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Abstract

In the present thesis a new approach for the statistical analysis of Hidden
Markov Models (HMM-s), in particular for the analysis of the maximum-
likelihood estimate, is laid down. Useful connection between the estimation
theory of HMM-s and linear stochastic systems is established via the theory
of L-mixing processes.

Our analysis is applicable to HMM-s with a general state-space and read-
out space, assuming that the state process satisfies the Doeblin’s condition.
The key technical results give conditions for the functions of the input-output
process of a non-linear stochastic systems to be L-mixing. This is then
applied to HMM-s extended by the filter process. Several applications are
presented: we state a strong approximation theorem for finite state HMM-
s, we give an on-line estimation procedure, and we deal with the fixed-gain

estimation of HMM-s and apply the results for change detection.
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Chapter 1
Introduction

A Hidden Markov Model (HMM) is a discrete-time finite-state homogenous
Markov chain observed through a discrete-time memoryless invariant chan-
nel. The channel is characterized by a finite set of transition densities indexed
by the states of the Markov chain. These densities may be members of any
parametric family such as Gaussian, Poisson, etc. The initial distribution
of the Markov chain, the transition matrix, and the densities of the channel
may depend on some parameter that characterizes the HMM.

Hidden Markov Models have become a basic tool for modelling stochastic
systems with a wide range of applications in such diverse areas as nano-
tecnology [31], quantized Gaussian linear regression [17, 18], telecommunica-
tion [52], speech recognition [30|, switching systems |16, 20|, financial math-
ematics [13] and protein research [53].

A good introduction to HMM-s with recent results is given in [15]. An
extension of HMM-s allowing dynamic memory is presented in [49].

The estimation of the dynamics of a Hidden Markov Model is a basic
problem in applications. The first fundamental result is due to Baum and
Petrie for finite state Markov chains with finite-range read-outs [5]. Their
analysis relies on the Shannon-Breiman-McMillan theorem, and exploits the
finiteness of both the state-space X and the read-out space ). Strong consis-
tency of the maximum-likelihood estimator for finite-state and binary read-
out HMM-s has been established by Araposthatis and Marcus in [1]. An

important technical tool, the exponential forgetting of the predictive filter
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has also been established. Strong consistency of the maximum-likelihood
estimator for continuous read-out space has been first proven by Leroux in
[41] using the subadditive ergodic theorem. An extensive study of HMM-s
with finite state-space and continuous read-out-space has been carried out by
LeGland and Mevel in [40]| and [39] using the theory of geometric ergodicity
for Markov chains. These results have been extended to compact state space
and continuous read-out space by Douc and Matias in [9]. Strong consis-
tency for the maximum-likelihood estimate for continous-time HMM-s with
finite state-space and Gaussian read-out has been established by Moore and
Elliott using martingale-theory in [14]|. Adaptive control of HMM-s has been
considered in Duncan et al. [11].

A key element in the statistical analysis of HMM-s is a strong law of
large numbers for the log-likelihood function. All the listed tools are quite
powerful and applicable under very weak conditions to derive strong laws of
large numbers. The most fertile approach seems to be that of LeGland and
Mevel, based on the use of geometric ergodicity, and leading to results such
as CLT or convergence of recursive estimators.

However, it is known from the statistical theory of linear stochastic sys-
tems that these classical results of statistics are not always sufficiently infor-
mative to answer natural questions like the performance of adaptive predic-
tors. This has been pointed out by Gerencsér and Rissanen in [28], see also
|26]. In fact, the performance analysis of adaptive predictors and controllers
has lead prompted research in deriving strong approximation results for es-
timators of linear stochastic systems. For off-line estimators the strongest
result on such a strong approximation is given in [24].

A main technical tool for deriving these results is the concept of L-mixing
processes, developed in [23], a generalization of what is known as exponen-
tially stable processes, introduced by Caines and Rissanen in [48] and Ljung
[42]. This is a concept which, in its motivation, strongly exploits the stability
and the linear algebraic structure of the underlying stochastic system.

A simple, but important observation is that using a random mapping
representation of HMM-s (which goes back to Borkar [8], see also [33]), the
concept of L-mixing naturally extends for HMM-s. Thus e.g. if the state-



1. INTRODUCTION 3

process satisfies the Doeblin-condition, then any fixed bounded measurable
function of a Hidden Markov process will result in an L-mixing process, see
Theorem 3.2.1 below.

Although the state space and the read-out space of a general HMM may
have no algebraic structure, the filter process is known to be generated by
a non-linear algebraic recursion, known as the Baum-equation, with the ob-
servation process as the input process. Uniform exponential stability of this
non-linear dynamic system has been investigated in several papers, see e.g.
[2], [40]. This stability property will play a major role in establishing L-
mixing of the extended HMM.

The structure of the thesis is the following: Chapter 2 contains the defi-
nitions and an overview of known related results. In Chapter 3 the key tech-
nical tools are given for general non-linear stochastic systems that exhibit
uniform exponential stability, driven by a Markov-process, giving conditions
under which a fixed static function of the input-output process will be L-
mixing. The application of the results of Chapter 3 to HMM-s will be given
in Chapter 4. HMM-s with finite state-space and general read-out space,
under Doeblin-condition for the state-process will be given in Section 4.1.
To conclude Section 4.1 we compare our conditions with those of [40] that
ensure geometric ergodicity of the extended process. The results of Section
4.1 are extended to HMM-s with general compact state space in Section 4.2.

In further chapters applications of our results in the statistical analysis
of HMM-s are presented. In Chapter 5 the recursive estimation of HMMs is
investigated. In Chapter 6 we state a strong approximation theorem for finite
state HMM-s, inspired by [24]. This fine characterization of the estimator
process is not, of purely academic interest: it plays a key role in the analysis
of the effect of statistical uncertainty and in certain problems of stochastic
complexity, see e.g. [26].

In Chapter 7 we follow the same route as in Chapter 6, but this time
for Hidden Markov Models with fixed gain or forgetting rate A\. We also
establish an explicit formula for the error term. In Chapter 8, using the
above representation of the error term, we investigate the effect of parameter

uncertainty on the performance of an adaptive encoding procedure. Using
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this result and ideas from the theory of stochastic complexity, a change point
detection method for HMM-s is developed.



Chapter 2

Preliminaries

2.1 Hidden Markov Models

We consider Hidden Markov Models with a general state space X and a
general observation or read-out space ). Both are assumed to be Polish
spaces, i.e. they are complete, separable metric spaces, equipped with their
respective Borel-fields. Throughout the dissertation capital letters with lower
index n, such as (X,,), will denote discrete-time processes on the positive axis,

i.e. n € N| if not otherwise stated.

Definition 2.1.1 The pair (X,,Y,) is a Hidden Markov process if (X,) is a
homogenous Markov process with state space X and the observation sequence
(Y,) is conditionally independent and identically distributed given the o-field
generated by the process (X,,).

Example 2.1.2 Assume that the observations are of the form
Yn - h(Xn) + €n,

for any integer n > 0, where {€,,n > 0} is a Gaussian white noise sequence
independent of the Markov process {X,,n > 0}, and h : X — R is measur-
able.

To illustrate the basic concepts let the state space of the Hidden Markov
Model be finite now, i.e. |X| = N. The results for general compact state

space are discussed in Section 4.2.
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Let @Q* be the transition probability matrix of the unobserved Markov

process (X,), i.e.
Q5 = P(Xnq1 = j1 Xy = 1),

where * indicates that we take the true value of the corresponding unknown
quantity. Throughout the dissertation we deal with parametric problems,
i.e. the unknown quantities depend on a parameter. The true value of the
parameter (or the unknown quantities) is the one which is used to generate
the process.

If ) is finite, say |Y| = M, then conditional independence can be written

as
P, =Yn,.. . Yo=yo|Xn =xp,... Xo =12¢) =

HP(Yz' = yi| Xi = ).
=0
In this case we will use the following notation:

Continuous read-outs will be defined by taking the following conditional den-
sities:

P(Y, € dy| X, = z) = b™ (y)Mdy), (2.1)
where A is a fixed nonnegative, o-finite measure. Let us introduce the fol-

lowing notations:
B*(y) = diag(b"(y)),

where i =1,..., N and
b*(y) = (b, ..., 0*M)T.

For notational convenience we write ¢ > 0 if all the elements of the
transition probability matrix are strictly positive.

A key quantity in estimation theory is the predictive filter defined by

P = P(Xpi1 = j|Yn, ..., Vo).
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Writing piyy = (pila, .-, piY1)Y, we know from [5] that the filter process

satisfies the Baum-equation
Prs1 = 7(Q B (Ya)p},), (2.2)

both in discrete and continuous read-out cases, where 7 is the normalizing
operator: for x € RY, 2 > 0, x # 0 set n(z)" = z'/ Zjvzl 2. Here py/ =
P(Xo = 7).

In practice, the transition probability matrix * and the initial proba-
bility distribution p§ of the unobserved Markov chain (X,,) as well as the
conditional probabilities b*(y) of the observation sequence (Y},) are possibly
unknown. For this reason we consider the Baum-equation in a more general
sense:

Pn+1 = W(QTB(Yn)pn)v (23)

RN¥*N s a stochastic matrix,

with initial condition py = ¢, where ) €
B(y) = diag(b'(y)) is a collection of conditional probabilities, and ¢ € RY is
a probability vector, i.e. ¢’ > 0fori=1,...N and 3V ¢ = 1.

We will take an arbitrary probability vector ¢ as initial condition, and
the solution of the Baum equation will be denoted by p,(q).

From the statistical point of view it is crucial whether the Baum equa-
tion is exponentially stable, i.e. the distance between iterates p,(q) and
pn(q’) goes to zero exponentially fast, where ¢, ¢’ are arbitrary initializations.
This has been established in [40] for continuous read-outs under appropriate

conditions.

Proposition 2.1.3 Assume that QQ > 0 and b*(y) > 0 for all x,y. Let q, ¢

be any two initializations. Then for some 0 < 6 < 1,
1Pn(q) = Pn(@) v < C(1 = 6)"(lg = ¢llzv, (2.4)
where || - |7y denotes the total variation norm.

That is, the filter forgets its initial condition with an exponential rate. An
essential feature of the result is that || — ¢'||rv shows up in the upper bound,

see [2]. We note that Proposition 2.1.3 is a purely linear algebraic statement,
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i.e. there is no need for probability. We also note that the total variation
norm is not required in this result as the vectors p,(¢) € RY are in a finite
dimensional space. We will need the total variation norm when the state
space is not finite, see Section 4.2.

If @ is only primitive, i.e. )" > 0 with some positive integer r > 1, then
(2.4) holds with a random C see [40].

Let D be a non-empty, open subset of R". Consider the following estima-
tion problem: let Q(6) and b(#) be parameterized by 6 € D, and let

Q" = Q(07), b" = b(6").

Usually the entries of ) are included in 6.

For the log-likelihood function we have

n—1

10g p(Yo, - - Yn,0) = > _ 108 p(Yk|ys—1, - - Yo, 0) + log p(yo, 6). (2.5)
k=1

The k-th term in (2.5) for £ > 1 can be written as

log > b (y, ) P(Xxo1 = ilyk-1, - -, 40, 0) = log > _ b'(y, 0)p}(6).

Now write
g(y,p.0) =1log > b'(y,0)p'(9), (2.6)
then we have
log p(yns - -, Y0,0) = Zg(yk,pk, 6) + log p(yo, 0). (2.7)
k=1

A standard step in proving consistency of the maximum likelihood esti-

mator is to show that
) 1
Jim = logp(yo, -y, 0) (2.8)

exists almost surely (uniformly in ), see [42].
The limit of (2.8) was investigated in various setup in the literature. An

overview is presented in the next section.
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2.2 Entropy Ergodic Theorems

We review ergodic theorems for the sample entropy and relative entropy den-
sities of HMM-s. The fundamental ergodic theorem for the sample entropy
of a stationary ergodic finite state process, not necessarily an HMM, is given
by the Shannon-Breiman-McMillan theorem. Let (Y,,) denote such a process
and let Py denote its distribution. Let p(yi, .. .y,) denote the n-dimensional
probability mass function induced by Py. The theorem states that
T}Lr{:o—%logp(Yl,...Yn) =H(Y) Py —as.,

where

1
H(Y) = lim —Ep, (—logp(Y1,...Y,))

n—oo M,
is the entropy rate of (Y,)
This theorem implies for a finite state finite read-out HMM:
1
lim ——logp(Y1,...,Y,;0%) = H(0") Py--a.s.
n—oo M
The Shannon-Breiman-McMillan theorem has been generalized by Bar-
ron to non-discrete processes , see [4]. Let (Y,) be a stochastic process on
a probability space (2,5, P). Suppose that the joint distribution P, for
(Y1,...,Y,) has a probability density function p,(yi,...,y,) with respect to
a o-finite measure M,,. Let p(Y,+1|Y1,...,Y,) denote the conditional density

for n > 1. Then we have

Proposition 2.2.1 (Barron 1985, [4]) If (Y,.) is a stationary ergodic process

and there exists an integer m such that for all n > m
Elogp(Yui1|Y,...Y,) > —o0,

then the sequence of relative entropy densities %logpn(Yl, ..., Y,) converges
almost surely to the relative entropy rate, i.e.
1
lim —logp,(Y1,...Y,) =D,
n—oo M,
where
D = lim Elogp(Y,1|Y1,...Yy,).
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Let P, denote a distribution of the misspecified Hidden Markov Model
and let p(y1,...,yn,0) denote the induced n-dimensional density. A central
question in estimation problems is the ergodic theorem for log p(Y;, ..., Y, 0),
i.e. the existence of the limit

1
lim —logp(Yy,...,Ys,0), (2.9)

n—oo N

where (Y,,) is a stationary ergodic HMM with distribution Py-. Leroux proved
the existence of a limit (2.9) for a stationary ergodic general HMM, see [41].

Proposition 2.2.2 (Lerouz 1992, [41]) Assume that the Markov chain (X,,)

is irreducible and aperiodic and observation conditional densities satisfy

Ep«(|logb(Y1,0,;(6%))]) <oco  forj=1,...N.
Then
1 .
lim Elogp(Yl,...,Yn,Q):H(H,Q ) Py — a.s.,
where

1
H(6,0") = lim EEQ*(Ing(}/l, o Y 0) < oo

The theorem is proved using Kingman’s ergodic theorem for subadditive
processes (see [41]).

Similar ergodic theorems for relative entropy densities of several exten-
sions of standard HMM-s were recently proved under suitable conditions.
Francq and Roussignol [20] studied stationary ergodic switching autoregres-

sive processes with finite-state Markov regime defined by
Zn=9(Zn_1,X,,0) + h(V,, Sy, 0), (2.10)

where Z, is a sequence of r-dimensional random vectors, X, is a finite-
state Markov chain, V,, is a sequence of i.i.d. k-dimensional random vectors
independent of X,,, g(+,-,-) and h(:,-, ) are measurable functions from R" x
X x O to R” and from R* x X x © to R", respectively. They proved an

ergodic theorem for the normalized conditional log-likelihood

1
ﬁ 10gp<Zlv R Zn|2070>
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by expressing the conditional density as a product of random matrices and
then applying the Furstenberg and Kesten ergodic theorem, see [21]. The
sequence converges almost surely to the upper Lyapunov exponent of the
sequence of auxiliary random matrices. The standard HMM is a special case
of (2.10) which corresponds to g(-,-,-) = 0.

Krishnamurty and Rydén studied stationary ergodic switching autore-

gressive processes with finite-state Markov regime described by
Yo=9Yn s, .., Yo 1, X0, Wy, 0),

where (Y},) is a scalar process, g is an arbitrary measurable function, and
(W,) is a scalar i.i.d. process. They arrived at a similar ergodic theorem
for the normalized conditional log-likelihood using also Kingman’s ergodic
theorem following Leroux, see [34].

For misspecified HMM-s, defined in Section 2.1, the predictive filter (p,,)
is not a Markov chain under Py, but the triplet (state, observation, wrong
predictive filter) is a Markov chain. Let Z, = (X,,,Y,,p,) denote this ex-
tended Markov chain. LeGland and Mevel proved geometric ergodicity of
the Markov chain Z,, and showed existence of a unique invariant distribution
under suitable conditions. In particular, this property implies an ergodic
theorem for finite-state general HMMs similar to (2.9).

Douc and Matias [9] extended this approach to a general HMM with a
compact state space that is not necessarily finite. They developed an ergodic
theorem for an HMM with arbitrary, not necessarily stationary initial state
density.

Douc, Moulines and Rydén [10] studied general forms of switching autore-
gressive processes with a compact state space that is not necessarily finite.
They proved an ergodic theorem similar to (2.9) for almost sure and L
convergence of the normalized conditional log-likelihood of the observation
sequence. They relied on uniform exponential forgetting of the initial distri-
bution of the inhomogeneous Markov chain representing the states given the

observation sequence.
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2.3 L-mixing processes

In this section an overview of L-mixing processes is presented. The concept
of L-mixing introduced by Laszl6 Gerencsér [23] seemed to be a very powerful
tool in the analysis of linear stochastic systems. Establishing a connection
between HMM-s and linear stochastic systems this technique became the
main technical tool analyzing Hidden Markov Models in this thesis.

Let a probability space (2, F, P) be given. Consider an R™-valued sto-
chastic process (X,), n > 0 defined on (2, F, P). From now on we do not

make explicit reference to (€2, F, P) any more.

Definition 2.3.1 We say that the stochastic process (X,), n > 0 is M-
bounded if for all 1 < q < o0
M,(x) = sup E%|Xn|q < 0.
n>0
If (X,,) is M-bounded we shall also write X,, = Op(1). Similarly if ¢, is a
positive sequence we write X,, = Op(c,,) if X,,/c, = Op(1).

This definition extends to parameter-dependent stochastic processes
(Xn(0)), n > 0. Let D C RP be an open domain. A parameter-dependent
stochastic process (X, (0)), n > 0 is a sequence of measurable mappings for
n >0 from (2 x D, FQ B(D)) to (R, B(R)). Here B(D) denotes the o-field
of Borel-sets of D. For each fixed n, (X,,(0)) can be considered as a random
field over D. In this case we require

M,(z)= sup E|X,(0)]? < oo.
n>0,0€D
We say that a sequence of random variables X, tends to a random variable
X in the M-sense if for all ¢ > 1 we have

lim E9|X, — X|? = 0.

Let (F,), n > 0 be a family of monotone increasing o-fields and (F,1),
n > 0 be a monotone decreasing family of o-fields. We assume that for all

n >0, F, and F,© are independent. A standard example is
Fo=ocle;:i<n}  FF=ocfe :i>n}, (2.11)

where (e;), i > 0 is an independent sequence of random variables.
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Definition 2.3.2 A stochastic process (X,,), n > 0 is L-mizing with respect
to (Fu, F.1), if it is F-adapted, M -bounded, and for 1 < q < oo and T € Z*

V() = sup E1|X,, — E(X,|F )|

n>T
18 such that

Ly(z) = qu(f) < 0.

The definition extends to parameter-dependent stochastic processes. We
say that a stochastic process (X,,(#)), n > 0 is L-mixing with respect to
(Fn, FF) uniformly in 6, if it is F,, @ B(D)-adapted, M-bounded and and
forl<g<oocand T €Z"

Y(T) = sup E1|X,(0) — E(X.(0)|F,)|f

n>1,0€D
is such that

Iy(z) = Z'Yq(T) < 0.

In subsequent discussions we often speak about L-mixing processes without
making explicit reference to (F,, F,'), provided that this does not lead to
ambiguity. A basic example of L-mixing processes is obtained as follows: let
(en), n > 0, e, € R¥ be an M-bounded, independent sequence of random

variables and define a vector-valued process (y,) by
Tn1 = Axn + Be, Yn = an

with A € R™" stable, B € R™** (C € RP*" and xy = 0. It is easy to see
that the process (y,), n > 0 is L-mixing with respect to the (F,, F,I) defined
in (2.11).

To verify that a given process (X,,) is L-mixing, the definition requires
the computation of E(X,|F, ). However, a much simpler method is to find
just any F,  _-measurable random variable, which approximates X, with

reasonable accuracy, and then use the following lemma (see Lemma 2.1 in
[23]).
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Lemma 2.3.3 Let £, be two random wvariable with finite moments of all
orders. Let F' C F be some o-field and let n be an F'-measurable random

variable. Then for all 1 < g < oo we have
Bil¢ — B(EF)) < 2B1]¢ —n|".
The lemma implies that for 7 < 7/ we have
Bi|X, — E(X,|FF ) < 2B4|X, — E(X|F )

It follows that, although v,(7) is in general not monotone decreasing in 7,

we have for 1 < ¢ <oo, 7 <7

Yq (TI> < 29,(7).

A fundamental technical tool in estimation theory is the following moment

inequality given in [23] (Theorem 1.1).

Theorem 2.3.4 (Gerencsér 1989, [23]) Let (X,), n > 0 be a real-valued
L-mizing process with EX,, = 0 for all n and let (f,) be a deterministic

sequence. Then we have for all 1 < m < oo

N N
Em |3 fuXa™ < Cu( Y £2) M2 () T2 (),
n=0 n=0

where C,, depends only on m. We can take C,, = 4(2m — 1)'/2,

Two applications of this theorem are given below. In the first we take f, =1

for all n. In the second the process (X,,) is subject to exponential smoothing.

Theorem 2.3.5 (Gerencsér 1989, [23]) Let (X,), n > 0 be a real-valued
L-maxing process with EX,, =0 for all n. Then we have for all 1 < m < oo

2m

N
a1 m 1/2 1/2
B 5 DKl < Cu AL (3 ),

where Cy, = 4(2m — 1)2. In short, N Zivzo X, = Oy (NV?).
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Theorem 2.3.6 (Gerencsér 1989, [23]) Let (X,), n > 0 be an L-mizing
process with EX, = 0 for all n. Then for any 0 < XA < 1 and for all

1 <m < co we have

N
Bz 3 (1= N)NTAX P < O N2 )Ty (@),

n=1

where Cy, = 4(2m — 1)2. In short, S0 (1 — M)N""AX,, = O(\/?).

An important technical tool is an inequality that provides an upper bound
for the maximal value of random fields. Let (X,,(6)) be a random field defined
for 6 € D C RP. Let a > 0, and define another random field (A X, /A%0) by

(AX,/AY0)(0,0 + h) =|X,(0 + h) — X, (0)]/]h]|,
forn>0,0#0+heD.

Definition 2.3.7 The random field (X, (0)) is M-Hdélder-continuous in 6
with exponent «, if the process (AX,/A%0) is M-bounded, i.e. if for all
1 < q < o0 we have
M (AX,/A0) = sup  Ea|Xn(0+ h) — X,(0)|1/|h]* < 0.
n>0,0£0+heD

If a =1 then we say that X, (0) is M-Lipschitz-continuous.

Let (X,(0)) be a measurable, separable, M-bounded random field that is
M-Holder-continuous in € with exponent o for § € D. By Kolmogorov’s
theorem [32] the realizations of (X, (6)) are continuous in  with probability

1, hence for Dy C D being a compact domain, we can define for almost all w

X, = max | X,(0)].
6 Dg

An upper bound could be given for the moments of the process (X), see
Theorem 3.4 in [23].

Theorem 2.3.8 (Gerencsér 1989, [23]) Assume that (X,(0)) is a measur-
able, separable, M-bounded random field, which is M-Hdolder-continuous with
exponent o for 6 € D C RP. Then we have for all ¢ > 1 and r > p/«

E1(X2)? < C(My(X) + My (AX/D%6)),

where C' depends only on o, p,q,r and D, Dy.
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A useful application of the above result is obtained by combining it with
Theorem 2.3.5 to get the following uniform version of Theorem 2.3.5, see
Theorem 1.2 in [23].

Theorem 2.3.9 (Gerencsér 1989, [23]) Let (X,(0)), n > 0 be a zero-mean,
measurable and separable stochastic process. Assume that X, and AX,, /A0
are L-mizing uniformly in 6 for 6 € D C RP and let Dy be as above. Then
we have for allm > 1 and r > p/a

9Dy
where
M, (x) = Moy (x) + Moy, (Az/AY0) and T, (x) = Lop(x) + Do (Dx/A%H),

and C' depends only on a,p, m,r and the domains D, Dy. In short we can

write

max [N~ an(e)\ = Oy (N7,

0€ Dy

From here a uniform law of large numbers can easily be derived using Mar-

kov’s inequality and a Borel-Cantelli argument:

Theorem 2.3.10 (Gerencsér 1989, [23]) Let (X,.(0)), n > 0, Dy be as

above. Then we have almost surely

lim max|—ZX

N—oo 96D0

Combining Theorem 2.3.6 and 2.3.8 we have a similar result for the case

when X, is subject to exponential smoothing:

Theorem 2.3.11 (Gerencsér 1989, [23]) Let X,,(0) be an L-mizing process
uniformly in 0 € D such that EX,(0) =0 for alln >0, 0 € D and assume
that (AX,,/A0) is also L-mizing, uniformly in 0,0 +h € D. Let 0 < A < 1,

then we get

sup [ Y (1= N)NT"AX,(0)] = On(A?).

6eD* |“—



Chapter 3

Exponentially stable systems

3.1 Representation of Markov processes

Consider a Polish space X and a sequence of independent, [0, 1]-uniform
random variables (U,,) on a probability space (2, F, Q). Let f be a Borel
measurable deterministic function f: X x [0,1] — X. Then the sequence
(X,,) defined by

Xn = f(Xo-1,Un1), Xo==

is a Markov chain, where x € X is an arbitrary initialization.

A converse result is given in the following proposition:

Proposition 3.1.1 Let (X,,) be a Markov process on a Polish space X with
transition probabilities P(x,G), v € X, G € B(X). Then there exists a Borel
measurable function f: X x[0,1] — X such that, with U being uniform in
[0, 1] over some probability space (2, F, Q), for allx € X and G € B(X) we
have

P(z,G) = Q{f(x,U) € G}.

For the proof, see [33]. In the sequel we will denote the random mapping
f(,Up-1) by T, i.e. for x € X

Tox = f(x,U,1). (3.1)

The process defined by X,,11 = T,,11X,, Xo = x is Markov, if X is indepen-
dent of (T,,), n > 1.

17
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The representation can be given in a constructive way but it should be
noted that it is not unique. This representation plays a key role in the
subsequent analysis.

Next we are going to introduce the notion of Doeblin-condition, see [7]:

Definition 3.1.2 Let (X,,) be a Markov chain with state space X. If there
exists an integer m > 1, 0 > 0 and some probability measure v on B(X) such
that

P™(x,A) > ov(A)

is valid for all x € X and A C B(X), then we say that the Doeblin-condition
15 satisfied.

Here 0 can be interpreted as the weight of the i.i.d. factor of the Markov
chain. The following lemma, see 7], shows the relation between the Doeblin-

condition and the representation of the Markov chain.

Lemma 3.1.3 (Bhattacharya-Waymire 1999, [7]) Let (X,) be a Markov
chain. The Doeblin-condition is valid with m = 1 if and only if there exists
a representation such that Q(T,, € T'.) > &, where ', is the set of constant

mappings.

Proof. First let us assume that there exists a representation (7},). In this
case P(z,A) = Q(Tx € A) > Q(Thz € AT, € T)Q(Ty € T,) > v(A)J,
where v(-) = Q(Tiz € -|Ty € T.) is the probability measure.

On the other hand assume that the Doeblin-condition is valid. In this
case we choose a random element £ in X’ with distribution v and then define
Tx = £ for all « with probability 6 and Tx = Tx with probability 1 — 4,
where T is obtained from a representation of a Markov chain with kernel

function

P(x,A) —ov(A)

1-90) = P(z, A).

Proposition 3.1.4 (Bhattacharya- Waymire 1999, [7]) Assume that the Doeb-

lin-condition holds with m = 1 for a Markov chain (X,,). Then there erists
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an invariant distribution w, and
|P"(z,A) —m(A)| < (1—=98)" for VA€ B(X). (3.2)

Proof. Let (T,) be the representation of the process. Consider the two-
sided extension (7},)5_ . Due to Lemma 3.1.3 the limit lim7yo0---0T_,n
exists with probability 1, because Q(T}, € T'.) > § > 0, an?l so with proba-
bility 1 there exists k such that T} € I'., and after using a constant mapping
the process Ty ...T_,n does not depend on n any longer. Furthermore, the
limit is independent from n € X.

Let lign Tp...T_,n = X;. In this case
X = liznTo LT =TT ... T,
where the random £ is such that T_; € I'.. Therefore
X, ="T1Ty... T xn= li;rn TTy... T .n
Thus we obtained that the distribution 7 of X} is invariant. So
|P"(z,A) —m(A)| = |P(X, € A) — P(Y, € A)| =

= [E(xa(Xn) — xa(Yo)| < P(X,, #Y5),
where Xn = Tn .. .T1X0 and Yn = Tn . ,1—11)(6k
On the other hand, P(X,, #Y,) < QT ¢ I'c,;k <n) < (1 —9)", so the

statement is proved.
|

Now let (X,,,Y,,) be a Hidden Markov process and assume that both the
state space X and the observed space ) are Polish. The following lemma is

the first new result of the thesis.

Lemma 3.1.5 Assume that the Doeblin-condition holds with m = 1 for the
Markov chain (X,,). Then the Doeblin-condition holds for (X,,Y,) as well.

Proof. Let (7},) be the representation of the Markov chain as in Lemma

3.1.3. Tt means that there exists a sequence of i.i.d. mappings (7},) such that
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Xny1 = T X, with Q(7,, € I'.) > 6 > 0 and (7,,) is independent from the
starting point Xj.

Let P(z, G) be the read-out transition kernel of the original Markov chain
(X,), where x € X and G € B()). By Proposition 3.1.1 there is a Borel
measurable function g : X x [0,1] — ) such that, with V' being uniform in
[0, 1] over some probability space (Q,F,Q'), for all z € X and G € B())
we have P(x,G) = Q'{g(z,V) € G}. Consider a sequence of i.i.d uniformly

distributed random variables (V},) and let us denote the random mapping
g(+,Vu_1) by U,. Thus we have Y,, = U, X,, and

YnJrl = Un+1Tn+1Xn-

It is easy to see that the random mapping (UTT) is a representation for (é)
Obviously, if T, € I'.(X — X)) then U, T,, € ['.(X — ), and thus

QXQI{(UTT> ETAX XY - X xV}I} >0,

and taking into account Lemma 3.1.3, the lemma follows.
|

Remark 3.1.6 Let (X,,) be a Markov chain. The Doeblin-condition is valid

with m > 1 if and only if there exists a representation such that
Q(T,... T my1 €T,) >4,

where L' is the set of constant mappings. Thus Proposition 3.1.4 and Lemma
3.1.5 also valid if the Doeblin-condition holds for m > 1.

In the subsequent statements we always consider the case m = 1 for

simplicity.

3.2 Markov chains and L-mixing processes

Consider an input-output system as follows: Let the input process be a

Markov chain which satisfies the Doeblin condition and the output process
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is generated through a bounded measurable function. Then the Doeblin
condition is not satisfied for the output process. Indeed, the output process
in not necessarily a Markov chain. In the following theorem we prove that

the output process is L-mixing.

Theorem 3.2.1 Let (X,,) be a Markov chain with state space X, where X
is a Polish space, and assume that the Doeblin condition is valid for m = 1.
Furthermore let g : X — R be a bounded, measurable function. Then the

process

15 L-mixing.

Proof. Let
Fn=0{Xo, Tk : k <n},
Fr=oc{Tp:k>n+1}

Let n > m and n — m = 7. To approximate the process g(X,), first we
approximate X, by X . where
X;[,m =T,... T X", (3.3)

and X is a constant. Obviously X,7,, is F,} measurable. Furthermore

P(X, # X,},,) < Q(T} is not constant for m+1 <k <n) <

(1—g8)» ™.
So
EY|g(X5) = g(Xy )1 < 2KPYIX, # X)) <
2K(1—6)",

where K is an upper bound for |g|. Due to Lemma 2.3.3 we have
(1, U) < 4K(1—6)a,

and thus

and the statement is proved. |



3. EXPONENTIALLY STABLE SYSTEMS 22

3.3 Exponentially stable random mappings I.

Now we formulate a general concept of exponential stability motivated by
Proposition 2.1.3. Let X be an arbitrary abstract measurable space, and let
Z be a closed subset of a Banach space (e.g. Z C L1(R) can be the set of
density functions). Let f : X x Z — Z be a Borel-measurable function,

and for a fixed sequence (z,,)n>0, T € X consider the recursion

Zn+1 = f(:c?h zn)7 20 = 6 (34)

Let the solution be denoted by z,(£). To simplify the notations we drop the

dependence on the sequence ().

Definition 3.3.1 The mapping f is uniformly exponentially stable if for ev-

ery sequence (Ty)n>0, Tn € X

120(8) = za (€Il < C(1 = 0)"lI€ = €', (3.5)
where C > 0,1 > p > 0 are independent of the sequence (xy,).

Under reasonable technical conditions this condition is satisfied for the Baum-
equation and its derivatives, see [40]. Let z(n,m,&) denote the solution of
(3.4) initialized at z,, = & with m < n. Let us consider an arbitrary discrete

sequence defined by recursion of the form

Znt1 = fn(Zn) (3.6)

with the same starting point zy = £. Extending a simple analytical lemma

given in |22] from continuous to discrete time we get

Lemma 3.3.2 For the sequence (z,) and (Z,) we have

Zp — Zp =

i
L

(z(n,m 41, f(Xm,Zm)) — 2(n,m + 1, f,.(Zm))).

3
I
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Proof. Due to the definition of z, and Z,, we have

zn = 2z(n, 1, f(x0,Z0)) and Z, = z(n,n, f,_1(Zn_1))

Using
Z(TL7 m + 177m(§m>) = Z(”? m + 27 f(xm—i-lvgm-i—l))a

for m =0,...,n — 2, we obtain the statement of the lemma. ]

A trivial corollary is the following key lemma:

Lemma 3.3.3 For the solution of (3.4) we have
n—1
2=+ Y (2nm+ 1, f(@m,€) — 2(n,m +1,)).
m=0

Proof. Let f be the constant mapping, so that Z, = &. Due to Lemma
3.3.2 we have

n—1
=64 ) (2n,m+ 1, f(wm,€)) — 2(n,m +1,)).
m=0

Define the process (Z,,) by
Zn+1 = f(Xn7 Zn)a Zy = ga (37)

where (X,,) is a Markov chain satisfying the Doeblin condition. Due to
Proposition 3.1.4 an invariant distribution of (X,,) exists. Let us denote it

by 7 . To prove M-boundedness of (Z,) we impose following conditions:

Condition 3.3.4 Let the distribution of Xo be my. Assume

270 <o
dw_cl

Condition 3.3.5 Assume for all & € Z and for any q > 1

E- |21 < Ki(§) < oo,
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or, equivalently,

/wm@wwmsm@<m,

24

(3.8)

where T is the unique stationary distribution of (X,,) and Ki(+) is a measur-

able function.
Lemma 3.3.6 Assume Condition 3.5.4. Then we have

— < Cy forall n.
dm

Proof. For an arbitrary set A C X

m(A) = / xadm, = / P™(x, A)dmy <

X X

< /P"(az,A)Cldw _ Oyr(A),
X

since 7 is the stationary distribution, so the lemma is proved.

Lemma 3.3.7 Assume Condition 3.3./ and 3.3.5. Then we have

Proof. We have

B )l = [ 1€, <

/wmmmmsm@q
X

due to Lemma 3.3.6 and Condition 3.3.5.

(3.9)

(3.10)

Lemma 3.3.8 Let the mapping f(x,z) be uniformly exponentially stable,
and let Condition 3.3.4 and 3.3.5 hold. Then the process (Z,) defined by

(8.7) with any fized constant Zy = & is M-bounded.
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Proof. Using Lemma 3.3.3 and the exponential stability of f we have

1Za]l < M1+~ O = )" ™ HIf (Xoms €) = €]l (3.11)
m=0

Since ¢ > 1 and f(X,,,&) is M-bounded, we have

1
Eu||Zn||* <

n—1

I+ 3" O — o) HET| f (X, Ol + [€]]) <
m=0

€Il + C(KL(€)Ch) + ||§||>§,

so the lemma is proved. ]

Consider now processes of the form V,, = g(X,,, Z,,), where g is a measurable

function. We need the following technical condition:

Condition 3.3.9 ¢(z,2) is a measurable function on X X Z such that it is
Lipschitz-continuous in z for every x with an x-independent Lipschitz con-
stant L.

Theorem 3.3.10 Consider the process (X,, Z,), where (X,,) satisfies the
Doeblin-condition with m =1, and (Z,,) is defined by (3.7) with a uniformly
exponentially stable mapping f and an arbitrary constant initial condition &.
Assume that Xq is independent of {T,}, n > 1, and Conditions 3.3.4 and
3.3.5 hold. Furthermore let g(x, z) be a bounded function satisfying Condition
3.3.9 Then

Vi = 9(Xn, Z1)

15 an L-mixing process.

Remark 3.3.11 Theorem 3.3.10 is valid also if the Doeblin-condition for

(X)) with m > 1 is assumed.
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Proof. The process V,, = g(X,, Z,) is obviously M-bounded. Now let n >
m, T =n—m, F,, F, and XI  be the same as in the proof of Proposition
3.2.1, except that the distribution of X* be stationary (independent of T;)
and

Fr=0{X"T;: i>n+1}.

Let an approximation of (Z,) be defined recursively by
le—i—l,m = f(Xl:’:m7 Zl::m)’ (312)

+ = o*
where Z = 2" is a constant.

Obviously, Z,, is F,f-measurable. Let m' = n — [3] and let B denote

n,m

the event that no coupling occurs in the interval (m,m/]:
B=A{w: for m<k<m' T,(w)¢T.}
Due to the Doeblin-condition
P(B) < (1—86)""™=(1-0)5
Now consider the event
BY={w:3k, m<k<m Tp(w)eT.}
On B¢ we have X,j’m = X, for all &k > m/. Consider the following process:

Z+

o = FX0 2, Tor < E<n 313

with starting point at time m’ 7, .

The process (Z) considered for m' < k < n satisfies
Ziv1 = f(Xg, Zx) with starting point at time m’ Z,,.
On the set B by the exponential stability of f we have
12, — Zull < 0= 0FZE, — Zol. (314
Obviously for ¢ > 1

1
Ed||g(Xn, Zn) = 9(X s Zom) " <

n,m>?
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Ea(xpll9(Xn, Zn) = 9(X s Zo ) 1)

B (e l9(Xns Za) = 9(Xas ZE) 1. (3.15)
As g(x, z) is bounded, the first term on the right hand side can be bounded
from above trivially

Eq (XBHg(Xn7 Zn) - g(X:L_,m7 Z’Im)Hq) <

Fi(y5(2K)?) = 2K Pu(B), (3.16)

where ||g(z, 2)| < K.

Consider the second term of the expression (3.15).

IN

E(xpellg(Xn, Z2) — 9(Xa, Z,L,)|19)
Eillg(Xn, Zn) = 9(Xu, Zt) 1

B4 (L| Zy — Z} )"
Ev(LC( = 9B 2}, — Zue )T =

IN

IA

LO(1 — )BT 25, ) — Z||? (3.17)

The second inequality is due to the Lipschitz-continuity of g, and the third
inequality follows from (3.14). Using the Minkowski inequality, Condition
3.3.5 and Lemma 3.3.8 (the distribution of X* is stationary) we have that
Z,v and Z;/’m are M-bounded

B\ Z5 . — Zallt < B3| Z2, 10+ B3| Zp | < S, (3.18)

and so
Billg(X:H, Z5,) — 9(Xn, Zo)|* < 2K(1—8) & + K'(1— o), (3.19)

where K’ = LCS.
Now we are going to apply Lemma 2.3.3 and obtain

/2]

7(7) < 22K (1 -8) T + K'(1-)/?). (3.20)

Thus o
[(q) = Z%(T) <
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o0

s / /2]
> (AK(1-6)« +2K'(1- ") < o0, (3.21)
T7=0
hence the claim of the theorem follows. [ |

In some applications Condition 3.3.9 is too strong. Hence we should

weaken this condition as follows:

Condition 3.3.12 g(z, 2) is a measurable function on X X Z such that it is
Lipschitz-continuous in z for every x with an x-dependent Lipschitz constant
L(x) such that all the moments of L(x) exists with respect to the stationary
distribution of the Markov chain (X,,), i.e. for all ¢ > 1

/]L(a:)\qdw(x) < L8 < oo

Theorem 3.3.13 Consider the process (Xn, Zy,), where (X,,) satisfies the
Doeblin-condition with m =1, and (Z,,) is defined by (3.7) with a uniformly
exponentially stable mapping f and an arbitrary constant initial condition &.
Assume that Xo is independent of {T,}, n > 1, and Conditions 3.3.4 and
3.3.5 hold. Furthermore let g(x, z) be a bounded function satisfying Condition
3.3.12 Then

Vo= 9(Xn, Zy)

1s an L-mixing process.

Proof. There is only one place, (3.17), where we have used the Lipschitz
continuity, Condition 3.3.9, of g(x, z). Let us replace (3.17) with the following
train of thought:

1 1
Eal|g(Xn, Zn) — 9( X, ij—,m)Hq < Ea(L(Xn)||Zn — Z:,mH)q <
E% |L(X,)|E% || Z, — ZF )%

by Condition 3.3.12 and the Hélder inequality. Using Lemma 3.3.6 we have

(ﬂum%mws/meamm
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Thus we have
1
Ei(xpellg(Xn, Zn) — 9(Xn, ZE,)||9) <
i T
CF LoyC(1 — 0)B B2 (| Z1, . — Zyw|[)

and can continue the proof of Theorem 3.3.10 from (3.17). |

3.4 Exponentially stable random mappings II.

Considering that our motivation is to prove that g(yg,px) in (2.7) is an L-
mixing process observe that g is not necessarily bounded due to the logarithm
function, see (2.6). Thus, in this section we consider an extension of Theorem
3.3.10 for unbounded function g.

We need the following conditions for the function g.
Condition 3.4.1 Assume that for all ¢ > 1

/Sup lg(z, 2)||%dr(z) < M, < oo, (3.22)
zEZ
X

Lemma 3.4.2 Conditions 3.3.4 and 3.4.1 imply that the process g(X,, Z,)
1s M-bounded, i.e. for all ¢ > 1
Ellg(X,, Z,)||? < oo. (3.23)

Proof. Let us denote the distribution of (X, Z,) by .

Elg(Xo. Z,)|J" = / g, 2 dpun(z, 2) <

XXZ

[ suwlgte tdne. ) = [ supllgte 2ldm(x) <
Yoz 2€Z 2€Z

/Sup llg(z, 2)||1Cdm(x) < M,Ch. (3.24)
b 2€Z
|

We are going to generalize Theorem 3.3.10 to unbounded function g.
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Theorem 3.4.3 Consider the process (X, Zy), where (X,,) satisfies the Doeb-
lin-condition with m = 1, and let (Z,) be defined by (3.7) with a uniformly

exponentially stable mapping f and an arbitrary constant initial condition

Zy = £, Assume that Xo is independent of {T,}, n > 1, and Conditions

3.3.4 and 3.3.5 hold. Furthermore assume that Condition 3.3.9, 3.4.1 is

satisfied for the function g(x,z). Then

Vn = g(Xn7 Zn)
15 an L-mixing process.

Proof. The proofis analogous to the proof of Theorem 3.3.10. Consider the
expression (3.15). The estimation of the second part is the same. Consider

the first term. By the Holder inequality we get

Ea(xsllg(Xn, Zn) = (X s Zm) I7) <

n,m?

1 1 1
(B2 (x8)° B 9(Xn, Zn) — 9(X;f s Zi5 ) IIP9) 5. (3.25)

n,m?

Due to the Minkowski inequality we have
1
B (||9(Xn, Z0) — 9(X3F Z5 ) 1) <

E2a||g(Xn, Za)|** + B2 ||g(X,7, Z) ) %2 (3.26)

Both % ||g(X,, Z,)||2 and E% ||g(X;, Z,,)||2? can be majorized by Lemma
3.4.2. (note that (X;7) is a stationary process, which implies that the condi-
tions of Lemma 3.4.2 are satisfied). Thus the right hand side of (3.25) can

be majorized by
1 1 1
P2 (B)(2M,,C1)2 < 2K, P2 (B). (3.27)

Let us turn back to the proof of Theorem 3.3.10. In the present case inequal-
ity (3.19) is replaced by

1 /2]
Eallg(X,}, 2} ) — 9(Xn, Zo)|* < 2K, (1= 6) 20 + K'(1—o)7/? (3.28)

Then we can continue the proof as in Theorem 3.3.10. |
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Remark 3.4.4 Theorem 3.4.3 holds if the Doeblin-condition holds with m >
1.

Following Theorem 3.3.13 we can weaken Condition 3.3.9 to 3.3.12. Then

we get the following statement.

Corollary 3.4.5 Consider the process (X,,Z,), where (X,) satisfies the
Doeblin-condition with m = 1, and let (Z,) be defined by (3.7) with a uni-
formly exponentially stable mapping f and an arbitrary constant initial condi-
tion Zy = £. Assume that Xo is independent of {T,}, n > 1, and Conditions
3.3.4 and 3.3.5 hold. Furthermore assume that Condition 3.3.12, 3.4.1 is
satisfied for the function g(x,z). Then

Vn = g(Xna Zn)
15 an L-mixing process.

In the following we give some remarks on Condition 3.4.1. We start with a

lemma on the existence of a stationary distribution for the process (X, Z,).

Lemma 3.4.6 Assume that the Doeblin-condition holds with m > 1 for the
Markov process (X,,), f is uniformly exponentially stable mapping and Con-
dition 3.3.5 holds. Then the process (X, Zy,) has a stationary distribution.

Proof. Define X_,, as the limit

X ,=1lmT ,o0---0T_,_in, (3.29)

k—o0

with any fixed 7, similar to Proposition 3.1.4. It has been shown in the proof
of Proposition 3.1.4 that the limit is well-defined. It is easy to see that the
process (X_,) is stationary. Denote the mapping f(x,, ) : Z — Z by f.,
and set

Zs =1l fx_, 00 fx_ £ (3.30)

We prove that the limit exists. Take a realization of (X_,,) denoted by (z_,,).

Consider the difference

||fx71o"'ofacfnf_f:cflO"'ofx,m§||7 (331)
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where n < m. Using notations like in Lemma 3.3.2 with ¢ = z(—n—1, —m —
1,&) we have

fo_l ©---0 fx_nf - f:):_l ©---0 fz_me =
Hf$71 -0 fasfng - f:c71 ©---0 fmfnSOH <

C(1—=0)"l§ — ¢l (3.32)
where the last inequality is due to the exponential stability of f. Thus
1
Eallfx_yo-ofx &= fx o ofx &<
CL—o)"(llEl+ Eef|Z(=n —1,—m — L&), (3.33)

and by Lemma 3.3.8 the sequence f, , o---o f, & is Cauchy in L,norm,
hence it converges. Thus Z; is well-defined when convergence is interpreted

in L,-norm for any ¢ > 1. Consider now the pair
Xo=limTyoT y0---0T_,n, (3.34)

Zy=limfx ,o0---0fx & (3.35)

We prove that the distribution of (X, Z§) is invariant, i.e. it is the same as
the distribution of (71 Xy, fx,Z¢). Let X1 = T1 X, and Z; = fx,Z¢ As

X, :Tlhngoo...oT,nn:TloTooT,lo...oT,,m,
where k is such that T, € I'.. Therefore
X, :liyrlnTloToo---oT,nn
as in Proposition 3.1.4, and
7y = fxyZy = fxo © lim fx, 0000 fx &=

lim fx, 00 fx_, &, (3.36)

since fy, is continuous in z. Thus the distribution of (X, Z§) is the same as
the distribution of (X, Z;), the statement is proved. [ ]



3. EXPONENTIALLY STABLE SYSTEMS 33

According to Lemma 3.4.6 under the conditions of Theorem 3.4.3 a sta-
tionary distribution of the process (X, Z,) exists. Let this stationary distri-
bution be denoted by p and for an arbitrary initialization let the distribution
of (X, Z,) be u,. If we replace Condition 3.4.1 with the following conditions
then Lemma 3.4.2 still holds true: the Radon-Nikodym derivative of pg w.r.t.
i is bounded, say

dpo
— < K. .
e (3.37)
and
/ lg(z, 2)||?du(z, 2) < M. (3.38)

XxZ

(3.37) implies Condition 3.3.4 and we have (see Lemma 3.3.6)

dﬂ < K forall n,
dp
thus indeed
Ellg(Xn, Zn)||" < KM, (3.39)

Condition 3.4.1 is motivated by Legland and Mevel [40]. This condition
is easier to use when we wish to analyze the log-likelihood function as it will

be seen in Chapter 4 .

3.5 Exponentially stable random mappings III.

For strong approximation results we will need the L-mixing property of the
derivative process % 1og p(Yn|Yn—1, - - - Yo,0). Since the conditions of Theorem
3.4.3 are not satisfied for this derivative process we need an extension of
Theorem 3.4.3. Consider now the process V,, = g(X,,, Z,,), where g : ¥ x Z —
R is a measurable function and (X, Z,) is defined as in (3.7). We change

Condition 3.3.9 to the following technical condition:

Condition 3.5.1 Let g(x,z) be a measurable function on X X Z such that

for every x with an z-dependent Lipschitz constant L(x) we have

19(x, 21) = g(2, 22)| < L(@)|[21 = 22| (21| + [|22]))-
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Furthermore assume that
1/q

/\L(:z:)|qd7r(m) <L, <o

for all ¢ > 1, where w(x) is the stationary distribution of the Markov chain
(Xn).

Furthermore we weaken Condition 3.4.1.

Condition 3.5.2 Assume that for all ¢ > 1

/?éz (HHQ(W Z)“) dr(x) < M, < c. (3.40)

A version of Lemma 3.5.3 is the following.

Lemma 3.5.3 Conditions 3.3.4,3.3.5 and 3.5.2 imply that the process
9(Xn, Zy) is M-bounded, i.e. for all ¢ > 1

Ellg(X,, Z,)||? < oo. (3.41)
Proof.

Bllg(X,, Z)]" = / (”||9<H—+)1”) (I21-+ 1)dyn(a, ) <

1/2

Hg z,2 H) / -
(1, 2) (4 2, 2) | <
(~/ T

Hg T,z H) 1/2 2
dpy,(z, z EY2(1+ (| Z,])% =

1/2

||9($7Z)||>2q 1/2 2
sup D) () | B2+ |1 Za)) <
X/< 1+ |z]]

z2€Z
Mj.C1Cs. (3.42)

We have used here that Z, is M-bounded by Lemma 3.3.8, i.e. EY2(1 +
1Z, )% < Cy and “= < C4 by Lemma 3.3.6.
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Theorem 3.5.4 Consider the process (X, Zy), where (X,,) satisfies the Doeb-
lin-condition with m = 1, and let (Z,) be defined by (3.7) with a uniformly
exponentially stable mapping f and an arbitrary constant initial condition
Zy = £, Assume that Xo is independent of {T,}, n > 1, and Conditions
3.3.4 and 3.53.5 hold. Furthermore assume that Conditions 3.5.1, 3.5.2 are
satisfied for the function g(x,z). Then

15 an L-mixing process.

Proof. The process V,, = g(X,, Z,) is M-bounded by Lemma 3.5.3. For
the L-mixing property we follow the same route as in the proof of Theorem
3.3.10. Let us repeat the proof up to the inequality (3.15).

Consider the second term of the right hand side of (3.15).

B (xpe |9(Xn: Zn) = 9(Xn, ZL)II) - <
Billg(Xn, Z0) = 9(Xo, Zi)|* <

Bi(L|Zn = 25l (1Zall + 125, 10) <

(B35 (L)) (B%11Z0 = Z) (ES5(1Zall + 1Z,0)0%) <

Ly B3 (C(L= 0N Z, = Zae ) (B 120 + B3| 2, )1) - <

Col1 = )8 (%12, 1% + B | 2w )%1) (B 112,15 + B 25,1

The second inequality is due to Condition 3.5.1, the third inequality is due to
the Holder inequality, and the fourth inequality follows from the exponential
stability of f.

Using that Zm y Lty Ly and 2+

n,m

are M-bounded, see Lemma 3.5.3,

we have
l T
Ea(xpellg(Xn, Zn) = 9(Xn, Z1,)I1) < K'(1 = o)F7/2. (3.43)

Consider now the first term of the right hand side of (3.15).
By the Holder inequality we get

Ei(xsll9(Xn, Z0) — 9(X;F 0 ZE DI <
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(B2 (x)*E2|g(Xn, Z) — (X0, ZF )P0

n,m?

Due to Minkowski inequality we have
1
B> (9(Xa, Zn) = 9(X;), Z,5 ) 1) <

1 1
E2|g(Xn, Z) ™ + B2 || g(X,), Z,) )11

and by Lemma 3.5.3 the right hand side of (3.44) is majorized by
P2 (B)(2M{,C1C,)% < 2K P (B).
Thus we have
5 (Xallg(Xn: Z0) = 9(X s Z5,)|17) < 2K PP (B).
Adding (3.43) and (3.46) we get
Eilg(X,, 25 0) = 9(Xn Z0)II" <

2K (1—8) % + K'(1— o)l7/?,

The end of the proof is similar to the proof of Theorem 3.3.10.

3.6 On-line estimation

36

(3.44)

(3.45)

(3.46)

(3.47)

In this section we lay the foundation of the analysis of the convergence of

recursive estimation in Hidden Markov Models. For this purpose we inves-

tigate Markov processes generated by exponentially stable mappings. First

we present the general scheme of Benveniste, Metivier and Prioret, see [6]

introduced for investigating stochastic approximation algorithms, then verify

the assumptions of |6] for our model class.
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3.6.1 The BMP scheme

In this section we present the basics of the theory of recursive estimation de-
veloped by Benveniste, Metivier and Priouret, BMP henceforth (see Chapter
2, Part IL. of [6]).

Let a family of transition probabilities {Ily, § € D C R?} on U be given,
where U is a Polish space. Let us denote the metric by d. Note that in [6] U
is R", but the results can be generalized for complete separable metric space.
Let D be an open set. Assume that for any 6 € D there exists a unique
invariant probability measure, say ug. Let (U,(0)) be a Markov-chain such
that its initial state Uy(#) has distribution pg. Let H(6,u) be a mapping
from R x U to R?. Then the basic estimation problem of the BMP-theory
is to solve the equation

E,H,U@®))=0.

Assume that a solution 6* € D exists.

The BMP-scheme. The recursive estimation procedure to solve the above

equation is then defined as

1

where U, is the time-varying process defined by
P(Un-l-l € A|fn) = H9n(UnaA)'

Here F, is the o-field of events generated by the random variables Uy, ..., U,
and A is any Borel subset of X.

To specify the class of functions H for which the theory is developed con-
sider a Lyapunov function V : U/ — R*' and define for real-valued functions

g on U and any p > 0 the norms

gl += sup 2L
P u 1+V(U>p’

and | ( ) ( )|
gluy) — glug
A — ’
H g| |p uslipuz l(ul, u2)(1 V(ul)p + V(UQ)p)
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Introduce the class of functions
C(p) ={ g : g is continuous and [|g||, < co}.

and
Li(p) ={ g = l|Agll, < +oo}.
Note that Li(p) € C(p+ 1) for any p > 0.
Conditions of BMP. All but one condition will be formulated in terms
of the Markov chain {U,(f) : n > 0} for a fixed § € D with an arbitrary
non-random initial value Uy(€) = u. The conditions are as follows. The real

number p > 0 is fixed all over the conditions A1.-A3. below.

A1. For any compact subset Q C D there exists a constant K = K (@) such
that for all 0 € @, n > 0 and Up(0) = u € U:

/kuma+V@“USKa+ww“w

A2. For any compact subset @) of D there exist constants K = K(Q) and
0 < p < 1 such that for all g € Li(p), any 6 € @,n > 0 and u, v’ € U:

H5g(u) — gg(u)] <
< K| Aglly p"d(u, u')(1+V(u)” + V(1))

Conditions Al and A2 imply geometric ergodicity of the Markov chains
in the following sense: for any § € D,u € U and any g € C(p + 1) there
exists a ['yg such that

[5g(w) — Togl < llgllpr1p™(1+V(u)*).

A key contribution of the BMP theory is that the above geometric ergod-
icity is derived by verifying conditions on a much more convenient class of
test functions, namely Li(p). It follows that there exists a unique invariant

measure jip such that
ag = [ glu)da(du)

for g € C(p+1).
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A3. For any compact subset Q) of D there exists a constant K = K (@) such
that for all g € Li(p), any 6,0 € Q and n > 0,u € U:

[5g(u) — Mg g(u)| < K||Agll, 10— 0|1+ V(w)™).

In other words the kernels IIj are supposed to be Lipschitz-continuous, uni-
formly in n, with respect to the parameter § when applied to a small set of
test functions Li(p).

Let Dy C D be a fixed compact truncation domain such that 6* € intD,.
Define the stopping time

7 =1inf{n: 0,41 ¢ Do}.
In addition let € be a fixed small positive number, and define
o=1inf{n: 10, — 01| > €}.
The stability of the time-varying process X, is enforced by stopping it at

TNO.

A4. For any compact subset @) of D there exists a constant K = K(Q) such
that for any n > 0 and arbitrary starting values 6 € Q, u € U

Ep {I(n <7 Ao)(1+V(Unpir)P™} < K1+ V(u)Pt)

Regularity of the function H is required in the next condition:

A5. For any compact subset @) of D there exists a constant K = K(Q) such
that for all ,0" € Q

[H (6, u)] < K(14+V(u)™)
|H(0,u) — H(0,u)| < K0 —0'|(1+ V(u)*)
IAH®©, )], < K.

Remark: In fact it is sufficient to require the above condition for 11y Hy, thus
H may be discontinuous.
Since H(0,-) € Li(p) we may set as above
h(#) = lim LIy H(6,U,(0)) = E,,H(8,U(09)).

n—oo
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The associated ODE is then given by
0, = h(b,). (3.49)

To ensure the convergence of the SA-procedure we require global asymp-
totic stability of the associated ODE by assuming the existence of a Lyapunov

function:

A6. There exists a real-valued C2function U on D such that

(i) U(0*) =0, UB) >0 for all & € D\{6*}
(ii) U'(0)h(#) < 0 for all # € D\{6*}
(iii) U(0) — oo if § — D or |0] — .

Theorem 13, p. 236 of [6] yields the following convergence result.

Theorem 3.6.1 (Benveniste-Métivier-Priouret 1990, [6]) Assume that Con-
ditions A1 - A6 are satisfied, and € is sufficiently small. Let § € intDy, U, =
u € U, and consider the stopped process 0, = Opprno. Then for any0 < X <1
there erist constants B and s such that for all m > 0 we have lim0; = 6*

with probability at least

1—B(1+V(u?) i n~17

n=m-+1

3.6.2 Application for exponentially stable nonlinear sys-

tems

In this subsection conditions (A1)-(A3) are verified for exponentially stable
nonlinear systems. Let X be a Polish space and Z be a closed subset of a
separable Banach space. Let us denote the metric on X by dy.

Consider an exponentially stable random mapping f, see Definition 3.3.1,

and define the process (Z,) by

Zn+1 = f(Xna Zna 9)7 ZO = 57 (350)
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where (X,,) is a Markov chain which satisfies the Doeblin condition. Let
X1 = ToXon, (3.51)

where (7,) is a sequence of i.i.d. random mappings, see (3.1). Let U, =
(Xn, Zn) € X x Z=U. Define the metric on U by

d(u,u") = ||z = 2| + dx(x, 2), (3.52)
where u = (z, 2) and v’ = (2/, 2'), and let the Lyapunov function be
V(u) =[] (3.53)

In the following subsection conditions (A1)-(A3) are verified for the pro-

cess U, defined above.

Verification of BMP conditions

By Proposition 3.1.4 a stationary distribution of X,, exists. Let us denote it
by 7. For assumption (A1) we need two conditions: the first one ensures that
there are no states in "large distances", the second one is (A1) for one-step

when X, has an invariant distribution.
Condition 3.6.2 Let the distribution of X, be m. Assume

— <.
dr = *

Condition 3.6.3 Assume for all £ € Z and forp > 1
E- || Z (P < Ki(1+[1€]17),

or equivalently

/Hf(xaé)llpdﬂ(x) < K1+ ()P (3.54)

Note that Condition 3.6.2 is a modified version of Condition 3.3.4. As in
assumptions (A1)-(A3) the initialization is always a fixed value and we need
it for each initialization, Condition 3.3.4 is not realistic. Condition 3.6.3 is a

special case of Condition 3.3.5.
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Theorem 3.6.4 Consider a process U, = (X, Z,) defined by (3.7), where
f is an exponentially stable mapping and X,, is a Markov chain satisfying
the Doeblin condition. Assume that Conditions 3.6.2 and 3.6.3 are satisfied.

Then assumption (A1) holds, i.e. there exists positive constant K such that
foralln >0, ueld and § € Q:

Euo([V(U)IH) < K(1+ V()"

Proof. Similar to Lemma 3.3.6 we have that Condition 3.6.2 implies that

dm,
% <Cy forall n. (3.55)

Repeating the arguments of Lemma 3.3.7 we have that
E| f(Xn, O < Ki(1+ [I€]I)Ch, (3.56)
and similarly to Lemma 3.3.8 we have that
El[Za|IP < K(1+ i]7). (3.57)

By the definition of the function V, see (3.53), we get the statement from
(3.57). |

Since we have not used the metric property in Theorem 3.6.4 X’ can be any
measurable abstract space. Furthermore, we have used the Doeblin property
only for the existence of a stationary distribution of the Markov chain (X,).

For assumption (A2) we need two more conditions for the stability of the

process (X,,).
Condition 3.6.5 Assume that f is Lipschitz continuous in x, i.e.

1f (21, 2) = f(22, 2)|| < Ldx (21, 72)

Condition 3.6.6 Assume that for the process (X)) we have

Edx(X,, X)) < Kdx(Xo, X{)
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Theorem 3.6.7 Consider a process U, = (X, Z,) defined by (3.7), where
f is an exponentially stable mapping and X,, is a Markov chain satisfying
the Doeblin condition. Assume that Conditions 3.6.2, 3.6.3, 3.6.5 and 3.6.6
are satisfied. Then assumption (A2) holds, i.e. there exist positive constants
K,p and 0 < p < 1 such that for all g € Li(p), 0 € Q, n >0 and u,u’ € U:

59 (u) — Hgg(u)| < Kp"[[Aglly, (1 + V(@) + [V («)[P)d(u, u')
For the proof of Theorem 3.6.7 we need a lemma first.

Lemma 3.6.8 Consider a process U, = (X, Zy,) defined by (3.7), where f
is an exponentially stable mapping. Assume that Conditions 3.6.5 and 3.6.6

are satisfied. Then we have
Ed(U,,U}) < Kd(ug,uy),
where K 1s independent of n.
Proof. By definition
A(un, 1) = |20 = 2, + da(wn, 27,).-

To estimate ||z, — 2/, || we use the idea of Lemma 3.3.2, but this time z, and 2],
are not generated with the same sequence (z,). To highlight the generating

sequence (r,) we introduce the following notations. For k > i let
Zli = f(Z> k, Zz{u x?il)

be the sequence starting from 2z, at step ¢ with the generating process (z,,).

Note that 2! = 2. With this notation we have

1.e.

lzn = z0ll < Nz = 20l + D Nzt = 23 (3.58)
i=1
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By the exponential stability of f we have

2t =zl < Cp" 2t — 27, (3.59)
and
20 = 2ol < Cp"[l20 — - (3.60)
Furthermore,
lz; = 27l = [ f (2o wiy) = fzig mien) || <
Ld/y(.fi_l,l’;fl) (361)

by Condition 3.6.5. Using (3.59), (3.60) and (3.61) inequality (3.58) implies
that

20 = 241l < CoMlz0 — 2l + D2 Cp Lae(wir, i),

i=1
Taking the expectation of both sides and considering Condition 3.6.6 we get

the lemma. ]

Let us turn to the proof of Theorem 3.6.7.
Proof. (Theorem 3.6.7) For g € Li(p) we have

19(un) = g(u,)| < [1Agllpd(un, 1) (1 + [V (un) [P+ [V (u,)[7). (3.62)

Let A ={w: Ty(w) € T. for k£ < n/2}. From Lemma 3.1.3 we have
P(A) =1—(1-9)"2 On A we have x;, = x}, for all n/2 < k < n. Thus
from the definition of d and the exponential stability of the mapping f we
have on the set A

d(tn,uy) = |20 = 2| < Cp"Plznge — 2] =

Cp"/zd(un/g, u;/z).

Taking the expectation of both sides of (3.62) and considering that
Ed(Uy2, Uy, 5) < d(uo, up) (see Lemma 3.6.8 and Theorem 3.6.4) we have

Exalg(Un) = g(U)| < [ Agll,Cp™2d(u, o) (1 + [V (@)” + [V () ]). (3.63)
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Consider now the complement of A. We have P(A°) = (1 —§)"/2. Taking
the expectation of (3.62) on the set A° and using Lemma 3.6.8 we have

Exaclg(Un) =g(U)] < (1=0)"2 Agllpd(u, u')(1+|V (u) "+ [V (W)) (3.64)

Adding (3.63) and (3.64) we finish the proof.
|

For assumption (A3) we need the smoothness of f with respect to the
parameter 6. Assume that f : X X Zx 0 — Z is a Borel-measurable function,
differentiable in 6 and for any fix 6 the function f(-,-,0) is exponentially
stable.

Theorem 3.6.9 Consider a process U, = (X,,, Zy,) defined by (3.7), where f
is an exponentially stable mapping which is smooth is 0, and X,, is a Markov
chain satisfying the Doeblin condition. Assume that Conditions 3.6.2 and
3.6.3 are satisfied. Then assumption (A3) holds, i.e. there ezist positive
constants K,p such that for all g € Li(p), u €U, n >0 and 0,0" € Q:

5 g(u) — g g(u)| < K[ Agllv, (1 + [V (u)[)|0 — ¢

We start with a very important lemma which states that if the exponen-
tially stable mapping f is smooth in the parameter 6 then the derivative

process 0z,/00 is also an exponentially stable process.

Lemma 3.6.10 Let f be a uniformly exponentially stable mapping smooth
in 0. Then the derivative process w, = %LQ" 15 also exponentially stable, i.e.

we have
[wn(n) — wa ()| < C(1 = 0)"In —'ll, (3.65)
where n = % and n' = 5.

Proof. Let the derivative of z, with respect to the initial condition & be

Up, 1.€. VU, = %Lg. Then we have

U = f2(Zn1, Tn_1,0)vy_1. (3.66)

Note that =, and € do not depend on the initialization &.
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Define v}, = 88“;7". For the derivative of w,, with respect to the initialization

we have
v, = f(zZn1, 01, 000, (3.67)
We used that z,, and 6 do not depend on the initialization 7.

Comparing (3.66) and (3.67) we have that if the filter process is exponen-
tially stable then the same property holds for its derivative. ]

Proof. (Theorem 3.6.9) Fix w € Q. Consider the derivative of g(x,, z,) with
respect to the parameter 6:

09(xp, 2n)  Og Oz
00 0z, 00

Since g € Li(p) we have that
dg
—| < | Ag||(1 + |V (uy
152 =< Al + [V (un)l)

and by Lemma 3.6.10 we have

1%
00
for a fix K > 0 (independent of the sequence (z,)). Here we have used that

| < K,

for a fix w the sequence (x,,) is fixed. Thus we have for a fix w

00

Taking the expectation of both sides and using Theorem 3.6.4 we get the

< 1AglI(1+ [V (un) DK

proof. ]

We conclude this section with the following theorem.

Theorem 3.6.11 Consider a process U, = (X, Z,,) defined by (3.7), where
f is an exponentially stable mapping and X,, is a Markov chain satisfying
the Doeblin condition. Assume that Conditions 3.6.2, 3.6.3, 3.6.5 and 3.6.6
are satisfied. Then assumptions (A1)-(A3) hold.

Thus we get that if assumption (A5) is satisfied for a function H, and we
have a Lyapunov function satisfying (A6) then convergence result Theorem
3.6.1 holds for the algorithm (3.48).

We apply Theorem 3.6.11 for Hidden Markov Models in Chapter 5



Chapter 4

Application to Hidden Markov
Models

This chapter demonstrates the relevance of the previous results for the es-
timation of Hidden Markov Models. Consider a Hidden Markov Process
(Xn,Y,), where the state space X' is finite and the observation space ) is
possibly continuous, i.e. let ) be a general measurable space with a o-field
B(Y) and a o-finite measure A. In practice ) is usually a measurable subset
of R%. Although the results of this chapter are valid for a general read-out
space, we will assume that ) is a measurable subset of R? and A is the
Lebesgue-measure. Assume that the transition probability matrix and the
conditional read-out densities are positive, i.e. Q* > 0 and b*(y) > 0 for
all 4,y. Then the process (X,,Y,,) satisfies the Doeblin-condition. Indeed,
@* > 0 implies the Doeblin condition for the Markov chain (X,,) and if the
Doeblin condition is satisfied for (X,,) then it is also satisfied for the pair
(Xn,Ysn). Note that if the Doeblin condition is satisfied for a Markov chain
then an invariant distribution exists for the process, see Proposition 3.1.4.

Let the invariant distribution of (X)) be v and the invariant distribution
of (X,,Y,) be m. Note that (X,,Y,) corresponds to (X,) and (p,) corre-
sponds to (Z,) in Chapter 3.

m({i}, dy) = vib™ (y)Mdy). (4.1)

47
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The logarithm of the likelihood function is

n—1

> 1og p(yilyr—1, - - -y0,0) + log p(yo, ), (4.2)
k=1

where D is a domain and 6 € D parameterizes the transition matrix ) and
the conditional read-out densities b’(y). Usually the entries of @ are included
in 0. The k-th term in (4.2) for £ > 1 can be written as

N N
log > b'(yr, 0) P(ilyei. - -, o,0) = log > b (yr., 0)p}(0).
i=1 =1

Now define g as

N
g(y,p) =log > b (y)p', (4.3)
i=1
then we have
k=1

Although the problem is thought of as a parametric one, to simplify the
notations we will drop the parameter € in this chapter. Instead, the true value
of the corresponding unknown quantity is indicated by * and the running
value is denoted by letters without x.

The parameter dependence will be used from Chapter 6 on.

4.1 Estimation of Hidden Markov Models

A central question in estimation problems is proving the ergodic theorem for

(2.9), see Chapter 2, which is equivalent to the existence of the limit

1 n
lim — : .
o Z 9(Yk, Pr) (4.5)
k=1
Let the running value of the transition probability matrix ) and the
running value of the conditional read-out densities be all positive, i.e. ¢ > 0,

b'(y) > 0, respectively.
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With the notation p!, = P(X,, =i|Y,_1,...,Yy) we have

Pn+1 = W(QTBO/n)pn) = f(Ynapn)'

We use capital letters for random variables and lower cases for their real-
izations, i.e. X is a random variable and x is a realization of X. The only

exception is p, where the meaning depends on the context.

Theorem 4.1.1 Consider a Hidden Markov Model (X,,,Y,,), where the state
space X is finite and the observation space Y is a measurable subset of R,
Let Q,Q* > 0 and b'(y),b*(y) > 0 for all i,y. Let the initialization of
the process (X,,Y,) be random, where the Radon-Nikodym derivative of the

initial distribution mg w.r.t the stationary distribution 7 is bounded, 1.e.

dﬂ'o
— < K. 4.
S (4.6)

Assume that for all 1,7 € X and ¢ > 1

[ 1ogt w7 wrtay) < o (4.7)
Then the process g(Yy, pn) is L-mizing.

Proof. Identify (X,,Y,) with (X,) and (p,) with (Z,) in Theorem 3.4.3.
The exponential stability of f follows from Proposition 2.1.3. As p, is a
probability vector Condition 3.3.5 is trivially satisfied.

We prove that Condition 3.4.1 is satisfied. Let [x]- = max{—x,0} and

[z]; = max{x,0}. On one hand

N
> V) > mind'(y),
j=1
leads to
[log Y ¥ (y)’]- < [logmin¥'(y)]-,
j=1
or

9(y, p))- < max{log¥'(y)]- < max |logb'(y)|. (4.8)
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On the other hand the inequality
N
D Yy < max b'(y),
j=1

leads to
logaj logmaxb’( )]s

9(y. p))+ < max{logt'(y)]. < max |logb'(y)|. (4.9)

Since the right hand sides in (4.8) and (4.9) are independent of p we get
sup [g(y, p)| < max|logb'(y)|. (4.10)
p 7

Combining (4.7) and (4.10) we get that for all i € X

[ (suplatw i) 5 ncan) < o (111)

Since

/sgp l9(y, p)|*dr = éV/ (SI;p !g(y,p)lq) b (y)\(dy), (4.12)

the finiteness of the left hand side follows.
Now, only Condition 3.3.9 remained to be checked, i.e. that g(y,p) =
log >~ b'(y)p' is Lipschitz-continuous in p with Lipschitz constant independent

of y. For an arbitrary fixed y € ) we have

LB ) ) S @)
2 by
\/Nmaxb’( ) .
— < \/_max— = \/N(miinpl)_l. (4.14)
; (w)p g

It is easy to see that p’ has a positive lower bound. Let

£ =ming; > 0. (4.15)
Z?]
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Due to the Baum-equation (2.3) we have

Q" B(yn)pn_

17QTB(yn)pn’

where 17 = (1,...,1)T. As @Q is a stochastic matrix, 17QT B(y,)p, =
17 B(yn)pn, and due to (4.15)

Pn+1 = W(QTB(yn)pn> =

Q" B(yn)pn > €117 B(y,)pn.

Thus 11TB( )
€ Yn)Pn
] > =] 4.1
P +1 = ]_TB(yn>pn € ( 6)
and we get
9(y.p), _ VN
< ) 4.17
|2 < (.17

Hence the function g(y,p) is Lipschitz continuous and thus Theorem 3.4.3
implies that ¢(Y,,, p,) is an L-mixing process. |

Remark 4.1.2 Since the positivity of Q) implies that the stationary distribu-
tion of (X,,) is strictly positive in every state and the densities of the read-outs
are strictly positive, (4.6) is not a strong condition. For example for the ran-
dom initialization we can take a uniform distribution on X and an arbitrary

set of \ a.e. positive density functions bi(y).

To analyze the asymptotic properties of (4.5) consider the following lemma.

Lemma 4.1.3 Consider a Hidden Markov Model (X,,,Y,), where the state
space X is finite and the observation space Y is a measurable subset of R,
Let Q,Q* > 0 and b'(y),b*(y) > 0 for all i,y. Let the initialization of
the process (X,,Y,) be random, where the Radon-Nikodym derivative of the

initial distribution mo w.r.t the stationary distribution m is bounded, 1.e.

dﬂ'o
— < K. 4.1
dmr — (4.18)

Assume that for all i,7 € X and q¢ > 1

/ [ log b ()| %7 (y)A(dy) < oo. (4.19)
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Then the limit
lim Eg(Y,, pn)

n—oo

extsts.

Proof.  Let us go back to the proof of Lemma 3.4.6. Identify (X,,Y},)

with (X,,) and (p,) with (Z,) in Lemma 3.4.6. Furthermore let us identify

the initialization of the true process (X,,Y,) with n and the initialization

of the predictive filter with £. By the proof of Lemma 3.4.6 we have that

(Xn, Yo, pn) converges in law to the stationary distribution. Thus it is enough

to prove that the sequence g(Y,,, p,,) is uniformly bounded in L, (¢ > 1) norm.
Using the fact that

min ¥ (y,) < b” (yn)pn < max ¥’ (yn),
j J

we have that
9(Yy, pn) < max| logbj(Yn)|.
J

Let us denote the distribution of (X,,,Y,,) by m,. Considering condition (4.18)

and Lemma 3.3.6 we have that
E|log (V)" < K max [ 1oghi(5) "5 (5)\(dy).

Thus condition (4.19) implies the uniform boundedness of ¢g(Y,,p,) in L,

norm. [ ]

Theorem 4.1.4 Consider a Hidden Markov Model (X,,,Y,,), where the state
space X is finite and the observation space Y is a measurable subset of R,
Let Q,Q* > 0 and b'(y),b*(y) > 0 for all i,y. Let the initialization of
the process (X,,,Y,) be random, where the Radon-Nikodym derivative of the

initial distribution mo w.r.t the stationary distribution m is bounded, 1.e.

dﬂ'o
— < K. 4.2
dm — (4.20)

Assume that for all i,7 € X and g > 1

[ o5t 7 () < o (121)
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Then the limit

exists almost surely.

Proof. Under the conditions of Theorem 4.1.1 ¢g(Y,,,p,) is an L-mixing

process. Normalizing this process we have that

g(Ynapn) - E9<Ynapn)

is also L-mixing. According to Theorem 2.3.5 the law of large numbers is
valid for this process. Combining this with the results of Lemma 4.1.3, we
have that

1 n
lim — Y,
lim = g(Ye, pr)
k=1
also exists almost surely. ]

Consider now a finite state-finite read-out HMM. This case follows from
Theorem 4.1.1, but the integrability condition (4.7) is simplified due to the

discrete measure.

Theorem 4.1.5 Consider a Hidden Markov Model (X,,Y,), where X and
Y are finite. Assume that Q,Q* > 0 and b'(y),b*(y) > 0 for all i,y. Then
with a random initialization on X X Y we have that g(Y,, pn) is an L-mizing

process.

Finally, we compare our results with those of Legland and Mevel, [40]. For

easier reference we restate the results of [40] collecting the relevant conditions.

Proposition 4.1.6 (Legland-Mevel 2000, [40]) Consider a Hidden Markov
Process (X, Y,), where the state space X is finite and the observation space Y
s continuous. Let the transition probability matriz of the unobserved Markov
chain be primitive and the conditional read-out densities be positive, i.e. let
there exist a positive integer v such that Q*" > 0, and let b*(y) > 0, respec-
tively. For the running parameter assume also that Q" > 0 and b'(y) > 0 for
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all i. Furthermore, assume that for all i € X

max b (y)
JE€ *7
mb (y)A(dy) < oo, (4.22)
JEX
and for allv,j € X
[ 1B ) () < o (4.23)

Then the process g(Yn, pn) is geometrically ergodic.
Geometric ergodicity also implies the existence of limit in (4.5).

Remark 4.1.7 Inequality (4.22) is a Lipschitz condition in the mean in
the following sense. Due to (4.13) for an arbitrary fix y € Y the function
10g(y,p)/0p|| is bounded uniformly in p

99(y.1) () ma b1(y)
1=y 1= VN mex =g s < VN i, ()

j

since S.p' = 1, thus L(y) = v/N max; b'(y)/ min; b/ (y) is an y-dependent
J

Lipschitz constant. Condition (4.22) states that the Lipschitz constant L(y)

15 bounded in average.

Now we demonstrate that our result applies in certain cases where Propo-
sition 4.1.6 does not.

Example: Consider an example with finite state space X and read-out
space R. Assume that the process (X,,) satisfies the Doeblin-condition with
m = 1 and let the running value of the transition probability matrix be
positive, i.e. @ > 0. Let the read-outs be continuous with normal density

functions, i.e.

j 1 (y — mi)2
b'(y) = exp(——),
(y) o p( 5, )
where (m;, 0;)s are the parameters. Assume that o; < --- < oy. Denote the

true parameter by (m?,o}). Since logb'(y) is quadratic in y, (4.7) is satisfied
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as all moments of the normal distribution exist. Hence Theorem 4.1.4 is
applicable, and the limit of the log-likelihood function (4.5) exists.

On the other hand, Condition (4.22) of Proposition 4.1.6 may not be
satisfied if o1 < on. Indeed, for large y-s the integrand of (4.22) is

(y—mn)?  (y—m)?  (y—m)?
CeXp( 2% 20 2072 )

where C' is a constant, and this expression is integrable only if

1 1

1
b= ——— <0
P R S

for all ¢, i.e. if
(010n)?

(07) oxn) = (1) (4.24)

4.2 Extension to general state space

In Section 4.1 we investigated the case when the state space X is finite. We
consider now a general compact state space. Let (X,) be a Markov chain
on a compact set K C X, where X is a Polish space, and B(K) is the
associated Borel o-field. Let us fix a o-finite dominating measure on X. Let
Q*(z,A) (xr € K, A € B(K)) be the Markov transition kernel of the chain,
see [44]. The observations (Y,,) are conditionally independent and identically
distributed given (X,,) with conditional densities b**"(y), see (2.1), where the
read-out space ) is assumed to be a Polish space. Let the initial distribution
of (X,,) be Py.

Assume that the densities b”(y) are with respect to the same o-finite
measure A and the transition kernel () has a density ¢ with respect to the
o-finite dominating measure 4 on X. Furthermore, it is assumed that the
initial distribution of (X,,) has a density py with respect to p.

Consider the predictive density function, i.e. the density of the condi-
tional distribution of X,, given (Y;)?Z). Using the Baum-equation, see (2.3),

we have the following recursion for the density of the predictive filter:

Prs1(x) = J 2w, )b (Yo)po (w)dpa(u)
n+1 fu b“(Yn)pn(u)d,u(u) .
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In this section we will use the following notation: for any measurable
function f on (K, B(K), ) define

esssup(f) = inf{M > 0: u({M < |]}) = 0}
and if f is non-negative,
essinf(f) =sup{M > 0: u({M > |f|}) = 0}.

For y € Y define
_ esssup, b7 (y)

o(y) = (4.25)

essinf, b®(y)
)

o St e, @) (4.26
esssup, . q(z, 7’)

The following statement, which is an adaptation of Proposition 2.1.3,

shows the exponential memorylessness of the predictive density function, see

[9]-

Proposition 4.2.1 (Douc-Matias 2001, [9]) Suppose that 0 < €. Let pj, and
py be any two initial density functions of Xo with respect to the measure (.
Then

2 (P0) = Pr (o)l 2y < C(1 = €)"|lpo — oIz, - (4.27)

4.2.1 Estimation of HMMs: continuous state space

Assume that the Markov chain (X,,) has an invariant distribution v. This

implies that the density of the invariant distribution of the pair (X,,Y}) is

m(z,y) = b"(y)v(x).

The logarithm of the likelihood function is

:Z_ilog ( /K b"”(Yk)pku(dm)> 7

and define the function ¢ as

oty0) =1og ([ vpteiuta) ) (1.29)
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similarly to (4.3).

The following theorem is a modified version of Theorem 4.1.1.

Theorem 4.2.2 Consider a Hidden Markov Model (X,,,Y,), where the state
space K C X s a compact subset of a Polish space X and the observation
space Y is a measurable subset of RY. Assume that € > 0 in (4.26). Fur-
thermore assume that the Doeblin condition is satisfied for the Markov chain
(X,). Let the initialization of the process (X,,Y,) be random such that the
Radon-Nikodym derivative of the initial distribution mg w.r.t the stationary

distribution m is bounded, 1i.e.

dﬂ'o
— < K. 4.2
dm — (4.29)
Assume that for all g > 1
ess sup/ | log ess sup b* (y)|70** (y) M (dy) < co. (4.30)
and
ess sup/ 16(y)|* 0™ (y)A(dy) < o0 (4.31)

Then the process g(Yy, pn) is L-mizing.

Remark 4.2.3 By Lemma 3.1.5 and Proposition 3.1./ the Doeblin condition
for the Markov chain implies the existence of an invariant distribution for
the pair (X,,Y,).

Proof. (Theorem 4.2.2) Identify (X,,,Y,) with (X,) and (p,) with (Z,) in
Corollary 3.4.5. The exponential stability of f follows from Proposition 4.2.1.
As p,, is a conditional density function Condition 3.3.5 is trivially satisfied.

We prove that Condition 3.4.1 is satisfied. For this we should check
whether

/ sup log ( /K b’“"(y)p(l‘)u(dw)>

is true for all ¢ > 1. Using that

essinf b*' (y) < / b (y)p(x)p(dx) < esssupb® (y),

K T

) @A) < oo (432)
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it is enough to show that both

/ log (ess sup b (y))

/ log (essing 57 (1) |57 ()" () My ()

ess sup/ | log ess sup b (1)|70* (y) A (dy) < oo

by condition (4.30) and using the definition of d(y) in (4.25) and the fact
that |a — b7 < 29(|al? + |b]?) we have

q

b (y)p* (x)A(dy) pu(d)

and

are finite.

q

™ (y)p* (x) Mdy) p(dz) <

log (ess sup b* (y))

x/

/ ‘log (ess inf b (y)> )q b (y)p™ (2)Mdy) p(da) <

log(ess sup 0% (y))

4 |10g5(y)|q) b ()" () Ay ) <

/=
2%ss sup/ | log ess sup b ()| 70 (y) A (dy) +

2%ess sup/ llog 6(y)]? 6™ (y)A\(dy) < oo

by condition (4.30) and (4.31). For the second term we have used that
d(y) > 1, thus |logd(y)|? < |d(y)|?. Thus we have that (4.32) holds indeed.

To finish the proof we have to check the Lipschitz continuity of g(y, p) in
p for all y ( see Condition 3.3.12). Consider the definition of g in (4.28)

l9(y, p1) — 9(y, p2)| =

log (/K bx(y)pl(w)u(dx)) — log (/ bx(y)m(:v)ﬂ(drlz))‘ —

‘ fK )u(dz)
f - bm Yu(dz)
As |log A| = |log 1/A| for A > 0 assume that the numerator is greater then

(4.33)

the denominator.
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Using the fact that logx < x — 1 for x > 1 we can estimate (4.33) from
above by

i U @pr(2)pd)) — ([ b @)pa(2)pda)) |
S 07 ()2 () p(dx) B

ess Sl;/p v (y) (fK Ip1(z) — pz(w)lﬂ(dw))

essinf b*' (y)

T

<

5(y)||p1 _p2||L17

i.e. the function g(y,p) is Lipschitz-continuous in p for all y and all the
moments of the Lipshitz constant exists by (4.31).
Thus the conditions of Corollary 3.4.5 are satisfied and the process
9(Ys, pn) is L-mixing.
[ |

Let us turn to the analyze of the asymptotic properties of (4.5). The

following lemma is similar to Lemma 4.1.3.

Lemma 4.2.4 Consider a Hidden Markov Model (X,,,Y,), where the state
space K C X s a compact subset of a Polish space X and the observation
space Y is a measurable subset of RY. Assume that € > 0 in (4.26). Fur-
thermore, assume that the Doeblin condition is satisfied for the Markov chain
(Xn). Let the initialization of the process (X,,Y,) be random such that the
Radon-Nikodym derivative of the initial distribution mg w.r.t the stationary

distribution m s bounded, 1i.e.
<k (4.34)
Assume that for all ¢ > 1
ess sup/|logess sup b ()76 ()M (dy) < oo (4.35)

and
ess SUp / llog 5()|7 b (1) A (dy) < o (4.36)
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Then the limit
lim Eg(Y,, pn)

n—oo

extsts.

Proof. We follow the arguments of Lemma 4.1.3. Identify (X,,Y,,) with
(X,) and (p,) with (Z,) in Lemma 3.4.6. Furthermore let us identify the
initialization of the true process (X,,Y,,) with n and the initialization of the
predictive filter with £. By the proof of Lemma 3.4.6 we have that (X,,, Y,,, p,)
converges in law to the stationary distribution. Thus it is enough to prove
that the sequence g(Y,,, p,) is uniformly bounded in L, (¢ > 1) norm.

Note that

essinf b (y,) < /b’”(yn)pn(l’)u(dw) < esssup b®(yy)

and

| log essinf b”(y,,)| < |logesssup b”(y,)| + |log d(yx)|.

Let us denote the distribution of (X,,,Y,,) by m,. Considering condition (4.34)

and Lemma 3.3.6 we have that
E|logesssup b*(y,)|? < Kess sup/ | log ess sup b (y)|%6* () A (dy).

and
E|log (3, < Kesssup [ |10g8(u) "™ (5)\(d)

Thus conditions (4.35) and (4.36) imply the uniform boundedness of
9(Yy,pn) in L, norm.
|

Theorem 4.2.5 Consider a Hidden Markov Model (X,,,Y,,), where the state
space K C X s a compact subset of a Polish space X and the observation
space Y is a measurable subset of R%. Assume that € > 0 in (4.26). Fur-

thermore assume that the Doeblin condition is satisfied for the Markov chain
(X,). Assume that for all ¢ > 1

ess sup/ | log ess sup b (y)|70** (y) M (dy) < co. (4.37)
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and

esssup [ 1606)[" b)) < oc (4.38)

Then the limit

1
nh_)nolo n Z 9(Ye, i)
k=1

exists almost surely.

At the end of this section we compare our results with those of Douc and
Matias, [9].

Proposition 4.2.6 (Douc-Matias 2001, [9]) Consider a Hidden Markov Pro-
cess (Xy, Yy), where the state space X is compact and the observation space

Y is continuous. Assume that 0 < e <1,

ess sup/ess sup | log b® (y)|70** (y) A(dy) < oc. (4.39)

T

for some g > 0 and

ess sup/ 10(y)] 0™ (y)A(dy) < o0 (4.40)
Then the limit + >~ g(Yi, pr) ezists almost surely.
k=1

The proof is based on the geometric ergodicity of the process g(Yy,pn)-



Chapter 5

Recursive Estimation of Hidden
Markov Models

In this paragraph we consider Hidden Markov Models with finite state-space
and finite read-out space.
Consider the following estimation problem: let () and b be parameterized

by 8 € D, where D is a compact subset of R” and let
Q" =Q(f"), b =0b(0").

In this case 6 is often the parameter of the model parameterizing the
transition matrix @ and the conditional read-out probabilities b°(y). Usually
the entries of ( are included in 6.

Consider the parameter-dependent Baum-equation

To simplify the notations we drop the dependence on the parameter 6.

Differentiating p,1 with respect to 6 we have

B (yn)pneT) B(yn)W,

b (yn)Pn ) BT (Yn)Pn + (5.2)

W = Q" (—7 -

where

_ Q5 B(yn)Pn T( _B(yn)pneT) B(Yn)Pn
r= b7 (yn)Pn o’ bT (yn)Pn ) BT (yn)Pn’

62
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Opn 0B (yn
W, = % and B(y,) = 2.

In a compact form

Wn+1 - CI)Q(ynu Pn, Wm 9)

Thus for a fix 6, u, = (X, Yy, Pn, Wh, 0) is a Markov chain.

Let the score function be

)
n(0) = %logp(yn\yn_l, - Y0, 0).

Using that
logp(ynlyn—h -+ Yo, 9) = log bT(y)pn7
see (4.3), we get

o, = n)Pn + Wib(y,)
" b(yn)"Pn .
Let By, 0)p + Wh(y,0)
. . Y, p Y,
H(@,u) - H(@,x,y,p,W) - b(y’Q)Tp ’

and consider the following adaptive algorithm.

_ _ 1 _ __
en = 9n —H ena n) nv_mWn )
+1 o (0, Ty Yo, P )

ﬁnJrl = ®1(ynvﬁn’ 971)7
Wn—f—l - (I)2(yn)§mWna§n)‘

63

(5.3)

For the convergence of this algorithm we use the approach of Benveniste,

Metivier and Priouret, see Theorem 3.6.1 and [6]. In the following we verify

the conditions of Theorem 3.6.11

Consider a Hidden Markov Model with finite state space and finite read-

out space.

Assume that Q(f) and b() are smooth functions of the parameter, i.e.

the second derivatives exist.

Theorem 5.0.7 Consider a Hidden Markov Model with finite state space
and finite read-out space. Assume that Q* > 0, b**(y) > 0, and Q(6) > 0,
b*(y,0) > 0 for all z,y and 0 € D, where D is a compact subset of R%. Then

assumptions (A1)-(A3) of Section 3.6.1 are satisfied.
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Proof. Identify X,, of Theorem 3.6.11 with (X,,,Y,) and Z, of Theorem
3.6.11 with (p,,W,). Then the mapping f of Theorem 3.6.11 is identified
with the pair (1, ®3). Exponentially stability of the pair (®;, ®5) is implied
by Proposition 2.1.3 and Lemma 3.6.10. The Doeblin condition and Condi-
tion 3.6.2 is satisfied for the process (X,,,Y,) since @* > 0 and b**(y) > 0.
Conditions 3.6.3 and 3.6.5 are trivially satisfied for finite state space and
finite read-out space if Q(f) > 0 and b"(y) > 0 for all z,y. Condition 3.6.6

is automatically satisfied for finite systems. ]
Let us investigate assumption (A5).

Theorem 5.0.8 Consider a Hidden Markov Model with finite state space

and finite read-out space. Assume that Q* > 0, b**(y) > 0, and Q(6) > 0,

b*(y,0) > 0 for all x,y and 0 € D, where D is a compact subset of R%. Then
assumption (A5) of Section 3.6.1 is satisfied.

Proof. Noting that by the condition b*(y, ) > 0 we have that b*(y, 6) > e,

since the read-out space is finite and D is a compact domain. Thus we have
b' (y, 0)p > ¢,

and using the definition of H, see (5.5), assumption (A5) follows by the

smoothness of b(y, ) and Q(0) . [

Note that if the state space and the read-out space are finite then as-
sumption (A4) is trivially satisfied.
Assumption (A6) is very hard even for linear stochastic systems. Let us
identify
h(8) = nlggo E% log p(Yo|Yn-1,...Y0,0) (5.9)
This limit exists, see Theorem 6.2.3, and assume that the following identifi-

ability condition is satisfied, see also Condition 6.3.2:

Condition 5.0.9 The equation
h(0) =0

has ezxactly one solution in D, namely 6*.
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Note that h(6) is identified with Wy(6,0*) in (6.26).

Condition 5.0.9 implies assumption (A6) in a small domain. Thus we

conclude with the following theorem as an application of Theorem 3.6.1.

Theorem 5.0.10 Consider a Hidden Markov Model with finite state space
and finite read-out space. Assume that Q* > 0, b**(y) > 0, and Q(6) > 0,
b*(y,0) > 0 for all 0,x,y. Assume Condition 5.0.9. Then the algorithm
defined by (5.6), (5.7), (5.8) converges to the true value 6* with probability

arbitrary close to 1.



Chapter 6

Strong Estimation of Hidden
Markov Models

6.1 Parametrization of the Model

In this chapter the rate of convergence of the parameter is investigated. Let
G C R” be an open set, D C GG be a compact set, and D* C intD be another
compact set, where intD denotes the interior of D. Assume that for the true
value of the parameter we have 0* € D*. Furthermore, assume that for an
estimation of the parameter of the Hidden Markov Model we have 6§ € D.
We will refer to D* and D as compact domains.

Consider the following estimation problem: let () and b be parameterized
by 6 € D and let

Q" =Q(07), b"=0b(0").

In this paragraph we always consider finite state-space and continuous read-
out space. Although the results of this chapter are valid for a general read-out
space, we will always assume that ) is a measurable subset of R? and ) is
the Lebesgue-measure, similarly to Chapter 4. Assume that the densities
b*(y,0) are with respect to the Lebesgue measure .

In the finite case (when both X and Y are finite) 6 is often the parameter
of the model parameterizing the transition matrix () and the conditional

read-out probabilities b’(y). Usually the entries of Q are included in 6.

66
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6.2 L-mixing property of the derivative process

For strong approximation theorems we will need that the derivative processes
3% 10g p(Yns Yn—1, - - -, Yo, 0), where k = 1,2,3 are L-mixing. We only prove
our statement for the first derivative, i.e. when k = 1, for £ = 2,3 the
proofs are very similar. Throughout this section we will assume that Q(6)
and b*(y, 0) are smooth functions in the parameter 6 € G.

For y € Y define
max b*(y)

o(y) = m (6.1)

x

and

max |0b* () /6]

0(y) = ——— ) (6.2)

Theorem 6.2.1 Consider a Hidden Markov Model (X,,,Y,,), where the state

space X is finite and the observation space Y is a measurable subset of R, Let

Q,Q* > 0 and b'(y),b*(y) > 0 for all i,y. Assume that Q(0) and b'(y,0) are

continuously differentiable functions in the parameter 6. Let the initialization

of the process (X,,Y,) be random, where the Radon-Nikodym derivative of

the initial distribution my w.r.t the stationary distribution m is bounded, i.e.
dmg

< K. )
dm — (6.3)

Assume that

[ 8wl ) < . (6.0

[ 18w Ay < o (65)
Then
0 vog p(u| 0
86 g P\Yn|Pn-1, - - - Do,
15 L-mizing.
Proof. To simplify the notations we drop the dependence on the parameter

6. Using the notations of Chapter 5 we have

B(Yn)Pn + Wab(yn)
b (Yn)Pn ’

) o
20 log p(Yn|Pn-1,---Do) = 20 log b” (yn)pn =
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where W, = 8p" and [(y,) = abég"), see (5.4).
Identify (Xn,Yn) with (X,,) and (pn, W,,) with (Z,) in Theorem 3.5.4.

According to (5.1) and (5.3) let f be (P, Py). Finally, let us define g as

BYn)Pn + Wib(yn)
bT (yn)pn ‘

g(xna Yns Pn, Wn) -

Thus we should check the conditions of Theorem 3.5.4. The exponential
stability of f follows from Proposition 2.1.3 and Lemma 3.6.10.

We prove Condition 3.5.2. For this consider the following lemma.

Lemma 6.2.2

“ﬁ(y)p + Wb(y) ||
bT (y)p

<IIWI +6'(y)

Proof. To simplify the expressions here we give the proof when dim © = 1:

(y)p max(0b"(y)/00)

i) <~y = (6.6)

since p is a probability vector. On the other hand

H max b* (y)|[W|
= ()W ]l. (6.7)

mln b (y)

Lemma 6.2.2 and conditions (6.4), (6.5) imply Condition 3.5.2.
Let us turn to Condition 3.5.1. To prove that this condition is satisfied

we should consider the difference

' By p1 + Wlb( ) By)p2 + Wab(y)
Y)p1 bT (y)p2

where pi, po are probability vectors and Wy, W5 are matrices. To simplify the

I

expressions here we consider the case when dim © = 1. In this case ((y) and

W are row vectors. We have

Hﬁ y)p1 + Wlb( ) 5(9)1;;(2)‘;:25(9) H <
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Bypr  By)ps
v (y)pr T (y)p2

Consider the first term:

’ Blypr By

Let us consider the second term.

b (y)pr b7 (y
‘ Wib(y) — Wab(y) T (y) (Wi — Wa) b (y)(p1 — p2) b7 (y) W2
b (y)pr 0" (y)p2
by (6.7). Thus we have that

bTp b(y)pr b1 (y)p2
H By p1 + Wlb( ) B(y)p2 + Wab(y)

Wib(y) — Wab(y)
b (y)pr 0T (y)po

ﬁ pz) 4 ﬁ(y)pz(bTm - prl)
prl bT'p1bTpy

E

5’(9)\\291 = pall + 0()0" (y)llpr — p2l-

5() Wi — Wall + 8(0)2ps — psll [ Wall
_ H < (Ips = pall + 12 = Wall)s

b (y)p2

(5(y)+52(y)+5’( ) + ()0 (W) Ulpall + llp2ll + WALl + (W)

and by (6.4) and (6.5) Condition 3.5.1 is satisfied.
To finish the proof we should check that Condition 3.3.5 is valid. Since

p1 is a probability vector, it is enough to prove the validity of this condition
for W;. Consider

v, Blype"\ Bly)W
- (1 ) e+ o

where

F=

QTB(y) _ Bype"\ By)p
bT(y)p i (I b”(y)p ) b”(y)p

see (5.2). Here p,W are arbitrary initializations. Similar to the previous

proofs we have

Wil < llQlo() (W +1) + 61 Qall + lQNII"(y) (1 +0(y)).  (6.9)

Due to conditions (6.4) and (6.5) the moments of W, exist. |

In applications we need that the limit of the expectation of the derivative

process exists, see (5.9) or (6.26).
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Theorem 6.2.3 Consider a Hidden Markov Model (X,,,Y,), where the state
space X is finite and the observation space ) is a measurable subset of R?. Let
Q,Q* >0 and b'(y),b*(y) > 0 for all i,y. Assume that Q() and b'(y,0) are
continuously differentiable functions in the parameter 6. Let the initialization
of the process (X,,Y,) be random, where the Radon-Nikodym derivative of

the initial distribution my w.r.t the stationary distribution m is bounded, i.e.

dﬂ'o

— <K (6.10)
Assume that
[ 1wl ) < . (6.11)
and
[ 1871 Ay < . (6.2

Then the limit

_ 0
nh_{{.lo E% lng(yn‘ynfla -+ - Yo, 0)

exists.

Proof. We follow the arguments of Lemma 4.1.3. Identify (X,,Y,) with
(X,) and (p,, W,,) with (Z,) in Lemma 3.4.6. Note that by Lemma 3.6.10
the process (p,, W,,) is exponentially stable. Furthermore let us identify the
initialization of the true process (X,,Y,) with  and the initialization of
the process (p,, W,) with £. By the proof of Lemma 3.4.6 we have that
(X0, Yo, Pn, Wy) converges in law to the stationary distribution. Thus it is

enough to prove that
B(Yo)pn + Wab(Yy)

b (Yo )pn
is uniformly bounded in L, (¢ > 1) norm.
From (6.6) and (6.7) we have that

B(Yn)pn + Wiob(Yy)
b1 (Vo) pn

From Lemma 3.3.8 we have the M-boundedness of W,, (the conditions of

the lemma are satisfied, see (6.10) and (6.9)) with an arbitrary initialization.

< 8'(Ya) + 6(Yo)[[Wall.
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Furthermore by condition (6.10) and Lemma 3.3.6 we have that

BIF (L) < K [ 5l () ()

and
EIF " < K [ 16017 ()A(dy)

Thus using the Holder inequality and conditions (6.11), (6.12) we have

f Bapnt Wab(Ya)

T (V)pn in L, norm. n

the uniform boundedness o

Let us turn to the second and the third derivatives. Define
max b* (y)

%) = Garin b ()2

max |0 (y) /96

0 (y) =

(min ()"
o max | ()00
) = b )

Theorem 6.2.4 Consider a Hidden Markov Model (X,,,Y,,), where the state
space X is finite and the observation space Y is a measurable subset of R,
Let Q,Q* > 0 and b(y),b*(y) > 0 for all i,y. Assume that Q(0) and b'(y, 0)
are two times continuously differentiable functions in the parameter 0. Let the
initialization of the process (X,,Y,) be random, where the Radon-Nikodym

derivative of the initial distribution my w.r.t the stationary distribution m is

bounded, 1i.e.
d7T0
<K (6.13)
Assume that
/ [62(y)|"0" (y)A(dy) < oo, (6.14)
/|5é(y)|"b*"(y)k(dy) < 00, (6.15)

18 @@ < o (6.16)
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Then )

9602 log p(yn|Pn—1, - - - p0,0)
1s L-mizing and the limit

82
lim £— 1og p(Yn|Yn—1,- - - Yo, 0)

w2 g2
exists.
Define max b (y)
d3(y) = m
iy T
(min b (y))*
max [|0%6% (y) /06°
)= T i )7
max [|0°6* (y) /06° |
WS T i)

Theorem 6.2.5 Consider a Hidden Markov Model (X,,,Y,), where the state
space X is finite and the observation space ) is a measurable subset of R?. Let
Q,Q* >0 and b'(y),b*(y) > 0 for all i,y. Assume that Q(0) and b'(y,0) are
three times continuously differentiable functions in the parameter 6. Let the
initialization of the process (X,,Y,) be random, where the Radon-Nikodym
deriwative of the initial distribution my w.r.t the stationary distribution m is

bounded, 1i.e.

% < K. (6.17)

Assume that
/ 163(4) %" () A(dy) < oo, (6.18)
/ 184(4)|75° () A(dy) < oo, (6.19)

/ 165 () |“D™ (y) M(dy) < oo, (6.20)
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/ 105" () |%0™ (y) M(dy) < oo. (6.21)

Then 5

903 log p(Yn|pn-1,- - - Do, 0)
15 L-mizing and the limit

3

) 0
TLILI& E% lng(yn|yn—la -+ Yo, 0)

extsts.

6.3 Characterization theorem for the error

In this section the rate of convergence of the parameter is investigated. Let
G C R" be an open set, D C G be a compact set, and D* C intD be another
compact set, where intD denotes the interior of D. Assume that for the true
value of the parameter we have 0* € D*. Furthermore, assume that for an
estimation of the parameter of the Hidden Markov Model we have # € D.
We will refer to D* and D as compact domains.

Consider a Hidden Markov Model (X,,Y,), where the state space X
is finite and the observation space ) is a measurable subset of R Let
Q(0),Q* > 0 and b'(y,0),b*(y) > 0 for all 4,y. Let the initialization of
the process (X,,,Y,) be random, where the Radon-Nikodym derivative of the

initial distribution 7wy w.r.t the stationary distribution 7 is bounded, i.e.

dﬂ'o
— < K. 22
o = (6.22)

Assume that for all 1,7 € X, 0 € D and ¢ > 1

/ | log b (y, 6)|78" (3)A(dy) < co. (6.23)

To estimate the unknown parameter we use the maximum-likelihood
(ML) method. Let the log-likelihood function be

N
Ly = Zlogp(YMYn,l, ., Yo, 0).

n=1
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We shall refer to this as the cost function associated with the ML estimation
of the parameter. The right hand side depends on 6* through the sequence
(Y,). To stress the dependence of Ly on 6 and 6* we shall write Ly =
Lyn(0,0%). The ML estimation «/9\N of 0* is defined as the solution of the
equation

0

5 Ln(8.6) = Lon(6,6%) = 0 (6.24)

More exactly @\N is a random vector such that @\N € D for all w and if the
equation (6.24) has a unique solution in D, then By is equal to this solution.
By the measurable selection theorem such a random variable does exist.

Let us introduce the asymptotic cost function
W(6,0%) = lim Eglogp(Y,|Y,_1,...,Y0,0). (6.25)

In Lemma 4.1.3 we have proved that this limit exists for all 6 € D.
Assume that the function W(#,6*) is smooth in the interior of D, i.e. the
third derivative exists. Under the conditions of Theorem 6.2.3 and 6.2.4 we

have

Wg(@, 0*) = lim E@* aag logp(Yn|Yn_1, ce ,YE), 9), (626)

and for the Fisher-information matrix we have
I = Wye(6%,0) =

lim F,- <(2 log p(Yn|Yn—1, - - - Yo, 9*))T(2 log p(Yn|Yn-1, - - -, Yo, 9*))) )

n—oo 00 00
Remark 6.3.1 Note that Wy(6*,0%) = 0.

Consider the following identifiability condition:
Condition 6.3.2 The equation
Wy(0,6%) =0

has exactly one solution in D, namely 6*.

We are going to prove a characterization theorem for the error term of

the off-line ML estimation following the arguments of [24].
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Theorem 6.3.3 Consider a Hidden Markov Model (X,,,Y,), where the state
space X is finite and the observation space ) is a measurable subset of RY.
Let Q,Q* > 0 and b'(y),b*(y) > 0 for all i,y. Assume that conditions of
Theorem 4.1.1, 6.2.1, 6.2.4, 6.2.5 are satisfied. Let On be the ML estimate
of 0*. Furthermore assume that the identifiability condition 6.3.2 is satisfied.
Then

N
N * * 1 0 * —
Oy — 0" = NEZ:a—ongﬂ/n Lo Y0, 0%+ O (NTY), (6.27)

where I* is the Fisher-information matriz.

For the proof we need several lemmas.

Lemma 6.3.4 The process

0 8
un(0,0%) = 2% log p(Yn|Yn-1,...Y0,0) — 09 logp(Yy|Ya_1,...Ys,0)
is uniformly L-mizing in (0,0%).
Proof. For a fix 6 the process u,(0,0*) is L-mixing due to Theorem

6.2.1 and Theorem 6.2.3. Considering that in Proposition 2.1.3 in the right
hand side of (2.4) C' depends on the parameter 6 continuously and by the
smoothness conditions on Q(6) and b(f) we have that in the proof of the L-
mixing property in Theorem 3.5.4 the left hand side of (3.47) is a continuous
function of f. Since D is a compact domain this implies the uniform L-mixing

property. |

Similarly to Lemma 6.3.4 Theorem 6.2.4 and 6.2.5 imply the following

lemmas.

Lemma 6.3.5 The process

8
——=logp(YalY,1,...Y0,0)

= 50 10gp(Y Yoo1,...Y0,0) —

is uniformly L-mizing in (0,60%).
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Lemma 6.3.6 The process

3 (93
upn(0,0%) = 50 log p(Yu|Yn-1,...Y0,0) — 893 log p(Yo|Yn-1,...Y0,0)

is uniformly L-mizing in (0,60%).

Lemma 6.3.7 Assume Wy(0,6%) = 0 has a single solution 0 = 6* in D
(that is, assume the identifiability condition 6.5.2). Then for any d > 0 the
equation (6.24) has a unique solution in D such that it is also in the sphere
{0 : 10 — 0*| < d} with probability at least 1 — O(N~%) for any s > 0 where
the constant in the error term O(N~°) = CN~* depends only on d and s.

Proof. We show first that the probability to have a solution outside the
sphere {0 : |0 — 0| < d} is less than O(N~°) with any s > 0. Indeed, the
equation Wy(0,60*) = 0 has a single solution § = 6* in D, thus for any d > 0

we have

— inf{[Wy(0,0%)|: 0 € D,0" € D*,|0 — 6*| > d} > 0

since Wy(0, 6%) is continuous in (0,0*) and D x D* is compact. Therefore if
a solution of (6.24) exists outside the sphere {6 : |6 —0*| < d} then we have

for

1
5[/9]\7 = sup ’NL()N(Q,@*) — Wg(@,e*)’

0eD,o*eD*

the inequality dLgn > d’. Due to Lemma 6.3.4 and 6.3.5 the process

6
log p(Yo|Yn_1,...Y0,0)

0
logp(Ya|Yy1,...Ys,0) — 80

un(0,0%) = 50

and the process

8
777 108 p(Yn|Yno1, ... Y0, 0)

0?
ugn(0,0%) = 80

062
are L-mixing processes uniformly in (6, 6%).
Since Fu,(6,0") = 0 Theorem 2.3.9 is applicable, i.e.

logp(y |YTL 1y-- %79)

sup NLeN (0,67) ZE log p(Ya| Y1, .. Yo, 0)| = O (N7Y2).

9eD,0*eD*
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Observe that
0
Oy = E% logp(Yo|Yn_1,...Y5,0) — Wy(0,0") = O(a™) (6.28)

with some 0 < a < 1. Indeed if the initial value of the predictive filter
process is from a stationary distribution then 6,, = 0. On the other hand the
effects of nonstationary initial values decay exponentially, see Theorem 6.2.3

and Lemma 3.4.6. Thus we have
SLgn = Op(N7YV?),
therefore
P(éLgN > d/) = O(Nis)

with any s by Markov’s inequality.

Let us now consider the random variable

1
0Lgopn =  sup NLGGN(ea 0") — Wy (0, 60%)

9eD,0*€Dy

By the same argument as above we have
dLgon = Opnr(N7Y3), (6.29)

therefore
P((SLQQN > d//) = O(N_S)

for any d” > 0 and hence for the event
Ay ={w: dLgy < d',0Lggn < d"} (6.30)
we have for N big enough
P(Ay) >1—O(N™) (6.31)

with any s > 0. But on Ay the equation (6.24) has a unique solution
whenever d’ and d” are sufficiently small. Indeed by Condition 6.3.2 the
equation Wy(0,6*) = 0 has a unique solution in D and hence the existence of
a unique solution of (6.24) can easily be derived from the following version

of the implicit function theorem.
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Lemma 6.3.8 Let Wy(0),0Wy(0), 6 € D C RP be RP-valued continuously
differentiable functions, let for some 0* € Dy C D, Wy(0*) = 0, and let
Wie(0%) be non-singular. Then for any d > 0 there exists positive numbers

d',d" such that
|0Wo(0)| < d and ||[6Wae(0)|| < d”

for all 6 € Dy implies that the equation Wy(0) + 0Wy(0) = 0 has exactly one

solution in a neighborhood of radius d of 6*.

Lemma 6.3.9 We have
On — 0" = Op(N7V2).

Proof. Consider the Taylor-series expansion of Lgy(6,60*) around 6§ = 6*

and evaluate the value of the function at 6 = éN. Then we have

1

Lox(0y.0) = Low(8".0°) + (B ) [ Laox (1= 08"+ Xy 67) dA =0
0

(6.32)

First we prove that
Lon(6%,67) = On(N'?), (6.33)

Note that %logp(YnD/n_l, ... Yp,0%) is a martingal difference process. In-
deed,

0 . «
/ (%logp(ylynl, -1 Y0,0 )> PWYYn—1,- - y0,0")dy =
y

a0
y Y

0 . 0 ‘
/%p(ywn_l, Yo, 0N)dy = — /p(y|yn_1, Yo, 0" )dy = 0. (6.34)

Here we have used that p(y|yn_1,-.-v0,0) is a density function and D is
a compact domain, thus the uniform integrability condition for the class

P(Y|Yn_1, - - - Yo, 0) is satisfied.
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For (6.33) we use the Burkholder’s inequality for martingales, see Theo-
rem 2.10 in [29]:

EY1)—— Z log p(Yp| Vo1, ... Yo, 09| <
\/_ Y Y —

N q/2
1 0

CEl/q <_N E (%1ogp(Yn\Yn_1,%,9*))2>
v n=1

Taking the square of both sides and using the triangle inequality for the
Lg/2 norm of the right hand side we get

E2/q|\/_z log p(Ya|Yn-1,... ¥, 07)]7 <

N
1 0 .
C2N E Ez/q|%10gp(yn|yn_1,yo,9 )|q
n=1

M-boundedness of the process % log p(Yo|Yn_1,...Ys, 0%) follows from The-
orem 6.2.1, thus we get (6.33).

Let us now investigate the integral. Since the function W is smooth we
have for 0 < A <1 on the set Ay (defined in (6.30))

[Wao (0 + MOy — 07),07) — Wae(6°,07)|| < ClOn — 0| < Cd  (6.35)

Hence if d is sufficiently small then the positive definiteness of Wyy(6*, 0*)
implies that

/ng ((1 — N0+ My, 0*) d\ > cl
with some positive c. Since on Ay

1

1 * N * o . * ) * 1"
N/L%N ((1 — N0+ Ny, 0 ) d\ /ng ((1 N0 + Ay, 0 ) dA|| < d
0
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it follows that if d” is sufficiently small then denoting the minimal eigenvalue

of a matrix by A\, we have

1

Amin /L(%)N ((1 — N0 + My, 9*) d | >c¢>0,
0

i.e.

1 -1

/LQGN ((1 — )\)(9* + )\éN, 9*) dA < CN™1 (636)
0

on Ay with a nonrandom constant C.
Considering equation (6.32) and that the first term is Oy (N'2) (see
(6.33)) we have that

Xay Oy — 0°) = O (N7YV2), (6.37)
Using (6.31) and the fact that |§y — 6*| is bounded we have
Xag, (O — 07) = Oy (N™%) (6.38)

with any s > 0.
Combining (6.37) and (6.38) we get the lemma. |

Proof. (Theorem 6.3.3) According to Lemma 6.3.9 the inequality (6.35)
can be improved by O/(N~/2). Thus we get after integration with respect
to A that

1
/Wag ((1 — N0 + My, e*) d\ — Wee(6%,0%)|| = Op (N7V/2)
0
On the other hand from (6.29) we have
1 1
i/L%N ((1 — N0+ My 9*) ) — /ng ((1 — N0+ My 9*) )| =
N 7 3
0 0

Op(N7YV2),
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Hence we finally get

1

1 R
= / Loon ((1 — N0 + My, 9*) A\ — Weg(07,0%)|| = Onr(N~1/2)
0

Considering that on Ay (6.36) is satisfied and the fact that Wyy(0*, 6%) >

0 we have

1 -1

/L%N ((1 — N0 + My, e*) d\

0

1

Wi (6°,6°)| = O (V7).

(6.39)
Consider (6.32) on the set Ay. We have

1 -1

XAN(éN — 0*) = _XAN /L%N ((1 — /\)9* + )\éN,Q*> d/\ LQN(Q*,g*).
0

Taking into account estimation (6.39) we get that

~ 1
(B = 87 = —xay (W 00 + 0wV ) (6",

and (6.33) implies that

~ 1
X (O = 6%) = =xaay Wi (67,6 Low (07.67) + O (N )

Considering (6.31) and (6.33) we have
1
(1= xan) 5 Wao' (07,07) Lon (07, 0%) = On (N717%),
which implies that
- 1
XAN<9N - 9*) = We_el(é’*, 9*)NL9N(9*, 9*> + OM(N_I)

Combining this with (6.38) and using the definition of W,,'(6*,6*) and
Lon (0%, 6%) we get the proof of Theorem 6.3.3.
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A key point here is that the error term is Oy (N~'). This ensures that
all basic limit theorems, that are known for the dominant term, which is a
martingale, are also valid for Oy — 0"

Let us consider now the case when the read-out space is finite. For this
consider Theorems 6.2.1, 6.2.4, 6.2.5 when )Y is finite. We restate these

theorems in this special case as a corollary.

Corollary 6.3.10 Consider the Hidden Markov Model (X,,Y,), where X
and Y are finite. Let Q(0),Q* > 0 and b'(y,0),0*(y) > 0 for alli,y. Assume

that @ and b are smooth in 6, i.e. the third derivatives exist. Then

0 0?
86? logp(yn|pn 15 - 'Poag)a@10gp(yn|l7n—1,mp0;9)

and 5

g5 108 P(Ynlpn-1, . 10, 0)

are L-mixing processes and the limits

2

0 0
Jim Bz log pyalyn—1 - -0, 0), i Ezrs log p(ynlyn-1, - - - 0. 9),

and )

0
hm Ew log p(Yn|Yn—1, - - - Yo, ),

extst.

Using Corollary 6.3.10 we conclude this section with a version of Theorem

6.3.3 when the state-space and the read-out space are finite.

Theorem 6.3.11 Consider the Hidden Markov Model (X,,Y,), where X
and Y are finite. Let Q(0),Q* > 0 and b'(y,0),b*(y) > 0 for all i,y. Assume
that Q@ and b are smooth in 0, i.e. the third derivatives exist. Let On be the
ML estimate of 0*. Assume that the identifiability condition 6.3.2 is satisfied.
Then

N

A 1 o)

Oy — 0F = —(I*)’lﬁ § :% logp(YulYy 1, .., Y0,0%) + On (N7, (6.40)
n=1

where I* is the Fisher-information matriz.



Chapter 7
Estimation with forgetting

Let G C R" be an open set, D C G be a compact set, and D* C intD be
another compact set, where intD denotes the interior of D. Assume that for
the true value of the parameter we have 6* € D*. Furthermore, assume that
for an estimation of the parameter of the Hidden Markov Model we have
0eD.

Consider a Hidden Markov Model (X,,Y,), where the state space X
is finite and the observation space ) is a measurable subset of R Let
Q(0),Q* > 0 and b'(y,0),b*(y) > 0 for all 4,y. Let the initialization of
the process (X,,,Y,) be random, where the Radon-Nikodym derivative of the

initial distribution 7y w.r.t the stationary distribution 7 is bounded, i.e.

dﬂ'o
— < K. 7.1
dm — (7.1)

Assume that for all i,7 € X, 0 € D and ¢ > 1

[ 1105t (0. 0) )\ (dy) < . (7.2

If the dynamics changes slowly in time, then we should adapt to the
actual system. But then the estimation procedure must be modified: instead
of cumulating past data we must gradually forget them. Forgetting past data
is technically realized by using exponential forgetting in the off-line case.

To estimate the unknown parameter we use the modified maximum-

83



7. ESTIMATION WITH FORGETTING 84

likelihood method: let §N()\) be the estimator of #* obtained by minimizing

N

Z(l — N Nog p(Yn|Yn-1, - - - ¥0: 0), (7.3)
n=1
with 0 < A < 1. Here A is the so-called forgetting factor: small value of A
means slow forgetting.

Let
N

LN(0,07) = > (1= NV "Mogp(Ya|Vit, ..., Y5, 0).

n=1
We shall refer to this as the cost function associated with the modified
ML estimation of the parameter. The right hand side depends on #* through
the sequence (Y,,).
It is easy to see that the cost function can be computed recursively as

follows:

IN(0,0%) = (1 = N) LA _,(0,60%) + Nogp(Yn|Yn_1,..., Y0, 0),

i.e. the correction term corresponding to the latest observation enters the
cost function always with the same fixed weight. This representation of the
cost function justifies the terminology "fixed gain estimation".
The modified ML estimation gN()\) of 0* is defined as the solution of the
equation
0

More exactly Oy ()\) is a random vector such that 6y()\) € D for all w and
if the equation (7.4) has a unique solution in D, then gN()\) is equal to this
solution. By the measurable selection theorem such a random variable does
exist.

Consider the following notations introduced in Chapter 6: let the asymp-

totic cost function be

W(6,0%) = lim Eglogp(Y,|Y,_1,...,Y0,0). (7.5)



7. ESTIMATION WITH FORGETTING 85

Assume that the function W (6, 6*) is smooth in the interior of D. We

have 9
Wo(67,67) = lim Ep- =z log p(Yo|Yoa, -, ¥0,67) =0,

and for the Fisher-information matrix we have

I = Wpy(0%,0") =

lim Fp- ((%logp(yn!ynl,---,yoﬂ ))T(%logp(yn!ynfl,--.,yo,9 ))) :
Combining Theorem 4.1.1 and the results of Section 6.2 with the tech-

niques of [25] we have a version of Theorem 6.3.3:

Theorem 7.0.12 Under the conditions of Theorem 6.3.3 we have

N

In(N) — 0 =—1(60)"S (1— A)N"A% log p(Yn[Yoo1,... ¥0,6%) + 1y,

n=1

where 0 < o < 1, ry = Op(\) + Op (), and 1(0%) is the Fischer-

information matriz.

Theorem 7.0.12 implies that for the covariance matrix we have

~ ~ A
E(Bp_1 — 0 (0, — 0T = 51(9*)—1 +O(N*?) + 0(1). (7.6)
Lemma 7.0.13 Assume Wu(0,0%) = 0 has a single solution 6 = 0* in D
(that is, assume the identifiability condition 6.5.2). Then for any d > 0 and
s > 0 the equation (7.4) has a unique solution in D for N > c¢/\, where c is
a deterministic constant, such that it is also in the sphere {0 : |0 — 0*| < d}

with probability at least 1 — ' \°. Here the constants depend only on d and s.

Proof. We show first that the probability to have a solution outside the
sphere {6 : |0 — 0*| < d} is less than ¢'\* with any s > 0 for N > ¢/\.
Indeed, the equation Wy(0,0*) = 0 has a single solution # = 6* in D, thus
for any d > 0 we have

d = inf{[W,(0,0%) : 0 € D,6* € D*,|0 — 6°| > d} > 0
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since Wy(0,6%) is continuous in (0,60*) and D x D* is compact. Therefore if
a solution of (7.4) exists outside the sphere {6 : |0 — 6*| < d} then we have
for

SLiy = sup  |Ldy(0,0%) — Wi(6,0°)

0eD,0*cD*
the inequality §Lgy > d'.
Due to Lemma 6.3.4 and 6.3.5 the process

0 8
un(0,0%) = aelogp(Y |Yo_1,...Y0,0) — 39 log p(Yo|Yn_1,...Y0,0)

and the process

2 2

(9
upn (0,0%) = 502 logp(Yu|Yn1,...Ys,0) — 802 log p(Yo|Yn_1,...Y0,0)

are L-mixing processes uniformly in (6, 6%).
Since Eu,(6,0*) = 0 Theorem 2.3.11 is applicable, i.e.

AN "AE% log p(Yo|Yn_1,...Y5,0)| =

Mz

sup  |Lyy(6,60%)

0eD,6*€ D n:l

O (AY?) (7.7)
Define the error term 6, as in (6.28). We have that J,, = O(a”), and the

error process 0, through an exponentially smoothing filter results the output

process order of magnitude O((1 — \)Y) for small X at time N, i.e. for small
A(1=X>a)

N
D (=N, = O((1 = N)N).
n=1
Using the fact that
N
d A=)V ra=1- (1= )"
n=1

we have

N
0
| Z(l - )‘>N7n)‘E% 1ng(Yn|Ynfla v }/E)a 9) - W0(97 9*)‘ =

n=1
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> @ =)V NG, + (1= MY HW(6,67)] = O((1 = M)N) (7.8)

n=1

Combining (7.7) and (7.8) we have
0Ly = Om(A?) +0((1 = N)Y).

Here the second term on the right hand side is deterministic. Therefore,
with some ¢ > 0 that for N > ¢/\ we have that O((1 — \)") < d'/2 and
hence P(§Lyy > d') < P(Op(AY/?) > d'/2) = O()N®) with any s by Markov’s
inequality, thus the proposition at the beginning of the proof follows.

Let us now consider the random variable

5Lé\aN = Sup HLgeN(@,Q*) — Woe(0,07)

0eD,0*€ Dy

By the same argument as above we have
S Loon = O (N2 +O((1 = M)N) (7.9)

and

for any d” > 0 and N > ¢/\. Hence for the event
Ay ={w: SLyy < d, 6Ly, < d’} (7.10)

we have with any s > 0 and N > ¢/\

P(AY) > 1—0()\9). (7.11)

But on A) the equation (7.4) has a unique solution whenever d’ and d” are
sufficiently small. Indeed by Condition 6.3.2 the equation Wy(#,0*) = 0 has
a unique solution in D and hence the existence of a unique solution of (7.4)
can easily be derived from the implicit function theorem, see Lemma 6.3.8.
|
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Lemma 7.0.14 We have

~

On(\) — 0" = Opr(ANY?) + One((1 = N)N).

Proof. Consider the Taylor-series expansion of Ljy(6,0*) around 6 = 6*
and evaluate the value of the function at @ = 0 ()). To simplify the notations

we drop the dependence on ), i.e. Oy = éN(A). Then we have

Lin(by.0) = Lin(6".0°) + (b ) [ L (L= 8"+ by, 6") du= 0
0
(7.12)

First we prove that
Lyn(07,6%) = Onr(AY?) + O ((1 = N)V). (7.13)

The process (1 — /\)N*”/\% log p(Yn|Yn-1,...Y0,0) is a martingale differ-
ence process, see (6.34).

For (7.13) we use the Burkholder’s inequality for martingales, see Theo-
rem 2.10 in [29]:

El/‘]’ Z YR ”)\ 0 logp(Yn]Yn_l, Y, 07)] <

n=1

N q/2
CEY (Z(l —A)N‘”A(; log p(Yn|Yn-1, - -YO»Q*”Q)

Taking the square of both sides and using the triangle inequality for the
L,/2 norm of the right hand side we get

E2/q’Z N TL)\ 9 logp(Yn’Ynfl,Yb,e*)‘q <
- 0
2 _ W\2(N—n)\2152/q) & i} B
C ;(1 NN B 2 log p(Val Yo, - Yo, 6)]7 =

O(N) + O((1 — A2V,
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Here we have used the M-boundedness of the process
% log p(Y,|Y—1, ... Yy, 0%) which follows from Theorem 6.2.1. Thus we get
(7.13).

Let us now investigate the integral in (7.12). Since the function W is
smooth we have for 0 < < 1 on the set A3 (defined in (7.10))

[ Woo (0 + (O — 0%),0%) — Wee(0%,0°)|| < Cloy — 0F| < Cd ~ (7.14)

Hence if d is sufficiently small then the positive definiteness of Wyy(0*, 6%)
implies that

1
/ng ((1 — )0 + by, 0*) dp > cl
0

with some positive c. Since on A%

1 1
/Lé\eN ((1 — )" + MéNa 9*> dp — /Wee ((1 — )0 + ,uéN, 8*) du|| < d”
0 0

it follows that if d” is sufficiently small then denoting the minimal eigenvalue

of a matrix by A, we have

1

)\min /LQ/Q\HN <(1 - /L)e* + luéNu (9*> d/l’ >c> 07
0

1.e.

1 -1

[ o (0= 00+ . 07) ) | < (7.15)
0

on A with a nonrandom constant C.
Considering equation (7.12) and that the first term is Op;(AY2)+O ((1—
AP (see (7.13)) we have that

Xay (On — 07) = O (AV2) + 0n((1 = N)M). (7.16)
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Using (7.11) and the fact that |§y — 6*| is bounded we have
Xas, (O — 07) = O(X°). (7.17)

Combining (7.16) and (7.17) we get the lemma. |

Proof. (Theorem 7.0.12) According to Lemma 7.0.14 the inequality (7.14)
can be improved by Op;(A?) 4 Oy ((1—A)N). Thus we get after integration
with respect to p that

/ng (1= 0" + . 0°) dia = Wn(0",0°) | = Onr(N/2) +Onr (1= 1))
On the other hand from (7.9) we have
1
[ Eiow (1= 00" + i, ) - /Wea (1= )6+ .07 | =
0

O (AY2) + Op((1 = N)M).
Hence we finally get

1

/LSHN ((1 — )0 + pb, 9*> dp — Wag(0%,0%)|| = Oar A3 +04(1-2)N)

0

Considering that on A% (7.15) is satisfied and the fact that Wye(60*,0*) >

0 we have

1 -1

/LSeN ((1 — 0" + by, 9*) du | —Wyt(67,0%)| =
0

Onr(AY2) + Onr(1 = N)N). (7.18)
Consider (7.12) on the set A}. We have

1 -1

XAN<éN —0%) = —Xay /Lé\eN ((1 — )" + MéNa 9*) dp Lyn(07,6").
0
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Taking into account estimation (7.18) we have that
Xy (On—=07) = —xa, (W' (0%, 6%) + Oas (A7) + O (1 = N)N)) L (67, 6%).
Using the inequality (a + b)? < 2(a® +?) (7.13) implies that
Xay(On —07) =
~Xax Weg' (07,07 Ly (6%, 6°) +0n (N +O((1=A) ") Opr(A2)+ 0 (1-1)Y) =

— Xy Wag' (07,0 Ly (07, 67) + Onr(N) + Onr((1 = X)*Y).

Considering (7.11) and (7.13) we have
(1= xay )Wo' (07,67 Lgn (67,07) = Oar(A?) + Oar (1 = A)Y),
which implies that
Xaay (O —67) = Wyg' (67,67 Ly (67,67) + Oar(N) + Onr((1 = A)*Y)

Combining this with (7.17) and using the definition of W,,'(6*,6*) and
Ly (0%,0%) we complete the proof of Theorem 7.0.12.
|



Chapter 8

Change detection of HMM-s

We consider change-detection problems for Hidden Markov Models following
[3]. For this we first note that the negative of the log-likelihood can be
interpreted as a codelength, modulo a constant, which is obtained when
encoding the data sequence (yy, ..., y;) with a prescribed accuracy, using the
assumed joint density p(yw,--..,%o0;¢). This interpretation of the likelihood

is a central idea of the theory of stochastic complexity. Thus we interpret

A
Cn(yn’ 0): - logp(ynlyn—h -5 Yo 0)7

as a codelength. A key result in the theory of the stochastic complexity can
be extended for the present case (see [26]).

7£7l 6 cgp ZJ’I’L n—1y-+-+> Y

We also use lower cases for the random variable 2 logp(Y,|Y,1,...,Y0,0).
In the following let

r = dimé.
Theorem 8.0.15 Under the conditions of Theorem 6.3.3 we have
-~ 1 7
E(Ca (Yo, On-1(N) = Cu(Y0, 07) = SrA + ON2=") 4+ o(1),

with an arbitrary small " > 0.

92
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The faster the forgetting is i.e. the closer A is to 1, the more we loose in
encoding performance.
Proof. Consider the second order Taylor-series expansion of the function
log p(Yn|Yn-1, - - - » Yo, «/9\71_1) around #*. To simplify the expressions we drop A
from the arguments and use the notation p,(6) for the conditional probability
PYn|Yn-1,- -, Y0, 0) expressing the dependence on the parameter §. We also

use the score function defined above.
10g pn(0n—1) — 10g pu(6") = 0 (07)(0r1 — 07)+
- 92 -
s = 80" (10w ) (0 Bs = 0 + O N + (1),
where term o0,,(1) is due to the nonstationary initial condition and we took
into account that (@H —0) = Op(AY?),
Now consider the expectation of the above equality. Using that ¢, (6*) is

a martingale difference, the expectation of the first term is 0. In the second

term write (8‘9—;2 logpn> (0*) as

(oG] = (o)) (o6

Pn

The expectation of the first term is 0, so

E <1ogpn(5n_1) - logpn(H*)) =

E (@_1 YT (on(0) (o (67)) (Brr — 9*)) OO 1 o(l).  (8.1)

~

Noting that ¢, (6*) depends on the past weakly, while (6,1 — ) de-
pends on the past strongly for small A\, we can use the following cutting
argument. Choose a positive integer d = —clog A and consider the following

approximations:
o (07) = E(pn(07)| )

and

0 = IO (1= N g (69).

ISH

3

<.
Il
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It is easy to see that

o (07) = 0u(07) = Ons(a”)
with some 0 < a < 1, thus

o (07) = pu(87) = O (A7)
with some ¢ > 0 and

Oy = Bur = 00 (),

for any ¢’ > 0 (see Theorem 7.0.12 and Theorem 2.3.6). Furthermore ¢ (6*)
and 5;_1 — 0" are independent. Approximate (8.1) by

E (B = 0) (o1 (0D (4 (0) By — 7))
This can be written as
Tr (B((0,0 — 0) 0,0 — 0 (e 0) (907))

The error of this approximation is O(\3/2=¢"), for sufficienlty large c.

Combining the above approximation with (7.6) we have
-~ -~ )\ /7
B0,y = 07)(0, = 07)" = S1(07) 7" + O + o(1).
Furthermore noting that

E(pn(87))" (a(67)) = 1(6%) + O(a),

we get
E(g(07) (9,5 (67) = 1(6%) + O(a') + O(X7).
Thus
~ 1 s
E<Cn(yn7 Qn—l(/\)) - Cn(ym 9*) = §T)‘ + O(/\3/2_C ) + 0(1)
for all ¢’ > 0. [ |

An easy consequence of Theorem 8.0.15 is the following.
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Proposition 8.0.16 Consider two different forgetting factors 0 < A\ <
Ao < 1. Then we have

~ ~

E(Cor (s D1 (A1) — Coa (Y 1 (M) =~ =1(Ay — Ag) < 0.

N | —

Theorem 8.0.15 has been useful in the design of a new model selection
criterion. However, for a theoretical analysis of the new method it is not
powerful enough. For this purpose we need a sample path characterization
of the prediction error process. Let the cumulative error be

N

SN =D (Coln, On1(N) = Cua(y,07))

n=1

Theorem 8.0.17 Under the conditions of Theorem 6.3.3 we have

1 A
li - _Zrl < 3/2
IELSO%MNSNO\) 27“\ < CA

Sketch of the proof: The proof of this theorem is based on the fact that under

the conditions of the theorem the estimator error process é\n — 0" has an L-

~ o~

mixing version ([25]). Then C(yn,0,) and Cy(yn,0n-1(N)) — Cp(yn, 0*) are
also L-mixing. Using the law of large numbers for the latter process we get
the statement.

We state a similar easy consequence as above.

Proposition 8.0.18 Let 0 < A\ < Ay < 1 be two different forgetting factors.

Then we have

M) < ony?

: 1 1
lim sup |NSN()\1) - NSN()Q) -

N—oo

Assume now that a jump in the parameter occurs at 7: the true value of
0 is 0, forn < 7 and it is 0, forn > 7+ 1, i.e.

0 — 91, if n<T
o Oy, if n>71

Let 0 < A\; < Ay < 1. Then from Proposition 8.0.18 we have for N < 71

A1 — Ao

SN()\l) — SN<)\2) ~ Nr.
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On the other hand at the time of change the performance of the estimator
with faster forgetting, i.e. with Ay expected to be better. Hence, consider
the following algorithm for detecting the change.

The algorithm: Let d(N) := Sy(A1) — Sy(A2) and set

dy = min d(n).

An alarm is generated if d(N)—d} > €, where € > 0 is a prescribed threshold
value. This type of algorithm is called Hinkley detector in the literature, see
[12].

nnnnnnnnnnn

Figure 8.1: We have generated a binary HMM. The change has occured at
step 100.
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