Taylor-series expansion of Lλ
θN(θ, θ∗) around θ = θ∗

and evaluate the value of the function at θ = θ̂N(λ). To simplify the notations
we drop the dependence on λ, i.e. θ̂N = θ̂N(λ). Then we have

Lλ
θN(θ̂N , θ∗) = Lλ

θN(θ∗, θ∗) + (θ̂N − θ∗)

1∫

0

Lλ
θθN

(
(1− µ)θ∗ + µθ̂N , θ∗

)
dµ = 0

(7.12)
First we prove that

Lλ
θN(θ∗, θ∗) = OM(λ1/2) + OM((1− λ)N). (7.13)

The process (1− λ)N−nλ ∂
∂θ

log p(Yn|Yn−1, . . . Y0, θ) is a martingale di�er-
ence process, see (6.34).

For (7.13) we use the Burkholder's inequality for martingales, see Theo-
rem 2.10 in [29]:

E1/q|
N∑

n=1

(1− λ)N−nλ
∂

∂θ
log p(Yn|Yn−1, . . . Y0, θ

∗)|q ≤

CE1/q

(
N∑

n=1

(1− λ)N−nλ(
∂

∂θ
log p(Yn|Yn−1, . . . Y0, θ

∗))2

)q/2

Taking the square of both sides and using the triangle inequality for the
Lq/2 norm of the right hand side we get

E2/q|
N∑

n=1

(1− λ)N−nλ
∂

∂θ
log p(Yn|Yn−1, . . . Y0, θ

∗)|q ≤

C2

N∑
n=1

(1− λ)2(N−n)λ2E2/q| ∂

∂θ
log p(Yn|Yn−1, . . . Y0, θ

∗)|q =

O(λ) + O((1− λ)2N).
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Here we have used the M -boundedness of the process
∂
∂θ

log p(Yn|Yn−1, . . . Y0, θ
∗) which follows from Theorem 6.2.1. Thus we get

(7.13).
Let us now investigate the integral in (7.12). Since the function W is

smooth we have for 0 ≤ µ ≤ 1 on the set Aλ
N (de�ned in (7.10))

‖Wθθ(θ
∗ + µ(θ̂N − θ∗), θ∗)−Wθθ(θ

∗, θ∗)‖ < C|θ̂N − θ∗| < Cd (7.14)

Hence if d is su�ciently small then the positive de�niteness of Wθθ(θ
∗, θ∗)

implies that
1∫

0

Wθθ

(
(1− µ)θ∗ + µθ̂N , θ∗

)
dµ > cI

with some positive c. Since on Aλ
N

∥∥∥∥∥∥

1∫

0

Lλ
θθN

(
(1− µ)θ∗ + µθ̂N , θ∗

)
dµ−

1∫

0

Wθθ

(
(1− µ)θ∗ + µθ̂N , θ∗

)
dµ

∥∥∥∥∥∥
< d′′

it follows that if d′′ is su�ciently small then denoting the minimal eigenvalue
of a matrix by λmin we have

λmin




1∫

0

Lλ
θθN

(
(1− µ)θ∗ + µθ̂N , θ∗

)
dµ


 > c > 0,

i.e.
∥∥∥∥∥∥∥




1∫

0

Lλ
θθN

(
(1− µ)θ∗ + µθ̂N , θ∗

)
dµ



−1

∥∥∥∥∥∥∥
< C (7.15)

on Aλ
N with a nonrandom constant C.

Considering equation (7.12) and that the �rst term is OM(λ1/2)+OM((1−
λ)N) (see (7.13)) we have that

χAN
(θ̂N − θ∗) = OM(λ1/2) + OM((1− λ)N). (7.16)
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Using (7.11) and the fact that |θ̂N − θ∗| is bounded we have

χAc
N
(θ̂N − θ∗) = O(λs). (7.17)

Combining (7.16) and (7.17) we get the lemma. ¥

Proof. (Theorem 7.0.12) According to Lemma 7.0.14 the inequality (7.14)
can be improved by OM(λ1/2)+OM((1−λ)N). Thus we get after integration
with respect to µ that
∥∥∥∥∥∥

1∫

0

Wθθ

(
(1− µ)θ∗ + µθ̂N , θ∗

)
dµ−Wθθ(θ

∗, θ∗)

∥∥∥∥∥∥
= OM(λ1/2)+OM((1−λ)N)

On the other hand from (7.9) we have
∥∥∥∥∥∥

1∫

0

Lλ
θθN

(
(1− µ)θ∗ + µθ̂N , θ∗

)
dµ−

1∫

0

Wθθ

(
(1− µ)θ∗ + µθ̂N , θ∗

)
dµ

∥∥∥∥∥∥
=

OM(λ1/2) + OM((1− λ)N).

Hence we �nally get
∥∥∥∥∥∥

1∫

0

Lλ
θθN

(
(1− µ)θ∗ + µθ̂N , θ∗

)
dµ−Wθθ(θ

∗, θ∗)

∥∥∥∥∥∥
= OM(λ1/2)+OM((1−λ)N)

Considering that on Aλ
N (7.15) is satis�ed and the fact that Wθθ(θ

∗, θ∗) >

0 we have
∥∥∥∥∥∥∥




1∫

0

Lλ
θθN

(
(1− µ)θ∗ + µθ̂N , θ∗

)
dµ



−1

−W−1
θθ (θ∗, θ∗)

∥∥∥∥∥∥∥
=

OM(λ1/2) + OM((1− λ)N). (7.18)

Consider (7.12) on the set Aλ
N . We have

χAN
(θ̂N − θ∗) = −χAN




1∫

0

Lλ
θθN

(
(1− µ)θ∗ + µθ̂N , θ∗

)
dµ



−1

Lλ
θN(θ∗, θ∗).
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Taking into account estimation (7.18) we have that

χAN
(θ̂N−θ∗) = −χAN

(
W−1

θθ (θ∗, θ∗) + OM(λ1/2) + OM((1− λ)N)
)
Lλ

θN(θ∗, θ∗).

Using the inequality (a + b)2 ≤ 2(a2 + b2) (7.13) implies that

χAN
(θ̂N − θ∗) =

−χAN
W−1

θθ (θ∗, θ∗)Lλ
θN(θ∗, θ∗)+OM(λ)+O((1−λ)N)OM(λ1/2)+OM((1−λ)2N) =

−χAN
W−1

θθ (θ∗, θ∗)Lλ
θN(θ∗, θ∗) + OM(λ) + OM((1− λ)2N).

Considering (7.11) and (7.13) we have

(1− χAN
)W−1

θθ (θ∗, θ∗)Lλ
θN(θ∗, θ∗) = OM(λ1/2) + OM((1− λ)N),

which implies that

χAN
(θ̂N − θ∗) = W−1

θθ (θ∗, θ∗)Lλ
θN(θ∗, θ∗) + OM(λ) + OM((1− λ)2N)

Combining this with (7.17) and using the de�nition of W−1
θθ (θ∗, θ∗) and

Lλ
θN(θ∗, θ∗) we complete the proof of Theorem 7.0.12.

¥



Chapter 8

Change detection of HMM-s

We consider change-detection problems for Hidden Markov Models following
[3]. For this we �rst note that the negative of the log-likelihood can be
interpreted as a codelength, modulo a constant, which is obtained when
encoding the data sequence (yN , . . . , y1) with a prescribed accuracy, using the
assumed joint density p(yN , . . . , y0; θ). This interpretation of the likelihood
is a central idea of the theory of stochastic complexity. Thus we interpret

Cn(yn; θ)
∆
=− log p(yn|yn−1, . . . , y0; θ),

as a codelength. A key result in the theory of the stochastic complexity can
be extended for the present case (see [26]).

Let the score function be

ϕn(θ) =
∂

∂θ
log p(yn|yn−1, . . . , y0, θ)

We also use lower cases for the random variable ∂
∂θ

log p(Yn|Yn−1, . . . , Y0, θ).
In the following let

r = dim θ.

Theorem 8.0.15 Under the conditions of Theorem 6.3.3 we have

E(Cn(Yn, θ̂n−1(λ))− Cn(Yn, θ∗) =
1

2
rλ + O(λ3/2−c′′) + o(1),

with an arbitrary small c′′ > 0.

92
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The faster the forgetting is i.e. the closer λ is to 1, the more we loose in
encoding performance.
Proof. Consider the second order Taylor-series expansion of the function
log p(yn|yn−1, . . . , y0, θ̂n−1) around θ∗. To simplify the expressions we drop λ

from the arguments and use the notation pn(θ) for the conditional probability
p(yn|yn−1, . . . , y0, θ) expressing the dependence on the parameter θ. We also
use the score function de�ned above.

log pn(θ̂n−1)− log pn(θ∗) = ϕn(θ∗)(θ̂n−1 − θ∗)+

(θ̂n−1 − θ∗)T

(
∂2

∂θ2
log pn

)
(θ∗)(θ̂n−1 − θ∗) + OM(λ3/2) + oM(1),

where term oM(1) is due to the nonstationary initial condition and we took
into account that (θ̂n−1 − θ∗) = OM(λ1/2).

Now consider the expectation of the above equality. Using that ϕn(θ∗) is
a martingale di�erence, the expectation of the �rst term is 0. In the second
term write

(
∂2

∂θ2 log pn

)
(θ∗) as

(
1

pn

(
∂2pn

∂θ2
)(θ∗)

)
− (ϕn(θ∗))T (ϕn(θ∗)).

The expectation of the �rst term is 0, so

E
(
log pn(θ̂n−1)− log pn(θ∗)

)
=

E
(
(θ̂n−1 − θ∗)T (ϕn(θ∗))T (ϕn(θ∗))(θ̂n−1 − θ∗)

)
+ O(λ3/2) + o(1). (8.1)

Noting that ϕn(θ∗) depends on the past weakly, while (θ̂n−1 − θ∗) de-
pends on the past strongly for small λ, we can use the following cutting
argument. Choose a positive integer d = −c log λ and consider the following
approximations:

ϕ+
n (θ∗) = E(ϕn(θ∗)|F+

n−d)

and

θ̂−n−1 − θ∗ = −I(θ∗)−1

n−d∑
i=1

(1− λ)n−i−1λϕi(θ
∗).
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It is easy to see that

ϕ+
n (θ∗)− ϕn(θ∗) = OM(αd)

with some 0 < α < 1, thus

ϕ+
n (θ∗)− ϕn(θ∗) = OM(λc′)

with some c′ > 0 and

θ̂−n−1 − θ̂n−1 = OM(λ1−c′′),

for any c′′ > 0 (see Theorem 7.0.12 and Theorem 2.3.6). Furthermore ϕ+
n (θ∗)

and θ̂−n−1 − θ∗ are independent. Approximate (8.1) by

E
(
(θ̂−n−1 − θ∗)T (ϕ+

n (θ∗))T (ϕ+
n (θ∗))(θ̂−n−1 − θ∗)

)
.

This can be written as

Tr
(
E((θ̂−n−1 − θ∗)(θ̂−n−1 − θ∗)T )E(ϕ+

n (θ∗))T (ϕ+
n (θ∗)))

)
.

The error of this approximation is O(λ3/2−c′′), for su�cienlty large c.
Combining the above approximation with (7.6) we have

E(θ̂−n−1 − θ∗)(θ̂−n−1 − θ∗)T =
λ

2
I(θ∗)−1 + O(λ3/2−c′′) + o(1).

Furthermore noting that

E(ϕn(θ∗))T (ϕn(θ∗)) = I(θ∗) + O(αi),

we get
E(ϕ+

n (θ∗))T (ϕ+
n (θ∗)) = I(θ∗) + O(αi) + O(λc′).

Thus

E(Cn(yn, θ̂n−1(λ))− Cn(yn, θ
∗) =

1

2
rλ + O(λ3/2−c′′) + o(1)

for all c′′ > 0. ¥

An easy consequence of Theorem 8.0.15 is the following.
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Proposition 8.0.16 Consider two di�erent forgetting factors 0 < λ1 <

λ2 < 1. Then we have

E(Cn(yn, θ̂n−1(λ1))− Cn(yn, θ̂n−1(λ2))) ' 1

2
r(λ1 − λ2) < 0.

Theorem 8.0.15 has been useful in the design of a new model selection
criterion. However, for a theoretical analysis of the new method it is not
powerful enough. For this purpose we need a sample path characterization
of the prediction error process. Let the cumulative error be

SN(λ) =
N∑

n=1

(Cn(yn, θ̂n−1(λ))− Cn(yn, θ∗))

Theorem 8.0.17 Under the conditions of Theorem 6.3.3 we have

lim sup
N→∞

| 1
N

SN(λ)− λ

2
r| ≤ Cλ3/2

Sketch of the proof: The proof of this theorem is based on the fact that under
the conditions of the theorem the estimator error process θ̂n − θ∗ has an L-
mixing version ([25]). Then C(yn, θ̂n) and Cn(yn, θ̂n−1(λ)) − Cn(yn, θ

∗) are
also L-mixing. Using the law of large numbers for the latter process we get
the statement.

We state a similar easy consequence as above.

Proposition 8.0.18 Let 0 < λ1 < λ2 < 1 be two di�erent forgetting factors.
Then we have

lim sup
N→∞

| 1
N

SN(λ1)− 1

N
SN(λ2)− λ1 − λ2

2
r| ≤ Cλ

3/2
2

Assume now that a jump in the parameter occurs at τ : the true value of
θ is θ1 for n ≤ τ and it is θ2 for n ≥ τ + 1, i.e.

θ∗ :=

{
θ1, if n ≤ τ

θ2, if n ≥ τ

Let 0 < λ1 < λ2 < 1. Then from Proposition 8.0.18 we have for N ≤ τ

SN(λ1)− SN(λ2) ≈ λ1 − λ2

2
Nr.
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On the other hand at the time of change the performance of the estimator
with faster forgetting, i.e. with λ2 expected to be better. Hence, consider
the following algorithm for detecting the change.

The algorithm: Let d(N) := SN(λ1)− SN(λ2) and set

d∗N = min
n≤N

d(n).

An alarm is generated if d(N)−d∗N > ε, where ε > 0 is a prescribed threshold
value. This type of algorithm is called Hinkley detector in the literature, see
[12].

0 50 100 150
−60

−50

−40

−30

−20

−10

0

d(n) 

n 

change point 

Figure 8.1: We have generated a binary HMM. The change has occured at
step 100.
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