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List of the most frequent symbols

Symbol Meaning, properties or examples

N The set of nonnegative integers
N+ The set of positive integers
#A Cardinality of the finite set A
b·c The floor function, that is the greatest integer function
d·e The ceiling function, that is the least integer function
[{a, b}] For a, b ∈ R, the closed interval between elements of the set

{a, b}, that is [{a, b}] := [min(a, b),max(a, b)]
id The identity function of R

g[k] The kth iterate (k ∈ Z) of the function g(·). When k is negative,

g is assumed to be invertible, so, for example, g [−1] denotes the
inverse function of g.

smooth function A Ck function (in all variables) with sufficiently large k ∈ N+

and the last derivative bounded
h0, ε0, α0 Sufficiently small positive constants. Upper bounds on them

in terms of c, p and K (see below) have been computed during
the closeness estimates.

h The discretization stepsize with 0 < h ≤ h0

x The space variable for the maps considered with |x| ≤ ε0

α, β, α̃, β̃ Bifurcation parameters and their transformed counterparts.
It is always assumed that |α| ≤ α0.

x 7→ Φ(h, x, α) The time-h-map of the solution flow generated by the differential
equation

x 7→ ϕ(h, x, α) The one-step discretization of the above map with stepsize h and
of order p ≥ 1

NΦ(h, x, α) The normal form of Φ(h, x, α)
Nϕ(h, x, α) The normal form of ϕ(h, x, α)
x 7→ J(h, x, α) The conjugacy map, that is a homeomorphism satisfying a certain

functional equation. It is generally not unique.
xn, yn, zn Iterates of one of the normal forms with suitable starting values.

The dependence on h and α of the sequences is often suppressed.
These sequences define the fundamental domains.
Sometimes the names x̃n, ỹn, pn, qn are also used.
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6 LIST OF THE MOST FREQUENT SYMBOLS

Symbol Meaning, properties or examples

c The particular positive constant in the estimate of the distance of
the normal forms. It is independent of h, x and α.
Its value is fixed within a Chapter.

p The order of the discretization method, p ∈ N+

K A positive uniform bound on the moduli of the functions η̂3, η̃3 or
η̂4, η̃4 together with their first and second derivatives. (These
functions appear in the tails of the normal forms.) The value of K
is assumed to be fixed within a Chapter.

κ The ”cutting level” in the fold bifurcation
ci (i ∈ N) Generic positive constants, independent of h, x and α.
consti (i ∈ N) Generic positive constants, independent of h, x and α.
const Generic positive constant, independent of h, x and α.

It may denote different positive numbers at different appearances.
ωΦ,−, ωΦ,0 , ωΦ,+ Certain fixed points of the maps Φ(h, ·, α). The fixed points

depend on h and α.
ωϕ,−, ωϕ,0 , ωϕ,+ The same as above, but with ϕ(h, ·, α)
fx, Φhxα, . . . Various (mixed) partial derivatives with respect to the corresponding

variables
NE

Φ , JE , . . . Evaluation at general parameter values h and α, so JE , for example,
abbreviates the function J(h, ·, α)

fB, fB
x , . . . Evaluation at the bifurcation point, so fB

x , for example, stands for
fx(0, 0)

I110, I031, . . . The remainders in the integral form in the multivariate Taylor series
expansion of Φ(h, x, α) about the bifurcation point. The three indices
refer to the position of the remainder in the expansion with respect
to h, x and α, respectively.

Ĩ110, Ĩ031, . . . The analogues of I110, I031, but with ϕ(h, x, α) instead of Φ(h, x, α)



Chapter 1

Introduction

A fundamental problem of numerical analysis is to estimate the error between the exact solution
to an ordinary differential equation and its numerical approximations. Usually, these estimates
hold only on finite time intervals and are valid for solutions starting from specific initial points.

With the evolution of the abstract notion of discretization methods it became possible to
view numerical methods as dynamical systems. During the last two decades this led to the
emergence of a new branch of mathematics: numerical dynamics.

The principal aim of numerical dynamics is to compare the dynamics induced by the original
equation with that induced by the discretization method. This time, however, we simultaneously
consider solutions starting from all possible initial values on a long, possibly infinite time interval.
In other words, we wish to compare the original phase portrait with its discretized counterpart
to see what properties are preserved upon discretizations, and, vice versa, if a discretized phase
portrait appears in a computer calculation with roundoff errors, how the original one might look
like. For ordinary differential equations, these questions are treated in [43], while [20] deals with
functional differential equations. This latter survey article contains, for example, the abstract
definition and basic properties of a discretization method. General aspects of dynamical systems
can be found, for example, in [1] and [38].

A discrete dynamical system is said to be structurally stable if it is equivalent to all neigh-
bouring dynamical systems. Closeness of dynamical systems here is usually understood in the
C1-topology, and they are C0-equivalent if there is a C0-conjugacy between them. If two dy-
namical systems are conjugate, then their phase portraits are topologically the same. Often the
conjugacy can only be locally defined, meaning that only a small portion of the phase portraits
can be identified. This will be the case in our work, too. We remark that these conjugacies
provide a topological classification and are generally not unique. It is often convenient to think
of them as nonlinear coordinate transformations. In contrast to discrete dynamical systems,
time reparametrization is usually required in continuous systems to obtain equivalence. General
conjugacy results and the question of structural stability are described, for example, in [38].

Discretizations of a given dynamical system lie close to the original one if the stepsize is
small enough, and it might be the case that the original system is equivalent to all of its nearby
discretizations. In such a situation, the original system is said to be numerically structurally
stable. For ordinary differential equations, and in the vicinity of the origin, this can be formulated
as follows. Let us consider the autonomous equation ẋ = f(x) and fix a sufficiently small number
h > 0. Let Φ(h, x) denote the solution to this equation starting from x after time h. The
function Φ(h, ·) : Rn → Rn is called the solution operator (or the time-h-map) of the equation.
Let ϕ(h, ·) : Rn → Rn denote a stepsize-h discretization of the above map, where ϕ is a one-
step numerical method of order p. This latter condition essentially means that ϕ satisfies the
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8 CHAPTER 1. INTRODUCTION

approximation property near the origin, that is, the inequality

|Φ(h, x) − ϕ(h, x)| ≤ const · hp+1

holds for any h ∈ (0, h0] and |x| ≤ ε0 with suitable h0 > 0, ε0 > 0 and const > 0. The
functions f and ϕ are assumed to be sufficiently smooth. Iterates of Φ(h, ·) and ϕ(h, ·) define
two discrete time dynamical systems. The dynamical system corresponding to Φ(h, ·) is then
numerically structurally stable, if Φ(h, ·) and ϕ(h, ·) are locally conjugate, that is, if there exist
neighbourhoods 0 ∈ U ⊂ Rn and 0 ∈ V ⊂ Rn and a function J : [0, h0] × U → V such that
J(h, ·) is a homeomorphism for all h ∈ [0, h0], and further the conjugacy equation

Φ(h, J(h, x)) = J(h,ϕ(h, x))

is satisfied for all x ∈ U whenever ϕ(h, x) ∈ U .
Numerical structural stability is a qualitative property of the dynamical system Φ(h, ·), which

can be made quantitative if, for example, the distance between the conjugacy and the identity is
estimated. In what follows, estimates for |J(h, x) − x| will be called closeness estimates. These
estimates constitute the heart of the present thesis.

The question of numerical structural stability has been addressed and solved in general
[17], [30], [31] for ordinary differential equations satisfying various hyperbolicity conditions
(for example, for gradient-like Morse-Smale systems or systems satisfying ”Axiom A” and the
strong transversality condition). Numerical counterparts of classical results on ordinary dif-
ferential equations have been established—such as the numerical flow box theorem (around a
non-equilibrium point) or the numerical Grobman-Hartman Lemma (around a hyperbolic equi-
librium), stating that the original dynamics Φ(h, ·) and its discretization ϕ(h, ·) are conjugate,
moreover, O(hp) closeness estimates hold.

It is thus natural to compare exact and discretized dynamics in the simplest non-hyperbolic
cases—for example, in one-parameter families of ODEs with hyperbolicity violated at a single
value of the parameter. Such points are called bifurcation points and we will focus on them in
the thesis, so our work also fits into the framework of the theory of numerical bifurcations. The
behaviour and properties of numerical methods near bifurcation points of ODEs are discussed
in detail in [22], while [6], containing more than 200 references, gives a good account of various
convergence questions.

The original dynamics and its discretization do not need to be conjugate near a general
non-hyperbolic equilibrium, as illustrated by the explicit Euler-method near a planar center.
(Indeed, consider the system ẋ = y, ẏ = −x, whose solution curves are concentric circles around
the origin. These invariant curves are perturbed into spirals, however small the stepsize h > 0,
implying that the two dynamics are not conjugate.) See, for example, [8] and [15].

Nevertheless, the existence of a conjugacy can be proved near certain bifurcation points.
Consider a bifurcating family of ODEs of the form ẋ = f(x, α) where α denotes the bifurcation
parameter. Let Φ(h, ·, α) and ϕ(h, ·, α) denote the solution operator and its stepsize-h discretiza-
tion, and assume for simplicity that the bifurcation point is the origin x = 0 and bifurcation
takes place at α = 0. In [7] Gyula Farkas (1972–2002) has constructed a conjugacy between
the time-1-map Φ(1, ·, α) of the ODE and the N th iterate of its stepsize h = 1/N discretization
ϕ[N ](h, ·, α) (with N ∈ N+ sufficiently large) in the vicinity of a fold bifurcation point. He also
”showed” that the constructed conjugacy is O(hp)-close to the identity on the center manifold.
Quotation marks have been used in the previous sentence because the proof of the main estimate
in [7] contains some gaps in the α ≤ 0 case, and, more importantly, the symmetry argument
applied in the α > 0 case breaks down, so this case can not be considered as proven: the main
technical difficulty went unnoticed and remains unresolved.

Li [32] shows again that a fold bifurcation point is numerically structurally stable by compar-
ing the same family of maps as Gyula Farkas did. Li’s proof is largely based on the earlier work
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of Sotomayor [40] and [41] on structural stability of generic bifurcations. However, no closeness
estimates appear in [32].

There has been extensive research on how the most common invariant sets (e.g. equilibria
or periodic orbits) are transformed by discretizations. For example, [45] examines the effect of
discretizations on hyperbolic equilibria and on some bifurcation points, regarding consistency.
The authors show that the Euler-method is bifurcationally consistent near fold, transcritical,
pitchfork or Hopf bifurcation points: they essentially prove that the bifurcation point of the
original system can not be shifted much by the numerical method (depending on its order).
These results are, however, weaker than conjugacy results. Appearance of the Hopf bifurcation
is considered in [26] and [37] when the Euler or Runge-Kutta methods are applied. Due to
the existence of periodic solutions, time reparametrization is needed here. Conjugacy questions
about the Hopf bifurcation are not found in the literature.

1.1 Summary of the results

The aim of the present thesis is to examine the numerical structural stability of some of the
most elementary bifurcation points—the fold, transcritical and pitchfork points—qualitatively
by constructing a conjugacy, and quantitatively by proving some closeness estimates.

Since the center manifold is one-dimensional in each of the three cases, the original equation
ẋ = f(x, α) becomes a one-dimensional (x ∈ R, α ∈ R) system after center manifold reduction.
Hence, we assume in the following that Φ(h, ·, α) : R → R and ϕ(h, ·, α) : R → R denote the
corresponding maps on their center manifolds. The construction of conjugacies and closeness
estimates then generates one-dimensional problems with dependence on two parameters h and
α. A reasonable goal is that these estimates be uniform in the parameters.

The primary aim of the thesis is to extend the above mentioned conjugacy result on the fold
bifurcation, by comparing—for any fixed h ∈ [0, h0]—the one-parameter family of time-h-maps
Φ(h, ·, α) of the original flow with the one-parameter family ϕ(h, ·, α) of discretizations. The
degeneracy at the bifurcation point is coupled with the fact that members of both families tend
to the identity map as h→ 0+—a map often troublesome in perturbation theory.

Our primary task can be formulated more formally as follows. Suppose that the origin is a
fold, transcritical or pitchfork bifurcation point for a sufficiently smooth one-parameter family
of ODEs ẋ = f(x, α). Further, suppose that the approximation property

|Φ(h, x, α) − ϕ(h, x, α)| ≤ const · hp+1 (1.1)

holds between the original and pth order discretized dynamics for any h ∈ (0, h0], |x| ≤ ε0 and
|α| ≤ α0 with suitable constants h0 > 0, ε0 > 0, α0 > 0 and const > 0.

Then, for any h ∈ (0, h0] and α ∈ [−α0, α0], a homeomorphism J(h, ·, α) : [−ε0, ε0] → R is
to be constructed such that the conjugacy equation

J(h,Φ(h, x, α), α) = ϕ(h, J(h, x, α), α̃) (1.2)

is satisfied with a suitable number α̃ depending on α, for any x ∈ [−ε0, ε0]. Aligning the
bifurcation parameter α with α̃ in this functional equation is usually necessary, since numerical
methods may shift the original bifurcation point x = 0. (We have proved, however, that the
displacement |α− α̃| is always within the desired order O(hp), hence it does not undermine the
closeness estimates later.)

Besides proving existence, our second, equally important and challenging aim is to estimate
the distance between the constructed conjugacy J(h, ·, α) and the identity. The main difficulty
of the problem lies in obtaining these estimates.
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1.1.1 Construction of the conjugacies

First, as usual in bifurcation theory, we perform some normal form transformations, which bring
Φ(h, ·, α) and ϕ(h, ·, α) into their canonical form. The normal form reductions are preparatory
conjugacies: suitable nonlinear coordinate transformations that make computations later more
concrete and transparent. In the vicinity of the bifurcation points, the two bifurcating families
in question have the following normal forms. (Subscripts of f in the theorems below denote
partial differentiation.)

Theorem 1 (Fold bifurcation) Suppose that the origin (x, α) = (0, 0) is a fold bifurcation
point for the family of ODEs ẋ = f(x, α) with a sufficiently smooth right-hand side, that is
f ∈ Cp+6, f(0, 0) = 0, fx(0, 0) = 0, fxx(0, 0) 6= 0 and fα(0, 0) 6= 0. Then there exists a smooth,
invertible coordinate and parameter transformation bringing the map

x 7→ Φ(h, x, α)

into its canonical form

x 7→ NΦ(h, x, α) := hα+ x+ s · hx2 + hx3 · η(h, x, α).

Similarly, there exists a smooth, invertible coordinate and parameter transformation bringing
the map

x 7→ ϕ(h, x, α)

into its canonical form

x 7→ Nϕ(h, x, α) := hα+ x+ s · hx2 + hx3 · η̃(h, x, α).

The sign s = ±1 above is the same for Φ and ϕ, and η and η̃ are sufficiently smooth functions.
The normal form transformations for Φ and ϕ above are O(hp)-close to each other, further
|η − η̃| = O(hp). �

Theorem 2 (Transcritical bifurcation) Suppose that the origin (x, α) = (0, 0) is a transcrit-
ical bifurcation point for the family of ODEs ẋ = f(x, α), that is f ∈ C p+6, f(0, α) = 0 (for all
|α| ≤ α0), fx(0, 0) = 0, fxx(0, 0) 6= 0 and fxα(0, 0) 6= 0. Suppose further that the discretization
ϕ satisfies ϕ(h, 0, α) = 0 for all h ∈ (0, h0] and |α| ≤ α0. Then there exists a smooth, invertible
coordinate and parameter transformation bringing the map

x 7→ Φ(h, x, α)

into its canonical form

x 7→ NΦ(h, x, α) := (1 + hα)x+ s · hx2 + hx3 · η(h, x, α).

Similarly, there exists a smooth, invertible coordinate and parameter transformation bringing
the map

x 7→ ϕ(h, x, α)

into its canonical form

x 7→ Nϕ(h, x, α) := (1 + hα)x + s · hx2 + hx3 · η̃(h, x, α).

The sign s = ±1 above is the same for Φ and ϕ, and η and η̃ are sufficiently smooth functions.
The normal form transformations for Φ and ϕ above are O(hp)-close to each other, further
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|η − η̃| = O(hp). �

Theorem 3 (Pitchfork bifurcation) Suppose that the origin (x, α) = (0, 0) is a pitchfork
bifurcation point for the family of ODEs ẋ = f(x, α), that is f ∈ C p+7, f(0, α) = 0 (for all
|α| ≤ α0), fx(0, 0) = 0, fxx(0, 0) = 0, fxxx(0, 0) 6= 0 and fxα(0, 0) 6= 0. Suppose further that the
discretization ϕ satisfies ϕ(h, 0, α) = 0, ϕx(h, 0, 0) = 1 and ϕxx(h, 0, 0) = 0 for all h ∈ (0, h0]
and |α| ≤ α0. Then there exists a smooth, invertible coordinate and parameter transformation
bringing the map

x 7→ Φ(h, x, α)

into its canonical form

x 7→ NΦ(h, x, α) := (1 + hα)x+ s · hx3 + hx4 · η(h, x, α).

Similarly, there exists a smooth, invertible coordinate and parameter transformation bringing
the map

x 7→ ϕ(h, x, α)

into its canonical form

x 7→ Nϕ(h, x, α) := (1 + hα)x + s · hx3 + hx4 · η̃(h, x, α).

The sign s = ±1 above is the same for Φ and ϕ, and η and η̃ are sufficiently smooth functions.
The normal form transformations for Φ and ϕ above are O(hp)-close to each other, further
|η − η̃| = O(hp). �

Corollary 4 The approximation property (1.1) implies that the corresponding normal forms
satisfy

|NΦ(h, x, α) −Nϕ(h, x, α)| ≤ c · hp+1|x|ω,
where ω = 3 for the fold and transcritical bifurcation, and ω = 4 for the pitchfork bifurcation,
further, the constant c > 0 is independent of h, x and α. �

The proofs are along the lines of the corresponding sections of [35], but with the discretization
parameter h suitably built into its computations. Appropriate smoothness has always been
assumed on the right-hand side f and the discretization, so Φ and ϕ can be expanded into
multivariate Taylor series, further η and η̃ in the tails of the normal forms can be differentiated
twice with the last derivative bounded. (This latter property is used later.) The adjective
”smooth” in the thesis hence means finite smoothness. Basic results on discretizations are found
in [16] and [18]. Estimates in our theorems above are based on quantitative versions of the
inverse and implicit function theorems, see, e.g. [47], and they pave the way for later closeness
estimates.

The variable x and the bifurcation parameter α are both transformed during the normal form
transformations (the discretization parameter h is left intact, however). After these normal form
reductions we may assume, among others, that the bifurcation point for both families NΦ(h, ·, α)
and Nϕ(h, ·, α) is the origin.

An interesting by-product of our computations is that Runge-Kutta methods (see, e.g. [24]) of
order at least 1 completely preserve the n-dimensional conditions for fold and cusp bifurcations,
and also conditions for the transcritical and pitchfork bifurcations in 1 dimension—provided that
the stepsize h is sufficiently small. We do not formulate these technical results more precisely
here. The description of bifurcations in n-dimensions is found, for example, in [3]. As [4] points
out, the higher order chain rule we use is inconsistently formulated in some basic references.
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These results extend [9]–[14], where the author investigates some properties preserved by
Runge-Kutta methods near bifurcation points. Our results also imply that some of the normal
form transformations are unnecessary when ϕ(h, ·, α) comes from a Runge-Kutta method: for
example, α̃ = α in (1.2) is appropriate. It is also true that conditions in Theorems 2 and 3 on
ϕ of Runge-Kutta type are automatically satisfied.

The ”sufficiently small stepsize h” is an essential assumption above, because, in many cases,
numerical methods are known to produce spurious solutions for ”large” stepsizes, see [23] and
[42] concerning Runge-Kutta methods.

Now let us comment a bit more on Theorems 1–3 above. Some books, e.g. [46] or [21]
contain inconsistencies concerning transcritical conditions for maps. We indicate, by example,
that transcritical bifurcation does not necessarily occur under these conditions.

For a pitchfork bifurcation it is often required in the literature that the right-hand side f
be odd, that is f(x, α) = −f(−x, α) should hold. Theorem 3 points out that this assumption is
not essential: our theorem guarantees the existence of an asymmetric pitchfork bifurcation. In
the proof we are confronted with the following question: if a sufficiently smooth one-parameter
family of real maps g(x, α) is given, and the origin x = 0 at parameter value α = 0 is a root of
g(x, α) with multiplicity k, then what can be said about the other real roots near (x, α) = (0, 0).
The Preparation Theorems of Weierstrass and Malgrange, or the Division Theorem of Mather
(see [39] or [1]) or their generalizations handle these cases when g is a complex or real analytic,
C∞ or Ck (k ∈ N+) function. These results are typically used in bifurcation analysis or in
singularity theory. One of our theorems is therefore a special case of these general results: we
have examined how the triple root of a certain map g of finite smoothness can be perturbed
near α = 0.

Observe that in Theorems 2 and 3 some properties on the discretization ϕ are assumed. We
illustrate by simple examples that these assumptions are necessary: ϕ(h, ·, α) does not necessar-
ily undergo a transcritical or pitchfork bifurcation otherwise.

After these steps, the question of conjugacy between the corresponding normal forms reduces
to solving the following functional equation

J(h,NΦ(h, x, α), α) = Nϕ(h, J(h, x, α), α). (1.3)

We have established the following results:

Theorem 5 Under the assumptions of Theorems 1–3 and h ∈ (0, h0], |x| ≤ ε0 and |α| ≤ α0

sufficiently small, equation (1.3) has a solution such that J(h, ·, α) is homeomorphism. �

The conjugacies are constructed by using the technique of fundamental domains: for fixed
h and α, J(h, ·, α) is prescribed on a suitable interval and extended recursively by using a
rearrangement of (1.3).

The method of fundamental domains is described, for example in [35]. The classical work of
[34] gives an account of functional equations in general, while functional and conjugacy equations
of the theory of dynamical systems are solved in different smoothness classes in [2]. Contempo-
rary aspects of one-dimensional non-hyperbolic dynamical systems are surveyed in [36].

Summarizing our results so far, the family Φ(h, ·, α) is numerically structurally stable near
a fold bifurcation point, but unstable near transcritical and pitchfork points, as far as general
discretizations are concerned. If, however, the allowed ϕ discretizations are restricted to those
in Theorems 2 and 3, numerical structural stability is recovered near these bifurcation points
too.
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1.1.2 The closeness estimates

After the conjugacies J have been constructed, the quantity |x− J(h, x, α)| is to be estimated
near the bifurcation points. From a technical point of view, this question belongs to the quan-
titative theory of functional equations.

We have illustrated by simple examples that fixed points of Φ(h, ·, α) and ϕ(h, ·, α) can be
estimated from below and above by O(hp). Since a conjugacy necessarily maps fixed points into
fixed points, these imply that better estimates than O(hp) for |x− J(h, x, α)| generally can not
be expected.

Theorem 6 (Transcritical and pitchfork bifurcation) Suppose that conditions of Theorems
2 and 3 hold. Then the constructed conjugacies J satisfy optimal closeness estimates near
transcritical and pitchfork bifurcation points. In other words, there exists a positive constant
const > 0 such that for all h ∈ (0, h0], |x| ≤ ε0 and |α| ≤ α0

|x− J(h, x, α)| ≤ const · hp,

further, the conjugacies J(h, ·, α) also depend continuously on their first and third variables. �

In the proof, using the recursive definitions of the conjugacies, we show that the closeness
estimates basically depend on discrete Gronwall-type estimates. That is, expressions of the form


h

n∑

i=0

|xi|ω



n∏

j=i

(
d

dx
NΦ

)
(h, xi, α)




 · hp (1.4)

need to be estimated, where ω = 3 for the transcritical, and ω = 4 for the pitchfork bifurcation.
The sequence xi ≡ xi(h, α) is defined by the iterates of the normal form Nϕ(h, ·, α), with x0

chosen suitably.
On one hand, the difficulty in estimating (1.4) is that the derivatives near the bifurcation

point cluster around 1, so the contribution of the product is not easily established. On the other
hand, the terms of the sequence xi are only implicitly defined by nonlinear recursions, and so a
closed form for them can hardly be expected.

At this point, the clever parametric model functions of Thorsten Hüls (see [27], [28] and [29])
proved to be an invaluable tool. This is a special family of nonlinear recursions with closed form
solution available: if a > 0 and q ∈ N+ are arbitrary parameters and z0 > 0 is a sufficiently
small starting value, then the recursion

zn+1 :=
zn

(1 + aqzq
n)1/q

has closed form solution as
zn =

z0

(1 + naqzq
0)1/q

.

These nice formulae combined with the symbolic and numeric power of Mathematica made
it possible to prove estimates for the sequences xi, which in turn led to the optimal results of
Theorem 6.

Let us finally consider closeness estimates concerning the fold bifurcation. Due to symmetry,
we can clearly assume in Theorem 1 that s = 1, corresponding to the presence of two branches
of fixed points for α < 0 in the normal forms, merging together at the bifurcation point at α = 0
and disappearing for α > 0.
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Theorem 7 (Fold bifurcation, α ≤ 0 case) Under the assumptions of Theorem 1 and near
a fold bifurcation point, optimal closeness estimates hold in the half plane containing the fixed
points. That is, there exists a positive constant const > 0 such that for all h ∈ (0, h0], |x| ≤ ε0
and α ≤ 0

|x− J(h, x, α)| ≤ const · hp,

further, the conjugacies J(h, ·, α) also depend continuously on their first and third variables. �

Theorem 8 (Fold bifurcation, α > 0 case) Under the assumptions of Theorem 1 and near
a fold bifurcation point in the fixed-point-free half plane, the following singular estimate holds:
with a suitable positive constant const > 0

|x− J(h, x, α)| ≤ const · ln
1

α
· hp

is satisfied for all h ∈ (0, h0], |x| ≤ ε0 and α > 0. �

The closeness estimates in these theorems also depend on estimating expressions like (1.4).
The difficulty in the fold bifurcation case is that no good model function is known for α 6= 0.
So instead of estimating convergence speed of the iterates xi in the α < 0 case directly, we
carry out an inductive proof involving fractional powers of the discretization parameter h, while
estimates deduced from the model function at α = 0 are refined further to obtain information
on the growth of iterates in the α > 0 case. Convergence speed of nonlinear recursions of similar
type is discussed in [44], although in a less explicit form. One of the important estimates is
analyzed more deeply in [5] from the viewpoint of asymptotic analysis, however, this stronger
result is not directly applicable in our situation.

The absence of fixed points poses another difficulty in the α > 0 case: iterates xi stay in a
fixed neighbourhood of the bifurcation point only for a finite time, and estimating this number
of iteration steps does not seem to be easy. (These types of estimates for iteration numbers
appear in [33], where a special quadratic recursion in the definition of the Mandelbrot set is
analyzed. The corresponding phenomenon is called intermittency and is described and depicted
in [25]. The ”scaling law” for intermittency is heuristically proved in [21]. A simple observation
in connection with these estimates is explained in [19] in more detail.)

Yet another problem in Theorem 8 is that continuity of the homeomorphism J(h, ·, α) with
respect to the third variable is not apparent.

We remark that in all of the conjugacy constructions so far the natural choice J(h, 0, α)
:= 0 has been adopted. The ”power” of Theorem 8 is supported by the following results. First,
careful numerical tests down to the level α ≈ 10−14 convincingly show that the distance between
the identity and J in our natural construction is bounded from below by O(ln 1

α ·hp), indicating
that the closeness estimate in Theorem 8 in the limiting case α→ 0+ is optimal. On the other
hand, we have proved that if ω = 3 were replaced by any ω > 3 in the distance of normal forms
in Corollary 4, then |x− J(h, x, α)| ≤ const · hp would hold also in the α > 0 case.

We remark that with the original ω = 3 exponent and any fixed δ > 0, O(hp ·α−δ) closeness
estimates for |J(h, x, α) − x| are proved without much effort. It is also true that under the
assumptions of Theorem 8, uniform O(hp) closeness estimate holds on a shrinking parabola-
shaped domain in the (α, x)-plane for α > 0.

Using the natural construction of the conjugacies J , the closeness estimates imply the fol-
lowing: near the three bifurcation points the discretized orbit and the original one are uniformly
close to each other, provided that the domain contains fixed points.
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Corollary 9 There is a positive number const > 0 such that for all sufficiently small h ∈ (0, h0],
|x0| and

• (for transcritical and pitchfork bifurcations) |α| ≤ α0

• (for fold bifurcation) −α0 ≤ α ≤ 0,
we have that for any n ∈ N

|N [n]
Φ (h, x0, α) −N [n]

ϕ (h, x0, α)| ≤ const · hp

holds, where N [n](h, x, α) is the nth iterate of the map N (h, ·, α) evaluated at x. �

A notable feature of all of our estimates is that they are fairly explicit, meaning that h0, ε0,
α0 and the const > 0 numbers in the closeness estimates are all expressed in terms of p, c and
K, where p ≥ 1 is the order of the discretization method, c > 0 is the constant in Corollary
4, and K > 0 is a common uniform bound on the moduli of the functions x 7→ η(h, x, α) and
x 7→ η̃(h, x, α) (appearing in the normal forms) together with their first and second derivatives
on [0, h0]× [−ε0, ε0]× [−α0, α0]. In other words, we specify many ”sufficiently small” quantities
in terms of the initial data.

Albeit the choice J(h, 0, α) := 0 in the definition of the conjugacies is natural, it is by no
means necessary, so the question arises whether a ”trickier” construction in the α > 0 case could
yield better estimates.

Using the monotonicity and convexity of the normal forms in the fold bifurcation case, we
have constructed two grids for α > 0 in the (α, x) half-plane and proved the following.

Theorem 10 (Fold bifurcation, α > 0 case) The conjugacy defined by the ”grid construc-
tion” satisfies optimal O(hp) closeness estimates in the grid points and O(h) closeness estimates
otherwise. Further, the conjugacies J(h, x, α) are continuous in their third variable along the
grid sequence α = αN → 0+. �

It is currently an unresolved question whether the closeness estimate and the continuity
property above can be improved further.
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I thank my uncle, Tibor Csörföly for his prescient introduction to the computer program Math-
ematica in the early 1990s. Both the numeric and symbolic capabilities of this system have
proved to be indispensable in establishing the three key estimates of the thesis.

Without these people the present work could not have been completed.



Chapter 2

Conjugacy in the discretized fold

bifurcation

Summary. In Section 2.1 we recall some basic properties of discretizations of

ordinary differential equations and the notion of a fold bifurcation point. In

Section 2.2 we apply quantitative inverse and implicit function theorems and

some smooth invertible coordinate and parameter changes to transform the

time-h-maps x 7→ Φ(h, x, α) and their discretizations x 7→ ϕ(h, x, α) into their normal

forms. The normal forms turn out to be sufficiently close to each other. In

Section 2.3 a conjugacy between families Φ(h, ·, α) and ϕ(h, ·, α̃) is constructed,

if α ≤ 0. The parameter shift is |α − α̃| is bounded by O(hp). Section 2.4 uses

some fractional powers of h to prove inductively an optimal closeness estimate.

Section 2.5 derives the 3
2-Lemma, being the main tool in the α > 0 case, then

this Lemma is applied in Section 2.6 to give a singular logarithmic closeness

estimate. We also prove that if additional closeness on the normal forms is

assumed, then the singularity disappears. In Section 2.7 we illustrate by careful

numerical tests that the singular estimate seems to be sharp for our particular

construction of the conjugacy. Finally, in Section 2.8 a modified construction

of the conjugacy is given to overcome difficulties due to the lack of fixed

points.

Dedicated to the memory of Gyula Farkas (1972–2002)

2.1 Introduction

Consider the ordinary differential equation

ẋ = f(x, α) (2.1)

together with its discretization

Xn+1 := ϕ(h,Xn, α), n = 0, 1, 2, . . . , (2.2)

where α ∈ R is a scalar bifurcation parameter, h > 0 is the step-size of the sufficiently smooth
one-step method ϕ : R+ ×R×R → R of order p ≥ 1, and the function f : R×R → R is of class
Cp+k+1 with k ≥ 5 and uniformly bounded derivatives.

17
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By the definition of the order of the method, we have that

|Φ(h, x, α) − ϕ(h, x, α)| ≤ const · hp+1, ∀h ∈ [0, h0],∀|x| ≤ ε0,∀|α| ≤ α0, (2.3)

where Φ(h, ·, α) : R → R is the time-h-map of the solution flow induced by (2.1) at parameter
value α, further h0, ε0 and α0 are some (small) positive constants. (Throughout the thesis,
symbols const will denote generic positive constants in the estimates, with dependence only on
f .)

Suppose that the origin x = 0, α = 0 is an equilibrium as well as a fold-bifurcation point for
(2.1), that is the following conditions hold

fB = 0, fB
x = 0, fB

xx 6= 0, fB
α 6= 0, (2.4)

where—and throughout the thesis also—subscripts h, x (or z), and α denote partial differen-
tiation with respect to their corresponding variables, while superscript B denotes evaluation at
the bifurcation point : that is, evaluation at x = 0 and α = 0. (This evaluation operator is
understood, of course, to have the lowest precedence, i.e., it is performed after taking all partial
derivatives.)

Some more notation is finally introduced. The superscript E will denote function evalu-
ation at h and α for functions from R3 to R, that is, for example, JE stands for the func-
tion J(h, ·, α). The range of parameters h and α will be clear from the context. The symbol
f [−1] means the inverse of a real function f . Similarly, f [k] is the kth iterate (k ∈ Z) of
f : R → R. The symbol id denotes the identity function on R. Symbols b·c and d·e, as
usual, denote the floor and ceiling functions, that is the greatest integer and least integer func-
tions, respectively (for a reference and origin of their usage, see, e.g., the online encyclopedia
at http://mathworld.wolfram.com/IntegerPart.html). The set of nonnegative integers is
denoted by N. #A will denote the number of elements of the (finite) set A. Finally, for any
a, b ∈ R, the symbol [{a, b}] represents the closed interval between the elements of the set {a, b},
that is [{a, b}] := [min(a, b),max(a, b)].

2.2 Construction of the normal forms

In this section, we compute normal forms for the maps

x 7→ Φ(h, x, α) (2.5)

and
x 7→ ϕ(h, x, α) (2.6)

near the fold-bifurcation point. Since now—as opposed to [7]—they both depend also on h, this
extra parameter together with uniform estimates on [0, h0] should be built into the computations
[35] we follow.

The properties of the solution flow together with (2.3) imply for h ≥ 0, |x| ≤ ε0 and |α| ≤ α0

that
Φ(h, 0, 0) = 0, (2.7)

ϕ(0, x, α) = Φ(0, x, α) = x, (2.8)

Φh(h, x, α) = f(Φ(h, x, α), α), (2.9)

ϕh(0, x, α) = Φh(0, x, α). (2.10)
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Instead of (2.9), the shorter Φh = f ◦ Φ form will be used. We remark that the property
ϕ(h, 0, 0) = 0 is not assumed here; nevertheless it often holds for discretizations, see Chapter 5.

Lemma 2.2.1 Under the assumptions above and for h ∈ [0, h0], |x| ≤ ε0, |α| ≤ α0, we have
that

Φ(h, x, α) = f0(h, α) + f1(h, α)x + f2(h, α)x2 + ψ3(h, x, α)x3,

where

f0(h, α) = ΦB
hα · hα+ hα2 · ψ0(h, α), ΦB

hα 6= 0,

f1(h, α) ≡ 1 + g(h, α) = 1 + hα · ψ1(h, α),

f2(h, α) =
1

2
ΦB

hxx · h+ hα · ψ2(h, α), ΦB
hxx 6= 0,

ψ3(h, x, α) = h · ψ̂3(h, x, α)

hold with some smooth functions ψ0, ψ1, ψ2 and ψ̂3.

Proof. We expand Φ in a multivariate Taylor series at the equilibrium with the remainders
in the integral form, that is, the following representation is used recursively in all normal form
transformations throughout the thesis:

F(x) = F(0) + F ′(0)
x

1!
+ . . .+ F (n)(0)

xn

n!
+
xn+1

n!

∫ 1

0
F (n+1)(τx)(1 − τ)ndτ.

For f0 we have that

f0(h, α) = ΦB + α · I001(α) + h · I100(h) + hα · ΦB
hα+

hα2 · I102(α) + h2α · I201(h) + h2α2 · I202(h, α),

where—taking into account (2.4) and (2.7)–(2.9) repeatedly— we get that ΦB = 0, and

I001(α) =

∫ 1

0
Φα(0, 0, τα)dτ ≡ 0,

I100(h) =

∫ 1

0
Φh(τh, 0, 0)dτ ≡ 0.

Further, since

Φhhα = (f ◦ Φ)hα = ((fx ◦ Φ) · Φh)α = (fx ◦ Φ)α · Φh + (fx ◦ Φ) · Φhα

and
ΦB

hα = (f ◦ Φ)B
α = (fx ◦ Φ)B · ΦB

α + (fα ◦ Φ)B = 0 + fB
α 6= 0,

so we also have

I201(h) =

∫ 1

0
(1 − τ)Φhhα(τh, 0, 0)dτ ≡ 0,

and ΦB
hα 6= 0. The explicit form of the smooth functions

I102(α) =

∫ 1

0
(1 − τ)Φhαα(0, 0, τα)dτ

and

I202(h, α) =

∫ 1

0

∫ 1

0
(1 − τ)(1 − σ)Φhhαα(τh, 0, σα)dσdτ
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will not play any role in the following, hence grouping together these remaining terms into ψ0

gives the desired expression for f0.
As for f1, one gets that

f1(h, α) = ΦB
x + α · I011(α) + h · I110(h) + hα · I111(h, α),

where ΦB
x = 1,

I011(α) =

∫ 1

0
Φxα(0, 0, τα)dτ ≡ 0,

I110(h) =

∫ 1

0
Φhx(τh, 0, 0)dτ ≡ 0,

because Φhx = (f ◦ Φ)x = (fx ◦ Φ) · Φx. Finally,

I111(h, α) =

∫ 1

0

∫ 1

0
Φhxα(τh, 0, σα)dσdτ.

In the case of f2, we see that

f2(h, α) =
1

2

(
ΦB

xx + α · I021(α) + h · ΦB
hxx + h2 · I220(h) + hα · I121(h, α)

)
,

where ΦB
xx = 0 and

I021(α) =

∫ 1

0
Φxxα(0, 0, τα)dτ ≡ 0.

However,

ΦB
hxx = (f ◦ Φ)B

xx = (fxx ◦ Φ)B ·
(
(Φx)2

)B
+ (fx ◦ Φ)B · ΦB

xx = fB
xx · 1 + 0 6= 0.

Further,

Φhhxx = (fx ◦ Φ)xx · Φh + 2(fx ◦ Φ)x · Φhx + (fx ◦ Φ) · Φhxx,

thus

I220(h) =

∫ 1

0
(1 − τ)Φhhxx(τh, 0, 0)dτ ≡ 0.

Finally,

I121(h, α) =

∫ 1

0

∫ 1

0
Φhxxα(τh, 0, σα)dσdτ.

For the remainder ψ3, the integral formula gives

ψ3(h, x, α) =
1

2

∫ 1

0
(1 − τ)2Φxxx(h, τx, α)dτ. (2.11)

But

Φxxx(h, τx, α) = Φxxx(0, τx, α) + h ·
∫ 1

0
Φhxxx(σh, τx, α)dσ

and Φxxx(0, τx, α) ≡ 0, so the lemma is proved. �

Now let us perform a coordinate shift by introducing a new variable

ξ := x+ δ0,
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where δ0 ≡ δ0(h, α) will be defined soon via the implicit function theorem. This shift transforms
(2.5) into ξ 7→ Φ(h, ξ− δ0, α) + δ0, which—similarly, but more explicitly than in [35]—turns out
to be equal to

ξ 7→
[
f0(h, α) − g(h, α)δ0(h, α) + f2(h, α)δ20(h, α) + h · δ30(h, α)ψ̂30(h, α, δ0)

]
+

ξ + ξ ·
[
g(h, α) − 2f2(h, α)δ0(h, α) + h · δ20(h, α)ψ̂31(h, α, δ0)

]
+ (2.12)

ξ2 ·
[
f2(h, α) + h · δ0(h, α)ψ̂32(h, α, δ0)

]
+ h · ψ̂33(h, ξ, α, δ0)ξ3

with some smooth functions ψ̂30, ψ̂31, ψ̂32, and ψ̂33, where

ψ̂30(h, α, δ) ≡ −ψ̂3(h,−δ, α), (2.13)

ψ̂31(h, α, δ) ≡ 3ψ̂3(h,−δ, α) − δ · d

dx
ψ̂3(h,−δ, α), (2.14)

ψ̂32(h, α, δ) ≡ −3ψ̂3(h,−δ, α) + 3δ · d

dx
ψ̂3(h,−δ, α) − δ2

2
· d2

dx2
ψ̂3(h,−δ, α) (2.15)

and

ψ̂33(h, ξ, α, δ) ≡ 1

2

∫ 1

0
(1 − τ)2 · Φxxx(h, τξ − δ, α)dτ.

In order to annihilate the parameter-dependent linear term in (2.12), define

F (h, α, δ) ≡ 1

h

(
g(h, α) − 2f2(h, α)δ + h · δ2 · ψ̂31(h, α, δ)

)
,

where, in the case of h = 0, the continuous extension of F is used. Since we have that

F (h, 0, 0) = 0 ∀h ∈ [0, h0],

∂F

∂δ
(h, 0, 0) =

−2f2(h, 0)

h
= −ΦB

hxx 6= 0 ∀h ∈ [0, h0],

the implicit function theorem provides the local existence and uniqueness of a smooth function
δ0(h, α), defined on h ∈ [0, h0] and |α| ≤ α0, for which

F (h, α, δ0(h, α)) ≡ 0

holds. From uniqueness, it is seen that this δ0 also satisfies δ0(h, 0) = 0 for h ∈ [0, h0], so

δ0(h, α) = α · ψd(h, α) (2.16)

holds true for h ∈ [0, h0] and |α| ≤ α0 with some smooth function ψd.

As a next step, introduce a new parameter µ0 ≡ µ0(h, α) by

µ0(h, α) :=
f0(h, α)

h
− g(h, α)δ0(h, α)

h
+
f2(h, α)δ20(h, α)

h
+ δ30(h, α)ψ̂30(h, α, δ0),

i.e., as the ξ-independent term of (2.12) divided by h. Since µ0(h, 0) = 0 and d
dαµ0(h, 0) = ΦB

hα 6=
0 independently of h ∈ [0, h0], the inverse function theorem guarantees the local existence and
uniqueness of a smooth inverse function α0 ≡ α0(h, µ) of α 7→ µ0(h, α). Moreover, the domain
of definition of this inverse function is easily seen to contain a neighbourhood of the origin
independent of h ∈ [0, h0]. Further, α0(h, 0) = 0, hence

α0(h, µ) = µ · ψa(h, µ) (2.17)
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holds for h ∈ [0, h0] and |µ| small with some smooth function ψa.
Therefore (2.12) now reads as

ξ 7→ h · µ0 + ξ + h · q(h, µ0) · ξ2 + h · ξ3 · ψ̂m3(h, ξ, µ0)

with q(h, µ0) ≡ 1
2ΦB

hxx + ψ̂m2(h, µ0) and some smooth functions ψ̂m2 and ψ̂m3, where

ψ̂m2(h, µ0) ≡ α0 · ψ2(h, α0) + δ0(h, α0) · ψ̂32(h, α0, δ0(h, α0))

and
ψ̂m3(h, ξ, µ0) ≡ ψ̂33(h, ξ, α0, δ0(h, α0)).

A final scaling η := |q(h, µ0)|ξ and β := |q(h, µ0)|µ0 with s := sign(q(h, 0)) = ±1 (being also
independent of h ∈ [0, h0]) yields the following normal form.

Lemma 2.2.2 There are smooth invertible coordinate and parameter changes transforming the
system

x 7→ Φ(h, x, α)

into
η 7→ hβ + η + s · hη2 + hη3 · η̂3(h, η, β)

where η̂3(h, η, β) = ψ̂m3(h, ξ, µ0) · |q(h, µ0)|−2 is a smooth function.

Now let us consider the discretization map ϕ. We prove an analogous result to that of
Lemma 2.2.1 first.

Lemma 2.2.3 Under the assumptions of Lemma 2.2.1 and for h ∈ [0, h0], |x| ≤ ε0, |α| ≤ α0,
we have that

ϕ(h, x, α) = f̃0(h, α) + f̃1(h, α)x + f̃2(h, α)x2 + χ3(h, x, α)x3,

where

f̃0(h, α) = hp+1 · χ00(h) + ϕB
hα · hα+ hα · χ01(h, α), ϕB

hα = ΦB
hα 6= 0,

f̃1(h, α) ≡ 1 + g̃(h, α) = 1 + hp+1 · χ10(h) + hα · χ11(h, α),

f̃2(h, α) = hp+1 · χ20(h) +
1

2
ϕB

hxx · h+ hα · χ21(h, α), ϕB
hxx = ΦB

hxx 6= 0,

χ3(h, x, α) = h · χ̂3(h, x, α)

hold with some smooth functions χ00, χ01, χ10, χ11, χ20, χ21 and χ̂3. Moreover, for h ∈ [0, h0],
|x| ≤ ε0 and for |α| ≤ α0,

|ψ3(h, x, α) − χ3(h, x, α)| ≤ const · hp+1. (2.18)

Proof. Proceeding similarly as in Lemma 2.2.1, we get that

f̃0(h, α) = ϕB + α · Ĩ001(α) + h · Ĩ100(h) + hα · ϕB
hα+

hα2 · Ĩ102(α) + h2α · Ĩ201(h) + h2α2 · Ĩ202(h, α), (2.19)

where the integrals Ĩ’s are defined just as in the proof of Lemma 2.2.1, but with ϕ instead of Φ.
Due to (2.4)–(2.9), here we also have ϕB = 0 and Ĩ001(α) ≡ 0. From (2.3) at x = 0 we infer that
for h ∈ [0, h0] and for |α| ≤ α0

∣∣∣f0(h, α) − f̃0(h, α)
∣∣∣ ≤ const · hp+1. (2.20)
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Evaluating this at α = 0 shows that |h · Ĩ100(h)| ≤ const · hp+1. Further, differentiating (2.10)
yields that ϕB

hα = ΦB
hα.

As for f̃1, one has that ϕB
x = 1 and Ĩ011(α) ≡ 0, hence

f̃1(h, α) = 1 + h · Ĩ110(h) + hα · Ĩ111(h, α).

Since f is at least Cp+4, from [18] we obtain that
∣∣∣f1(h, α) − f̃1(h, α)

∣∣∣ ≤ const · hp+1. (2.21)

Evaluation at α = 0 yields |h · Ĩ110(h)| ≤ const · hp+1.
Considering f̃2, we obtain that ϕB

xx = 0 and Ĩ021(α) ≡ 0, thus

f̃2(h, α) =
1

2

(
h · ϕB

hxx + h2 · Ĩ220(h) + hα · Ĩ121(h, α)
)

and again, ∣∣∣f2(h, α) − f̃2(h, α)
∣∣∣ ≤ const · hp+1. (2.22)

Evaluating this at α = 0, we see that |h2 · Ĩ220(h)| ≤ const · hp+1. Further, differentiating (2.10)
again yields that ϕB

hxx = ΦB
hxx.

For the remainder χ3, the same argument applies as in the proof of Lemma 2.2.1, together
with the estimate

|ψ3(h, x, α) − χ3(h, x, α)| ≤ const · hp+1 · 1

2

∫ 1

0
(1 − τ)2dτ,

which completes the proof of the lemma. �

Now applying the corresponding coordinate shift with δ̃ instead of δ0, we arrive at some
formulae completely analogous to (2.12)–(2.15), where δ̃ is the implicit function defined by (the
continuous extension at h = 0 of)

F̃ (h, α, δ) ≡ 1

h

(
g̃(h, α) − 2f̃2(h, α)δ + h · δ2 · χ̂31(h, α, δ)

)
.

However, for the O(hp)-estimates, we will need a quantitative (or parametrized) version of the
implicit function theorem, see [47]. Instead of its full form (i.e. Banach space setting with more
parameter-dependence), we cite that result in a simplified form tailored to our needs and using
our notation.

Lemma 2.2.4 Let F̃ : R2×R → R be a Cj mapping. Assume there exist a function δ0 : R2 → R

and some constants κ1 > 0, κ2 > 0 such that for |δ − δ0(h, α)| ≤ r1 and |h|, |α| < r2 we have
∣∣∣∣∣
∂F̃

∂δ
(h, α, δ) − ∂F̃

∂δ
(h, α, δ0(h, α))

∣∣∣∣∣ ≤ κ2 < κ1 ≤
∣∣∣∣∣
∂F̃

∂δ
(h, α, δ0(h, α))

∣∣∣∣∣ ,

∣∣∣F̃ (h, α, δ0(h, α))
∣∣∣ ≤ (κ1 − κ2) · r1.

Then for any |h|, |α| < r2, F̃ (h, α, ·) has a unique C j-smooth zero δ̃ ≡ δ̃(h, α) near δ0(h, α), and
the following estimate holds

∣∣∣δ̃(h, α) − δ0(h, α)
∣∣∣ ≤ (κ1 − κ2)−1 · |F̃ (h, α, δ0(h, α))|.
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In order to verify the conditions of this lemma, define κ1 := 1
2 |ϕB

hxx| and κ2 := 1
2κ1. The

estimate ∣∣∣∣∣
∂F̃

∂δ
(h, α, δ0(h, α))

∣∣∣∣∣ =

∣∣∣∣∣
−2f̃2(h, α)

h
+ 2δ0(h, α) · χ̂31(h, α, δ0) + δ20(h, α) · d

dδ
χ̂31(h, α, δ0)

∣∣∣∣∣ ≥ κ1

is seen to be valid—due to the form of f̃2 and (2.16)—provided that r2 is small. On the other
hand, ∣∣∣∣∣

∂F̃

∂δ
(h, α, δ) − ∂F̃

∂δ
(h, α, δ0(h, α))

∣∣∣∣∣ ≤

|2[δ − δ0(h, α)]χ̂31(h, α, δ) + 2δ0(h, α) [χ̂31(h, α, δ) − χ̂31(h, α, δ0)]|+
∣∣∣∣
[
δ2 − δ20(h, α)

] d

dδ
χ̂31(h, α, δ) + δ20(h, α)

[
d

dδ
χ̂31(h, α, δ) − d

dδ
χ̂31(h, α, δ0)

]∣∣∣∣ ≤ κ2,

if r1 and r2 are sufficiently small. Finally,

∣∣∣F̃ (h, α, δ0(h, α))
∣∣∣ ≤ |F (h, α, δ0(h, α))| +

∣∣∣F̃ (h, α, δ0(h, α)) − F (h, α, δ0(h, α))
∣∣∣ ≤

0 +
1

h
|g̃(h, α) − g(h, α)| +

2|δ0(h, α)|
h

∣∣∣f̃2(h, α) − f2(h, α)
∣∣∣+

δ20(h, α)
∣∣∣χ̂31(h, α, δ0) − ψ̂31(h, α, δ0)

∣∣∣ ≤ const · hp,

owing to (2.21), (2.22) and the estimate

∣∣∣χ̂31(h, α, δ0) − ψ̂31(h, α, δ0)
∣∣∣ ≤ (2.23)

3
∣∣∣χ̂3(h,−δ0, α) − ψ̂3(h,−δ0, α)

∣∣∣+

|δ0(h, α)|
∣∣∣∣

1

2h

∫ 1

0
(1 − τ)2τ · (ϕxxxx(h,−τδ0, α) − Φxxxx(h,−τδ0, α)) dτ

∣∣∣∣ ≤

const · hp + const · hp,

being valid due to (2.14), (2.11), (2.18) and the fact (see [18] again) that f is at least C p+5.

Therefore, Lemma 2.2.4 proves the local existence and uniqueness of the function δ̃ such that

F̃ (h, α, δ̃(h, α)) ≡ 0,

and ∣∣∣δ̃(h, α) − δ0(h, α)
∣∣∣ ≤ const · hp (2.24)

holds for h ∈ [0, h0] and |α| ≤ α0.

Now let us define a new parameter µ̃ in an analogous way as we did before, i.e. as the
ξ-independent term divided by h, that is

µ̃(h, α) :=
f̃0(h, α)

h
− g̃(h, α)δ̃(h, α)

h
+
f̃2(h, α)δ̃2(h, α)

h
+ δ̃3(h, α)χ̂30(h, α, δ̃).



2.2. CONSTRUCTION OF THE NORMAL FORMS 25

We see from the analogous expression of (2.13) for χ̂30, from (2.18), (2.20)–(2.22) and (2.24)
that

|µ̃(h, α) − µ0(h, α)| ≤ const · hp (2.25)

holds for h ∈ [0, h0] and |α| ≤ α0. In order to use a quantitative inverse function theorem for
α 7→ µ̃(h, α), we apply Lemma 2.2.4 again, but this time with G instead of F̃ , and α0 instead
of δ0, where

G(h, µ, α) := µ− µ̃(h, α).

To check the conditions of the lemma, define κ1 := 1
2 |ϕB

hα| and κ2 := 1
2κ1. We have that

∣∣∣∣
∂G

∂α
(h, µ, α)

∣∣∣∣ =

∣∣∣∣ϕ
B
hα + χ01(h, α) + α

d

dα
χ01(h, α) − g̃(h, α)

h

d

dα
δ̃(h, α) + δ̃(h, α)χ̃G(h, α)

∣∣∣∣

holds with a suitable smooth function χ̃G. By (2.24), (2.16) and (2.17), the expression
|δ̃(h, α0(h, µ))| can be made arbitrary small provided that |h|, |µ| < r2 are small enough. The
same is true for | 1h g̃(h, α0(h, µ))|. Moreover, the definition (2.19) of χ01 shows that χ01(0, 0) = 0,
so from these we can conclude that

∣∣∣∣
∂G

∂α
(h, µ, α0(h, µ))

∣∣∣∣ ≥ κ1,

provided that r2 is sufficiently small. The other condition
∣∣∣∣
∂G

∂α
(h, µ, α) − ∂G

∂α
(h, µ, α0(h, µ))

∣∣∣∣ ≤ κ2

is seen to hold by continuity if |α− α0(h, µ)| ≤ r1 and r2 are small enough. Finally, by (2.25),

|G(h, µ, α0(h, µ))| = |µ0(h, α0(h, µ)) − µ̃(h, α0(h, µ))| ≤ const · hp.

Therefore, we get a unique zero α̃(h, µ) of G(h, µ, ·), which—by the construction of G—is just
the inverse function of α 7→ µ̃(h, α). Furthermore,

|α̃(h, µ) − α0(h, µ)| ≤ const · hp (2.26)

holds for h ∈ [0, h0] and |µ| sufficiently small.
As a conclusion, (2.6) becomes

ξ̃ 7→ h · µ̃+ ξ̃ + h · q̃(h, µ̃) · ξ̃2 + h · ξ̃3 · χ̂m3(h, ξ̃, µ̃)

with q̃(h, µ̃) ≡ 1
2ϕ

B
hxx + χ̂m2(h, µ̃) and some smooth functions χ̂m2 and χ̂m3. We claim that

|q̃(h, µ̃) − q(h, µ0)| ≤ const · hp

also holds. Indeed, since

|q̃(h, µ̃(h, α)) − q(h, µ0(h, α))| ≤
∣∣∣f̃2(h, α) − f2(h, α)

∣∣∣+

h
∣∣∣δ̃(h, α) · χ̂32(h, α, δ̃(h, α)) − δ0(h, α) · ψ̂32(h, α, δ0(h, α))

∣∣∣ ,

we deduce the desired estimate from the O(hp)-estimates obtained so far together with some
standard (triangle) inequalities, and an estimate similar to (2.23) but with (2.15) and using that
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f is at least Cp+6.
By applying a final scaling

η̃ := |q̃(h, µ̃)|ξ̃ and β̃ := |q̃(h, µ̃)|µ̃

with s := sign(q̃(h, 0)) = ±1 (being independent of h ∈ [0, h0]), further taking into account the
fact that |ξ − ξ̃|, |η − η̃| and |β − β̃| are all O(hp)-small, we have derived the following normal
form together with the desired closeness estimates.

Theorem 2.2.5 There are smooth invertible coordinate and parameter changes transforming
the system

x 7→ ϕ(h, x, α)

into

η̃ 7→ hβ̃ + η̃ + s · hη̃2 + hη̃3 · η̃3(h, η̃, β̃)

where η̃3 is a smooth function.
Moreover, the smooth invertible coordinate and parameter changes above and those in Lemma

2.2.2 are O(hp)-close to each other, further

|η̂3 − η̃3| ≤ const · hp.

Finally, we apply a parameter shift β̃ 7→ β to the normal form in the theorem above, being
O(hp)-close to the identity, since |β − β̃| = O(hp). So from now on we will use the bifurcation
parameter α again instead of β and β̃. To simplify our notation further, instead of variables η
and η̃ the letter x will be used.

2.3 Construction of the conjugacy in the α ≤ 0 case

We have just shown that there exists a constant c > 0 such that

|NΦ(h, x, α) −Nϕ(h, x, α)| ≤ c · hp+1|x|3 (2.27)

holds for all sufficiently small h > 0, |x| ≥ 0 and |α| ≥ 0. Throughout the Chapter, c will denote
this particular positive constant.

Our task is to construct a homeomorphism J(h, ·, α) in a small neighbourhood of the origin
with h ∈ (0, h0] and α ∈ [−α0, α0] as parameters such that J(h, ·, α) solves the conjugacy
equation

NΦ(h, J(h, x, α), α) = J(h,Nϕ(h, x, α), α). (2.28)

We consider first the case α < 0. Let us denote the negative fixed point of N E
ϕ and NE

Φ near
the origin by ωϕ,− ≡ ωϕ,−(h, α) and ωΦ,− ≡ ωΦ,−(h, α), respectively.

Lemma 2.3.1 For every 0 < h ≤ h0 and −α0 ≤ α < 0 we have that

−
√

2
√
|α| ≤ ωϕ,− ≤ −

√
2

3

√
|α|

and

−
√

2
√
|α| ≤ ωΦ,− ≤ −

√
2

3

√
|α|,

provided that α0 ≤ 1
8K2 .
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Proof. By definition, ωϕ,− < 0 solves α + x2 + x3 · η̃3(h, x, α) = 0. Since if |x| ≤ 1
2K , then

|x3η̃3| ≤ 1
2x

2 and hence

α+
x2

2
≤ α+ x2 + x3 · η̃3(h, x, α) ≤ α+

3x2

2

holds, we get the desired estimates provided that
√

2
√

|α| ≤ 1
2K , which is true if |α| ≤ 1

8K2 . The
proof for ωΦ,− is similar. �

By iterating one of the normal forms, let us define two sequences xk and yk. Let xk ≡ xk(h, α)
be defined as

xk+1 := Nϕ(h, xk, α), k = 0, 1, 2, . . .

with x0 := 0, further let yk ≡ yk(h, α) be defined as

yk+1 := Nϕ(h, yk, α), k = 0, 1, 2, . . . (2.29)

with y0 < ωϕ,−, being independent of both h and α, and |y0| being chosen appropriately, see
below. Note that y0 is a negative number.

Since, by Lemma 2.3.1, if h and |α| are sufficiently small, 0 < (N E
ϕ )′(ωϕ,−) < 1 holds, the fixed

point ωϕ,− is attracting, hence limk→∞ xk(h, α) = limk→∞ yk(h, α) = ωϕ,−. Moreover, a simple
calculation shows that y0 < y1(h, α) can also be achieved, for example, − 1

4K ≤ y0 ≤ −2
√
α0

suffices, hence it follows by induction that the sequence yk is monotone increasing. Similarly, it
can be assumed that the sequence xk is monotone decreasing.

We remark that suitable values of h0, α0 and y0 have been built into the conditions of the
following lemmas and theorems corresponding to the α ≤ 0 case. (There is only one constraint
which has not been taken into account explicitly: if the domain of definition of the functions η̂3

and η̃3 is smaller than (0, h0]× [−ε0, ε0]× [−α0, α0] given later, then h0, ε0 or α0 should suitably
be decreased further.)

The following figure shows the branch of stable and unstable fixed points of N E
ϕ in the (α, x)-

plane together with the first few terms of the inner sequence xk(h, α) and the outer sequence
yk(h, α) with some h > 0 and α < 0 fixed. The arrows point toward terms of the sequences with
larger k indices.
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The intervals [xk+1, xk] and [yk, yk+1] (k ∈ N) constitute the so-called fundamental domains
on which the homeomorphism JE is now piecewise defined.

Fix 0 < h ≤ h0 and −α0 ≤ α < 0 arbitrarily.
Let JE(x) := x for x ∈ [x1, x0] ≡ [hα, 0]. For n > 1, set

JE(xn) :=
(
NE

Φ

)[n]
(x0),

and recursively, for n > 1 and for x ∈ (xn, xn−1), let

JE(x) :=
(
NE

Φ ◦ JE ◦
(
NE

ϕ

)[−1]
)

(x). (2.30)

Here the right hand side has already been defined by the recursion. Finally, set

JE(ωϕ,−) := ωΦ,−.

Then JE is continuous, strictly monotone increasing on [ωϕ,− , 0], as it is a composition of three
such functions, and satisfies (2.28).

Fix − 1
4K ≤ y0 ≤ −2

√
α0 as well. Let JE(y0) := y0, and for n > 1, set

JE(yn) :=
(
NE

Φ

)[n]
(y0).

On the interval [y0, y1], extend JE linearly. Recursively, for n > 1 and for y ∈ (yn−1, yn), set

JE(y) :=
(
NE

Φ ◦ JE ◦
(
NE

ϕ

)[−1]
)

(y).

Then JE is continuous, strictly monotone increasing on [y0, ωϕ,− ] and satisfies (2.28).

The same construction is carried out for α = 0. This time, however, only the sequence yk

is needed, since the two fixed points merge then disappear as α passes through 0−. Of course,
J(h, 0, 0) := 0.

Currently, the construction is halfway ready—the function J has been defined on (0, h0] ×
[−|y0|, 0] × [−α0, 0] so far.

On (0, h0] × [0, |y0|] × [−α0, 0], that is in the region of repelling fixed points, the inverses of
the normal forms are iterated. For any 0 < h ≤ h0 and −α0 ≤ α < 0, set x̃0 := x0 = 0 and for
k = 1, 2, . . .

x̃k ≡ x̃k(h, α) :=
(
NE

ϕ

)[−k]
(x̃0),

further for any 0 < h ≤ h0 and −α0 ≤ α ≤ 0, let ỹ0 := |y0| and for k = 1, 2, . . .

ỹk ≡ ỹk(h, α) :=
(
NE

ϕ

)[−k]
(ỹ0).

Then for α < 0, the monotone increasing sequence x̃k tends to ωϕ,+, while the monotone
decreasing sequence ỹk converges to ωΦ,+, where ωϕ,+ and ωΦ,+ denote the positive fixed points
of NE

ϕ and NE
Φ , respectively.

The construction for JE is analogous: for example, we set

JE(x̃n) :=
(
NE

Φ

)[−n]
(x̃0) and JE(ỹn) :=

(
NE

Φ

)[−n]
(ỹ0),

but now the relation JE =
(
NE

Φ

)[−1] ◦ JE ◦ NE
ϕ is used in the recursive extensions.

Remark 2.3.1 Notice that our construction is more direct than the one in [7], since the inter-
mediate pure quadratic function g(x, α) as well as the two auxiliary homeomorphisms H and G
in [7] are eliminated.
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2.4 The closeness estimate in the α ≤ 0 case

2.4.1 The inner region

We now prove that the constructed conjugacy JE is O(hp)-close to the identity on the interval
[ωϕ,− , 0] uniformly for any h ∈ (0, h0] and α ∈ [−α0, 0).

We mention that O(hp−1)-closeness could be proved easily by arguing as [7] with estimates
formulated in terms of the sequence xk itself. Nevertheless, it turns out that restoring this lost
order is possible by a different subdivision of [ωϕ,− , 0], established by the following preparatory
lemma. The sequence sn defined below successfully bridges the gap between two different orders
of magnitude: it connects the ”micro” level O(hα) with the ”meso” level O(

√
|α|). The meso-

level and the ”macro” level O(1) will be connected by the sequence yk in Section 2.4.2.

Lemma 2.4.1 Let h0 ≤ 1
16 and

√
α0 ≤ min

(
1
2 ,

1√
8K

)
. For every h ∈ (0, h0] and α ∈ [−α0, 0),

define

m ≡ m(h) := blog2 log2
1

h
c

and for 1 ≤ n ≤ m

sn ≡ sn(h, α) := − 2n√
h
√

|α|,
further let s0 := hα ≡ x1. Then m ≥ 2,

ωϕ,− < −
√
|α|
2

≤ sm ≤ −
√
|α|
4

and for any 1 ≤ n < m we have that

ωϕ,− < NE
ϕ (sn+1) < sn+1 < NE

ϕ (sn) < sn < . . . < NE
ϕ (s1) < s1 < NE

ϕ (s0) < s0 < 0.

Proof. It is seen that 1
2 ≥ h2−m ≥ 1

4 is equivalent to 0 ≤ −m+ log2 log2
1
h ≤ 1, which is always

satisfied due to the definition of m(h).
√
α0 has been chosen so small that Lemma 2.3.1 can be

applied, hence ωϕ,− ≤ −
√

2
3

√
|α| < − 1

2

√
|α|. Also notice that (due to the definition of ωϕ,−,

NE
ϕ (0) < 0 and continuity) ωϕ,− < NE

ϕ (x) < x holds for x ∈ (ωϕ,− , 0]. It is easy to see that

hα + x ≤ NE
ϕ (x) < 0, if |x| ≤ 1

K . The already shown inequality −
√

|α|
2 ≤ sn (1 ≤ n ≤ m)

and condition
√
|α| ≤ 1√

8K
imply |sn| ≤ 1

K , hence it is sufficient to prove that sn+1 < hα + sn

holds for 1 ≤ n < m. (The case n = 0 can be verified directly.) But this is equivalent
to h2−n−1

+ h · h−(2−n−1)
√
|α| < 1. The second term is strictly less than 1

2 , hence h2−n−1 ≤ 1
2

remains to be shown. However, this reduces to log2 log2
1
h ≥ n+1, which is true, since m > n. �

Now the desired closeness is shown to hold on each of the subintervals defined above. How-
ever, since the number of these subintervals tends to infinity as h → 0+, the constants on the
right hand sides of the estimates should be controlled carefully. Thus, instead of a generic
positive constant const, the symbol c > 0 being the same as in (2.27) with fixed value is used
throughout the proof.

Lemma 2.4.2 Suppose that h0 ≤ min
(

1
16 ,

p

√
1
8c

)
and

√
α0 ≤ min

(
1
2 ,

1
19K

)
. Then using the

notation of the previous lemma, for every h ∈ (0, h0], α ∈ [−α0, 0) and 0 ≤ n < m we have the
following estimates:

sup
[s0,0]

| id− JE | = 0, (2.31)
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sup
[NE

ϕ (s0),s0]

| id− JE | ≤ c · hp+4|α|3, (2.32)

sup
[NE

ϕ (sn+1),NE
ϕ (sn)]

| id− JE | ≤ c · hp+2−n−1√|α|, (2.33)

sup
[ωϕ,− ,NE

ϕ (sm)]

| id− JE | ≤ 12c · hp
√
|α|. (2.34)

Proof. Step 1. h0 and α0 have been chosen such that max(|ωϕ,− |, |ωΦ,− |) ≤ min
(
1, 1

13K

)
(see

Lemma 2.3.1), which implies that 0 < (N E
Φ )′ ≤ 1 + h · id and (NE

Φ )′ is monotone increasing
(due to 0 < (NE

Φ )′′) on [ωϕ,−, 0] ∪ [ωΦ,−, 0]. So the above estimates can be evaluated at any
x ∈ [ωϕ,−, 0] and therefore at any JE(x) ∈ [ωΦ,− , 0]. (We remind that, by construction, JE

maps the interval [ωϕ,− , 0] onto [ωΦ,−, 0].) Hence for any x ∈ [ωϕ,−, 0]

sup
[{x,JE(x)}]

(NE
Φ )′ ≤ 1 + h · max(x, JE(x)) (2.35)

holds. (With the [{·, ·}] notation, both cases x ≤ JE(x) and JE(x) < x can be treated simul-
taneously.) Taking also into account that JE is strictly monotone increasing by construction,
further inequality (2.27) and definition (2.30), we get for any ωϕ,− ≤ a < b ≤ 0 that

sup
[NE

ϕ (a),NE
ϕ (b)]

| id− JE | = sup
[NE

ϕ (a),NE
ϕ (b)]

∣∣∣NE
ϕ ◦ (NE

ϕ )[−1] −NE
Φ ◦ JE ◦ (NE

ϕ )[−1]
∣∣∣ ≤

sup
[a,b]

∣∣NE
ϕ −NE

Φ

∣∣+ sup
[a,b]

∣∣NE
Φ −NE

Φ ◦ JE
∣∣ ≤

c · hp+1|a|3 + sup
x∈[a,b]

((
sup

[{x,JE(x)}]
(NE

Φ )′
)
|x− JE(x)|

)
≤

c · hp+1|a|3 +
(
1 + h · max

(
b, JE(b)

))
sup
[a,b]

| id− JE|. (2.36)

Step 2. sup[s0,0] | id−JE | = sup[x1,x0] | id−JE | = 0, since JE = id on [x1, x0] by construction.

Step 3. By (2.36) and the previous step,

sup
[NE

ϕ (s0),s0]

| id− JE | = sup
[NE

ϕ (x1),NE
ϕ (x0)]

| id− JE | ≤

c · hp+1|x1|3 +
(
1 + h · max

(
x0, J

E(x0)
))

sup
[x1,x0]

| id − JE| = c · hp+4|α|3.

Step 4. By (2.36), we have that

sup
[NE

ϕ (s1),NE
ϕ (s0)]

| id− JE | ≤ c · hp+1|s1|3 +
(
1 + h · max

(
s0, J

E(s0)
))

sup
[s1,s0]

| id− JE |. (2.37)

Here JE(s0) = JE(x1) = −h|α| = s0, |s1|3 = h
3
2 |α| 32 and narrowing the interval in the supremum

on the left hand side yields that

sup
[s1,NE

ϕ (s0)]

| id− JE | ≤

c · hp+1+ 3
2 |α| 32 +

(
1 − h2|α|

)
max

(
sup

[s1,NE
ϕ (s0)]

| id− JE |, sup
[NE

ϕ (s0),s0]

| id− JE |
)
.
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If the maximum is attained on the second term, the estimate from Step 3 is used (together
with h ≤ 1 and

√
|α| ≤ 1

2), while if the maximum is attained on the first term, the resulting
inequality is solved. In any case, we can establish that

sup
[s1,NE

ϕ (s0)]

| id− JE | ≤ c · hp+ 1
2

√
|α|, (2.38)

with the same c as before. Now, turning to (2.37) again, but this time also using Step 3 and
(2.38), we get that

sup
[NE

ϕ (s1),NE
ϕ (s0)]

| id− JE | ≤

c · hp+2+ 1
2 |α| 32 +

(
1 − h2|α|

)
max

(
c · hp+ 1

2

√
|α|, c · hp+4|α|3

)
.

Again, it is easy to see that in any case the right hand side can not be greater than c ·hp+ 1
2

√
|α|.

Step 5. Repeating inductively, we get for 1 ≤ n < m that

sup
[NE

ϕ (sn),NE
ϕ (sn−1)]

| id− JE | ≤ c · hp+2−n√|α|.

By (2.36),

sup
[NE

ϕ (sn+1),NE
ϕ (sn)]

| id − JE| ≤

c · hp+1|sn+1|3 +
(
1 + h · max

(
sn, J

E(sn)
))

sup
[sn+1,sn]

| id− JE|. (2.39)

Here |sn+1|3 = h3·2−n−1 |α| 32 . Further, since sn ∈ [NE
ϕ (sn),NE

ϕ (sn−1)], by the induction hypoth-
esis we have that

JE(sn) − sn ≤ |JE(sn) − sn| ≤ c · hp+2−n√|α|,
from which it is easy to deduce that

JE(sn) ≤ −
√
|α|
2

h2−n

using that hp ≤ 1
8c ≤ 1

2c by assumption. Obviously, sn ≤ −
√

|α|
2 h2−n

holds as well. So (2.39)
yields that

sup
[Nϕ(sn+1),NE

ϕ (sn)]

| id− JE | ≤ c · hp+1+3·2−n−1 |α| 32 +

(
1 −

√
|α|
2

h1+2−n

)
max

(
sup

[sn+1,NE
ϕ (sn)]

| id− JE |, sup
[NE

ϕ (sn),sn]

| id− JE |
)
. (2.40)

Clearly, the supremum on the left hand side is not increased if it is taken only on [sn+1,NE
ϕ (sn)].

Evaluating the first case in the maximum we have that

sup
[sn+1,NE

ϕ (sn)]

| id − JE| ≤ c · hp+1+3·2−n−1 |α| 32√
|α|
2 h1+2−n

= 2c · hp+2−n−1 |α| ≤ c · hp+2−n−1√|α|,

since
√
|α| ≤ 1

2 , and similarly, evaluating the second case in the maximum on the right hand
side of (2.40) (and using the induction hypothesis also) yields the same, since for 1 ≤ n < m

c · hp+1+3·2−n−1 |α| 32 + c · hp+2−n√|α| ≤ c · hp+2−n−1√|α|. (2.41)
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Therefore, we have shown that

sup
[sn+1,NE

ϕ (sn)]

| id− JE | ≤ c · hp+2−n−1√|α|.

Now with this additional information substituted back into the right hand side of (2.40) together
with the induction hypothesis, we see as in (2.41) that

sup
[NE

ϕ (sn+1),NE
ϕ (sn)]

| id− JE | ≤ c · hp+2−n−1√|α|.

The induction is complete.
Step 6. Finally, by using (2.36) we get that

sup
[ωϕ,− ,NE

ϕ (sm)]

| id− JE | ≤ c · hp+1|ωϕ,−|3 +
(
1 + h · max

(
sm, J

E (sm)
))

sup
[ωϕ,− ,sm]

| id− JE |,

since ωϕ,− is a fixed point of NE
ϕ . Now we use inequality |ωϕ,− | ≤

√
2
√

|α| from Lemma 2.3.1,

further inequality NE
ϕ (sm) ≤ sm ≤ −

√
|α|
4 from Lemma 2.4.1 and (2.33) with n = m−1 together

with the assumption hp ≤ 1
8c to obtain JE (sm) ≤ −

√
|α|
4 + c ·hp

√
|α| ≤ −

√
|α|
8 and sm ≤ −

√
|α|
8 ,

finally the decomposition [ωϕ,− , sm] = [ωϕ,− ,NE
ϕ (sm)] ∪ [NE

ϕ (sm), sm] in the supremum on the
right hand side to point out in the first case that

sup
[ωϕ,− ,NE

ϕ (sm)]

| id− JE | ≤
√

8c · hp+1|α| 32

h

√
|α|
8

= 16
√

2c · hp|α| ≤ 8
√

2c · hp
√
|α|,

while in the second case—using (2.33) again—that

sup
[ωϕ,− ,NE

ϕ (sm)]

| id− JE | ≤ 2c · hp
√
|α|.

Now the proof of the lemma is complete. �

Remark 2.4.1 At ωϕ,−, we can obtain a slightly better estimate in terms of α. Namely, we have

| id − JE|(ωϕ,−) = |ωϕ,− − ωΦ,−| ≤ c · hp+1|ωϕ,− |3 +

(
sup

[{ωϕ,− ,ωΦ,−}]
(NE

Φ )′
)
|ωϕ,− − ωΦ,− |,

which—since the positive supremum is at most 1− h
2

√
|α| together with Lemma 2.3.1—implies

that

|ωϕ,− − ωΦ,−| ≤ 2c · hp |ωϕ,− |3√
|α|

≤ 4
√

2c · hp|α|.

Remark 2.4.2 on optimality. The following explicit example illustrates that the distance of
fixed points of functions satisfying (2.27) may be bounded from below by O(hp) (h→ 0). Hence
the fact that fixed points must be mapped into nearby fixed points by the conjugacy JE implies
that better estimates than O(hp) of | id− JE | generally can not be expected.

Indeed, set η̂3(h, x, α) := 0 and η̃3(h, x, α) := hp · x. Then NΦ(h, x, α) = hα + x + hx2 and
Nϕ(h, x, α) = hα + x + hx2 + hp+1x4 satisfy (2.27) in a neighbourhood of the origin, further,

ωΦ,− = −
√
|α| and ωϕ,− = −

√
1

2hp

(√
1 + 4hp|α| − 1

)
. Using inequality 1 + t

2 − t2

8 ≤
√

1 + t ≤

1 + t
2 − t2

8 + t3

16 for 0 ≤ t ≤ 1, one can show that

|ωϕ,− − ωΦ,− | ≥ hp

(
1

2
|α| 32 − hp|α| 52

)

holds, if, for example, h ≤ 1 and
√
|α| ≤ 1

2 .
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2.4.2 The outer region

In the following lemma—also interesting in itself—we first estimate the growth of iterates of the
normal form NE

ϕ , i.e. the convergence speed of yk(h, α).

Lemma 2.4.3 Suppose that the positive numbers h0 and α0 are small enough, further |y0| has
been chosen appropriately. Then for −α0 ≤ α ≤ 0, 0 < h ≤ h0 and k ≥ 0 we have that

−|y0| ≤ yk(h, α) ≤ 0,

while for −α0 ≤ α ≤ 0, 0 < h ≤ h0 and k ≥ b 1
hc + 1 we have that

−
√

2|α| − 2

kh
≤ yk(h, α) < 0. (2.42)

Proof. The first estimate follows from the fact that the sequence yk is monotone increasing, as
we have seen (for example, the condition − 1

4K ≤ y0 ≤ −2
√
α0 guarantees this).

As for the second estimate, we prove by induction on k. For k = b 1
hc + 1, kh ≤ 2 holds if h

is small enough, hence −
√

2|α| − 2
kh ≤ −1 ≤ y0 ≤ yk < 0, if |y0| is small enough.

For k > b 1
hc + 1, we have that yk+1 = Nϕ(h, yk, α) ≥ hα + yk + h

2y
2
k, if |yk| is small enough

(for example, if |yk| ≤ |y0| ≤ 1
2K ). Hence it is sufficient to prove

hα+ yk +
h

2
y2

k ≥ −
√

2|α| − 2

(k + 1)h
. (2.43)

To this end, notice that the function x 7→ hα + x + h
2x

2 is monotone increasing provided that

x > − 1
h . It is easy to see that −

√
2|α| − 2

kh > − 1
h , if k > b 1

hc + 1, further h and |α| are small
enough. Then, by the induction hypothesis, we see that

hα+

(
−
√

2|α| − 2

kh

)
+
h

2

(
−
√

2|α| − 2

kh

)2

≥ −
√

2|α| − 2

(k + 1)h
(2.44)

implies (2.43). However, since now |α| = −α, (2.44) is equivalent to hk
√

2|α| ≥ − 1
k+1 . There-

fore, the induction is complete. �

Remark 2.4.3 The precise conditions for h0, α0 and |y0| are collected in the next lemma.

Remark 2.4.4 Estimate (2.42) has been devised by superimposing the following pieces of infor-
mation: on one hand, the convergence speed of the sequence yk(h, 0) = O( 1

hk ) (k → ∞) can be
inferred from [28], while, on the other hand, we know from Lemma 2.3.1 that limk→∞ yk(h, α) =
O(
√
|α|), if −α0 ≤ α < 0 is small.

Our estimate of yk is simpler and more explicit than the corresponding one in [7], in which a
majorizing sequence zk containing a fractional power of k is used. We will only need fractional
powers in the finer analyses in Sections 2.5 and 2.6 for α > 0.

Now it is proved that the conjugacy JE is O(hp)-close to the identity on the interval
[−|y0|, ωϕ,−) for any h ∈ (0, h0] and α ∈ [−α0, 0), as well as on the interval [−|y0|, 0] for any
h ∈ (0, h0] when α = 0.

Lemma 2.4.4 Suppose that h0 ≤ 1
5 ,

√
α0 ≤ min

(
1
2 ,

1
26K

)
and max

(
−1,− 1

13K

)
≤ y0 ≤ −2

√
α0.

Then for each h ∈ (0, h0] and α ∈ [−α0, 0) we have that

sup
[y0,ωϕ,−)

| id− JE | ≤ c

(
3y2

0 + 4
√
α0 +

4

1 − h0
+ 12

)
hp, (2.45)
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and similarly, for h ∈ (0, h0] and α = 0 the estimate

sup
[y0,0]

| id− JE | ≤ c

(
3y2

0 +
4

1 − h0

)
hp (2.46)

holds.

Proof. Step 1. The assumptions have been set up such that Lemma 2.3.1 and Lemma 2.4.3

are both applicable (hence ωϕ,− < −
√

|α|
2 holds for example, when α < 0), further 0 < (N E

Φ )′ ≤
1 + h · id and (NE

Φ )′ is monotone increasing on [−|y0|, 0].
Step 2a. Consider the case α ∈ [−α0, 0) first. It is clear that

sup
[y0,ωϕ,−)

| id − JE| = sup
n∈N

sup
[yn,yn+1]

| id − JE|. (2.47)

Step 2b. Now since JE(y0) = y0 and JE is linear on [y0, y1], we get that

sup
[y0,y1]

| id− JE | = | y1 − JE(y1)| = |NE
ϕ (y0) −NE

Φ (y0)| ≤ c · hp+1y2
0,

by a weaker form of (2.27).
Step 2c. For n ≥ 1, similarly to (2.36), we obtain that

sup
[yn,yn+1]

| id− JE | ≤ sup
[yn,yn+1]

∣∣∣NE
ϕ ◦ (NE

ϕ )[−1] −NE
Φ ◦ (NE

ϕ )[−1]
∣∣∣+

sup
[yn,yn+1]

∣∣∣NE
Φ ◦ (NE

ϕ )[−1] −NE
Φ ◦ JE ◦ (NE

ϕ )[−1]
∣∣∣ =

sup
[yn−1,yn]

∣∣NE
ϕ −NE

Φ

∣∣+ sup
[yn−1,yn]

∣∣NE
Φ −NE

Φ ◦ JE
∣∣ ≤

sup
[yn−1,yn]

∣∣NE
ϕ −NE

Φ

∣∣+ sup
y∈[yn−1,yn]

((
sup

[{y,JE(y)}]
(NE

Φ )′
)
| y − JE(y)|

)
≤

c · hp+1y2
n−1 +

(
1 − h

2

√
|α|
)

sup
[yn−1,yn]

| id− JE|,

using the fact that for y ∈ [y0, ωϕ,− ] the inclusion [{y, JE(y)}] ⊂ [y0, ωϕ,− ] ∪ [y0, ωΦ,− ] holds,

further, sup[y0,max(ωϕ,− ,ωΦ,−)](NE
Φ )′ ≤ 1 + h · max(ωϕ,− , ωΦ,−) ≤ 1 − h

2

√
|α| by Step 1.

Step 2d. Repeating inductively, for any n ≥ 1 we have that

sup
[yn,yn+1]

| id− JE| ≤

1 · sup
[y0,y1]

| id − JE | + c · hp+1
n−1∑

i=0

(
1 − h

2

√
|α|
)n−1−i

y2
i

with c being the same constant as in (2.27). Hence in order to show (2.45), it is sufficient to
verify—by virtue of Step 2a and 2b—that

sup
h∈(0,h0]

sup
α∈[−α0,0)

sup
k∈N

(
h

k∑

i=0

(
1 − h

2

√
|α|
)k−i

y2
i (h, α)

)
≤ const (2.48)

holds with a suitable const > 0.
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Step 2e. We first estimate (2.48) for 0 ≤ k ≤ b 1
hc, using the first estimate of Lemma 2.4.3.

h
k∑

i=0

(
1 − h

2

√
|α|
)k−i

y2
i ≤ h

k∑

i=0

y2
i ≤ h

b 1
h
c∑

i=0

y2
0 ≤

h

(
1

h
+ 1

)
y2
0 ≤ 2y2

0.

Step 2f. We can now estimate (2.48) for k ≥ b 1
hc+ 1 by making use of the second estimate

of Lemma 2.4.3 and Step 2e.

h




b 1
h
c∑

i=0

+

k∑

i=b 1
h
c+1



(

1 − h

2

√
|α|
)k−i

y2
i ≤

2y2
0 + h

k∑

i=b 1
h
c+1

(
1 − h

2

√
|α|
)k−i

(
2|α| +

4
√

2|α|
ih

+
4

i2h2

)
≤ . . .

Now we use ih ≥
(
b 1

hc + 1
)
h > 1

h · h = 1, and
∑k

i=b 1
h
c+1

(
1 − h

2

√
|α|
)k−i

≤ 1

1−
(
1−h

2

√
|α|
) to

proceed.

. . . ≤ 2y2
0 + h

1

1 −
(

1 − h
2

√
|α|
)
(

2|α| + 4
√

2|α|
)

+ h

k∑

i=b 1
h
c+1

1k−i 4

i2h2
≤

2y2
0 + 2

(
2
√
|α| + 4

√
2
)

+
4

h

∫ ∞

b 1
h
c

1

i2
di ≤

2y2
0 + 4(

√
α0 + 2

√
2) +

4

h

1
1
h − 1

≤

2y2
0 + 4

√
α0 +

4

1 − h0
+ 12,

which is a suitable choice for const in (2.48). This estimate, substituted back into (2.47), yields
(2.45). The proof of the lemma in the case α ∈ [−α0, 0) is complete.

Step 3. Consider now the case α = 0. Then the estimate 0 < (N E
Φ )′ ≤ 1 can be used on

[y0, 0]. As in Step 2d, we arrive at the following condition

h

k∑

i=0

y2
i ≤ const (2.49)

to be proved, uniformly in h and α for all values of k ∈ N. But (2.49) can be proved along the
lines of Step 2e and 2f, being now much simpler, thanks to the last two estimates of Lemma
2.4.3 at α = 0. �

2.4.3 Conclusion and further remarks

Taking into account Lemma 2.4.2 and Lemma 2.4.4, we have thus proved the following theorem.
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Theorem 2.4.5 Suppose that h0 ≤ min
(

1
16 ,

p

√
1
8c

)
and

√
α0 ≤ min

(
1
2 ,

1
26K

)
, further

max
(
−1,− 1

13K

)
≤ y0 ≤ −2

√
α0. Then, for every h ∈ (0, h0] and α ∈ [−α0, 0], the conjugacy

defined in Section 2.3 satisfies
sup
[y0,0]

| id− JE | ≤ 22c · hp,

where c > 0 is the same as in (2.27).

Now a similar task has to be carried out to acquire the appropriate estimates on [0, |y0|] as
well, for any h ∈ (0, h0] and −α0 ≤ α ≤ 0. These proofs are however a bit more technical due
to the ubiquitous inverses of the normal forms. We only illustrate how some of the estimates
can be derived in this case by showing two fragments of the proof. The case −α0 ≤ α < 0 is
considered now and attention is focused only near the boundary of the interval [0, ωϕ,+ ].

1. We begin proving the counterpart of Lemma 2.4.2. Let us formulate two basic inequalities
first.

| id− JE |(x) =
∣∣∣
(
NE

Φ

)[−1] ◦ NE
Φ −

(
NE

Φ

)[−1] ◦ JE ◦ NE
ϕ

∣∣∣ (x) ≤
(

sup
[{NE

Φ (x),JE◦NE
ϕ (x)}]

(
(NE

Φ )[−1]
)′
)
(∣∣NE

Φ −NE
ϕ

∣∣ (x) +
∣∣NE

ϕ − JE ◦ NE
ϕ

∣∣ (x)
)
≤

(
sup

[{NE
Φ (x),JE◦NE

ϕ (x)}]

(
(NE

Φ )[−1]
)′
)
(
c · hp+1|x|3 + | id− JE |

(
NE

ϕ (x)
))
. (2.50)

On the other hand, by using that
((

NE
Φ

)[−1]
)′

≤ 2 is valid on a small neighbourhood of the

origin, inequality
∣∣∣
(
NE

Φ

)[−1]
(x) −

(
NE

ϕ

)[−1]
(x)
∣∣∣ =

∣∣∣
(
NE

Φ

)[−1]
(x) −

(
NE

Φ

)[−1] ◦ NE
Φ ◦

(
NE

ϕ

)[−1]
(x)
∣∣∣ ≤


 sup

[{x,NE
Φ ◦(NE

ϕ )
[−1]

(x)}]

(
(NE

Φ )[−1]
)′


∣∣∣NE

ϕ ◦
(
NE

ϕ

)[−1]
(x) −NE

Φ ◦
(
NE

ϕ

)[−1]
(x)
∣∣∣ ≤

2c · hp+1
∣∣∣
(
NE

ϕ

)[−1]
(x)
∣∣∣
3

(2.51)

is also at our disposal.

Now using (2.50) and the definitions x̃1 ≡
(
NE

ϕ

)[−1]
(0), further JE(0) = 0, we establish that

sup
[0,x̃1]

| id− JE| ≤
(

sup
[{NE

Φ (x̃1),0}]

(
(NE

Φ )[−1]
)′
)

· c · hp+1|x̃1|3 ≤ 2c · hp+1|x̃1|3.

Now it is verified that x̃1 has the correct order of magnitude in terms of h and α. To this end,

use the fact that, say, 1
2 ≤

((
NE

ϕ

)[−1]
)′

≤ 2 holds on a small neighbourhood of the origin to get

1

2
h|α| ≤

(
inf

[hα,0]

(
(NE

ϕ )[−1]
)′)

|hα| =

(
inf

[{0,NE
ϕ (0)}]

(
(NE

ϕ )[−1]
)′
)
∣∣0 −NE

ϕ (0)
∣∣ ≤

∣∣∣
(
NE

ϕ

)[−1]
(0) −

(
NE

ϕ

)[−1] (NE
ϕ (0)

)∣∣∣ ≡ |x̃1| ≤
(

sup
[{0,NE

ϕ (0)}]

(
(NE

ϕ )[−1]
)′
)
∣∣0 −NE

ϕ (0)
∣∣ =

(
sup
[hα,0]

(
(NE

ϕ )[−1]
)′
)
|hα| ≤ 2h|α|.
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Thus, sup[0,x̃1] | id−JE | ≤ 16c·hp+4|α|3. (However, with a little analysis, similar to (2.52) below,

one can show that sup[hα,0]

(
(NE

ϕ )[−1]
)′

=1, hence estimate sup[0,x̃1] | id − JE| ≤ 2c · hp+4|α|3 is
closer to the truth.) The rest of the proof can be carried over similarly.

2. Secondly, it is shown that the repelling fixed points are sufficiently close to each other,
i.e. the conjugacy JE is O(hp)-close to the identity also at ωϕ,+. By (2.50) at x = ωϕ,+ we have
that

|ωϕ,+ − ωΦ,+| = | id − JE|(ωϕ,+) ≤

 sup

[{NE
Φ (ωϕ,+ ),ωΦ,+

}]

(
(NE

Φ )[−1]
)′


(
c · hp+1 · ω3

ϕ,+ + |ωϕ,+ − ωΦ,+|
)
.

Now let us examine this supremum. We observe that

sup
[{NE

Φ (ωϕ,+ ),ωΦ,+
}]

(
(NE

Φ )[−1]
)′

= sup
[{NE

Φ (ωϕ,+ ),ωΦ,+
}]

1

(NE
Φ )′ ◦ (NE

Φ )[−1]
=

sup
[{ωϕ,+ ,ωΦ,+

}]

1

(NE
Φ )′

≤ 1

(NE
Φ )′(min(ωϕ,+ , ωΦ,+))

≤

1

(NE
Φ )′

(√
|α|
2

) ≤ 1

1 + h
2

√
|α|

≤ 1 − h

4

√
|α|, (2.52)

by taking into account that the positive function (N E
Φ )′ is monotone increasing, the correspond-

ing estimates (cf. Lemma 2.3.1)

√
|α|
2 ≤

√
2
3

√
|α| ≤ ωϕ,+, ωΦ,+ ≤

√
2
√

|α| for both positive fixed

points of the normal forms, further the fact that (N E
Φ )′(x) ≥ 1+hx, if 0 ≤ x is sufficiently small,

finally the inequality 1
1+x ≤ 1 − x

2 , if 0 ≤ x ≤ 1. From these we express the desired quantity to
get

|ωϕ,+ − ωΦ,+| ·
h

4

√
|α| ≤

(
1 − h

4

√
|α|
)
c · hp+1 · ω3

ϕ,+

which in turn results in the inequality

|ωϕ,+ − ωΦ,+| ≤ 8
√

2 c · hp · |α|.

2.5 Preparation: Growth of the iterates in the α > 0 case

For the construction of a conjugacy and the corresponding closeness estimates in the α > 0 case,
the current preparatory section analyzes some properties of the orbit of 0 under mappings of
the form x 7→ hα + x + hx2 + hx3 · η(h, x, α) with η from a suitable function class. (Then, of
course, η will be replaced either by η̂3 or η̃3.)

Let pn ≡ pn(h, α) denote any sequence satisfying p0 = 0 and

pn+1 = Nη(h, pn, α) (2.53)

for n ∈ N, where Nη(h, x, α) := hα+x+hx2 +hx3 ·η(h, x, α) and η is any smooth function with
|η|, | d

dxη| and | d
dx2 η| bounded, again, by some K > 0 uniformly for all h ∈ (0, h0], x ∈ [−ε0, ε0]

and α ∈ (0, α0], when h0 > 0, ε0 > 0 and α0 > 0 are sufficiently small. In what follows, we fix
parameters h ∈ (0, h0] and α ∈ (0, α0] arbitrarily.
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First notice that the asymptotic behaviour of pn can be qualitatively different for different
choices of η—for example, pn can be unbounded, but can tend to a finite limit as well. In order
to make its behaviour uniform, we will cut pn at some suitable value κ > 0 and consider only
the terms of the sequence below this cutting level.

Lemma 2.5.1 Let κ := min
(

3
8 , (13K̃)−1

)
with K̃ := K + 3h0. Then the sequence pn reaches

level κ at some n, further, for pn ≤ κ the sequence is strictly monotone increasing, and for
0 < x ≤ κ both

(
NE

η

)′
(x) and

(
NE

η

)′′
(x) are positive.

Proof. Since 0 < x ≤ 1, we have
(
NE

η

)′
(x) ≥ 1 + hx(2 − 3Kx − Kx) being positive

due to x ≤ (4K)−1. Similarly,
(
NE

η

)′′
(x) ≥ h(2 − 6Kx − 6Kx − Kx) > 0 because of

x ≤ (13K)−1. Strict monotonicity of pn follows easily from pn+1 − pn > hp2
n(1 − Kpn) > 0.

Finally, since (pn+2−pn+1)− (pn+1−pn) = h · (t(pn+1)− t(pn)) with t(x) := x2 +x3 ·ηE(x), and
t(pn+1)−t(pn) = t′(ξ)·(pn+1−pn) with some ξ ∈ (pn, pn+1), further t′(ξ) ≥ ξ(2−3ξK−ξK) > 0,
the proof is complete. �

Remark 2.5.1 The role of K̃ will be explained by Lemma 2.5.2, while that of 3
8 by Lemma 2.5.8.

Having assured the strict monotonicity of pn, the rest of this section will be devoted to de-
vising suitable upper estimates for the sequence.

The behaviour of pn under the level κ is the juxtaposition of two, qualitatively different
phases.

In the interval [0,
√
α], the sequence is mainly determined by the term hα in the recursive

definition (2.53), hence here pn ≈ nhα, see (2.59) in the proof of Lemma 2.5.6.

However, after the level O(
√
α) has been passed, higher order terms begin to dominate and

the linear growth suddenly turns into a steep increase.

Therefore, splitting our investigations into two is natural: the ”trivial” linear part, and the
tail part of the sequence will be treated separately. In this latter region—due to the fact that
higher order terms are only ”weakly” α-dependent, as α is present only in η—it is reasonable
to expect some similarities between the α > 0 (α → 0+) and the α = 0 cases—and indeed, we
will explicitly exploit this phenomenon. Hence, an essential part of the proofs in this section
will not contain α. It seems hard, however, to control the growth rate of pn effectively as n
increases, that is, to devise suitable global estimates of pn in terms of n and to say something
meaningful about the index where the sequence reaches level κ, see Proposition 2.7.1 and the
subsequent remarks. Nevertheless, a ”backward” approach will work, that is, properties of the
inverse-iteration can be grasped better by considering pN−k as k increases, where N is chosen
such that pN ≈ κ.

In exploring quantitative properties of this sequence described by the current Section, the
program Mathematica has been heavily relied upon.

We first obtain an a priori inverse estimate for one term of the sequence in terms of its
successor.

Lemma 2.5.2 Suppose h0 ≤ 1
3 , hα ≤ 1, further κ and K̃ are as above. Then for all n ≥ 1

satisfying pn ≤ κ we have that

pn−1 ≤ pn − hα+ h2α− hp2
n + hK̃p3

n. (2.54)



2.5. GROWTH OF THE ITERATES IN THE α > 0 CASE 39

Proof. Substituting n−1 (instead of n) into (2.53), rearranging, and using the upper and lower
bounds of η together with the fact that pn−1 is nonnegative, we see that

pn − hα− hp2
n−1 − hKp3

n−1 ≤ pn−1 ≤ pn − hα− hp2
n−1 + hKp3

n−1. (2.55)

From the left hand side inequality—since pn is monotone increasing and positive—we get

pn − hα− hp2
n − hKp3

n ≤ pn−1. (2.56)

Now we first show that the left hand side of (2.56) is nonnegative for n ≥ 2. Using pn ≤ 1
2 ,

Kpn ≤ 1
2 and h ≤ 1

3 , we have h(α+p2
n +Kp3

n) ≤ h(α+ 1
2pn + 1

4pn) ≤ hα+ 1
4pn. From this we get

that the left hand side of (2.56) is nonnegative if 4
3hα ≤ pn. But since p1 = hα and p2 > 2hα,

condition 4
3hα ≤ pn is implied by n ≥ 2. So we temporarily assume n ≥ 2.

Rearrangement of (2.56) thus yields

−(pn − hα− hp2
n − hKp3

n)2 ≥ −p2
n−1

for n ≥ 2. Now let us combine this with the right hand side inequality of (2.55), showing for
n ≥ 2 that

pn−1 ≤ pn − hα− h(pn − hα− hp2
n − hKp3

n)2 + hKp3
n−1.

Now we will simplify the right hand side here to arrive at the desired result. To this end, first
replace the term hKp3

n−1 with hKp3
n by monotonicity, then expand the square to get

pn−1 ≤ pn − hα− hp2
n + hKp3

n + 2h2pn(α+ p2
n +Kp3

n) − h3(α+ p2
n +Kp3

n)2. (2.57)

Let us examine the last two terms above. The last negative term can safely be omitted, so we
are left with estimating 2h2pn(α+p2

n +Kp3
n) from above. But using again pn ≤ 1

2 and Kpn ≤ 1
2 ,

we get 2h2pn(α+ p2
n +Kp3

n) = 2pnh
2α+ 2h2p3

n(1 +Kpn) ≤ h2α+ hp3
n3h.

Hence, by suitable upper estimates, (2.57) has been transformed into (2.54), with K̃ :=
K + 3h0 for n ≥ 2.

Finally, we directly verify (2.54) for n = 1. A direct substitution p0 = 0 and p1 = hα yields
that it is sufficient to have h2α− hp2

1 + hK̃p3
1 ≥ 0, which is, however, implied by hα ≤ 1. �

Remark 2.5.2 Inequalities (2.54) and (2.56) quantitatively express the natural fact that the
inverse mapping of (identity + higher order terms), i.e. of (2.53), has the form (identity −
perturbed higher order terms). Of course, it is not apparent at the first sight, how large this
perturbation can be in terms of the parameters h and α.

Let us denote by N ≡ N(h, α) the unique index where the sequence pn passes level κ, that
is determine N ∈ N in such a way that pN ≤ κ but pN+1 > κ.

Although pN ≤ κ, it will be important later to exclude the possibility of pN being too small
as h, α → 0+. The next Lemma shows that, under appropriate conditions, pN is uniformly
separated from 0.

Lemma 2.5.3 Suppose that the conditions of Lemma 2.5.2 hold and α0 ≤ κ. Then pN ≥ κ
2 for

all h ∈ (0, h0] and α ∈ (0, α0].

Proof. Suppose, to the contrary, that pN < κ
2 holds. Then by Kκ ≤ 1, 3h0 ≤ 1 and κ ≤ 1, one

would get

κ < pN+1 = hα+ pN + hp2
N + hp3

N · ηE(pN ) ≤ hα+
κ

2
+ h

κ2

4
+ h

κ3

8
K ≤
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hα +
κ

2
+ h

κ2

4
+ h

κ2

8
=
κ

2
+ hα+

3hκ2

8
≤ κ

2
+
α0

3
+
κ2

8
≤ κ

2
+ κ

(
1

3
+

1

8

)
< κ,

a contradiction. �

In a similar fashion, we can replace the level κ to be passed by
√
α. This type of result will

also be needed later.

Lemma 2.5.4 Suppose that the conditions of Lemma 2.5.2 hold and 0 < α0 ≤ κ2. If m is the

index such that pm ≤ √
α, but pm+1 >

√
α, then pm ≥

√
α

2 for any h ∈ (0, h0] and α ∈ (0, α0].

Proof. Suppose, to the contrary, that pm <
√

α
2 . Then by pmK ≤ κK ≤ 1, 3h0 ≤ 1 and α ≤ 1,

we would get

√
α < pm+1 = hα+ pm + hp2

m + hp3
m · ηE(pm) ≤ hα + pm + 2hp2

m ≤

hα+

√
α

2
+ h

α

2
≤

√
α

2
+

3

2
hα ≤

√
α

2
+

√
α

2
=

√
α,

a contradiction. �

For k ∈ N sufficiently large, we now deduce a rough, but direct auxiliary estimate for pN−k

based on Lemma 2.5.2. However, it will be required later to have estimates not only for pN−k,
but also for pN∗−k, where 0 < N ∗ ≤ N , so we have to prove a bit more general statement.

Lemma 2.5.5 Suppose that the conditions of Lemma 2.5.2 hold. Set k1 := 1
hκ and let N∗ ∈ N+

be arbitrary with N ∗ ≤ N . Then for k1 ≤ k ≤ N∗

pN∗−k ≤ 2

hk
. (2.58)

Proof. Due to the monotone increasing property of pn and the fact that we are dealing with
upper estimates, it is sufficient to prove everything for N instead of N ∗ ≤ N .

The proof is by induction on k. Since κh ≤ 1, it is clear for k = dk1e that pN−k ≤ pN ≤ κ ≤
2

h( 1
hκ

+1)
≤ 2

hk .

So assume (2.58) is true for some k ≥ k1. Then by (2.54)—omitting the nonpositive −hα+
h2α due to h ≤ 1—we see that

pN−(k+1) ≤ pN−k − hp2
N−k + hK̃p3

N−k.

Since the function p 7→ p− hp2 + hK̃p3 is monotone increasing for 0 < p ≤ κ < 1
2h , it is enough

to show
2

hk
− h

4

h2k2
+ hK̃

8

h3k3
≤ 2

h(k + 1)

to finish the induction. But the above is equivalent to

8K̃

h2k3
≤ 4

hk2
− 2

hk(k + 1)
,

which is a bit more strengthened if its right hand side is decreased by writing 4
hk2 − 2

hk2 . So it
is sufficient to establish

8K̃

h2k3
≤ 2

hk2
,
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being equivalent to 4K̃ ≤ hk, which latter is however implied by 4K̃ ≤ 1
κ = hk1 ≤ hk due to

the definition of κ and k1. �

Remark 2.5.3 The lemma above can be considered as a counterpart of Lemma 2.4.3.

Remark 2.5.4 In this elementary argument one could replace the 2 in the numerator in (2.58)
by 1+δ, with δ being an arbitrarily small positive number. However, the limiting process δ → 0+

is not allowed, because this would shift k1 to infinity (or the cutting level κ to zero).
On the other hand, by scanning the proofs of (2.72) and (2.78), it can be seen that a constant

strictly greater than 1 in the numerator in (2.58) would destroy the order of magnitude of the
upper estimate (2.78): instead of the logarithmic singularity ln 1

α , one would get only
(

1
α

)ε
, with

a suitable ε > 0 as α→ 0+. So, for the sake of a sharper result, we are going to analyze deeper
the growth rate of pn.

First, we prove that the maximal index N ≡ N(h, α) is O( 1
h
√

α
), as h, α → 0+.

Lemma 2.5.6 Suppose that the conditions of Lemma 2.5.2 hold and 0 < α0 ≤ κ2. Then we
have

#{pn|pn ∈ [0,
√
α]} ≤ 1

h
√
α
,

#{pn|pn ∈ [
√
α, κ]} ≤ 2

h
√
α

+
1

hκ
,

and hence

N ≤ 3

h
√
α

+
1

hκ
≤ 4

h
√
α
.

Proof. Since 0 ≤ pn ≤ κ, again hp2
n(1 + pn · ηE(pn)) ≥ 0, so for 0 ≤ n ≤ N we get the trivial

lower estimate from (2.53)
pn ≥ nhα, (2.59)

which yields the upper estimate to the number of elements of the first set in the Lemma. To
get the second estimate, apply (2.58) but noticing that at most 1

hκ elements should be counted
separately due to the restriction on the starting index k in (2.58). �

Remark 2.5.5 It is possible to prove N ≤ 2+δ
h
√

α
, with δ > 0 being arbitrary small. But, as

remarked previously, such an improvement would be of no help for the following estimates.

Returning to our ”backward approach”, we develop two lemmas—the refined counterparts
of Lemma 2.5.2 and Lemma 2.5.5.

The first subtle step is to conceal cubic terms in the inverse iteration by introducing a new
sequence sk.

Lemma 2.5.7 Suppose that the conditions of Lemma 2.5.2 hold, and again, 1
hκ =: k1 ≤ k ≤ N∗

with some N ∗ ≤ N . Then
pN∗−(k+1) ≤ pN∗−k − hskp

2
N∗−k, (2.60)

where sk ≡ sk(h, κ) := 1 − 1
hkκ for k ≥ k1.

Proof. Inequality (2.54) implies that pN∗−(k+1) ≤ pN∗−k−hp2
N∗−k(1−K̃pN∗−k). Now use (2.58)

and the definition of κ to obtain

1 − K̃pN∗−k ≥ 1 − K̃
2

hk
=
hk − 2K̃

hk
≥ hk − 1

κ

hk
= sk ≥ 0.
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These yield (2.60). �

Now we can state and prove our main tool in the α > 0 case. The Lemma below yields
additional information on the convergence speed of the backward iteration, being fundamental
to the final closeness estimates.

Lemma 2.5.8 (The 3
2-Lemma) Suppose that the conditions of Lemma 2.5.2 hold, but now

1
hκ2 ≤ k ≤ N∗ with some N ∗ ≤ N . Then

pN∗−k ≤ 1

hk
+

1/κ

(hk)3/2
. (2.61)

Proof. Again, it is enough to prove everything for N instead of N ∗.
We prove by induction on k. The induction can be started because for k = 1

hκ2 ≥ 1
hκ , (2.58)

yields that pN−dke ≤ 2(hd 1
hκ2 e)−1 ≤ 2κ2 = 1

hk + 1/κ

(hk)3/2 .

Let us now introduce the abbreviation P (h, k, κ) := 1
hk + 1/κ

(hk)3/2 and suppose that pN−k ≤
P (h, k, κ) holds for some k ≥ 1

hκ2 . Then using (2.60) together with the monotonicity of the
function p 7→ p− hskp

2 (being true since pN−k ≤ κ < 1
2hsk

), we get

pN−(k+1) ≤ pN−k − hskp
2
N−k ≤ P (h, k, κ) − hskP

2(h, k, κ).

Hence, clearly, in order to finish the induction, it is sufficient to establish that

Q(h, k, κ) := P (h, k + 1, κ) − P (h, k, κ) + hskP
2(h, k, κ) ≥ 0,

for all h ∈ (0, 1), κ ∈ (0, 3
8 ] and k ≥ 1

hκ2 .
To this end, we first shift the second argument in Q by setting ` := k − 1

hκ2 , then introduce
a new variable A := 1 + hκ2` to get

Q(h, k, κ) ≡ Q

(
h,

1

hκ2
+ `, κ

)
≡ Q

(
h,

A

hκ2
, κ

)
.

(So ` ≥ 0 is arbitrary, thus A ≥ 1 is also arbitrary.) Albeit the expressions above are mathe-
matically equivalent, yet, from a structural point of view, they are substantially different: the
last form can be simplified to

Q

(
h,

A

hκ2
, κ

)
≡

κ2

(
1

A+ hκ2
− 1

A
+

1

(A+ hκ2)3/2
− 1

A3/2
+

(1 +
√
A)2(A− κ)hκ2

A4

)
,

where a new parameter ν := hκ2 is immediately introduced. Also dropping the positive factor κ2

outside, and noticing that the whole expression is not increased if the only explicitly remaining
κ is replaced by its maximal value 3

8 in (A − κ), we arrive at the following inequality in two
variables

0 ≤ 1

A+ ν
− 1

A
+

1

(A+ ν)3/2
− 1

A3/2
+

(1 +
√
A)2(A− 3

8)ν

A4
(2.62)

to be shown for all A ≥ 1 and (even for all) ν ≥ 0.
Let us abbreviate the right hand side of (2.62) by R(A, ν) and notice that R(A, 0) = 0 for

all A ≥ 1. Furthermore, notice that for ν > 0, the partial derivative ∂νR(A, ν) satisfies

∂νR(A, ν) =
(1 +

√
A)2(A− 3

8)

A4
− 3

2(A+ ν)5/2
− 1

(A+ ν)2
>
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(1 +
√
A)2(A− 3

8)

A4
− 3

2A5/2
− 1

A2
=

(
√
A− 1)(4A + 9

√
A+ 3)

8A4
≥ 0.

The proof is complete. �

Remark 2.5.6 The exponent in (2.61) has been postulated to be 3
2 , because it is the ”simplest”

number between 1 and 2. Numerical tests suggest that this fractional order is necessary, since if
the exponent 3

2 was replaced by 2, then—according to the tests—nonnegativity of the counterpart
of Q

(
h, A

hκ2 , κ
)

would not hold uniformly, i.e. for any small κ > 0 in the factor (A − κ), it is
possible to choose A� 1 and 0 < ν � 1 such that the corresponding Q-expression is negative.

The very same fact is indicated in [28] as well, when studying the recursion

uk+1 = g(uk),

with g(x) ≡ x−bxq+1+O(xq+2) and b > 0, q ∈ N being fixed parameters. If u0 > 0 is sufficiently
small, then the sequence uk tends to 0 as k → ∞. The convergence speed of this iteration in
terms of b and q together with strict lower and upper bounds for uk are given in [28], provided
that k is large enough. We remark that the same limiting relation in the q = 1 case—though
with a different proof—also appears in [44]. It is seen that the iteration uk with q = 1 is of the
same type as our backward iteration pN−k when α = 0. The upper bounds given in [28] have a
similar fractional order structure as (2.61). However, it will be important for us to have explicit
estimates from a starting index of the form const

h ; estimates only from a sufficiently large and
unspecified starting index k would be insufficient.

We add that the sharpest estimate concerning this class of iteration we know about is con-
tained in [5]. Define, similarly as above,

uk+1 = uk − u2
k + O(u3

k)

and suppose that u0 > 0 is chosen so small such that uk → 0. Then [5] sketches the proof of

uk =
1

k
+ O

(
log k

k2

)
.

However, the above sharper convergence rate is not yet an explicit estimate, and even if it was,
it would not make our later closeness estimates better.

Remark 2.5.7 After the form of inequality (2.61) to be proved was set, the maximal value 3
8 of

κ became sharp—it originates from the Taylor series expansion of Q
(
h, 1

hκ2 , κ
)

about the origin:

lim
h→0

d

dh

(
Q

(
h,

1

hκ2
, κ

))
=
κ4

2
(3 − 8κ).

This necessary condition κ ≤ 3
8 for nonnegativity of Q turned out to be sufficient as well, further

κ = 3
8 allows the nice factorization in the lower estimate of ∂νR(A, ν).

During the search for the proof of Q ≥ 0, the combined symbolic, numeric and graphical
capabilities of Mathematica proved to be indispensable. The main source of problems has been
the fact that the function Q with two parameters fixed often exhibits unimodality. The simple
structural manipulations described in the Lemma above successfully eliminate unimodality as
well as reduce the number of parameters by suitably grouping them together.

2.6 The conjugacy and closeness estimates in the α > 0 case

Let us consider our mappings

x 7→ NΦ(h, x, α) ≡ hα+ x+ hx2 + hx3 · η̂3(h, x, α) (2.63)
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and

x 7→ Nϕ(h, x, α) ≡ hα + x+ hx2 + hx3 · η̃3(h, x, α) (2.64)

for any fixed h ∈ (0, h0] and α ∈ (0, α0]. Both η̂3 and η̃3 satisfy the assumptions at the beginning
of Section 2.5, that is they are smooth functions with a common uniform bound K > 0. Suppose,
that they are sufficiently close, that is there exists a positive constant c > 0 such that

|NΦ(h, x, α) −Nϕ(h, x, α)| ≤ c · hp+1|x|ω (2.65)

holds for all h ∈ (0, h0], x ∈ [−ε0, ε0] and α ∈ (0, α0], where the exponent is assumed to be
ω = 3 (what we have proved in Section 2.2) or ω = 4 (an additional assumption).

For every fixed h ∈ (0, h0] and α ∈ (0, α0] we construct a conjugacy between (2.63) and
(2.64), that is a strictly monotone increasing map x 7→ J(h, x, α) in a neighbourhood [−ε0, ε0]
of the origin such that

NE
Φ ◦ JE = JE ◦ Nϕ. (2.66)

We will deal only with the case x ∈ [0, ε0], the negative part x ∈ [−ε0, 0] (using the appro-
priate inverse mappings) is similar.

To this end, suppose—again as in Section 2.5—that the sequence pn is the orbit of 0 under
(2.63), while the sequence qn is the orbit of 0 under (2.64), with p0 = q0 ≡ 0. Hence, all the
results of Section 2.5 can be applied to both pn and qn—quantities κ, K and K̃ are the same in
both cases, however, of course, a clear distinction should be made between the cutting indices:
let us denote by Np the index where pNp ≤ κ but pNp+1 > κ, and similarly, by Nq the index
where qNq ≤ κ but qNq+1 > κ. Since we are going to work with pn and qn simultaneously, they
both should be kept below κ for the results of Section 2.5 to work, so a common cutting index
N∗ is now defined as

N∗ := min(Np,Nq).

The following figure shows the first few (but same number of) terms of the sequences qn(h, α1)
and qn(h, α2) in the (α, x)-plane with some α1 > 0, α2 > 0 and h > 0 fixed. Condensation of the
sequences near the horizontal axis is clearly visible, however, for any α > 0, due to the absence
of the fixed points, they will eventually pass this axis, then begin increasing rapidly. (Note that
for the sake of a better comparison, the value of q0 has been redefined on this plot as q0 := −1

2 .
The branch of stable and unstable fixed points of N E

ϕ are also displayed. Again, the arrows
point toward terms of the sequences with larger n indices.)
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Figure 2.6.1
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The figure below depicts part of the global dynamics of the map N E
ϕ near the bifurcation

point in the (α, x)-plane. The same n0 (0 ≤ n ≤ n0) number of terms of the sequences yn(h, α),
y0 := −1

2 and qn(h, α), q0 := −1
2 are displayed together (cf. Figure 2.3.1 and Figure 2.6.1), with

h > 0 fixed and α running from −0.01 to 0.01 on an equidistant grid.

-0.01 -0.005 0.005 0.01

-0.4

-0.2

0.2

Figure 2.6.2

Now fix h ∈ (0, h0] and α ∈ (0, α0]. Set

JE(0) := 0. (2.67)

Then (2.66) recursively forces the definition of JE at qn to be

JE(qn) :=
(
NE

Φ

)[n]
(JE(0)) ≡

(
NE

Φ

)[n]
(0) ≡ pn.

Define further JE(x) := x for x ∈ [0, q1]. This will be a compatible extension, since JE(q1) = p1

by definition, but q1 = p1 ≡ hα. Then using these, together with (2.66) recursively, we can
extend JE homeomorphically in an (upper semi-)neighbourhood of the origin. We have thus
proved the following theorem.

Theorem 2.6.1 For every fixed h ∈ (0, h0] and α ∈ (0, α0], there exists a conjugacy J(h, ·, α)
between (2.63) and (2.64) defined in a uniform neighbourhood [−ε0, ε0] of the origin with ε0 :=
κ > 0.

Our aim now will be to measure the distance of JE from the identity.

Remark 2.6.1 Due to the monotonicity of the mapping JE, its growth rate and its distance
from the identity can not be affected by the chosen extension on [0, q1], hence the only degree
of freedom in the construction is prescribing the value of JE(0).
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First we present an auxiliary estimate, similar to (2.36) before. Suppose 0 < a < b. Using
(2.66), Lemma 2.5.1 for the monotonicity and (2.65), we get

sup
[NE

ϕ (a),NE
ϕ (b)]

| id− JE | = sup
[NE

ϕ (a),NE
ϕ (b)]

∣∣∣NE
ϕ ◦ (NE

ϕ )[−1] −NE
Φ ◦ JE ◦ (NE

ϕ )[−1]
∣∣∣ ≤

sup
[a,b]

∣∣NE
ϕ −NE

Φ

∣∣+ sup
[a,b]

∣∣NE
Φ −NE

Φ ◦ JE
∣∣ ≤

c · hp+1bω + sup
x∈[a,b]

((
sup

[{x,JE(x)}]
(NE

Φ )′
)
|x− JE(x)|

)
≤

c · hp+1bω + (NE
Φ )′

(
max

(
b, JE(b)

))
· sup

[a,b]
| id− JE|. (2.68)

For n ∈ N+, let us abbreviate the supremum by

Sn ≡ Sn(h, α) := sup
[qn−1,qn]

| id − JE|

and the derivative by

Dn ≡ Dn(h, α) := (NE
Φ )′

(
max

(
qn, J

E(qn)
))
.

With n ≤ N∗, a = qn−1 and b = qn, (2.68) therefore becomes

Sn+1 ≤ DnSn + c · hp+1qω
n .

Applying this recursively, we construct the upper estimate for n ≤ N ∗

Sn+1 ≤
(

n∏

i=1

Di

)
S1 + c · hp+1




n∑

i=1




n∏

j=i+1

Dj


 qω

i


 , (2.69)

where, of course, the product
∏n

j=n+1Dj is understood to be 1.

The first term on the right hand side vanishes, since S1 ≡ 0 by construction. The second
term, however, is monotone increasing in n ≤ N ∗, so we get

sup
[0,qN∗+1]

| id− JE| ≤ c · hp


h

N∗∑

i=1




N∗∏

j=i+1

Dj


 qω

i


 . (2.70)

In order to be able to estimate the right hand side of (2.70), we prove an important estimate
concerning the sum of powers of µN∗−k, where

µn ≡ µn(h, α) := max(qn, pn),

for 0 ≤ n ≤ N ∗.

Lemma 2.6.2 Suppose that the conditions of Lemma 2.5.2 hold and 0 < α0 ≤ κ2. Then there
exist positive constants const1(κ) > 0 and const2(κ) > 0, depending only on κ, such that for any
index i ∈ {0, 1, . . . ,N ∗} and for any h ∈ (0, h0] and α ∈ (0, α0] we have that

2h
i∑

k=0

µN∗−k ≤ const1(κ), (2.71)
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provided that 0 ≤ i ≤ b 1
hκ2 c, and

2h
i∑

k=0

µN∗−k ≤ const2(κ) + 2 ln(h i), (2.72)

provided that b 1
hκ2 c + 1 ≤ i ≤ N∗.

Further, for any δ > 0 there exists a positive constant const3(δ, κ) > 0, depending on δ and
κ, such that for any h ∈ (0, h0] and α ∈ (0, α0] we have that

h
N∗∑

k=0

(µN∗−k)1+δ ≤ const3(δ, κ). (2.73)

Proof. By the definition of N ∗ and µn, 0 ≤ µn ≤ κ for any n ∈ {0, 1, . . . ,N ∗}. If i ≤ b 1
hκ2 c,

then

2h

i∑

k=0

µN∗−k ≤ 2h

b 1
hκ2 c∑

k=0

κ ≤ 2hκ

(
1

hκ2
+ 1

)
≤ 2

κ
+ 2h0κ <

2

κ
+ κ,

which shows (2.71).

Assume now that N ∗ > b 1
hκ2 c+ 1 and b 1

hκ2 c+ 1 ≤ i ≤ N∗. (Case N∗ = b 1
hκ2 c+ 1 is just like

(2.71).) From (2.71) and Lemma 2.5.8 we deduce that

2h
i∑

k=0

µN∗−k ≤
(

2

κ
+ κ

)
+ κ+ 2h

i∑

k=b 1
hκ2 c+2

1

hk
+

1/κ

(hk)3/2
≤

(
2

κ
+ 2κ

)
+ 2h

∫ i

b 1
hκ2 c+1

(
1

hx
+

1/κ

(hx)3/2

)
dx ≤

(
2

κ
+ 2κ

)
+ 2h

∫ i

1
hκ2

(
1

hx
+

1/κ

(hx)3/2

)
dx =

(
2

κ
+ 2κ

)
+ 4 − 4

κ
√
h i

+ 4 lnκ+ 2 ln(h i) ≤
(

2

κ
+ 2κ+ 4 + 4 lnκ

)
+ 2 ln(h i),

proving (2.72). (We remark that keeping the term − 4
κ
√

h i
would not make (2.72) any sharper,

since −4 ≤ − 4
κ
√

h i
≤ 0.)

Finally, for (2.73) use N ∗ ≤ 4
h
√

α
from Lemma 2.5.6. Then it suffices to turn to the weaker

estimate (2.58) to get that

h

N∗∑

k=0

(µN∗−k)1+δ ≤ h

b 1
hκ

c+1∑

k=0

κ1+δ + h

N∗∑

k=b 1
hκ

c+2

(
2

hk

)1+δ

≤

κ1+δh

(
1

hκ
+ 2

)
+ h

∫ 4
h
√

α

1
hκ

(
2

hx

)1+δ

dx =

(
κδ + 2hκ1+δ

)
+

21+δκδ

δ
− 21−δαδ/2

δ
≤ κδ + κ1+δ +

21+δκδ

δ
,

completing the proof.
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It is seen that the choices for the constants const1(κ) := 2
κ + κ, const2(κ) := 2

κ + 2κ + 1
10

(due to 4 + 4 lnκ ≤ 4 + 4 ln 3
8 <

1
10 ) and const3(δ, κ) := κδ + κ1+δ + 21+δκδ

δ are appropriate. �

Now let us examine the product
∏N∗

j=i+1Dj in (2.70) for i ∈ {1, 2, . . . ,N ∗ − 1}. Computing

Dj ≡ (NE
Φ )′ (µj) and using 1 + x ≤ ex (x ∈ R), we get that

N∗∏

j=i+1

Dj ≤ exp


2h

N∗∑

j=i+1

µj + 3hK
N∗∑

j=i+1

µ2
j + hK

N∗∑

j=i+1

µ3
j


 ,

but taking into account (2.73), the right hand side can be simplified further to get

N∗∏

j=i+1

Dj ≤ const4 · exp


2h

N∗∑

j=i+1

µj


 , (2.74)

with a suitable positive constant const4 > 0, uniformly in h and α.
Using the value of const3(δ, κ) set at the very end of the proof of Lemma 2.6.2, κ ≤ 1, h0 ≤ 1

3
and κK ≤ 1

13 we see that

3hK
N∗∑

j=i+1

µ2
j + hK

N∗∑

j=i+1

µ3
j ≤ 3hKconst3(1, κ) + hKconst3(2, κ) ≤

3hK(5κ + κ2) + hK(5κ2 + κ3) ≤ (5κ + κ2) 4hK ≤ 24h0κK ≤ 8

13
,

hence e8/13 < 2 =: const4 is a possible choice.

Substituting this into (2.70), we arrive at the estimate

sup
[0,qN∗+1]

| id − JE | ≤ 2c · hp


h

N∗∑

i=1

exp


2h

N∗∑

j=i+1

µj


 · qω

i


 , (2.75)

where c is the same as in (2.65).

Remark 2.6.2 Since ex−x2/2 ≤ 1 + x ≤ ex (x ∈ R+), it is seen that

const · exp


2h

N∗∑

j=i+1

µj


 ≤

N∗∏

j=i+1

Dj ≤ 2 exp


2h

N∗∑

j=i+1

µj




also holds with a suitable uniform constant const > 0.

Now we are prepared to prove the following Theorem.

Theorem 2.6.3 Suppose that κ has been defined as in Lemma 2.5.1. Suppose further, that

h0 ≤ min

(
1
3 ,

p

√
exp(−2/κ)

128c

)
and 0 < α0 ≤ κ2, with c > 0 being the same as in (2.65). If ω = 4

in (2.65), then the conjugacy JE defined between (2.63) and (2.64) satisfies

sup
[0,κ/4]

| id− JE | ≤
(

12 c e2/κ
)
hp, (2.76)

uniformly in h ∈ (0, h0] and α ∈ (0, α0].
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Proof. The choice of h0 and α0 satisfy the assumptions of all Lemmas listed so far.

First, by using q0 ≡ 0 and reindexing the sums, we show that the complicated part of (2.75)

h

N∗−1∑

i=0

exp


2h

N∗∑

j=i+1

µj


 · q4i ≡ h

N∗∑

i=1

exp


2h

i−1∑

j=0

µN∗−j


 · q4N∗−i ≤

h

N∗∑

i=1

exp


2h

i∑

j=0

µN∗−j


 · q4N∗−i

is uniformly bounded. Applying (2.71), the trivial estimate qN∗−i ≤ κ, (2.72) and (2.58), further
inequalities const2(κ) ≥ const1(κ) from the end of the proof of Lemma 2.6.2 and N ∗ ≤ 4

h
√

α
from

Lemma 2.5.6, we have that

h
N∗∑

i=1

exp


2h

i∑

j=0

µN∗−j


 · q4N∗−i =

h




b 1
hκ2 c∑

i=1

+

N∗∑

i=b 1
hκ2 c+1


 exp


2h

i∑

j=0

µN∗−j


 · q4N∗−i ≤

h

b 1
hκ2 c∑

i=1

econst1(κ) · κ4 + h
N∗∑

i=b 1
hκ2 c+1

econst2(κ)+2 ln(h i) ·
(

2

h i

)4

≤

econst2(κ)


hκ4 1

hκ2
+ h

N∗∑

i=b 1
hκ2 c+1

h2i2
16

h4i4


 =

econst2(κ)


κ2 +

16

h
(
b 1

hκ2 c + 1
)2 + 16

N∗∑

i=b 1
hκ2 c+2

1

hi2


 ≤

econst2(κ)

(
κ2 + 16hκ4 + 16

∫ 4
h
√

α

1
hκ2

1

hx2
dx

)
=

econst2(κ)
(
κ2 + 16hκ4 − 4

√
α+ 16κ2

)
≤ econst2(κ)

(
17κ2 + 16h0κ

4
)
≤

κ e2/κ+2κ+1/10

(
17κ+

16

3
κ3

)
< κe2/κ · 16.

Hence we have proved so far that

sup
[0,qN∗+1]

| id− JE| ≤ 32cκ e2/κ · hp ≤ 12c e2/κ · hp, (2.77)

uniformly in h ∈ (0, h0] and α ∈ (0, α0].

Finally we show, that the interval on which the supremum is taken is uniformly large. There
are two possibilities: N ∗ = Nq or N∗ = Np. In the first case, Lemma 2.5.3 applied to the
sequence qn (with its own cutting index) yields that [0, qN∗+1] ⊃ [0, qNq ] ⊃ [0, κ/2]. In the
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second case however, when N ∗ = Np, we can turn to the left inequality in (2.77) itself together
with the fact that JE(qN∗) = pN∗ by construction, to establish relation

|qNp − pNp | = |qNp − JE(qNp)| ≤ sup
[0,qN∗+1]

| id− JE | ≤ 32cκ e2/κ · hp
0 ≤ κ

4
,

if h0 ≤ p

√
exp(−2/κ)

128c . But the result of Lemma 2.5.3 is again that pNp ≥ κ
2 , so qNp ≥ κ

4 must be

true. Therefore [0, qN∗+1] ⊃ [0, qNp ] ⊃ [0, κ/4] and the Theorem is proved. �

Remark 2.6.3 Since, by definition, κ ≤ 1
13K , that is 26K ≤ 2

κ , we see that if the common
uniform bound K in the mappings (2.63) and (2.64) is increased, then the upper estimate (2.76)
and the upper bounds on h0 and α0 become worse.

For the case ω = 3 in (2.65), the situation seems to be not so ”uniform”.

Theorem 2.6.4 Suppose that κ has been defined as in Lemma 2.5.1. Suppose further, that
h0 ≤ 1

3 , 0 < α0 ≤ κ2, and c > 0 is the same as in (2.65). If ω = 3 in (2.65), then the conjugacy
JE defined between (2.63) and (2.64) satisfies

sup
[0,qN∗+1]

| id − JE | ≤ c

(
const5(κ) + const6(κ) ln

1

α

)
· hp. (2.78)

Proof. Estimate (2.75) will be used with ω = 3. We apply the same type of manipulations as
in the proof of Theorem 2.6.3 to get

h

N∗∑

i=1

exp


2h

N∗∑

j=i+1

µj


 · q3i ≤ h

N∗∑

i=1

exp


2h

i∑

j=0

µN∗−j


 · q3N∗−i

h

b 1
hκ2 c∑

i=1

econst1(κ) · κ3 + h

N∗∑

i=b 1
hκ2 c+1

econst2(κ)+2 ln(h i) ·
(

2

h i

)3

≤

econst2(κ)


hκ3 1

hκ2
+ h

N∗∑

i=b 1
hκ2 c+1

h2i2
8

h3i3


 =

econst2(κ)


κ+

8

b 1
hκ2 c + 1

+ 8
N∗∑

i=b 1
hκ2 c+2

1

i


 ≤

econst2(κ)

(
κ+ 8hκ2 + 8

∫ 4
h
√

α

1
hκ2

1

x
dx

)
=

econst2(κ)

(
κ+ 8hκ2 + 8 ln 4 + 16 ln κ+ 4 ln

1

α

)
. �

Remark 2.6.4 Unfortunately, estimate (2.78) is singular as α→ 0+. Besides this, we can not
control the interval [0, qN∗ ] in the supremum, so it may shrink too much if N ∗ = Np as α→ 0+.

A positive result in the ω = 3 case we have is that on a special shrinking domain, namely on
a parabola-shaped domain in the (α, x)-plane, a better closeness result holds.
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Theorem 2.6.5 Suppose that κ has been defined as in Lemma 2.5.1. Suppose further, that

h0 ≤ min
(

1
3 ,

p

√
1

16ce2κ

)
and 0 < α0 ≤ κ2, with c > 0 being the same as in (2.65). If ω = 3 in

(2.65), then the conjugacy JE defined between (2.63) and (2.64) satisfies

sup
[0,

√
α/4]

| id− JE | ≤
(
4ce2α

)
hp.

Proof. Similarly to the cutting indices Nq, Np and N∗, let us define Nq(
√
α) to be the index

such that qNq(
√

α) ≤ √
α, but qNq(

√
α)+1 >

√
α. Let us denote by Np(

√
α) the corresponding

index for the sequence pn. Further, let N ∗(
√
α) := min(Nq(

√
α),Np(

√
α)). Then it is easy to

reconsider that all formulae (2.70)–(2.75) are still valid if N ∗ is replaced by this (not greater)
N∗(

√
α). So, as a starting point, we have

sup
[0,qN∗(

√
α)+1]

| id− JE | ≤ 2c · hp


h

N∗(
√

α)∑

i=1

exp


2h

N∗(
√

α)∑

j=i+1

µj


 · q3i


 .

But, by the definition of N ∗(
√
α), further using Lemma 2.5.6 to get N ∗(

√
α) ≤ 1

h
√

α
, we see that

h

N∗(
√

α)∑

i=1

exp


2h

N∗(
√

α)∑

j=i+1

µj


 · q3i ≤ h

N∗(
√

α)∑

i=1

exp


2h

N∗(
√

α)∑

j=2

√
α


 · √α 3 ≤

h e2
N∗(

√
α)∑

i=1

√
α

3 ≤ e2α

(
1

h
√
α

+ 1

)
h
√
α ≤ 2e2α.

Hence we know that
sup

[0,qN∗(
√

α)+1]
| id− JE | ≤ 4ce2α · hp. (2.79)

Now, similarly to the end of the proof of Theorem 2.6.3, we show that the domain of the
supremum contains [0,

√
α/4], uniformly in h ∈ (0, h0]. If N∗(

√
α) = Nq(

√
α), then by Lemma

2.5.4 with m = Nq(
√
α) we see that qm ≥

√
α

2 , while if N ∗(
√
α) = Np(

√
α), then by (2.79)

|qNp(
√

α) − pNp(
√

α)| = |qNp(
√

α) − JE(qNp(
√

α))| ≤ sup
[0,qN∗+1]

| id− JE | ≤ 4ce2α · hp
0 ≤

√
α

4
,

if, for example, h0 ≤ p

√
1

16ce2κ
. But again, by Lemma 2.5.4 with m = Np(

√
α), pm ≥

√
α

2 , so

qm ≥
√

α
4 . �

Remark 2.6.5 We have tacitly assumed (especially in Lemma 2.6.2) that N ∗ ≥ 1
hκ2 . However,

this is not a real restriction, since otherwise every estimate is ab ovo trivial—just as the proof
of (2.71) in Lemma 2.6.2—and we would have uniform boundedness in the Theorems.

2.7 Further results for the α > 0 case

2.7.1 The tangent estimate

Although the following nice proposition finally has not been used in the closeness estimates, we
still include it, because it reveals some information about the behaviour of the direct iteration pn,
and, together with the subsequent remarks, served as a motivation for the ”backward” approach.
(The number N , of course, is Np here.)
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Proposition 2.7.1 (The Tan-Estimate) Suppose that the conditions of Lemma 2.5.2 hold

and 0 < α0 ≤ κ. Then for 0 ≤ n < min
(
N, π

2h
√

2α
− 1
)

we have

pn ≤
√
α

2
tan(

√
2αhn).

Proof. We prove by induction on n. The case n = 0 is trivial. If n = 1, then

p1 ≡ hα ≤
√
α

2
tan(

√
2αh)

is equivalent to
√

2αh ≤ tan(
√

2αh), but this latter is true since x ≤ tanx (if, e.g., 0 ≤ x ≤ 1),

and
√

2αh ≤ √
2α0h0 ≤

√
2κh0 ≤

√
2 · 3

8 · 1
3 < 1.

So suppose the induction hypothesis is true for some n ≥ 1. Then

pn+1 ≤ hα+

√
α

2
tan(

√
2αhn) + 2h

(√
α

2
tan(

√
2αhn)

)2

holds, since pn+1 = Nη(h, pn, α) ≤ hα+pn + 2hp2
n, if, e.g., 0 ≤ pn ≤ κ ≤ 1

K (implied by n < N).
In order to finish the induction, it is sufficient to establish

hα+

√
α

2
tan(

√
2αhn) + 2h

(√
α

2
tan(

√
2αhn)

)2

≤
√
α

2
tan(

√
2αh(n+ 1)).

By using the abbreviation x :=
√

2αh, the inequality above can be rewritten as

x+ tan(nx) + x tan2(nx) ≤ tan((n + 1)x). (2.80)

Since n < π
2x − 1 by assumption, we know that

0 < tan((n+ 1)x) =
tanx+ tan(nx)

1 − tanx · tan(nx)
.

But due to 0 < x < 1 and n < π
2x , both tanx and tan(nx) are positive, so the denominator

above is also positive. Hence, instead of (2.80), it is enough to prove

(
x+ tan(nx) + x tan2(nx)

)
(1 − tan x · tan(nx)) − tan x− tan(nx) ≤ 0.

However, the left hand side can be factored to get

−
(
1 + tan2(nx)

)
(tanx− x+ x tan x · tan(nx)) ,

so it must be nonpositive, because tanx− x ≥ 0 and x, tan x, tan(nx) ≥ 0. �

Remark 2.7.1 The tangent estimate, i.e. the function t 7→
√

α
2 tan(

√
2αht), has been ob-

tained as the solution of the initial value problem Ẋ = hα + 2hX2, X(0) = 0. (Of course, the
multiplying constant 2 could be replaced by 1+ δ, for any positive δ, but the limit δ → 0+ is not
allowed.) This ordinary differential equation has been chosen because its stepsize-1 explicit Euler
discretization is just the sequence pn with a slightly modified definition pn+1 := hα+ pn + 2hp2

n.
Thus, we have proved in the Proposition above that for this particular equation the explicit
Euler discretization is a lower approximation to the true solution—although, of course, from
our viewpoint the roles are reversed: the known true solution is an upper estimate for the more
implicit sequence pn. The previous observation can be extended to a general class of ordinary
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differential equations: it can be shown that under a simple assumption on the sign of the right
hand side and its derivative of the ordinary differential equation, the explicit/implicit Euler dis-
cretization is a lower/upper approximation to the exact solution, provided that the discretization
stepsize is sufficiently small, see in [19]. This more general result however can not be directly
applied to prove Proposition 2.7.1, because here the stepsize is 1. A fundamental and very
interesting question would be to determine classes of equations where—or explain, in our case,
why—the discretization is such a surprisingly sharp estimate of the true solution even with so
large stepsizes.

Remark 2.7.2 The tangent estimate is ”nearly global”: it is a very good upper estimate of
pn as long as the tangent function is defined and not ”too large”. Of course, when the tangent
reaches its first singularity, it becomes a useless estimate of pn. This is exactly the main difficulty
with the ”direct” approach: estimating pn as n increases is hard in the region when the tangent
estimate is no longer valid but still pn < κ for some time.

Remark 2.7.3 We mention [33] as a peculiar result concerning the forward and backward
iterates of the sequence wn+1 = w2

n + 1
4 + α, w0 = 1

2 . These recursions appear several times in
the literature in connection with the phenomenon of intermittency, but probably this is the first
paper containing a proof of the following observation. If S(α) denotes the number of steps needed
for wn to reach, say, 1, then [33] shows that limα→0+

√
αS(α) = π

2 . The calculations in the proof
are elementary, but quite involved—the basic idea is to compare the difference equation with
the corresponding differential equation similar to the one mentioned in Remark 2.7.1 above, and
prove that the leading coefficients in the series expansion of their solutions satisfy the same type
of recursive relations. This asymptotic relation in the case of pn with η ≡ 0 in (2.53)—simply
being a shifted version of wn above—would mean that limα→0+ h

√
αN(h, α) = π

2 .

2.7.2 Numerical test results

The optimality of Theorems 2.6.3–2.6.5 above—under assumption (2.67)—will now be illustrated
by some numerical tests.

The following setting has been chosen: for n ∈ N+, let

qn+1 := hα+ qn + hq2n

denote the pure quadratic iteration with q0 := 0, while

pn+1 := hα+ pn + hp2
n +

1

2
hp+1pω

n

with p0 := 0 is a perturbed sequence. Choice of the cutting level κ := 3
8 conforms to the

requirements of Lemma 2.5.1.

What we measure in every case is the quantity

dist :=
|pN∗ − qN∗|

hp

under different choices of the exponents p ∈ N+ and ω ∈ {3, 4}, further, the parameters h and
α. The quantity dist · hp is clearly a numerical lower estimate of sup[0,qN∗+1] | id− JE |, see, e.g.,
at the end of the proof of Theorem 2.6.3.

For the sake of comparison, we will also indicate the value of N ∗. Since pn ≥ qn ≥ 0, we
have N∗ = Np.
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Due to its simplicity and elegance, we include the actual Mathematica 5 code devised to
perform the computations.

After fixing the values of p and ω, the following definition

perturbedsequence=Compile[{h,α},NestWhile[
{hα+#[[1]]+h#[[1]]2+1

2h
p+1#[[1]]ω,Last[#]+1}&,{0.,1},#[[1]]< 3

8&]]

will yield {pNp ,Np} in a list, while

quadraticsequence=Compile[{h,α,iternumber},Nest[
{hα+#[[1]]+h#[[1]]2,Last[#]+1}&,{0.,1},iternumber-1]]

will determine {qNp ,Np}, with iternumber:=Np. Now—with h1 and α1 representing con-
crete numerical quantities—evaluate the following three commands

perturbedsequence[h1,α1]

quadraticsequence[h1,α1,Last[%]]

Abs[First[%]-First[%%]]/hp
1

to obtain finally the value of ”dist”.

Remark 2.7.4 The code for perturbedsequence and quadraticsequence given above uses
machine precision numbers (see the Compile commands and the dots behind the 0’s), since
this substantially reduces the time needed to obtain ”dist” when α is very small. For large
and medium values of α, the moderate computing time made it possible to exploit Mathemat-
ica’s arbitrary precision arithmetic as well. At h = 10−1 and 10−2, we have experienced total
agreement between calculations based on machine precision and arbitrary precision—providing
a good reliability check. However, for h = 10−5, and p = 3, α = 10−3, for example, machine
precision turned out to be insufficient, so arbitrary precision has been applied, since in this case
|pN∗ − qN∗ | ≤ 1.5 · 10−16.

The actual output—together with a graphical representation some of the data—is listed
below. The arrangement of these tables is explained by the fact that in this way it is a bit easier
for the eye to compare pairs of α-exponents and recognize the logarithmic law.

ω = 3, p = 2, h = 10−1

α 10−1 10−2 10−4 10−8

dist 1.602 · 10−2 6.814 · 10−2 2.169 · 10−1 5.239 · 10−1

N∗ 29 134 1549 1.5706 · 105

α 10−3 10−6 10−9 10−12

dist 1.397 · 10−1 3.650 · 10−1 6.066 · 10−1 8.292 · 10−1

N∗ 474 15688 4.9671 · 105 1.5708 · 107

α 10−5 10−10

dist 3.061 · 10−1 6.835 · 10−1

N∗ 4947 1.5708 · 106
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α 10−7 10−14

dist 4.748 · 10−1 1.0096

N∗ 49655 1.5708 · 108

The relation between α and ”dist” is illustrated graphically by the following logarithmic plot: on
the horizontal axis, values of log10

(
1
α

)
are displayed against the values of ”dist” on the vertical

axis. For the sake of convenience, linear interpolation has been used between the discrete points.

2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1

Figure 2.7.1

ω = 3, p = 3, h = 10−1

α 10−1 10−2 10−4 10−8

dist 1.601 · 10−2 6.799 · 10−2 2.155 · 10−1 5.579 · 10−1

N∗ 29 134 1549 1.5706 · 105

α 10−3 10−6 10−9 10−12

dist 1.392 · 10−1 3.909 · 10−1 6.444 · 10−1 8.745 · 10−1

N∗ 474 15689 4.9671 · 105 1.5708 · 107

α 10−5 10−10

dist 3.036 · 10−1 7.243 · 10−1

N∗ 4947 1.5708 · 106

α 10−7 10−14

dist 4.690 · 10−1 1.060

N∗ 49655 1.5708 · 108

The corresponding graph is quite similar to the one above:
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Figure 2.7.2

ω = 3, p = 3, varying h

α 10−3

h 10−1 10−2 10−3 10−4 10−5

dist 1.392 · 10−1 1.399 · 10−1 1.403 · 10−1 1.402 · 10−1 1.402 · 10−1

N∗ 474 4705 47017 4.701 · 105 4.701 · 106

α 10−4

h 10−1 10−2 10−3 10−4

dist 2.155 · 10−1 2.189 · 10−1 2.199 · 10−1 2.198 · 10−1

N∗ 1549 15446 154419 1.5441 · 106

α 10−5

h 10−1 10−2 10−3 10−4

dist 3.036 · 10−1 3.017 · 10−1 3.006 · 10−1 3.006 · 10−1

N∗ 4947 49413 4.9407 · 106 4.9406 · 107

ω = 4, p = 2, h = 10−1

α 10−3 10−4 10−5 10−6 10−7

dist 2.145 · 10−2 2.412 · 10−2 2.619 · 10−2 2.708 · 10−2 2.681 · 10−2

N∗ 474 1549 4947 15689 49655

α 10−8 10−9 10−10 10−11 10−12

dist 2.731 · 10−2 2.753 · 10−2 2.734 · 10−2 2.746 · 10−2 2.662 · 10−2

N∗ 157063 496714 1.5708 · 106 4.9672 · 106 1.5708 · 107

The logarithmic plot this time is completely different:
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2.7.3 Conclusions of the numerical tests

Case ω = 3. From the linear graphs of Figure 2.7.1 and 2.7.2, it is seen that the quantity
”dist” grows like const · ln 1

α , as α → 0+. Since dist · hp is a numerical lower estimate of
sup[0,qN∗+1] | id − JE|, this numerical evidence—together with the right hand side of estimate

(2.78)—gives a convincing argument that if the crucial (but natural) assumption JE(0) := 0
is made, then the distance of the constructed conjugacy and the identity map indeed shows a
logarithmic singularity as α→ 0+.

Further, ”dist” seems to be more or less independent of p, as Figure 2.7.1 and 2.7.2 are
nearly the same, moreover, values of ”dist” show stabilization as h→ 0+ and α > 0 is fixed.

Case ω = 4. Numerical results together with Figure 2.7.3 clearly show uniform boundedness of
”dist”, which, of course, has been proved in Theorem 2.6.3.

In all cases, the values of N ∗ very closely follow the asymptotic formula N ∗ ≈ π
2h

√
α
≈ 1.5708

h
√

α

(α→ 0+) stated in Remark 2.7.3 in Section 2.7.1.

2.7.4 Open questions

1. Attempts to transform the normal forms further. It can be asked whether it is
possible to eliminate the cubic term in (2.63) (or in (2.64)). For simplicity, set η̂3 ≡ a ∈ R,
h = 1 and α = 0. Then we aim to find a near-identity transform trans : x 7→ x + bxν with
suitable b and ν such that it brings our mapping map : x 7→ x + x2 + ax3 into a mapping
with the cubic term eliminated. In other words, we would like to find b and ν such that
elimmap := trans [−1] ◦map ◦ trans contains no cubic terms.

The actual computations were performed again in Mathematica. If the value of ν is set, then
the following command computes the series expansion of elimmap about the origin up to order
10:

ComposeSeries[InverseSeries[x+bxν+O[x]10],x+x2+ax3+O[x]10,

x+bxν+O[x]10]//Simplify

Substituting different values of ν into the above expression, the following pattern emerges.
With 2 ≤ ν ∈ N set, it is possible to choose b (also depending on a) such that elimmap contains
no terms of order 2ν. This suggests trying Puiseaux-series instead of Taylor-series, however,
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ν = 3
2 leads to elimmap ≡ x+ x2 + 1

2bx
5/2 +

(
a+ b2

4

)
x3 + . . ., so an unwanted term of order 5

2

enters. It was also in vain to try trans ≡ x+ bxν + cxµ with various choices of ν and µ.

Therefore, we conclude that—at least with these type of transformations—it does not seem
to be possible to convert the general ω = 3 case into the ω = 4 case.

2. The other question is the continuity of the conjugacy mapping. In our construction, we
have assured that x 7→ J(h, x, α) is a homeomorphism, for every fixed h and α. Continuity
of h 7→ J(h, x, α) (0 < h ≤ h0) is also seen to hold. However, the map α 7→ J(h, x, α) does
not seem to be continuous at the critical bifurcation value α = 0 and x ≥ 0. The reason
for this discrepancy at α = 0, x ≥ 0 is that while in the fixed point-free α > 0 case the
conjugacy equation (2.66) extends J(h, ·, α) to the whole [−ε0, ε0] interval if it is defined on one
fundamental domain, in the case of α = 0—due to the presence of the fixed point at x = 0—two
fundamental domains are needed on each half-line. Regarding this continuity problem, among
others, see the next Section.

2.8 An improved approach in the α > 0 case: the grid construc-

tion

In this section we present a modified construction which will enable us to prove O(hp)-closeness
between the conjugacy and the identity on some set of grid points. For any h > 0 and α > 0
(0 < h ≤ h0, 0 < α ≤ α0), the conjugacy J(h, ·, α) will be defined on a domain containing the
interval [−κ, κ], where κ > 0 (the cutting level) is sufficiently small and independent of h and
α.

Let us define two sequences. For any h > 0 and α > 0 set

x0(h, α) := y0(h, α) := −κ,

and for n = 0, 1, 2, . . ., define

xn+1(h, α) := Nϕ(h, xn(h, α), α), yn+1(h, α) := NΦ(h, yn(h, α), α).

We can assume that both normal forms have bounded derivatives with respect to α also.
Then the functions α 7→ Nϕ(h, x, α) and α 7→ NΦ(h, x, α) are strictly monotone increasing for
small α > 0, |x| and h > 0, so there exist two sequences, αN (h) and βN (h) (N ∈ N+), converging
to 0+ as N → +∞ and h is fixed, such that

xN (h, αN (h)) = κ = yN(h, βN (h)),

see also Figure 2.6.2. Thus, for any h > 0, we have defined two sets of grid points

(αN (h), xn(h, αN (h))) and (βN (h), yn(h, βN (h))) (n ∈ {0, 1, . . . ,N},N ∈ N+).

Notice however that for any fixed positive integer N , αN (h) and βN (h) tend to infinity as
h → 0+, so in order to keep these grid points within (0, α0] × [−κ, κ], it is enough to consider
αN (h) and βN (h) only for N ≥ N0(h), with suitable positive integers N0(h).
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Some grid points, grid lines and domains of the α-grid

Now let us make a natural correspondence between these two sets of grid points. For any h >
0, define the conjugacy mapping on the ”α-grid points” for N ∈ N+,N ≥ N0(h), n = 0, 1, . . . ,N
as

J(h, xn(h, αN (h)), αN (h)) := yn(h, βN (h)).

Our aim is to show that corresponding grid points are O(hp)-close to each other, that is, it is
possible to eliminate the ln 1

α term from the closeness estimates on the grid points. This improve-
ment is made possible by imposing the above ”two-sided boundary condition” x0(αN ) = y0(βN )
and xN (αN ) = yN (βN ) on the defining sequences xn and yn. In other words, we will prove that
for each Nϕ-orbit we can find a uniformly close NΦ-orbit by ”synchronization” using a suitable
shift in the parameter α also. (We remark that an O(hp)-shift in α has already been introduced,
when the normal forms NΦ and Nϕ were derived via inverse and implicit function theorems.)
As opposed to this, the previous construction (2.67) with sequences pn and qn contained only a
”one-sided boundary condition” (the direct normal forms were iterated starting simultaneously
from 0 until the faster sequence reached level κ) with ”loose upper ends”, which—according
to our estimates and numerical test results—necessarily drew away logarithmically from each
other near κ. It turns out that if both sides of the sequences xn and yn are kept fixed, a sym-
metry argument becomes feasible, where direct iterates are considered from −κ to 0 upward,
but inverse ones from κ to 0 downward. Taking this approach balances out the absence of fixed
points. (We remark that construction of the conjugacy in the α ≤ 0 case can also be considered
as a construction with two-sided boundary condition: on one side we let the two orbits run from
the same starting point, while the presence of the fixed point forces an ”asymptotic boundary
condition” on the other side. In that situation the same α-value could be used.)

Since we will have to keep track of the positive constants appearing in the inequalities
carefully, let c > 0 again denote a particular, but henceforth fixed constant for which

|NΦ(h, x, α) −Nϕ(h, x, α)| ≤ c · hp+1|x|3 is uniformly true, further, as before, let K > 0 denote
a uniform bound on the derivatives of η̂3 and η̃3 near the origin, as in (2.53). Other positive
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constants will be denoted by indexed letters ci. A general positive constant is denoted by const.
All of these numbers are independent of the parameters h and α.

In order to keep notation simple, we fix some h > 0 and N ≥ N0(h) and write xn and yn

instead of xn(h, αN (h)) and yn(h, βN (h)). Then

yn+1 − xn+1 = NΦ(h, yn, β) −NΦ(h, xn, β)+ (2.81)

NΦ(h, xn, β) −NΦ(h, xn, α) + NΦ(h, xn, α) −Nϕ(h, xn, α) =

(yn − xn) · d

dx
NΦ(h, ξn, β) + (β − α) · d

dα
NΦ(h, xn, γ) + hx3

n(η̂3(h, xn, α) − η̃3(h, xn, α))

for any n = 0, 1, 2, . . . ,N − 1, with some ξn(h,N) ≡ ξn ∈ [{xn, yn}] and γ(h,N) ≡ γ ∈
[{αN , βN}]. Since d

dαNΦ(h, xn, γ) = h · (1 + x3
n · d

dα η̂3(h, xn, γ)) =: h · An(h,N), if we choose
κ > 0 so small, such that

κ ≤ min

(
1,

1

2K

)
,

then

h ·An ∈
(
h

2
, 2h

)
.

Further, if κ ≤ 1 and h0 ≤ 1
12K , then

d

dx
NΦ(h, ξn, β) ∈

(
1

2
, 2

)

uniformly.

Now we prove that the shift in the parameter α is again only O(hp), that is, corresponding
vertical grid lines are O(hp)-close to each other.

Lemma 2.8.1 For every N ∈ N+ and h ∈ (0, h0] we have that

|βN (h) − αN (h)| ≤ 2chp.

Proof. By inductively applying (2.81), our omnipresent discrete Gronwall estimate, now with
an extra term containing βN − αN ≡ β − α, reads as

yn − xn = (2.82)

n−1∑

i=0

[
h(β − α)Ai + hx3

i (η̂3(h, xi, α) − η̃3(h, xi, α))
] n−1∏

j=i+1

d

dx
NΦ(h, ξj , β)

for n = 1, 2, . . . ,N , where, as usual,
∏n−1

j=n(·) := 1. If we substitute n = N into (2.82) and use
that yN − xN = 0, we can express the desired quantity explicitly as

|β − α| =

∣∣∣∣∣−
∑N−1

i=0

[
hx3

i (η̂3(h, xi, α) − η̃3(h, xi, α))
]∏N−1

j=i+1
d
dxNΦ(h, ξj , β)

∑N−1
i=0 hAi

∏N−1
j=i+1

d
dxNΦ(h, ξj , β)

∣∣∣∣∣ ≤

hκ3 · chp
∑N−1

i=0

∏N−1
j=i+1

d
dxNΦ(h, ξj , β)

1
2h
∑N−1

i=0

∏N−1
j=i+1

d
dxNΦ(h, ξj , β)

≤ 2chp. �
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Second proof. We may assume that, say, β ≥ α. Suppose, to the contrary, that β −α ≥ 3chp.
Then, by using (2.81) and y0 − x0 = 0, we have inductively for n = 0, 1, . . . ,N − 1 that

yn+1 − xn+1 ≥ (yn − xn) · 1

2
+ 3chp · h

2
− hκ3chp ≥ 0 +

3

2
chp+1 − chp+1 ≥ 1

2
chp+1.

But then yN − xN ≥ 1
2ch

p+1 would contradict to the definition yN − xN = 0. (The case α ≥ β
is symmetric, because then α− β ≥ 3chp would lead to a contradiction 0 = xN − yN > 0.) �

Since we are going to utilize some estimates from previous sections, we now collect the
relevant results here. It is easy to see that if, for example, κ ≤ min(1, 1

2K ), h0 ≤ 1
2 and

1
h ≤ n ≤ N , then, by Lemma 2.4.3 we have for α > 0 and β > 0 that

− 2

hn
≤ xn(α), yn(β). (2.83)

(The estimate is a fortiori true in the present α > 0 and β > 0 case, since α 7→ Nϕ(h, x, α)
and α 7→ NΦ(h, x, α) are increasing functions, so iterates with α > 0 run upwards faster than
iterates at α = 0, if all are started from −κ.)

Let us denote by x̃n := xN−n (n = 0, 1, . . . ,N). The grid construction is quite convenient,
since now the inverse iteration is nothing else than a simple relabeling. The meaning of ỹn is
similar. If the conditions of Lemma 2.5.5 are satisfied (that is, if h0, α0 and κ are sufficiently
small), then there exists a constant c1 > 0 such that

x̃n(α), ỹn(β) ≤ 2

hn
(2.84)

whenever c1
h ≤ n ≤ N . (If N = const

h , then all the proofs below would become trivial.)

From these estimates (see Lemma 2.5.6 also) we get that there exist a constant c2 > 0 such
that

#{xn|xn ∈ [−κ, 0]} ≤ c2
h
√
α
,

#{x̃n|x̃n ∈ [0, κ]} ≤ c2
h
√
α
.

The same estimates hold for yn and ỹn, with α replaced by β on the right hand sides.

As a final preparation, we give counterparts of (2.81) and (2.82) for the inverses. From (2.81)
we express yn − xn (n = 0, 1, . . . ,N − 1) as

yn − xn = (yn+1 − xn+1) ·
(

d

dx
NΦ(h, ξn, β)

)−1

+ h(α− β)An ·
(

d

dx
NΦ(h, ξn, β)

)−1

−

hx3
n(η̂3(h, xn, α) − η̃3(h, xn, α)) ·

(
d

dx
NΦ(h, ξn, β)

)−1

.

Now for n = 0, 1, . . . ,N − 1 set ξ̃n := ξN−n, Ãn := AN−n and k := N − n − 1. Then the above
expression for k = 0, 1, . . . ,N − 1 is simply

ỹk+1 − x̃k+1 = (ỹk − x̃k) ·
(

d

dx
NΦ(h, ξ̃k+1, β)

)−1

+ h(α − β)Ãk+1 ·
(

d

dx
NΦ(h, ξ̃k+1, β)

)−1
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−hx̃k+1
3
(η̂3(h, x̃k+1, α) − η̃3(h, x̃k+1, α)) ·

(
d

dx
NΦ(h, ξ̃k+1, β)

)−1

. (2.85)

From this we get the following formula for k = 1, 2, . . . ,N .

ỹk − x̃k = (2.86)

k∑

i=1

[
h(α − β)Ãi − hx̃i

3(η̂3(h, x̃i, α) − η̃3(h, x̃i, α))
] k∏

j=i

(
d

dx
NΦ(h, ξ̃j , β)

)−1

.

Now we have come to the main point of the present section and are able to prove that
xn and yn are uniformly close to each other.

Lemma 2.8.2 Suppose that h0, α0 and κ are sufficiently small. Then there exists a constant
c3 > 0 such that for every h ∈ (0, h0], N ≥ N0(h) and n = 0, 1, . . . ,N we have that

|xn(h, αN ) − yn(h, βN )| ≤ c3h
p.

Proof. We will present the detailed proof assuming that β ≥ α.
Claim 1. First we show the following. There exists a constant c4 > 0 such that if β − α >

c4h
p√α, then yn (n = 0, 1, . . ., travelling upwards) leaves the interval [−κ, 0] sooner (at 0 from

below) than xn, and ỹn (n = 0, 1, . . ., running downwards) exits the interval [0, κ] sooner (at 0
from above) than x̃n. This clearly contradicts to the grid construction.

Claim 2. So we may assume that 0 ≤ β − α ≤ c4h
p√α. Then we directly prove that there

exists a constant c3 > 0 such that |xn − yn| ≤ c3h
p.

In Claim 1 we will argue along the lines of the ”second proof” of Lemma 2.8.1, while in
Claim 2 we use the expressions from ”first proof” of Lemma 2.8.1 and the fact that the number
of xn iterates in [−κ, κ] is at most c2

h
√

α
.

In the converse situation, that is, if α ≥ β, the proof above carries through if we make the
following modifications.

1′. One can prove that there exists a constant c4 > 0 such that if α− β > c4h
p
√
β, then xn

leaves the interval [−κ, 0] sooner than yn and x̃n leaves the interval [0, κ] sooner than ỹn—again,
a contradiction. In the proof, (2.81) should be replaced by the analogous formula

xn+1 − yn+1 =

(xn − yn) · d

dx
Nϕ(h, ξn, α) + (α− β) · d

dα
Nϕ(h, yn, γ) + hy3

n(η̃3(h, yn, β) − η̂3(h, yn, β)).

2′. When 0 ≤ α− β ≤ c4h
p
√
β, one uses the analogue of (2.82), now reading as

xn − yn =

n−1∑

i=0

[
h(α − β)Ai + hy3

i (η̃3(h, yi, β) − η̂3(h, yi, β))
] n−1∏

j=i+1

d

dx
Nϕ(h, ξj , α),

and the fact that the number of yn iterates in [−κ, κ] is at most c2
h
√

β
to prove |xn − yn| ≤ c3h

p.

Now let us turn to the actual proof of Claim 1. Our first aim is to prove that the quantity
yn − xn is strictly positive when the faster sequence reaches 0 from below. Hence we study the
behaviour of the function n 7→ yn − xn and perform a ”worst case” analysis.
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Step 1. We choose a number c40 ≥ 1 for a start and suppose that β −α > c40h
p√α. Later, we

will set c40 ≥ 1 sufficiently large. Define c41 := 3
√

c40
2c and c42 := 3

√
1
2c . It is readily seen that if

xn ∈ [−c41 6
√
α, 0], then

(β − α) · d

dα
NΦ(h, xn, γ) + hx3

n(η̂3(h, xn, α) − η̃3(h, xn, α)) ≥

c40h
p√αh

2
− h|xn|3chp ≥ 0.

Hence if xn ∈ [−κ, 0], then (β − α)hAn + hx3
n(η̂3 − η̃3) can only be negative when xn ∈

[−κ,−c41 6
√
α]. (This interval is nondegenerate, if α ≤ α0 is small enough.) But [−κ,−c41 6

√
α] ⊂

[−κ,−c42 6
√
α], because of the choice of c40.

Step 2. It is elementary to see that if max(xn, yn) ≤ 0, then ξn ≤ 0, so if κ is small enough, then
d
dxNΦ(h, ξn, β) ∈

(
1
2 , 1
]
. Let us denote by I1 the index set {n ∈ N : xn ∈ [−κ,−c41 6

√
α] and yn ≤

0}, while set I2 := {n ∈ N : xn ∈ [−κ,−c42 6
√
α] and yn ≤ 0}. Then I1 ⊂ I2, and—due to

monotonicity of xn and yn—both are intervals in N. For n ∈ I2 we have by (2.81) that

yn+1 − xn+1 ≥ −|yn − xn| ·
d

dx
NΦ(h, ξn, β) + (β − α)hAn + hx3

n(η̂3 − η̃3) ≥

−|yn − xn| · 1 + 0 − h|xn|3chp = −|yn − xn| − chp+1|xn|3,
Step 3. Now we can easily prove by induction that for 1 ≤ n ∈ I2

yn+1 − xn+1 ≥ −
n∑

k=0

chp+1|xk|3.

This implies that the minimal value of the function n 7→ yn − xn on n ∈ I1 for any c40 ≥ 1
can not be less than −∑n∈I2

chp+1|xn|3. We now show that there exists a constant c5 > 0

such that −∑n∈I2
chp+1|xn|3 ≥ −c5hp. To this end, define c51 := 2

hc42 6
√

α
. Suppose α has been

chosen so small such that c42 6
√
α ≤ 2, then c51 ≥ 1

h . So by (2.83) we have for n > c51 that
xn ≥ − 2

hn > −c42 6
√
α, thus n /∈ I2. In other words, n ∈ I2 implies n ≤ c51. Then, using that

κ ≤ 1,

∑

n∈I2

chp+1|xn|3 ≤
bc51c∑

n=0

chp+1|xn|3 ≤
d1/he∑

n=0

chp+1κ3 +

bc51c∑

n=d1/he
chp+1

(
2

hn

)3

≤

chp+1

(
1

h
+ 2

)
+ chp+1

∫ c51

1/h

8

h3n3
dn = chp(1 + 2h) + chp · 4 − chpc242

3
√
α,

so 5 + 2h0 is an appropriate choice for c5.
Step 4. At this point we know that for any c40 ≥ 1 and n ∈ I1 we have yn − xn ≥ −c5hp.
Let us increase n further and consider the ”complementary” index set I3 := {n ∈ N : xn ∈
[−c41 6

√
α, 0] and yn ≤ 0}. Due to (2.81), Step 1 and estimate − d

dxNΦ(h, ξn, β) ≥ −1, we see
that if yn − xn ≤ 0 for some n ∈ I3, then yn − xn ≤ yn+1 − xn+1. Also notice that if yn − xn

is positive for some n = n0 ∈ I3, then yn − xn remains positive for all I3 3 n > n0 and we are
ready, because then yn leaves the interval [−κ, 0] first.

Now set I4 := {n ∈ N : xn ∈ [−√
α,−1

2

√
α]}. We show that #I4 >

1
10h

√
α

. First we verify

that if h0, α0 and κ are small enough, then there exists an xn ∈ [−√
α,−3

4

√
α]. Indeed, at

least one member of the x-sequence must lie in an interval [− 2`+1√
α,− 2

√̀
α] for some ` ∈ N+.

(For example, if α < κ < 1, then ` = b− log2
lnκ
lnαc is appropriate.) Then we start a ”backward
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induction” on `. Suppose that xn ∈ [− 2k+1√
α,− 2k√

α] for some 1 ≤ k ≤ ` and n ∈ N. Then
h ≤ 1

10 implies that

xn+1 = Nϕ(h, xn, α) ≤ hα+ xn +
3

2
x2

n ≤ hα− 2k√
α+

3

2
h 2k√

α ≤ −3

4
2k√
α.

Thus, when xn leaves interval [− 2k+1√
α,− 2k√

α] (sooner or later it has to), it can jump only into
[− 2k√

α,− 3
4

2k√
α]. But this latter interval is contained for all 1 ≤ k ≤ ` in [− 2k√

α,− 2k−1√
α], for

example, if κ ≤ 3
4 , so the induction can be continued. Finally, we get some xn ∈ [−√

α,− 3
4

√
α].

Now with this xn in hand, we can estimate from below the number of elements of I4. Since the
x-sequence in [−√

α,− 1
2

√
α] travels through a line segment of length at least

√
α/4, and the

increment in each step is at most hα+ 3
2h(

√
α)2 = 5

2hα, we get that #I4 >
√

α/4
5hα/2 = 1

10h
√

α
. (The

existence of an xn ∈ [−√
α,−3

4

√
α] excludes the possibility of the numerator being too small.)

Step 5. Now if n ∈ I4 and α is chosen such that α ≤ 1
4c , then (due to c40 ≥ 1)

(β − α) · d

dα
NΦ(h, xn, γ) + hx3

n(η̂3(h, xn, α) − η̃3(h, xn, α)) ≥ c40
4
hp+1√α.

Let n1 := min I4 and n2 := max I4. If yn2 − xn2 > 0 or yn2 > 0, then we are ready by the first
part of Step 4. Otherwise, if yn2 − xn2 ≤ 0 and yn2 ≤ 0, then yn1+n − xn1+n ≤ 0 and yn1+n ≤ 0
for all n ∈ N satisfying n1 + n ≤ n2. Then (using − d

dxNΦ(h, ξn, β) ≥ −1 again) we can easily
verify by induction on n that

yn1+n − xn1+n ≥ −c5hp + n
c40
4
hp+1√α.

This means that if yn2 − xn2 ≤ 0 and yn2 ≤ 0, then

yn2 − xn2 ≥ −c5hp + (n2 − n1)
c40
4
hp+1√α.

But in the second part of Step 4 we have shown that n2−n1 ≥ 1
10h

√
α

(since I4 is also an interval

in N). If we now choose c40 := 40c5 + 1, then it is easy to see that yn2 − xn2 > 0, contradicting
to our last assumption yn2 − xn2 ≤ 0. We have thus proved that if c40 is large enough and
β − α ≥ c40h

p√α, then, in any case, yn leaves the interval [−κ, 0] sooner than xn.

We can argue similarly to prove that there exists a constant c̃40 > 0, such that if β − α ≥
c̃40h

p√α, then ỹk (k = 0, 1, . . .) exits the interval [0, κ] sooner at 0 from above than x̃k. (Of
course, we prove that the maximal value of the function k 7→ ỹk+1 − x̃k+1 is at most c̃5h

p, but
this ”advantage” of x̃k over ỹk gradually decreases as x̃k runs through [ 1

2

√
α,

√
α] and finally, ỹk

”takes the lead” anyway and reaches 0 first. We apply (2.85) instead of (2.81), and (2.84) instead

of (2.83). In estimating (2.85),
(

d
dxNΦ(h, ξ̃k+1, β)

)−1
is estimated from above by 1 (provided

that min(x̃k, ỹk) ≥ 0) at its first appearance in (2.85), while it is simply merged into Ãk+1 and c
as an absolute constant at its second and third appearance.) Setting c4 := max(c40, c̃40) proves
Claim 1.

As for the proof of Claim 2, we suppose that 0 ≤ β−α ≤ c4h
p√α and set Mn := max(xn, yn)

and mn := min(xn, yn).

Step I. Let us consider first those n = 1, 2, . . . indices for which Mn ≤ 0. As we have seen in Step
2, the derivatives in this case in (2.82) can not exceed 1, and we also know that n ≤ N ≤ c2

h
√

α
.

Then

|yn − xn| ≤
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n−1∑

i=0

(
c4h

p√α · 2h + h|xi|3 · chp
) n−1∏

j=i+1

1 ≤ 2c2c4h
p + chp

n−1∑

i=0

h|xi|3.

But, as in Step 3, for example, we can estimate the last sum from above by an absolute positive
constant. We have thus proved that, for some c31 > 0, |yn − xn| ≤ c31h

p whenever Mn ≤ 0.

Step II. Similarly, since ”tilde counterparts” of formulae in Step I are completely analogous,
we get the existence of a constant c32 > 0 such that |yn − xn| ≤ c32h

p if mn ≥ 0. (Applying a
”tildeless” notation now suits better the next step.)

Step III. We are left with estimating |yn − xn| during the transition of the sequences from
the negative side to the positive one, that is, if the index n satisfies mn ≤ 0 ≤ Mn. Set
c33 := max(c31, c32) and define the following partitioning intervals P1 := [−κ,−2c33h

p], P2 :=

(−2c33h
p,−c33hp], P3 := (−c33hp, 0], P̃3 := (0, c33h

p], P̃2 := (c33h
p, 2c33h

p] and P̃1 := (2c33h
p, κ].

Let us consider the final index in Step I, that is the maximal nI such that MnI
≤ 0. There

are two possibilities:

Case a) MnI
∈ P1 ∪ P2

Case b) MnI
∈ P3. (Of course, by Step I, mnI

∈ P2 ∪ P3 then.)

Let us clarify Case a) first. Due to the maximality of nI , MnI+1 must lie in (0, κ]. So we have to
check that Mn and mn will be close to each other also for n ∈ I5 := {k ∈ N : k ≥ nI +1, mk < 0}.
The idea is simple: because Mn had at least one ”big” jump (from P1 ∪ P2 into (0, κ]), and α
and β are close to each other, then mn, too, should move quickly, implying that #I5 ≤ c60, with
some c60 > 0 being independent of the parameters h, α and β. With such an estimate of #I5, we
see that it is enough to apply (2.81) only finitely many times (independently of the parameters)
to link Step I and Step II together, meaning that |yn −xn| ≤ c34h

p holds in the transition phase
mn ≤ 0 ≤Mn with a suitable constant c34 > 0.

Now let us construct such a constant c60 to finish the proof of Case a). We know that MnI
≤

−c33hp and MnI+1 > 0. We may assume, say, that parameter α corresponds to the sequence Mn

at its jump point. Then from the normal form we see that 0 < MnI+1 ≤ hα+ 1
2MnI

= hα− 1
2 |MnI

|
(if κ, hence |MnI

| is small enough), meaning that 1
2h |MnI

| ≤ α. But then by Lemma 2.8.1,
β ≥ 1

4h |MnI
|, if 1

8ch |MnI
| ≥ hp, which—on account of condition |MnI

| ≥ c33h
p—is true if

0 < h ≤ c33
8c .

Step I implies that mnI
≥ MnI

− c31h
p ≥ MnI

− c33h
p ≥ 2MnI

. On the other hand, if κ is
small enough then the sum of the quadratic and cubic terms in the normal form is nonnegative,
so

mnI+1 ≥ h min(α, β) +mnI
+ 0 ≥ h · |MnI

| 1

4h
+mnI

.

Applying this recursively, we get that mnI+` ≥ `
4 |MnI

| + mnI
. Combining estimates in this

paragraph we see that mnI+` ≥ `
4 |MnI

| − 2|MnI
|. The right hand side is positive if ` ≥ 8, hence

#I5 ≤ 8.

Now let us turn to Case b). There are three disjoint subcases here for n > nI .

Case b1) Mn is staying within P̃3 ∪ P̃2 until mn first becomes positive. Then we are ready,
since for these n indices |yn − xn| = Mn −mn ≤ (2 + 2)c33h

p, and we are back in Step II.

Case b2) Mn has already left P̃3 ∪ P̃2 before mn enters (0, κ], and mn enters (0, κ] at P̃3. We
can immediately rule out this dangerous possibility, because it would contradict to Step II.

Case b3) Mn has already left P̃3 ∪ P̃2 before mn enters (0, κ], but mn jumps from [−κ, 0]

into P̃2 ∪ P̃1. Then we have to verify that Mn and mn stayed close to each other also ”in the
past”, that is, for n ∈ I6 := {k ∈ N : Mk ∈ (0, κ], mk ∈ P2 ∪ P3}. Just as in Case a), Case b3)
is finished if we establish #I6 ≤ c61, with a suitable absolute constant c61 > 0.
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We can reason similarly as in Case a). Let nII denote the starting index in Step II, that
is the one for which mnII

≤ 0, but mnII+1 > 0. We may assume, say, that now parameter
β corresponds to the sequence mn at nII . What Case b3) means is that c33h

p < mnII+1 ≤
hβ + mnII

− 1
2mnII

≤ hβ, where in the ≤-estimates we have used that the absolute value of
the sum of quadratic and cubic terms in the actual normal form is at most 1

2 |mnII
| (if κ is

small enough), further, that mnII
is nonpositive. But then β ≥ c33h

p−1, and due to Lemma
2.8.1, α ≥ 1

2c33h
p−1, if h is chosen from (0, c33

4c ). So both parameters are again large enough:
min(α, β) ≥ 1

2c33h
p−1. This means that mn could not stay too long in P2∪P3. Indeed, similarly

to Case a) we see from the normal form that mk+1 ≥ h· 12c33hp−1+mk+0, so mk+` ≥ `
2c33h

p+mk.

Thus, if mk ≤ −2c33h
p for some index k, and `

2 > 2, then mk+` > 0, yielding #I6 ≤ 5 and also
completing the proof. �

Remark 2.8.1 First we were able to prove Claim 2, that is, closeness of the grid points under
an additional hypothesis β − α ≤ c4h

p√α. (This choice was motivated by the fact that the
number of iterates in [−κ, κ] is at most c2

h
√

α
.) It turned out only later—as the proof of Claim

1 evolved—that β − α ≥ c4h
p√α actually can not hold within the grid structure. This fact is

worth highlighting separately, since it strengthens the result of Lemma 2.8.1.

Corollary 2.8.3 Suppose that h0, α0 and κ are sufficiently small. Then there exists a constant
c4 > 0 such that for every N ≥ N0(h) we have that

|βN (h) − αN (h)| ≤ c4 max
(√

αN (h),
√
βN (h)

)
hp. �

2.8.1 Continuity at α = 0 along the grid sequence

In the previous section we have proved optimal O(hp) closeness estimates on the points of the
”α-grid”. In this section, we extend the definition of the conjugacy from this ”skeleton” to the
vertical α-grid lines and address the problem of continuity of the conjugacy at α = 0+, x > 0.
Finally, the conjugacy is extended further for all 0 ≤ |α| ≤ α0, |x| ≤ κ, and O(h) closeness
estimates are proved.

We assume in the following that h > 0 is fixed and use the notation of the previous
section. The letter N will denote either of the normal forms Nϕ or NΦ. For the rest of
the section, fix, say, N := Nϕ. For simplicity, the dependence on h is suppressed, thus

N (x, α) := N (h, x, α). For k ∈ Z, set N [k](x, α) := (N (h, ·, α))[k] (x). The dependence of the
sequence xk(α) := N [k](x0, α) (α ≥ 0, k ∈ N) on h is also suppressed. We set x0 ≡ x0(α) := −κ
and x̃0 ≡ x̃0(α) := κ for any α ≥ 0. Of course, x̃k(α) := N [−k](x̃0, α) (α ≥ 0, k ∈ N). The
abbreviation N ′(x, α) := (N (·, α))′ (x) is also used. We will frequently use that αN → 0+ is
equivalent to saying that N → ∞.

Since the key theme of this section is the preservation of ratios inside iterates of the funda-
mental domains, let us define for x ∈ [x0(α), x1(α)], α ≥ 0 and k ∈ N the quotients

Qk(x, α) :=
uk(x, α) − xk(α)

xk+1(α) − xk(α)
:=

N [k](x, α) −N [k](x0, α)

N [k+1](x0, α) −N [k](x0, α)
.

It turns out that these fundamental objects will have nice properties: as we know the length
of intervals [xk(αN ), xk+1(αN )] (k = 0, 1, . . . ,N − 1) exhibits unimodality (i.e. the length first
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decreases, then increases as xk passes through 0), however, the ratio in Qk is monotone in k.

Obviously, Qk(x0, α) = 0 and Qk(x1(α), α) = 1, further—since N is strictly increasing,
strictly convex and continuous—so is Qk(·, α) (α ≥ 0, k ∈ N) on [x0(α), x1(α)]. Monotonicity
and convexity of the normal form N allow us to prove the following interesting lemma concerning
the α = 0 case.

Lemma 2.8.4 For any x ∈ [x0(0), x1(0)] the limit

Q∞(x) := lim
k→∞

Qk(x, 0) ≡ lim
k→∞

N [k](x, 0) − xk(0)

xk+1(0) − xk(0)

exists and finite, further Q∞ : [x0(0), x1(0)] → [0, 1] is an increasing homeomorphism.
Similarly, for x̃ ∈ [x̃1(0), x̃0(0)] the map

Q−∞(x̃) := lim
k→∞

N [−k](x̃, 0) − x̃k+1(0)

x̃k(0) − x̃k+1(0)

is well defined, and Q−∞ : [x̃1(0), x̃0(0)] → [0, 1] is also an increasing homeomorphism.

Proof. For simplicity, throughout the proof we write xk instead of xk(0). Fix any x ∈ [x0, x1].
For any k ∈ N+, the mean value theorem implies that

Qk(x, 0) =
N ′(χk−1(x), 0)

N ′(ξk−1, 0)
Qk−1(x, 0),

or, recursively, that

Qk(x, 0) =
x− x0

x1 − x0

k−1∏

i=0

N ′(χi(x), 0)

N ′(ξi, 0)
, (2.87)

with some suitable χi(x) ∈ [xi,N [i](x, 0)] ⊂ [xi, xi+1] and ξi ∈ [xi, xi+1] for i = 0, 1, . . . , k − 1.
Since N (·, 0) is convex, it is easily seen that

xi ≤ χi(x) ≤ ξi ≤ xi+1 < 0

for x ∈ [x0, x1]. But N ′(·, 0) is increasing and positive, so 0 < N ′(χi(x),0)
N ′(ξi,0)

≤ 1. This implies

that for any x ∈ [x0, x1], the function k 7→ Qk(x, 0) ∈ [0, 1] is monotone decreasing, hence
Q∞(x) ∈ [0, 1] exists. Obviously, Q∞(x0) = 0 and Q∞(x1) = 1.

Now it is time for some estimates. First we rewrite (2.87) as

Qk(x, 0) =
x− x0

x1 − x0
exp

(
k−1∑

i=0

ln
(
N ′(χi(x), 0)

)
− ln

(
N ′(ξi, 0)

)
)
.

Using the boundedness of the η term and its x-derivative in the normal form N , further inequality
t− t2 ≤ ln(1 + t) ≤ t (e.g. for t ∈ [− 1

2 ,
1
2 ]), we can estimate the sum in the exponent from above

by
k−1∑

i=0

(
2h(χi(x) − ξi) + h · O(χ2

i (x), ξ2
i )
)
.

A similar lower estimate for the exponent also holds. As we know, Lemma 2.4.3 in the α = 0
case shows that h

∑∞
i=0 x

2
i < ∞ (uniformly in h). But ξ2

i ≤ χ2
i (x) ≤ x2

i and χi(x) − ξi ≤ 0,
further—by the definition of N—we have |χi(x) − ξi| ≤ |xi+1 − xi| = h · O(x2

i ), hence

k−1∑

i=0

∣∣ln
(
N ′(χi(·), 0)

)
− ln

(
N ′(ξi, 0)

)∣∣



68 CHAPTER 2. THE FOLD BIFURCATION

is uniformly bounded on [x0, x1] and also in k and h. This tells us that there exists a constant
c1 > 0 such that for each k ∈ N

c1 ·
x− x0

x1 − x0
≤ Qk(x, 0) ≤ x− x0

x1 − x0
. (2.88)

On the other hand, uniform boundedness of the exponent also implies that

∞∑

i=0

ln

(N ′(χi(·), 0)

N ′(ξi, 0)

)

converges uniformly on [x0, x1]. This—taking into account the continuity of each term of the
series—proves that the limit function, Q∞(·) is also continuous.

Since Qk(·, 0) is strictly increasing, we have for any x0 ≤ x < y ≤ x1 that Q∞(x) ≤ Q∞(y).
Suppose to the contrary that for some x0 < x < y ≤ x1 we have Q∞(x) = Q∞(y). (The case
x = x0—which would otherwise hinder the proof, since the statement is false in that case—is
excluded by (2.88)). Then clearly Q∞(·) ≡ c2 > 0 holds on [x, y] with some constant c2. But
for fixed x the convergence of Qk(x, 0) in k is monotone decreasing, so Qk(x, 0) ≥ Q∞(x). We
also know that for each ε > 0 there exists a k ∈ N+ such that sup[x,y] |Qk(·, 0) − Q∞(·)| ≤ ε,
that is c2 ≤ Qk(·, 0) ≤ c2 + ε on [x, y]. Since Qk(·, 0) is strictly convex, its graph lies above its

tangent line at x. But the slope of this line is at most (c2+ε)−c2
y−x , so for ε > 0 sufficiently small

the tangent is nearly horizontal, hence Qk(x0) = 0 can not hold. This contradiction proves that
Q∞(·) is strictly increasing.

The proofs for Q−∞ are similar. �

The next lemma shows boundedness of the derivative of some high iterates of the normal
form on the first fundamental domain.

Lemma 2.8.5 ∣∣∣∣
(
N [N−1]

)′
(x, αN )

∣∣∣∣

is uniformly bounded in x ∈ [x0(αN ), x1(αN )], h > 0 and N ∈ N+.

Proof. On the one hand, by using our earlier definition uk(x, α) := N [k](x, α) and the chain
rule, we get for any x ∈ [x0(αN ), x1(αN )] and N ∈ N+ that

(
N [N−1]

)′
(x, αN ) =

N−2∏

k=0

N ′(uk(x, αN ), αN ).

Clearly, uk(x, αN ) ∈ [xk(αN ), xk+1(αN )]. On the other hand, by iterated application of the
mean value theorem we have that

xN (αN ) − xN−1(αN ) = (x1(αN ) − x0)
N−2∏

k=0

N ′(ξk(αN ), αN ),

with some ξk(αN ) ∈ [xk(αN ), xk+1(αN )]. But N ′(·, αN ) is monotone increasing and positive, so

N−2∏

k=0

N ′(uk(x, αN ), αN ) ≤
(

N−2∏

k=1

N ′(ξk(αN ), αN )

)
· N ′(uN−2(x, αN ), αN ).

Combining these we have that

(
N [N−1]

)′
(x, αN ) ≤ xN (αN ) − xN−1(αN )

x1(αN ) − x0
· N

′(uN−2(x, αN ), αN )

N ′(ξ0(αN ), αN )
≤
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κ− x̃1(αN )

x1(αN ) − (−κ)
· N ′(κ, αN )

N ′(−κ, αN )
,

since xN (αN ) = κ and x0 = −κ. But we know that 1
2 ≤ |N ′(−κ, αN )| ≤ |N ′(κ, αN )| ≤ 2, if h

is small enough, further, that c1h ≤ κ − x̃1(αN ) ≤ c2h and c1h ≤ x1(αN ) − (−κ) ≤ c2h, with
some c1 > 0 and c2 > 0 being independent of N . �

Remark 2.8.2 We remark that by using the same argument, one can show for α > 0 that
∑

k∈N : xk∈[−κ,κ]

h · xk(h, α)

is also bounded, uniformly in h > 0 and α > 0, while

∑

k∈N : xk∈[0,κ]

h · xk(h, α) = O
(

1

α

)
.

Now we have come to the main technical lemma of this section.

Lemma 2.8.6 For each x ∈ [x0(0), x1(0)] ⊂ [x0(α), x1(α)] (α > 0) there exists an x∗ ∈
[x̃1(0), x̃0(0)] ⊂ [x̃1(α), x̃0(α)] such that

lim
N→∞

N [N−1](x, αN ) = x∗.

Moreover, x∗ = Q
[−1]
−∞(Q∞(x)), so the mapping x 7→ x∗ is an increasing homeomorphism.

Proof. Let us fix x ∈ [x0(0), x1(0)] arbitrarily. We will show that N [N−1](x, αN ) is a Cauchy-
sequence as N → ∞, and once we know it converges, a ”diagonal argument” will prove that

x∗ = Q
[−1]
−∞(Q∞(x)). Lemma 2.8.4 then yields that x 7→ x∗ is an increasing homeomorphism.

Notice first, that the statement of the present lemma is true for x = x0, when x∗ = x̃1(0),
since N [N−1](x0, αN ) = N [−1](κ, αN ) and N [−1](κ, ·) is continuous. So we suppose that x ∈
(x0(0), x1(0)]—this will exclude a ”division by zero” later.

Step 1. The central idea of the proof is to analyze the behaviour of N [N−1](x, αN ) in terms
of some Qk(x, αN ) with k chosen suitably. So let us fix a small ε > 0, choose some small
α(ε) > 0 and consider only those N indices for which 0 < αN ≤ α(ε). We also fix some large
index L(ε) ∈ N, such that 0 < L(ε) < N − L(ε) < N . It is vital that L(ε) is independent of N .
During the proof we will choose α(ε) > 0 sufficiently small and L(ε) sufficiently large (in fact,
L(ε) → ∞ as ε→ 0+, however, if ε is fixed, then L(ε) is fixed, too).

Now let us consider the following identity:

QN−L(ε)(x, αN ) =
QN−L(ε)(x, αN )

QL(ε)(x, αN )
·
QL(ε)(x, αN )

QL(ε)(x, 0)
·
QL(ε)(x, 0)

Q∞(x)
·Q∞(x).

The denominators are separated from 0 (since x ∈ (x0(0), x1(0)] is fixed). But if α(ε) is small
enough, then for all αN ≤ α(ε) we have that

QL(ε)(x, αN )

QL(ε)(x, 0)
∈ [1 − ε, 1 + ε],

because N [L(ε)](x, ·) is continuous, since L(ε) is fixed. Similarly, by the definition of Q∞,

QL(ε)(x, 0)

Q∞(x)
∈ [1 − ε, 1 + ε]
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if L(ε) is large enough. For any γ > 0 and I := [a, b] (a, b > 0), let γI represent the interval
[γa, γb]. Then, with a suitable function τ1(ε) (with τ1(ε) → 0+ as ε → 0+) we get for all
αN ≤ α(ε) that

QN−L(ε)(x, αN ) ∈
QN−L(ε)(x, αN )

QL(ε)(x, αN )
·Q∞(x) · [1 − τ1(ε), 1 + τ1(ε)]. (2.89)

Now let us turn to the remaining fraction on the right-hand side of (2.89). A small rear-
rangement in the definition of Qk(x, αN ) yields that

QN−L(ε)(x, αN )

QL(ε)(x, αN )
=

uN−L(ε)(x,αN )−xN−L(ε)(αN )

uL(ε)(x,αN )−xL(ε)(αN )

xN−L(ε)+1(αN )−xN−L(ε)(αN )

xL(ε)+1(αN )−xL(ε)(αN )

= . . .

where, we recall that uk(x, αN ) := N [k](x, αN ) ∈ [xk(αN ), xk+1(αN )]. The next step, of course,
is to appeal to the mean value theorem several times to obtain that

. . . =

x−x0
x−x0

·
∏N−L(ε)−1

k=0 N ′(χk(x,αN ),αN )
∏L(ε)−1

k=0 N ′(χk(x,αN ),αN )

x1(αN )−x0

x1(αN )−x0
·
∏N−L(ε)−1

k=0 N ′(ξk(αN ),αN )
∏L(ε)−1

k=0 N ′(ξk(αN ),αN )

= . . .

where—due to convexity—we have xk(αN ) ≤ χk(x, αN ) ≤ ξk(αN ) ≤ xk+1(αN ) with suitable
χk(x, αN ) and ξk(αN ). Then

. . . =

N−L(ε)−1∏

k=L(ε)

N ′(χk(x, αN ), αN )

N ′(ξk(αN ), αN )
.

But xk(αN ) ≤ χk(x, αN ) ≤ ξk(αN ) ≤ xk+1(αN ) ≤ χk+1(x, αN ), and 0 < N ′(·, αN ) is monotone
increasing, so

N ′(xL(ε)(αN ), αN )

N ′(xN−L(ε)(αN ), αN )
≤

N ′(χL(ε)(x, αN ), αN )

N ′(ξN−L(ε)−1(αN ), αN )
≤

N−L(ε)−1∏

k=L(ε)

N ′(χk(x, αN ), αN )

N ′(ξk(αN ), αN )
≤ 1.

Since for fixed L(ε) both functions N [L(ε)](x0, ·) and N [−L(ε)](κ, ·) are continuous, we have
that xL(ε)(αN ) → xL(ε)(0) and xN−L(ε)(αN ) = N [−L(ε)](xN (αN ), αN ) = N [−L(ε)](κ, αN ) →
N [−L(ε)](κ, 0) = x̃L(ε)(0) as N → ∞. However, xL(ε)(0) and x̃L(ε)(0) are arbitrarily close to 0, if
L(ε) is sufficiently large (and αN ≤ α(ε) is sufficiently small so 0 < L(ε) < N − L(ε) < N can
hold). Further, N ′(0, αN ) = 1 and N ′(x, ·) is continuous, so we get that if α(ε) is sufficiently
small and L(ε) is sufficiently large, but both quantities are fixed as N varies, then for every
αN ≤ α(ε)

QN−L(ε)(x, αN )

QL(ε)(x, αN )
∈ [1 − ε, 1].

This, together with (2.89) imply that for every sufficiently small ε > 0 there exist a sufficiently
small α(ε) > 0, a sufficiently large L(ε) ∈ N+ and a function τ2(ε) (with τ2(ε) → 0+ as ε→ 0+)
such that for every αN ≤ α(ε)

QN−L(ε)(x, αN ) ∈ Q∞(x) · [1 − τ2(ε), 1 + τ2(ε)]. (2.90)

In this construction we can clearly choose L(ε) such that L(ε) → ∞ as ε → 0+, moreover,
we can assume that L(ε) strictly increases as ε decreases. We remark that these estimates are
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also valid if αN ≤ α(ε) is replaced by α ≤ α(ε), so α can tend to 0+ not only along the grid
values. In what follows, however, we will exploit that α = αN is jumping from grid point to grid
point.

Now let us return to (2.90). The definition of Qk yields that with a suitable τ3(ε)

N [N−L(ε)](x, αN ) ∈

xN−L(ε)(αN ) + (xN−L(ε)+1(αN ) − xN−L(ε)(αN )) ·Q∞(x) · [1 − τ3(ε), 1 + τ3(ε)].

We have seen that the right-hand side of ”∈” converges to

x̃L(ε)(0) + (x̃L(ε)−1(0) − x̃L(ε)(0)) ·Q∞(x) · [1 − τ3(ε), 1 + τ3(ε)]

as N → ∞, if L(ε) is fixed. So with a suitable τ4(ε) we have that for all αN ≤ α(ε)

N [N−L(ε)](x, αN ) ∈ (x̃L(ε)(0) + (x̃L(ε)−1(0) − x̃L(ε)(0)) ·Q∞(x)) · [1 − τ4(ε), 1 + τ4(ε)]. (2.91)

Since N [N−1](x, αN ) = N [L(ε)−1](N [N−L(ε)](x, αN ), αN ), L(ε)−1 is fixed, and N [L(ε)−1](y, αN ) →
N [L(ε)−1](y, 0) as N → ∞ and y is fixed, we obtain that

N [N−1](x, αN ) ∈ N [L(ε)−1](N [N−L(ε)](x, αN ), 0) · [1 − τ5(ε), 1 + τ5(ε)] (2.92)

with τ5(ε) → 0+ as ε → 0+, for every αN ≤ α(ε). But N [L(ε)−1](·, 0) is continuous, so (2.91)
and (2.92) imply that for all αN ≤ α(ε)

N [N−1](x, αN ) ∈ wx(L(ε)) · [1 − τ6(ε), 1 + τ6(ε)] (2.93)

with a suitable τ6(ε) → 0+ (as ε→ 0+) and with

wx(k) := N [k−1](x̃k(0) + (x̃k−1(0) − x̃k(0)) ·Q∞(x), 0).

Since we can make the interval on the right-hand side of (2.93) as narrow as we wish, we get
finally that N [N−1](x, αN ) is a Cauchy-sequence, so it converges to some x∗ as N → ∞.

Step 2. Let us proceed further. The convergence N [N−1](x, αN ) → x∗ with (2.93) also
implies that

x∗ ∈ wx(L(ε)) · [1 − τ6(ε), 1 + τ6(ε)],

or, in other words that
wx(L(ε)) ∈ x∗ · [1 − τ7(ε), 1 + τ7(ε)],

with a suitable τ7(ε). But L(ε) → ∞ and τ7(ε) → 0+ as ε → 0+, hence—by fixing a strictly
decreasing sequence εk → 0+ as k → ∞—we get that

lim
k→∞

wx(L(εk)) = x∗.

However, we will need a bit more.
Step 2a. For x̃ ∈ [x̃1(0), x̃0(0)] and M ∈ N+ we will use the abbreviation

Q−M (x̃, 0) :=
N [−M ](x̃, 0) − x̃M+1(0)

x̃M (0) − x̃M+1(0)
.

Then, by the definition of Q−∞

Q−∞(x̃) = lim
M→∞

Q−M (x̃, 0),
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and it is easy to see that this convergence is monotone increasing in M , because N [−1](·, 0) is a
monotone increasing concave function (cf. the proof of Lemma 2.8.4).

Step 2b. We now show that for any x ∈ (x0(0), x1(0)] and k ∈ N+

wx(k + 1) ≤ wx(k).

Indeed, since N (·, 0) is convex, monotone increasing and lies above the identity map, we know
(cf. the proof of Lemma 2.8.4 again) that for any y ∈ [y0,N (y0, 0)] (with |y0| sufficiently small)

N (y, 0) −N (y0, 0)

N [2](y0, 0) −N (y0, 0)
≤ y − y0

N (y0, 0) − y0
.

Here we set y0 := x̃k+1(0) and y := x̃k+1(0)+(x̃k(0)− x̃k+1(0)) ·Q∞(x) ∈ [y0,N (y0, 0)] (because
Q∞(x) ∈ [0, 1]) to get that

N (x̃k+1(0) + (x̃k(0) − x̃k+1(0)) ·Q∞(x), 0) − x̃k(0)

x̃k−1(0) − x̃k(0)
≤ Q∞(x),

since now y−y0

N (y0,0)−y0
= Q∞(x). But this means that

N (x̃k+1(0) + (x̃k(0) − x̃k+1(0)) ·Q∞(x), 0) ≤ x̃k(0) + (x̃k−1(0) − x̃k(0)) ·Q∞(x).

However, k is now fixed and applying the monotone increasing function N [k−1](·, 0) to both sides
we get that wx(k + 1) ≤ wx(k).

Step 2c. We now study

Fx(k,M) := Q−M (wx(L(εk)), 0)

for k ∈ N+ and M ∈ N+, where we recall that by construction L(εk) is strictly increasing and
tends to ∞ as k → ∞. (Observe that the definition of Fx makes sense since Q∞(x) ∈ [0, 1], so
wx(L(εk)) ∈ [x̃1(0), x̃0(0)].)

We know that
lim

k→∞
Fx(k,M) = Q−M (x∗, 0)

if M is fixed, since Q−M(·, 0) is continuous and limk→∞wx(L(εk)) = x∗ by Step 2. Moreover,
by using Step 2b and the fact that Q−M(·, 0) is monotone increasing, we get that Fx(·,M) is
monotone decreasing.

We also know that
lim

M→∞
lim

k→∞
Fx(k,M) = Q−∞(x∗)

by the definition of Q∞.
On the other hand if k is fixed then

lim
M→∞

Fx(k,M) = Q−∞(wx(L(εk)))

and Fx(k, ·) is monotone increasing by Step 2a. Further, since Q−∞(·) is continuous

lim
k→∞

lim
M→∞

Fx(k,M) = Q−∞(x∗).

What this means pictorially is that Fx has a ”saddle point at (∞,∞)”, moreover, both
iterated limits exist and are equal.

Step 2d. Let us show that the double limit also exists and, of course,

lim
k→∞
M→∞

F(k,M) = Q−∞(x∗).
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Suppose to the contrary that there exist subsequences kn → ∞ and Mn → ∞ as n → ∞
such that

lim
n→∞

Fx(kn,Mn) = Ω

with some Ω 6= Q−∞(x∗). Consider the case Ω < Q−∞(x∗) first and set δ := 1
2(Q−∞(x∗)−Ω) >

0. Then there exists an index ν(δ) ∈ N+ such that for all n > ν(δ)

Fx(kn,Mn) ≤ Q−∞(x∗) − δ.

But Fx(k,Mn) ≤ Fx(kn,Mn) if k ≥ kn, so if n > ν(δ) then

Q−Mn(x∗, 0) = lim
k→∞

Fx(k,Mn) ≤ Q−∞(x∗) − δ,

so

Q−∞(x∗) = lim
n→∞

Q−Mn(x∗, 0) ≤ Q−∞(x∗) − δ,

a contradiction. The other case Ω > Q−∞(x∗) can be treated similarly with natural modifica-
tions.

Step 2e. This last step is now easy, because we are entitled to evaluate the double limit
along the ”diagonal” and get

lim
n→∞

Fx(n,L(εn) − 1) = Q−∞(x∗).

Observe, however, that

Fx(n,L(εn) − 1) =
N [−(L(εn)−1)](w(L(εn)), 0) − x̃L(εn)(0)

x̃L(εn)−1(0) − x̃L(εn)(0)
= Q∞(x),

meaning that Q∞(x) = Q−∞(x∗), so, indeed, x∗ = Q
[−1]
−∞(Q∞(x)). �

Corollary 2.8.7 Suppose that zN (−κ ≤ zN) is a sequence converging to some x ∈ [x0(0), x1(0)]
as N → ∞. Then

lim
N→∞

N [N−1](zN , αN ) = x∗.

Proof. We have
∣∣∣N [N−1](zN , αN ) − x∗

∣∣∣ ≤
∣∣∣N [N−1](zN , αN ) −N [N−1](x, αN )

∣∣∣+
∣∣∣N [N−1](x, αN ) − x∗

∣∣∣ .

The second term converges to 0 as N → ∞ by Lemma 2.8.6, while the first term is estimated as

∣∣∣N [N−1](zN , αN ) −N [N−1](x, αN )
∣∣∣ ≤ |zN − x| · sup

[{zN ,x}]

∣∣∣∣
(
N [N−1]

)′
(·, αN )

∣∣∣∣ .

The right-hand side again converges to 0, because the supremum is bounded by an absolute
constant according to Lemma 2.8.5. (Only a minor consideration is needed when zN → x1(0),
so zN > x1(0) may occur. Nevertheless, if N is large enough, then −κ = x0(0) < zN ∈
[x0(0), x2(0)] ⊂ [x0(αN ), x2(αN )], and it is clear that Lemma 2.8.5 is valid on this slightly larger
interval too.) �

After these preparations, let us prescribe J(h, x, α) on the vertical grid lines (x, α) ∈ [−κ, κ]×
{αN : N ∈ N+}.
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For some fixed N ∈ N+ and x ∈ [x0(αN ), x1(αN )], we set

J(h, x, αN ) := lin(h, x, αN ),

where lin(h, ·, αN ) : [x0(αN ), x1(αN )] → [y0(βN ), y1(βN )] is the increasing linear homeomor-
phism between the first fundamental domains. (Of course, lin does not need to be linear at
all—at this point we have some freedom, possibly leading to better closeness estimates in the
future: see below.) The desired conjugacy equation

J(h,Nϕ(h, x, α), α) = NΦ(h, J(h, x, α), β)

now forces for any k = 1, 2, . . . ,N − 1 and x ∈ [xk(αN ), xk+1(αN )] that

J(h, x, αN ) := N [k]
Φ

(
h, lin

(
h,N [−k]

ϕ (h, x, αN ) , αN

)
, βN

)
,

where N [k]
Φ (h, x, β), for example, of course abbreviates (NΦ(h, ·, β))[k] (x). This definition ex-

tends the earlier one given in Section 2.8.

The conjugacy J(h, x, 0) has already been defined for all h ∈ [0, h0] and x ∈ [−κ, κ] in the
previous sections (preceding the grid approach). From these constructions it is not hard to see
that for any fixed h > 0 and x < 0, J(h, x, αN ) → J(h, x, 0) as N → ∞. (Essentially this
depends on the fact that for any x < 0 we have x ∈ [xk(0), xk+1(0)] for some fixed k = k(h, x)

and here both N [k]
Φ (h, x, ·) and N [−k]

ϕ (h, x, ·) are continuous.)
Now let us consider a fixed x ∈ [x̃1(0), x̃0(0)]. If Lemma 2.8.6 is applied to the function

N := N [−1]
ϕ (being monotone increasing and concave), we get that N [−(N−1)]

ϕ (h, x, αN ) → x∗
(N → ∞), where x∗ := Q

[−1]
∞ (Q−∞(x)). Then, by Corollary 2.8.7, if N → ∞, then

N [N−1]
Φ

(
h, lin

(
h,N [−(N−1)]

ϕ (h, x, αN ) , αN

)
, βN

)
→ (lin(h, x∗, 0))∗,

where, of course, lin(h, ·, 0) is the increasing homeomorphism between the intervals [x0(0), x1(0)]
and [y0(0), y1(0)]. Therefore, if we redefine J(h, x, 0) := (lin(h, x∗, 0))∗ for x ∈ [x̃1(0), x̃0(0)], then
J(h, x, αN ) → J(h, x, 0) as N → ∞. By using the conjugacy equation recursively, we can extend
the definition of J(h, x, 0) for any x ∈ [x̃k+1(0), x̃k(0)] with a suitable and fixed k = k(h, x),
implying the continuity of J in the third variable along the grid sequence α = αN → 0+, for
any fixed x > 0. Finally, using strict monotonicity, it follows that J(h, 0, αN ) has to converge
to J(h, 0, 0) = 0 as N → ∞.

Since the values of J(h, x, 0) (x > 0) have been redefined, we should make a compatible
extension of J in the left half-plane (α < 0) above the repelling fixed points. For example, the
values of J(h, x, α) can be defined via a linear expansion (similar to the one given above) if α < 0
and x ∈ [x̃1(α), x̃0(α)] = [x̃1(α), κ]. Then for x ∈ [x̃k+1(α), x̃k(α)] the conjugacy equation itself
is used recursively to define J . (Notice that |x̃1(α) − ỹ1(α)| = O(hp), so this new definition will
affect neither the earlier closeness estimates in the outer region of the α < 0 half-plane, nor the
continuity of J in the third variable for x > 0 and α→ 0−.)

Finally, we define J(h, x, α) between the grid lines, that is for α ∈ (αN+1, αN ) (N ∈ N+):
a similar linear transformation is used on the first fundamental domain [x0(α), x1(α)], then a
recursive extension on [xk(α), xk+1(α)] follows. At this point we again have great freedom in
the definition: using any strictly monotone correspondence between α ∈ (αN+1, αN ) and β ∈
(βN+1, βN ), we have that if α ∈ (αN+1, αN ) and x ∈ [xk(α), xk+1(α)] ⊂ [xk(αN+1), xk+1(αN )]
(since xk(h, ·) is monotone increasing) for some k and N , then J(h, x, α) ∈ [yk(βN+1), yk+1(βN )].
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For a closeness estimate, it is enough to consider case x > 0, α > 0 (because it is seen from
the proof of Lemma 2.8.2 that |J(h, x, α) − x| = O(hp) if x ≤ 0 and α > 0). But by analyzing
the derivative of NΦ(h, y, ·), one sees that if y > 0, then

d

dβ

(
N [k]

Φ

)
(h, y, β) ≤ d

dβ

(
N [k+1]

Φ

)
(h, y, β),

implying that yk(βN ) − yk(βN+1) ≥ yk−1(βN ) − yk−1(βN+1). Now by rearranging we get that

yk(βN ) − yk−1(βN ) ≥ yk(βN+1) − yk−1(βN+1). However, since
(

d
dyNΦ

)
(h, y, β) ≥ 1 for y >

0, we obtain that yk+1(βN ) − yk(βN ) ≥ yk(βN ) − yk−1(βN ). From these we conclude that
yk+1(βN )− yk(βN ) ≥ yk(βN+1)− yk−1(βN+1), so yk+1(βN )− yk(βN+1) ≥ yk(βN )− yk−1(βN+1),
or, recursively, yk+1(βN ) − yk(βN+1) ≤ yN (βN ) − yN−1(βN+1). But yN−1(βN+1) ≥ yN−2(βN )
and yN (βN )−yN−2(βN ) ≤ c1h with an absolute constant c1 > 0, hence yN(βN )−yN−1(βN+1) ≤
yN (βN ) − yN−2(βN ), so finally we see that

yk+1(βN ) − yk(βN+1) ≤ c1h.

A similar argument shows that

xk+1(αN ) − xk(αN+1) ≤ c1h.

But by Lemma 2.8.2 we see that |yk+1(βN )− xk+1(αN )| = O(hp) and |yk(βN+1)− xk(αN+1)| =
O(hp), and we know that x ∈ [xk(αN+1), xk+1(αN )] and J(h, x, α) ∈ [yk(βN+1), yk+1(βN )].
Therefore, we can conclude that if x > 0 and α > 0, then

|J(h, x, α) − x| = O(h).

It is currently investigated how to construct J(h, x, α) for α ∈ [αN+1, αN ) (N ∈ N+) such
that J(h, x, α) → J(h, x, 0) if α → 0+ arbitrarily and not only along the grid values, and sec-
ondly, how to refine the O(h) closeness estimate.
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Chapter 3

Conjugacy in the discretized

transcritical bifurcation

Summary. The present Chapter contains another case study, on discretizations

near a transcritical bifurcation point. Unlike in the fold case, the origin is now

surrounded by fixed points, hence no extra difficulties will arise. In Section

3.1, transcritical conditions are examined, then in Section 3.2 the necessary and

sufficient condition on the discretization map x 7→ ϕ(h, x, α) to undergo a trans-

critical bifurcation is discussed and normal form transformations with closeness

estimates for x 7→ Φ(h, x, α) and x 7→ ϕ(h, x, α) are carried out. In Section 3.3 a

conjugacy between families Φ(h, ·, α) and ϕ(h, ·, α̃) is constructed near the origin

x = 0 for any fixed h. The bifurcation parameter is shifted, since discretiza-

tions can relocate the bifurcation point, however, only by O(hp). Finally, in

Section 3.4 we prove that the distance between the conjugacy and the identity

is bounded by O(hp) and this estimate is optimal.

3.1 Introduction

Suppose we have a one-dimensional ordinary differential equation

ẋ = f(x, α) (3.1)

and its one-step discretization

Xn+1 := ϕ(h,Xn, α), n = 0, 1, 2, . . . , (3.2)

where α ∈ R is a scalar bifurcation parameter, h > 0 is the step-size of the sufficiently smooth
one-step method ϕ : R+ ×R×R → R of order p ≥ 1, and the function f : R×R → R is of class
Cp+k+1 with k ≥ 5 and uniformly bounded derivatives.

Since the numerical method is of order p, we have that

|Φ(h, x, α) − ϕ(h, x, α)| ≤ const · hp+1, ∀h ∈ [0, h0],∀ |x| ≤ ε0,∀ |α| ≤ α0, (3.3)

where Φ(h, ·, α) : R → R is the time-h-map of the solution flow induced by (3.1) at parameter
value α, further h0, ε0 and α0 are some small positive constants.

Suppose that the origin x = 0, α = 0 is an equilibrium as well as a transcritical bifurcation
point for (3.1), that is the following conditions hold

f(0, α) = 0, ∀ |α| ≤ α0,

77
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fB
x = 0, fB

xx 6= 0, fB
xα 6= 0, (3.4)

where subscripts x and α denote partial differentiation with respect to their corresponding vari-
ables, while superscript B abbreviates evaluation at the bifurcation point, that is, evaluation at
x = 0 and α = 0. (The evaluation is performed after taking all partial derivatives.)

The evaluation operator B will also be used for functions of three variables—h, x and α—
when we evaluate a function at h = 0, x = 0 and α = 0, as in ΦB

hxα abbreviating Φhxα(0, 0, 0).
(Here subscript h, of course, again stands for partial differentiation.)

For functions of three variables h, x and α, the evaluation operator E denotes evaluation at
general parameter values h and α, where the dependence of E on h and α is suppressed. (Values
of the parameters h ∈ [0, h0] and α ∈ [−α0, α0] can be arbitrary but fixed.) Thus, for example,
the function J(h, ·, α) is abbreviated to JE , if J : R × R × R → R.

Remark 3.1.1 Besides (3.4), there are other ways to formulate transcritical conditions. Since
we are going to deal with maps induced by the differential equation, for the sake of the present
remark, we first rewrite condition (3.4) for maps (this will be done in more detail in the next
section): for a map x 7→ g(x, α) to undergo a transcritical bifurcation near the origin it is
sufficient that

g(0, α) = 0, ∀ |α| ≤ α0,

gB
x = 1, gB

xx 6= 0, gB
xα 6= 0.

Notice that we have imposed g(0, α) = 0, ∀ |α| ≤ α0, which is not a point condition on g at
the bifurcation point (0, 0). The question naturally arises whether this latter condition can be
relaxed.

The answer is affirmative, however, a little care should be taken. Let us have a look, for
example, at [46], where, instead of g(0, α) = 0, ∀ |α| ≤ α0, the map g is simply required to
satisfy

gB = 0, gB
α = 0, gB

x = 1, gB
xx 6= 0, gB

xα 6= 0.

However, this is insufficient as illustrated by the map xn+1 := g(xn, α) with

g(x, α) := α2 + (1 + α)x+ x2.

Since (x, α) = (0, 0) is the only fixed point of this map, clearly no bifurcation of fixed points can
occur here. (The proof in [46] is correct, but it proves a slightly different proposition: [46] tacitly
assumes that x can be factored out from g.) It is unfortunate that some other mathematical
works or teaching materials also try to define transcritical bifurcation imperfectly as in [46].

Nevertheless, transcritical bifurcation for maps can be guaranteed via point conditions only.
In [21], for example, a kind of discriminant condition is used: conditions

gB = 0, gB
α = 0, gB

x = 1, gB
xx 6= 0,

(
gB
xα

)2 − gB
xx · gB

αα > 0

imply a transcritical bifurcation near the origin. (It is a pity that instead of the last one-sided
inequality, a ”6=” sign stands there in [21], but this is really just a typographical error as seen
from the context.)

To summarize, condition g(0, α) = 0 we have adopted is not the weakest one, but simple
enough and still retains all the essential features of the problem.

Finally, it is instructive to compare this remark with its counterpart in the pitchfork bifur-
cation case.
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3.2 Construction of the normal forms

In this section, we compute normal forms for the maps

x 7→ Φ(h, x, α) (3.5)

and
x 7→ ϕ(h, x, α) (3.6)

near the equilibrium being also a transcritical bifurcation point.

To ensure that the origin x = 0 is a fixed point also for the discretization map (3.6), we
assume that

ϕ(h, 0, α) = 0 (3.7)

holds for sufficiently small h ≥ 0 and |α|.
This condition is necessary for (3.6) to undergo a transcritical bifurcation near the origin, as

illustrated by the following example.

Example 3.2.1 Suppose we have a map

ϕ(h, x, α) := h2p+1 + (1 + hα)x + hx2.

For this ϕ, condition ϕ(h, 0, α) = 0 does not hold, but ϕ satisfies (3.3) with

Φ(h, x, α) := (1 + hα)x + hx2.

This Φ undergoes a transcritical bifurcation, however, ϕ does not: its fixed points are given

by x± = 1
2

(
−α±

√
α2 − 4h2p

)
, from which it is seen that ϕ does not have any fixed points in

the interval α ∈ (−2hp, 2hp), so this map can not have a transcritical bifurcation near the origin.

Remark 3.2.1 It is well-known that all Runge-Kutta methods preserve equilibria, hence (3.7)
is automatically satisfied for these discretizations.

The properties of the solution flow together with (3.3)–(3.4) imply for h ≥ 0, |x| ≤ ε0 and
|α| ≤ α0 that

Φ(h, 0, α) = 0, ∀ |α| ≤ α0, (3.8)

ϕ(0, x, α) = Φ(0, x, α) = x, (3.9)

Φh(h, x, α) = f(Φ(h, x, α), α), (3.10)

ϕh(0, x, α) = Φh(0, x, α). (3.11)

Instead of (3.10), the shorter form Φh = f ◦ Φ will be used.

Lemma 3.2.1 Under the assumptions above and for h ∈ [0, h0], |x| ≤ ε0, |α| ≤ α0, we have
that

Φ(h, x, α) = f0(h, α) + f1(h, α)x + f2(h, α)x2 + ψ3(h, x, α)x3,

where

f0(h, α) ≡ 0,

f1(h, α) ≡ 1 + hα · fB
xα + hα2 · ψ1(h, α), fB

xα 6= 0,

f2(h, α) =
1

2
h · fB

xx + hα · ψ2(h, α), fB
xx 6= 0,

ψ3(h, x, α) = h · ψ̂3(h, x, α)

hold with some smooth functions ψ1, ψ2 and ψ̂3.
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Proof. We expand Φ in a multivariate Taylor series about the equilibrium with the remainders
in the integral form.

Since f(0, α) = 0 for all |α| sufficiently small, we have (3.8), hence f0(h, α) should vanish.
As for f1, we get that

f1(h, α) = ΦB
x + α · I011(α) + h · I110(h) + hα · ΦB

hxα+

hα2 · I112(α) + h2α · I211(h) + h2α2 · I212(h, α),

where ΦB
x = 1,

I011(α) =

∫ 1

0
Φxα(0, 0, τα)dτ ≡ 0,

I110(h) =

∫ 1

0
Φhx(τh, 0, 0)dτ ≡ 0,

because Φhx = (f ◦ Φ)x = (fx ◦ Φ) · Φx.
It is easy to verify that ΦB

hxα = fB
xα. Indeed, we have that

ΦB
hxα = (f ◦ Φ)B

xα = ((fx ◦ Φ)α · Φx + (fx ◦ Φ) · Φxα)B = (fx ◦ Φ)B
α ,

because ΦB
xα = 0 and ΦB

x = 1. But

(fx ◦ Φ)B
α = fxx(ΦB, 0) · ΦB

α + fxα(ΦB , 0) = fB
xα,

since Φα(0, x, α) ≡ 0.
The last three integrals read

I112(α) =

∫ 1

0
(1 − τ)Φhxαα(0, 0, τα)dτ,

I211(h) =

∫ 1

0
(1 − τ)Φhhxα(τh, 0, 0)dτ

and

I212(h, α) =

∫ 1

0

∫ 1

0
(1 − τ)(1 − σ)Φhhxαα(τh, 0, σα)dτdσ.

We now show that I211(h) vanishes, or, more precisely, that Φhhxα(h, 0, 0) ≡ 0 for every small
h ≥ 0. By direct differentiation we obtain that

Φhhxα = (fxx ◦ Φ)α · Φx · Φh + (fxx ◦ Φ) · Φxα · Φh+

(fxx ◦ Φ) · Φx · Φhα + (fx ◦ Φ)α · Φhx + (fx ◦ Φ) · Φhxα.

Here Φh(h, 0, 0) = f(Φ(h, 0, 0), 0) = f(0, 0) = 0, so the first two terms above vanish. The third
term is also zero, since

Φhα(h, 0, 0) = fx(Φ(h, 0, 0), 0) · Φα(h, 0, 0) + fα(Φ(h, 0, 0), 0)

but Φ(h, 0, 0) = 0 and fx(0, 0) = 0 = fα(0, 0). The fourth term is zero, because

Φhx(h, 0, 0) = fx(Φ(h, 0, 0), 0) · Φx(h, 0, 0) = 0 · Φx(h, 0, 0).

Finally, the fifth term vanishes due to the factor fx(Φ(h, 0, 0), 0) = 0.
By defining the smooth function ψ1(h, α) := I112(α) + h · I212(h, α), f1 has the form stated

above.
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In the case of f2, we have that

f2(h, α) =
1

2

(
ΦB

xx + α · I021(α) + h · ΦB
hxx + h2 · I220(h) + hα · I121(h, α)

)
,

where ΦB
xx = 0 and

I021(α) =

∫ 1

0
Φxxα(0, 0, τα)dτ ≡ 0.

However,

ΦB
hxx = (f ◦ Φ)B

xx = (fxx ◦ Φ)B ·
(
(Φx)2

)B
+ (fx ◦ Φ)B · ΦB

xx = fB
xx · 1 + 0 6= 0.

Further,
Φhhxx = (fx ◦ Φ)xx · Φh + 2(fx ◦ Φ)x · Φhx + (fx ◦ Φ) · Φhxx,

thus

I220(h) =

∫ 1

0
(1 − τ)Φhhxx(τh, 0, 0)dτ ≡ 0.

Finally,

I121(h, α) =

∫ 1

0

∫ 1

0
Φhxxα(τh, 0, σα)dσdτ.

Thus, ψ2(h, α) := 1
2 I121(h, α) defines the desired smooth function.

For the remainder ψ3, the integral formula gives

ψ3(h, x, α) =
1

2

∫ 1

0
(1 − τ)2Φxxx(h, τx, α)dτ. (3.12)

But

Φxxx(h, τx, α) = Φxxx(0, τx, α) + h ·
∫ 1

0
Φhxxx(σh, τx, α)dσ

and Φxxx(0, τx, α) ≡ 0, so the lemma is proved. �

Now we introduce a new parameter β ≡ β(h, α) by

β(h, α) := α · fB
xα + α2 · I112(α) + hα2 · I212(h, α),

i.e., β(h, α) = f1(h,α)−1
h .

We notice that β(h, 0) = 0 and d
dαβ(h, 0) = fB

xα 6= 0 independently of h ∈ [0, h0], thus
the inverse function theorem guarantees the local existence and uniqueness of a smooth inverse
function α0 ≡ α0(h, β) of α 7→ β(h, α). Moreover, it is easy to see that the domain of definition of
this inverse function contains a neighbourhood of the origin independent of h ∈ [0, h0]. Further,
α0(h, 0) = 0, hence

α0(h, β) = β · ψa(h, β) (3.13)

holds for h ∈ [0, h0] and |β| small with some smooth function ψa.

Therefore (3.5) is transformed into the map

x 7→ (1 + hβ)x+ h · q(h, β)x2 + h · ψ̂3(h, x, α0(h, β))x3

with q(h, β) ≡ 1
2f

B
xx + 1

2α0(h, β) · I121(h, α0(h, β)).
A final scaling η := |q(h, β)|x with s := sign(q(h, 0)) = ±1 (being also independent of

h ∈ [0, h0]) yields the following normal form.
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Lemma 3.2.2 There are smooth invertible coordinate and parameter changes transforming the
system

x 7→ Φ(h, x, α)

into
η 7→ (1 + hβ)η + s · hη2 + hη3 · η̂3(h, η, β)

where η̂3(h, η, β) = ψ̂3(h, x, α0(h, β)) · |q(h, β)|−2 is a smooth function. �

Now let us consider the discretization map ϕ. We prove an analogous result to that of
Lemma 3.2.1 first.

Lemma 3.2.3 Under the assumptions of Lemma 3.2.1 together with (3.7) and for h ∈ [0, h0],
|x| ≤ ε0, |α| ≤ α0, we have that

ϕ(h, x, α) = f̃0(h, α) + f̃1(h, α)x + f̃2(h, α)x2 + χ3(h, x, α)x3,

where

f̃0(h, α) = 0,

f̃1(h, α) = 1 + hα · fB
xα + hp+1 · χ10(h) + hα · χ11(h, α),

f̃2(h, α) =
1

2
h · fB

xx + hp+1 · χ20(h) + hα · χ21(h, α),

χ3(h, x, α) = h · χ̃3(h, x, α)

hold with some smooth functions χ10, χ11, χ20, χ21 and χ̃3. Moreover, for h ∈ [0, h0], |x| ≤ ε0
and for |α| ≤ α0,

|ψ3(h, x, α) − χ3(h, x, α)| ≤ const · hp+1. (3.14)

Proof. By (3.7), we have that f̃0(h, α) ≡ 0.
The remainders of the Taylor series are also represented by integrals and denoted—analogously

to the proof of Lemma 3.2.1—by Ĩ’s. These integrals, of course, now always contain ϕ instead
of Φ.

As for f̃1, by (3.9) one has that ϕB
x = 1 and Ĩ011(α) ≡ 0, further, we get that ϕB

hxα = ΦB
hxα =

fB
xα 6= 0, hence

f̃1(h, α) = 1 + h · Ĩ110(h) + hα · fB
xα+

hα2 · Ĩ112(α) + h2α · Ĩ211(h) + h2α2 · Ĩ212(h, α).

Since f is at least Cp+4, from [18] we obtain that
∣∣∣f1(h, α) − f̃1(h, α)

∣∣∣ ≤ const · hp+1. (3.15)

Evaluating this at α = 0 yields |h · Ĩ110(h)| ≤ const · hp+1. The smooth functions χ10 and χ11

are defined as

χ10(h) :=
h · Ĩ110(h)

hp+1

and
χ11(h, α) := α · Ĩ112(α) + h · Ĩ211(h) + hα · Ĩ212(h, α).

(It can be easily proved that Ĩ112(α) ≡ I112(α), but this property will not be needed later.)
Considering f̃2, we obtain that ϕB

xx = 0 and Ĩ021(α) ≡ 0. By differentiating (3.11) we see
that ϕB

hxx = ΦB
hxx = fB

xx 6= 0, thus

f̃2(h, α) =
1

2

(
h · fB

xx + h2 · Ĩ220(h) + hα · Ĩ121(h, α)
)
,
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and again, using f ∈ Cp+5 and [18]

∣∣∣f2(h, α) − f̃2(h, α)
∣∣∣ ≤ const · hp+1. (3.16)

Evaluating this at α = 0, we see that |h2 · Ĩ220(h)| ≤ const · hp+1, so we can set

χ20(h) :=
1

2
· h

2 · Ĩ220(h)

hp+1

and

χ21(h, α) :=
1

2
· Ĩ121(h, α)

to obtain two smooth functions.
To prove the product form of the remainder χ3, we use the same argument as in (3.12).

Finally, for (3.14) we take into account f ∈ Cp+6 and [18] again to get

|ψ3(h, x, α) − χ3(h, x, α)| =

∣∣∣∣
1

2

∫ 1

0
(1 − τ)2 (Φxxx(h, τx, α) − ϕxxx(h, τx, α)) dτ

∣∣∣∣ ≤

const · hp+1 · 1

2

∫ 1

0
(1 − τ)2dτ,

completing the proof of the lemma. �

Now we the introduce the analogue of parameter β. Set

β̃ ≡ β̃(h, α) := Ĩ110(h) + α · fB
xα + α2 · Ĩ112(α) + hα · Ĩ211(h) + hα2 · Ĩ212(h, α).

We will show that the function β̃(h, ·) is locally invertible at the origin for every h ≥ 0 small
enough, and its inverse function, α̃(h, ·) is O(hp)-close to α0(h, ·), i.e. to the inverse of β(h, ·).
As in Section 2.2, we will use the same quantitative inverse function theorem, see Lemma 2.2.4.
(Now a letter G will play the role of F̃ in that lemma.) We set

G(h, β, α) := β − β̃(h, α).

In order to check the conditions of the lemma, define κ1 := 1
2 |fB

xα| > 0 and κ2 := 1
2κ1. We

have that
∂G

∂α
(h, β, α) = fB

xα + 2α · Ĩ112(α) + α2 d

dα
Ĩ112(α)+

h · Ĩ211(h) + 2hα · Ĩ212(h, α) + hα2 d

dα
Ĩ212(h, α).

Thus ∣∣∣∣
∂G

∂α
(h, β, α) − ∂G

∂α
(h, β, α0(h, β))

∣∣∣∣ ≤ κ2

holds by smoothness of the functions Ĩ’s provided that |α− α0(h, β)| ≤ r1 and h < r2 are small
enough. It is also seen that ∣∣∣∣

∂G

∂α
(h, β, α0(h, β))

∣∣∣∣ ≥ κ1,

if h, |β| < r2 are small enough, taking also into account (3.13). Finally, using that α0(h, ·) is the
inverse function of β(h, ·), we get that

|G(h, β, α0(h, β))| =
∣∣∣β − β̃(h, α0(h, β))

∣∣∣ =
∣∣∣β(h, α0(h, β)) − β̃(h, α0(h, β))

∣∣∣ .
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But (3.15) implies that
|β(h, α) − β̃(h, α)| ≤ const · hp, (3.17)

hence |G(h, β, α0(h, β))| ≤ const ·hp and also |G(h, β, α0(h, β))| ≤ (κ1−κ2) ·r1 if h < r2 is small
enough.

Therefore, Lemma 2.2.4 is applicable in our situation and we get a unique zero α̃(h, β) of
G(h, β, ·), which—by the construction of G—is the inverse function of α 7→ β̃(h, α). Furthermore,

|α̃(h, β) − α0(h, β)| ≤ const · hp (3.18)

holds for h ∈ [0, h0] and |β| sufficiently small.

As a conclusion, (3.6) becomes

x 7→ (1 + hβ̃)x+ h · q̃(h, β̃)x2 + h · χ̃3(h, x, α̃(h, β̃))x3

with q̃(h, β̃) ≡ 1
2

(
fB

xx + h · Ĩ220(h) + α̃(h, β̃) · Ĩ121(h, α̃(h, β̃))
)

.

We claim that ∣∣∣q̃(h, β̃) − q(h, β)
∣∣∣ ≤ const · hp (3.19)

also holds. But this is a consequence of inequalities (3.18), (3.16) and the smoothness (and
boundedness) of the functions I121 and Ĩ121 when combined with standard triangle inequalities
and the mean value theorem.

By applying a final scaling
η̃ := |q̃(h, β̃)|x

with s := sign(q̃(h, 0)) = ±1 (being independent of h ∈ [0, h0] for h0 small enough, due to (3.18)
evaluated at β = 0, (3.13) and the boundedness of the function Ĩ121) and defining

η̃3(h, η̃, β̃) := χ̃3(h, x, α̃(h, β̃)) · |q̃(h, β̃)|−2,

we have derived a normal form for (3.6) in the theorem below.
For the closeness estimates in the theorem, we should only verify that

∣∣∣η̂3(h, η, β) − η̃3(h, η̃, β̃)
∣∣∣ ≤ const · hp.

This estimate, however, is a simple consequence of (3.19) and the fact that
∣∣∣ψ̂3(h, x, α0(h, β)) − χ̃3(h, x, α̃(h, β̃))

∣∣∣ ≤ const · hp.

(For this last inequality, (3.14), the smoothness of ψ̂3, a standard triangle inequality and the
mean value theorem suffice.)

Theorem 3.2.4 Suppose that conditions (3.1)–(3.4) and (3.7) hold. Then there are smooth
invertible coordinate and parameter changes transforming the system

x 7→ ϕ(h, x, α)

into
η̃ 7→ (1 + hβ̃)η̃ + s · hη̃2 + hη̃3 · η̃3(h, η̃, β̃)

where η̃3 is a smooth function.
Moreover, the smooth invertible coordinate and parameter changes above and those in Lemma

3.2.2 are O(hp)-close to each other, further

|η̂3 − η̃3| ≤ const · hp
�
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Finally, we apply a parameter shift β̃ 7→ β to the normal form in the theorem above, being
O(hp)-close to the identity due to (3.17). So from now on we will use the bifurcation parameter
α again instead of β and β̃. To simplify our notation further, instead of η and η̃ the letter x will
be used.

3.3 Construction of the conjugacy

We have thus the following normal forms

NΦ(h, x, α) = (1 + hα)x + s · hx2 + hx3 η̂3(h, x, α) (3.20)

Nϕ(h, x, α) = (1 + hα)x+ s · hx2 + hx3 η̃3(h, x, α) (3.21)

with s = 1 or s = −1, where η̂3 and η̃3 are smooth functions. Let K > 0 denote a uniform bound

on
∣∣∣ di

dxi η(h, ·, α)
∣∣∣ (i ∈ {0, 1, 2}, η ∈ {η̂3, η̃3}) in a neighbourhood of the origin for any small h > 0

and |α|, as well as a uniform bound on
∣∣∣ d
dα η(h, x, ·)

∣∣∣ (η ∈ {η̂3, η̃3}) in a neighbourhood of the

origin for any small h > 0 and |x|. We also have that there exists a constant c > 0 such that

|NΦ(h, x, α) −Nϕ(h, x, α)| ≤ c · hp+1|x|3 (3.22)

holds for all sufficiently small h > 0, |x| ≥ 0 and |α| ≥ 0. Throughout the section, c will de-
note this particular positive constant. (Other generic constants, if needed, are denoted by const.)

We will consider the case s = 1, the other one is similar. Then it is easy to see that
ωΦ,0(h, α) ≡ 0 is an attracting fixed point of the map NΦ(h, ·, α) for α < 0, and repelling for
α > 0. For any fixed h > 0 and α ∈ [−α0, α0] \ {0}, this map possesses another fixed point,
denoted by ωΦ,+ ≡ ωΦ,+(h, α) > 0 (if α < 0) and ωΦ,− ≡ ωΦ,−(h, α) < 0 (if α > 0). It is seen
that ωΦ,+ is repelling and ωΦ,− is attracting. The two branches of fixed points, ωΦ,0(h, α) and
ωΦ,±(h, α) merge at α = 0.

Analogous results hold, of course, for the map Nϕ(h, ·, α). Its fixed points are denoted by
ωϕ,0 and ωϕ,− (or ωϕ,+).

We will construct a conjugacy in a natural way and prove optimal closeness estimates in the
x ≤ 0 region—the x > 0 case is similar due to symmetry.

In what follows, we suppose that

0 < h ≤ h0 :=
1

5
,

|x| ≤ ε0 := min

(
1

25
,

1

25K

)
and (3.23)

|α| ≤ α0 := min

(
1

51
,

1

51K

)
.

With these values of h0, ε0 and α0, all constructions and proofs below can be carried out.
(There is only one constraint which has not been taken into account explicitly: if the domain of
definition of the functions η̂3 and η̃3 is smaller than (0, h0] × [−ε0, ε0] × [−α0, α0] given above,
then h0, ε0 or α0 should be decreased further suitably.)

Lemma 3.3.1 For every 0 < h ≤ h0 and 0 < α ≤ α0 we have that

{ωϕ,− , ωΦ,−} ⊂
(
−3

2
α,−6

7
α

)
.
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Proof. By definition, ωϕ,− solves α+x+x2 · η̃3(h, x, α) = 0. But |x| ≤ 1
6K implies 2

3 ≤ 1+x η̃3 ≤
7
6 , so

−3α

2
≤ ωϕ,− =

−α
1 + ωϕ,− · η̃3(h, ωϕ,− , α)

≤ −6α

7
.

The proof for ωΦ,− is similar. �

By iterating one of the normal forms, say Nϕ(h, ·, α), let us define three sequences xn, yn

and zn. For α > 0, let xn ≡ xn(h, α) be defined as

xn+1 := Nϕ(h, xn, α), n = 0, 1, 2, . . .

with x0 := −α
3 , further, let yn ≡ yn(h, α) be defined as

yn :=
(
NE

ϕ

)[−n]
(x0), n = 0, 1, 2, . . . ,

so y0 := x0, and set y−1 := x1. Finally, for all α ∈ [−α0, α0] define zn ≡ zn(h, α) as

zn :=
(
NE

ϕ

)[n]
(z0), n = 0, 1, 2, . . . ,

with z0 < 0 being independent of h and α such that 2α0 < |z0| < 1
2K holds. An appropriate

choice for z0 is, e.g., z0 := −ε0.

Simple calculations show that, for example, under conditions (3.23), both N E
ϕ and NE

Φ (to-

gether with their inverses) are monotone increasing, further |α| < 6
K implies x0(α) > x1(h, α) and

2α0 < |z0| < 1
2K implies z0 < z1(h, α). This means that xn is monotone decreasing, yn is mono-

tone increasing (if α > 0 and n ≥ 0), and limn→∞ xn(h, α) = ωϕ,−, while limn→∞ yn(h, α) = ωϕ,0 .
Moreover, zn is monotone increasing, further, for α > 0, limn→∞ zn(h, α) = ωϕ,− and for α ≤ 0,
limn→∞ zn(h, α) = ωϕ,0 .

The following figure shows the branch of stable and unstable fixed points of N E
ϕ in the (α, x)-

plane together with the first few terms of the inner sequences (xn(h, α) and yn(h, α)), and the
outer sequence zn(h, α) with some h > 0 and α fixed. The arrows indicate the direction of the
sequences.

-1 -0.5 0.5 1

-1

-0.5

0.5

1

A homeomorphism JE satisfying the conjugacy equation

JE ◦ NE
ϕ = NE

Φ ◦ JE (3.24)

is now piecewise defined on the fundamental domains, i.e. on [xn+1, xn], [yn, yn+1] and [zn, zn+1]
(n ∈ N), for any fixed 0 < h ≤ h0 and −α0 ≤ α ≤ α0.
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We first consider the region between the fixed points for 0 < α ≤ α0.
Let JE(x0) := x0 and JE(x1) := NE

Φ (x0). For x ∈ [x1, x0] extend JE linearly. For n ≥ 1
and x ∈ [xn+1, xn], we recursively set

JE(x) :=
(
NE

Φ ◦ JE ◦
(
NE

ϕ

)[−1]
)

(x),

while for n ≥ 0 and x ∈ [yn, yn+1], we let

JE(x) :=
((

NE
Φ

)[−1] ◦ JE ◦ NE
ϕ

)
(x).

(Since [y−1, y0] ≡ [x1, x0], these two definitions are compatible.) Finally, set

JE(ωϕ,−) := ωΦ,−

and
JE(ωϕ,0) := ωΦ,0 .

Then JE is continuous, strictly monotone increasing on [ωϕ,− , 0], since it is a composition of
three such functions, and satisfies (3.24).

In the outer region, i.e. below the fixed points, fix z0 < 0 (2α0 < |z0| < 1
2K ), then for

α ∈ [−α0, α0] the construction of JE is analogous to the construction above with the sequence
xn: this time zn plays the role of xn. (Of course, now the counterpart of the sequence yn is not
needed.) Then the function JE becomes continuous, strictly monotone increasing on [z0, ωϕ,− ]
(0 < α ≤ α0) and [z0, ωϕ,0 ] (for −α0 ≤ α ≤ 0), and satisfies (3.24).

The construction of JE—with the appropriate and natural modifications—in the upper half-
plane x > 0 is analogous to the one presented above.

3.4 The closeness estimate for the conjugacy

3.4.1 Optimality at the fixed points

We first prove that the constructed conjugacy JE is O(hp α2)-close to the identity at the fixed
points ωϕ,−(h, α), further, an explicit example will show that this estimate is optimal in h and
α.

Since fixed points must be mapped into nearby fixed points by the conjugacy and we are
going to prove O(hp)-closeness in the whole domain, the result above means that our estimates
of | id− JE| near a transcritical bifurcation point are optimal in h.

The following auxiliary estimate will frequently be used.

Lemma 3.4.1 For any 0 < h ≤ h0, −ε0 ≤ x < 0 and −α0 ≤ α ≤ α0, we have that

(NE
Φ )′(x) ≤ 1 + hα+

7

4
hx.

Proof. The conditions in (3.23) have been set up to imply this inequality, too. �

Lemma 3.4.2 For any 0 < h ≤ h0 and 0 < α ≤ α0 (satisfying (3.23)), we have that

|ωϕ,− − ωΦ,−| ≤
27

4
c · hp α2.
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Proof.

| id − JE|(ωϕ,−(h, α)) ≤ |NE
ϕ (ωϕ,−) −NE

Φ (ωϕ,−)| + |NE
Φ (ωϕ,−) −NE

Φ (ωΦ,−)| ≤

c · hp+1|ωϕ,− |3 +

(
sup

[{ωϕ,− ,ωΦ,−}]
(NE

Φ )′
)
|ωϕ,− − ωΦ,−| ≤

27

8
c · hp+1α3 +

(
1 − hα

2

)
|ωϕ,− − ωΦ,− |,

by Lemma 3.3.1, (3.22) and Lemma 3.4.1. Solving the above inequality for |ωϕ,− − ωΦ,− | ≡
| id− JE |(ωϕ,−) yields the desired result. �

Remark 3.4.1 on optimality. The next example shows that the distance of fixed points of
normal forms satisfying (3.22) can be bounded from below by O(hp) (h→ 0).

Indeed, set NΦ(h, x, α) := (1 + hα)x + hx2 and Nϕ(h, x, α) := (1 + hα)x + hx2 + hp+1x3.
Then these maps satisfy (3.22) in a neighbourhood of the origin, further, ωΦ,− = −α and

ωϕ,− = −1+
√

1−4hp α
2hp . Using inequality 1 + t

2 − t2

4 ≤
√

1 + t ≤ 1 + t
2 − t2

8 for − 1
2 ≤ t ≤ 0, one sees

that
|ωϕ,− − ωΦ,−| ≥ hp α2,

if, for example, h ≤ 1 and α ≤ 1
8 .

3.4.2 The inner region

Now the closeness estimate in (ωϕ,− , x0] is proved for any fixed 0 < h ≤ h0 and 0 < α ≤ α0. It
is clear that sup(ωϕ,− ,x0] | id − JE| = supn∈N sup[xn+1,xn] | id− JE |.

Since x0 = JE(x0), we have that

sup
[x1,x0]

| id − JE| = |x1 − JE(x1)| = |NE
ϕ (x0) −NE

Φ (x0)| ≤

c · hp+1|x0|3 =
c

27
hp+1α3,

while for n ≥ 1

sup
[xn+1,xn]

| id− JE | ≤ sup
[xn+1,xn]

∣∣∣NE
ϕ ◦ (NE

ϕ )[−1] −NE
Φ ◦ (NE

ϕ )[−1]
∣∣∣+

sup
[xn+1,xn]

∣∣∣NE
Φ ◦ (NE

ϕ )[−1] −NE
Φ ◦ JE ◦ (NE

ϕ )[−1]
∣∣∣ =

sup
[xn,xn−1]

∣∣NE
ϕ −NE

Φ

∣∣+ sup
[xn,xn−1]

∣∣NE
Φ −NE

Φ ◦ JE
∣∣ ≤

sup
[xn,xn−1]

∣∣NE
ϕ −NE

Φ

∣∣+ sup
x∈[xn,xn−1]

((
sup

[{x,JE(x)}]
(NE

Φ )′
)
|x− JE(x)|

)
≤

c · hp+1|xn|3 +

(
1 + hα+

7

4
hmax

(
xn−1, J

E(xn−1)
))

sup
[xn,xn−1]

| id− JE |,

the last inequality being true due to

sup
[{x,JE(x)}]

(NE
Φ )′ ≤ sup

[{x,JE(x)}]
(1 + hα+

7

4
h · id) ≤ 1 + hα+

7

4
hmax

(
x, JE(x)

)
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taking into account Lemma 3.4.1, then using the fact that the functions id and JE are increasing.

From these we have for n ≥ 1 that

sup
[xn+1,xn]

| id− JE| ≤ c · hp+1
n∑

i=0

|xi|3
n−1∏

j=i

(
1 + hα+

7

4
hmax

(
xj, J

E(xj)
))

,

where
∏n−1

j=n is understood to be 1.

So in order to prove that the conjugacy JE is O(hp)-close to the identity on the interval
(ωϕ,− , x0] for any h ∈ (0, h0] and α ∈ (0, α0], it is enough to show that

sup
h∈(0,h0]

sup
α∈(0,α0]

sup
n∈N

h

n∑

i=0

|xi|3
n−1∏

j=i

(
1 + hα+

7

4
hmax

(
xj, J

E(xj)
))

≤ const (3.25)

holds with a suitable const ≥ 0.

First an explicit estimate of the sequence max
(
xn, J

E(xn)
)

is given.

Lemma 3.4.3 For n ≥ 0, set

an(h, α) := −3

4
α · (1 + hα)n+1

2 + (1 + hα)n
,

then we have that xn ∈ (ωϕ,− , an) and JE(xn) ∈ (ωΦ,− , an).

Proof. It is easily checked that, due to assumptions (3.23),

max
(
ωϕ,−, ωΦ,−

)
< an

for n ≥ 0, so the intervals in the lemma are non-degenerate. We proceed by induction.
a0 = −α

4 (1 + hα) > x0 ≡ JE(x0) ≡ −α
3 is equivalent to hα < 1

3 , being true by assumptions
(3.23) on h0 and α0.

So suppose that the statement is true for some n ≥ 0. Since N E
ϕ (x) < (1 + hα)x + 6

5hx
2 is

implied by |x| ≤ ε0 <
1

5K , and NE
ϕ is monotone increasing, we get that

xn+1 = NE
ϕ (xn) < NE

ϕ (an) < (1 + hα)an +
6

5
ha2

n,

thus it is enough to prove that the right-hand side above is smaller than an+1. But

an+1 −
(

(1 + hα)an +
6

5
ha2

n

)
=

−3hα2(1 + hα)2+2n (−2 + (1 + hα)n(−1 + 9hα))

40 (2 + (1 + hα)n)2 (2 + (1 + hα)n+1)
> 0

is equivalent to −2 + (1 + hα)n(−1 + 9hα) < 0, which is implied by hα < 1
9 .

Of course, the above inequalities remain true, if Nϕ is replaced by NΦ, also noticing that,
by construction, JE(xn+1) = NE

Φ (JE(xn)), so the induction is complete. �

Remark 3.4.2.1 The induction would fail, if, in estimate N E
ϕ (x) < (1 + hα)x + 6

5hx
2, the

constant 6
5 was replaced by, say, 7

5 . (The explanation resides in the particular choice of the
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constant 3
4 in the definition of an, since 3

4 · 6
5 < 1 < 3

4 · 7
5 .)

Remark 3.4.2.2 The upper estimate an in our first main lemma has been found by computer
experiments with Mathematica based on the parametrized model function in [29].

In order to prove the boundedness of (3.25), the sum
∑n

i=0 will be split into two. An
appropriate index to split at is d const

hα e, as established by the following lemma.

Lemma 3.4.4 Suppose that n > d 6
hαe. Then

max
(
xn, J

E(xn)
)
< −2

3
α,

hence

1 + hα+
7

4
hmax

(
xn, J

E(xn)
)
< 1 − hα

6

holds for n > d 6
hαe.

Proof. By Lemma 3.4.3 it is sufficient to show that n > d 6
hαe implies an < −2

3α. This latter
inequality is equivalent to (1 + hα)n(1 + 9hα) > 16. But if n > d 6

hαe, then

(1 + hα)n > (1 + hα)d
6

hα
e =

(
1 +

1
1

hα

)(1+ 1
hα )· hα

1+hα
·d 6

hα
e

.

However, it is known that
(
1 + 1

A

)A+1
> e, if A ≥ 1, and it is easy to see that B

1+B · d 6
B e > 3, if

0 < B < 1. Since e3 > 16, the proof is complete. �

Now we can turn to (3.25). Fix h ∈ (0, h0], α ∈ (0, α0] and n ∈ N+. (If n ≤ d 6
hαe, then

the sums
∑n

i=d 6
hα

e+1 below are, of course, not present, making the proof even simpler.) Since

now ωϕ,− < xi < 0, by Lemma 3.3.1 |xi| ≤ 3
2α, and by monotonicity max

(
xj, J

E(xj)
)
≤ x0 ≡

JE(x0) ≡ −α
3 , further, by using Lemma 3.4.4, assumption hα < 1 from (3.23) and inequality

(1 + 1
A)A ≤ e (if A ≥ 1), we get that

h

n∑

i=0

|xi|3
n−1∏

j=i

(
1 + hα+

7

4
hmax

(
xj, J

E(xj)
))

≤

27hα3

8

d 6
hα

e∑

i=0

d 6
hα

e−1∏

j=1

(
1 + hα − 7

4
· hα

3

)
+

27hα3

8

n∑

i=d 6
hα

e+1

n−1∏

j=i

(
1 − hα

6

)
≤

27hα3

8

(
1 +

5

12
hα

) 6
hα
(⌈ 6

hα

⌉
+ 1

)
+

27hα3

8

n∑

i=d 6
hα

e+1

(
1 − hα

6

)n−i

≤

27hα3

8

(
1 +

5

12
hα

) 12
5hα

· 5hα
12

· 6
hα
(

6 + 2hα

hα

)
+

27hα3

8

∞∑

i=0

(
1 − hα

6

)i

≤

27hα3

8
· e 30

12 · 8

hα
+

27hα3

8
· 6

hα
≤ 350α2.

Therefore, sup[xn+1,xn] | id− JE | ≤ 350c · hpα2 for any h ∈ (0, h0], α ∈ (0, α0] and n ≥ 1, further,

as we have seen, sup[x1,x0] | id − JE| ≤ c
27h

p+1α3, which yield the following lemma.
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Lemma 3.4.5 Under assumption (3.23)

sup
(ωϕ,− ,x0]

| id− JE| ≤ 350c · hpα2.

Now the closeness estimate is proved in the interval (y0, ωϕ,0). Recall that y0 = x0 =
JE(x0) ≡ −α

3 and ωϕ,0 = ωΦ,0 ≡ 0.

Suppose that n ≥ 1. (The case n = 0 will be examined later.) Then

sup
[yn,yn+1]

| id− JE | = sup
[yn,yn+1]

∣∣∣
(
NE

Φ

)[−1] ◦ NE
Φ −

(
NE

Φ

)[−1] ◦ JE ◦ NE
ϕ

∣∣∣ ≤

sup
x∈[yn,yn+1]

[(
sup

[{NE
Φ (x),JE◦NE

ϕ (x)}]

(
(NE

Φ )[−1]
)′
)
(∣∣NE

Φ −NE
ϕ

∣∣ (x) +
∣∣NE

ϕ − JE ◦ NE
ϕ

∣∣ (x)
)
]

≤
[

sup
x∈[yn,yn+1]

sup
[{NE

Φ (x),JE◦NE
ϕ (x)}]

(
(NE

Φ )[−1]
)′
] [

c · hp+1|yn|3 + sup
[yn−1,yn]

| id− JE |
]
,

provided that sup[{NE
Φ (x),JE◦NE

ϕ (x)}]
(
(NE

Φ )[−1]
)′

is nonnegative.

Lemma 3.4.6 Suppose that n ≥ 1, then under assumption (3.23) we have that

sup
x∈[yn,yn+1]

sup
[{NE

Φ (x),JE◦NE
ϕ (x)}]

(
(NE

Φ )[−1]
)′

≤ 1 − hα

8
.

Proof.

sup
x∈[yn,yn+1]

sup
[{NE

Φ (x),JE◦NE
ϕ (x)}]

(
(NE

Φ )[−1]
)′

= sup
x∈[yn,yn+1]

sup
[{NE

Φ (x),JE◦NE
ϕ (x)}]

1

(NE
Φ )′ ◦ (NE

Φ )[−1]

= sup
x∈[yn,yn+1]

sup
[{x,(NE

Φ )[−1]◦JE◦NE
ϕ (x)}]

1

(NE
Φ )′

= . . .

But, by definition, (NE
Φ )[−1] ◦ JE ◦ NE

ϕ (x) = JE(x), if x ∈ [yn, yn+1], and [{x, JE(x)}] =

[ min(x, JE(x)),max(x, JE(x))], further, by the monotonicity of id and JE we obtain that

. . . = sup
[min(yn,JE(yn)),max(yn+1,JE(yn+1))]

1

(NE
Φ )′

≤ . . .

By construction, however, [ min(yn, J
E(yn)),max(yn+1, J

E(yn+1))] ⊂ (y0, 0) = (−α
3 , 0) and

(NE
Φ )′ is nonnegative here by assumption (3.23), justifying the computations just above the

lemma. We now continue the proof of the lemma.

. . . ≤ sup
(−α

3
,0)

1

(NE
Φ )′

≤ . . .

It is easy to see that assumption (3.23) together with x < 0 imply that (N E
Φ )′(x) ≥ 1+hα+ 9

4hx ≥
0. So

. . . ≤ sup
x∈(−α

3
,0)

1

1 + hα+ 9
4hx

≤ 1

1 + hα+ 9
4h
(
−α

3

) =
1

1 + 1
4hα

≤ 1 − hα

8
,
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since 1
1+A ≤ 1 − A

2 , if A ∈ [0, 1]. �

We have thus proved (also using |yn| ≤ α
3 ) that for n ≥ 1

sup
[yn,yn+1]

| id− JE | ≤
(

1 − hα

8

)[
c

27
· hp+1α3 + sup

[yn−1,yn]
| id− JE |

]
(3.26)

For n = 0, similarly as before, we get that

sup
[y0,y1]

| id − JE| ≤
[

sup
x∈[y0,y1]

sup
[{NE

Φ (x),JE◦NE
ϕ (x)}]

(
(NE

Φ )[−1]
)′
][

c · hp+1|y0|3 + sup
[y−1,y0]

| id − JE|
]
.

But [y−1, y0] ≡ [x1, x0], so the second factor [. . .] is bounded by 2 · c
27h

p+1α3. As for the first

factor [. . .], we notice that y0 < (NE
Φ )[−1](y0) (since this is equivalent to x1 < x0), which implies

that

sup
x∈[y0,y1]

sup
[{NE

Φ (x),JE◦NE
ϕ (x)}]

(
(NE

Φ )[−1]
)′

= sup
x∈[y0,y1]

sup
[{x,(NE

Φ )[−1]◦JE◦NE
ϕ (x)}]

1

(NE
Φ )′

=

sup
[y0,y1]∪[y0,(NE

Φ )[−1](y0)]

1

(NE
Φ )′

≤ sup
[y0,0)

1

(NE
Φ )′

≤ 1,

therefore
sup

[y0,y1]
| id− JE | ≤ 2 · c

27
hp+1α3. (3.27)

Repeated application of (3.26), further (3.27) yield for n ≥ 1 that

sup
[yn,yn+1]

| id− JE | ≤
(

1 − hα

8

)n

sup
[y0,y1]

| id− JE | +
c

27
hp+1α3

n∑

i=1

(
1 − hα

8

)i

≤

1 · 2 · c
27
hp+1α3 +

c

27
hp+1α3 · 8

hα
≤ c

3
hpα2,

due to hα ≤ 1
2 by (3.23). The same upper estimate is valid for n = 0, so we have proved the

following result.

Lemma 3.4.7 Under assumption (3.23)

sup
(x0,0)

| id − JE| ≤ c

3
hpα2.

3.4.3 The outer region

In this section, we first prove an O(hp) closeness-estimate in the interval [z0, ωϕ,−) for α > 0.
Then, in the second part, the closeness is proved on [z0, ωΦ,0) ≡ [z0, 0) for α ≤ 0.

The derivation of the following formulae is similar to their counterparts in the inner region,
with the difference that—since this time the sequence zn is increasing—an extra term and an
index-shift occur.

For n ≥ 1 (also using (3.23)) we have that

sup
[zn,zn+1]

| id− JE | ≤ c · hp+1|z0|3
n∏

j=1

(
1 + hα +

7

4
hmax

(
zj , J

E(zj)
))

+
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c · hp+1
n−1∑

i=0

|zi|3
n∏

j=i+2

(
1 + hα+

7

4
hmax

(
zj , J

E(zj)
))

, (3.28)

where, again
∏n

j=n+1 above is 1, and

sup
[z0,z1]

| id − JE| ≤ c · hp+1|z0|3.

The following main lemma, as a counterpart of Lemma 3.4.3, gives a lower estimate of the
sequence zn, if α > 0.

Lemma 3.4.8 For n ≥ 0, set

bn(h, α) := −2α · (1 + hα)n+1

−1 + α+ (1 + hα)n
,

then bn ≤ min
(
zn, J

E(zn)
)
.

Proof. b0 = −2 − 2hα < −2 ≤ −1 ≤ −ε0 ≤ z0 = JE(z0) holds due to assumption (3.23).
Suppose that the statement is true for some n ≥ 0. Since N E

ϕ (x) ≥ (1 + hα)x + 3
5hx

2 follows

from |x| ≤ ε0 <
2

5K , further (1 + hα)id + 3
5h id

2 is monotone increasing (which is implied by,
e.g., |x| ≤ 5

6h , but it is easy to see that h ≤ 5
18 and −3 < bn < 0 follows from (3.23), hence

|bn| ≤ 5
6h), so we obtain that

zn+1 = NE
ϕ (zn) ≥ (1 + hα)zn +

3

5
h z2

n ≥ (1 + hα)bn +
3

5
h b2n,

thus it is sufficient to show that

(1 + hα)bn +
3

5
h b2n ≥ bn+1.

However, this is equivalent to

0 ≤ 2hα2(1 + hα)2+2n

5 (−1 + α+ (1 + hα)n)2
· −1 + α+ (1 + hα)n(1 + 6hα)

−1 + α+ (1 + hα)n+1
,

which is true since α > 0 and h > 0.

The proof remains valid if Nϕ is replaced by NΦ (and JE(zn) is written instead of zn), hence
bn ≤ JE(zn) also holds. �

Now, since zj < ωϕ,− and JE(zj) < ωΦ,− , by Lemma 3.3.1 we get that the right-hand side
of (3.28) is at most

c · hp+1|z0|3
n∏

j=1

(
1 − hα

2

)
+ c · hp+1

n−1∑

i=0

|zi|3
n∏

j=i+2

(
1 − hα

2

)
≤

c · hp+1|z0|3 + c · hp+1
n−1∑

i=0

|zi|3
(

1 − hα

2

)n−1−i

.

We will verify that h
∑n

i=0 |zi|3
(
1 − hα

2

)n−i
is uniformly bounded for any n ≥ 0, 0 < h ≤ h0

and 0 < α ≤ α0.
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If n ≥ d 1
hαe, then by Lemma 3.4.8 (also using that hα ≤ 1

9 and zj < 0)

h
n∑

i=d 1
hα

e
|zi|3

(
1 − hα

2

)n−i

≤ h
n∑

i=d 1
hα

e
|bi|3

(
1 − hα

2

)n−i

≤

11hα3
n∑

i=d 1
hα

e

(
(1 + hα)i

−1 + α+ (1 + hα)i

)3(
1 − hα

2

)n−i

≤ . . .

for these i indices however (1+hα)i

−1+α+(1+hα)i ≤ 3 holds (since this is implied by 3
2 ≤ (1 +hα)i, being

true by (1 + hα)i ≥ (1 + hα)
1

hα ≥ 1 + 1
hα · hα > 3

2), thus

. . . ≤ 27 · 11α2hα

∞∑

i=0

(
1 − hα

2

)i

= 594α2.

On the other hand, if n < d 1
hαe, then (using that |zi| ≤ 1 and hα ≤ 1

9 again)

h
n∑

i=0

|zi|3
(

1 − hα

2

)n−i

≤ h
n∑

i=0

|zi|2
(

1 − hα

2

)n−i

≤ (3.29)

5h
n∑

i=0

(
α(1 + hα)i

−1 + α+ (1 + hα)i

)2(
1 − hα

2

)n−i

≤ . . .

now using inequalities e
x
2 ≤ 1 + x (x ∈ [0, 1]) and 1 + x ≤ ex (x ∈ R) we get that (1 + hα)2i ≤

ehα2i ≤ ehα2n ≤ e2 < 8, further,
(
1 − hα

2

)n−i ≤ e−
hα
2

(n−i) and e
hα
2

i ≤ (1 + hα)i, therefore

. . . ≤ 40h

n∑

i=0

(
αe−

hα
4

(n−i)

−1 + α+ e
hα
2

i

)2

. (3.30)

Set gh,α,n(x) ≡ g(x) :=

(
α exp(− 1

4
hα(n−x))

−1+α+exp( 1
2
hαx)

)2

, if x ∈ [0,∞). Notice that g is bounded at x = 0.

For this function we have that

g′(x) = −1

2
hα3 e−

1
2
hα(n−x) · 1 − α+ e

1
2
hxα

(
−1 + α+ e

1
2
hxα
)3 ,

meaning that g is strictly monotone decreasing, if α < 1. Hence

40h

n∑

i=0

(
αe−

hα
4

(n−i)

−1 + α+ e
hα
2

i

)2

= 40h+ 40h

n∑

i=1

gh,α,n(i) ≤

40h+ 40h

∫ n

0
gh,α,n(x)dx = 40h + 40h

[
−2α

exp
(
−1

2hαn
)

h
(
−1 + α+ exp

(
1
2hαx

))
]n

x=0

=

40h + 40h

(
2
(
1 − exp

(
−1

2hαn
))

h
(
exp

(
1
2hαn

)
− 1 + α

)
)

≤ 40h + 80

(
1 − exp

(
−1

2hαn
)

exp
(

1
2hαn

)
− 1

)
=

40h + 80e−
1
2
hαn ≤ 120,
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since h ≤ 1.

Now combining all the estimates so far in the section, under assumption (3.23) we get that
if α > 0, then

sup
[z0,ωϕ,−)

| id− JE | = sup
n∈N

sup
[zn,zn+1]

| id− JE | ≤

sup
n∈N

max

(
c · hp+1|z0|3, c · hp+1|z0|3 + c · hp+1

n∑

i=0

|zi|3
(

1 − hα

2

)n−i
)

≤

c · hp+1|z0|3 + c · hp · (120 + 594α2) ≤ 130c · hp.

Remark 3.4.3.1 If, in (3.29), the exponent of |zi| had not been changed to 2, then the integral
of g would have been significantly more complicated. (Interestingly, similar complication occurs,
if one considers simply |zi| instead of |zi|2.) The rational pair 1

4 and 1
2 in the definition of g has

also been a fortunate choice: when working with the numbers 1
5 and 1

2 instead, for example,
Mathematica produced so complicated integrals that were practically useless from the viewpoint
of further analysis.

Remark 3.4.3.2 An alternative approach to analyze sum (3.30) is to estimate e−
hα
4

(n−i) above
by 1. However, the resulting integral would not be much simpler in that case either. (Then we
would use the boundedness of α lnα for α ∈ (0, α0].) Compare the above calculations with their
counterparts in the pitchfork case.

Finally, we prove a closeness estimate on [z0, 0) for α ≤ 0. We begin with a simple obser-
vation on monotonicity of the sequence zn ≡ zn(α). (As before, for brevity, the dependence on
h is still suppressed.)

Lemma 3.4.9 Suppose that α ≤ 0 and assumption (3.23) hold. Then for any 0 < h ≤ h0,
−α0 ≤ α ≤ β ≤ 0 and n ∈ N we have that

0 > zn(α) ≥ zn(β).

Proof. By definition, we have that z0(α) = z0(β) = z0, so suppose that for some n we already
know that zn(α) ≥ zn(β). Then, by the definition of the sequence zn, further by the facts
that the function z 7→ Nϕ(h, z, α) is monotone increasing and the function α 7→ Nϕ(h, z, α) is
monotone decreasing, we get that

zn+1(α) = Nϕ(h, zn(α), α) ≥ Nϕ(h, zn(β), α) ≥ Nϕ(h, zn(β), β) = zn+1(β),

which completes the induction. �

This means that 0 > zn(α) ≥ zn(0) holds for α ≤ 0, hence it is enough to give a lower
estimate for zn(0). But such an estimate has been constructed in Lemma 2.4.3, namely we
recall the following.

Lemma 3.4.10 Under assumption (3.23), we have for n ∈ N that

zn(0) ≥ z0

and for n ≥ b 1
hc + 1

zn(0) ≥ − 2

nh
.
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Then we can simply estimate (3.28) for α ≤ 0 as follows. Supposing that n ≥ 1 we get that

sup
[zn,zn+1]

| id− JE | ≤ c · hp+1|z0|3
n∏

j=1

(
1 + hα +

7

4
hmax

(
zj , J

E(zj)
))

+

c · hp+1
n−1∑

i=0

|zi|3
n∏

j=i+2

(
1 + hα+

7

4
hmax

(
zj , J

E(zj)
))

≤

c · hp+1|z0|3 · 1 + c · hp · h
n∑

i=0

|zi(0)|3 · 1 ≤

c · hp


h|z0|3 + h

b 1
h
c∑

i=0

|zi(0)|2 + h

n∑

i=b 1
h
c+1

|zi(0)|2

 ,

where, of course, for n ≤ b 1
hc, the sum above

∑n
i=b 1

h
c+1 should be omitted. But

h

b 1
h
c∑

i=0

|zi(0)|2 ≤ (h+ 1) · z2
0 = 2z2

0 ,

and

h

n∑

i=b 1
h
c+1

|zi(0)|2 ≤ h

n∑

i=b 1
h
c+1

4

i2h2
≤ 4

h

∫ ∞

1
h
−1

1

i2
=

4

1 − h
≤ 8.

We have thus proved that
sup
[z0,0)

| id− JE | ≤ 12c · hp.



Chapter 4

Conjugacy in the discretized

pitchfork bifurcation

Summary. In Section 4.1, some conditions on the right hand side of the dif-

ferential equation to define a pitchfork bifurcation for the induced map x 7→
Φ(h, x, α) are examined and one set of conditions is chosen for further study. In

Section 4.2, the necessary and sufficient conditions on the discretization map

x 7→ ϕ(h, x, α) to undergo a pitchfork bifurcation are identified, then normal

forms of x 7→ Φ(h, x, α) and x 7→ ϕ(h, x, α) together with appropriate closeness

estimates are derived. In Section 4.3, a conjugacy between the exact Φ(h, ·, α)
and discretized ϕ(h, ·, α̃) families is defined. Notice that a parameter shift is

needed, but |α− α̃| = O(hp). Finally, in Section 4.4 we show that the constructed

conjugacy is O(hp)-close to the identity and this estimate is optimal.

4.1 Introduction

Suppose we have a one-dimensional ordinary differential equation depending on a scalar bifur-
cation parameter α ∈ R

ẋ = f(x, α) (4.1)

and its one-step discretization

Xn+1 := ϕ(h,Xn, α), n = 0, 1, 2, . . . , (4.2)

where h > 0 is the step-size of the sufficiently smooth one-step method ϕ : R+ × R × R → R

of order p ≥ 1, and the function f : R × R → R is of class C p+k+1 with k ≥ 6 and the last
derivatives uniformly bounded.

The order of the numerical method means that

|Φ(h, x, α) − ϕ(h, x, α)| ≤ const · hp+1, ∀h ∈ [0, h0],∀ |x| ≤ ε0,∀ |α| ≤ α0. (4.3)

Here Φ(h, ·, α) : R → R is, as always, the time-h-map of the solution flow induced by (4.1) at
parameter value α, further h0, ε0 and α0 are some small positive constants.

Suppose that the origin x = 0, α = 0 is an equilibrium as well as a pitchfork bifurcation point
for (4.1), that is the following conditions hold

f(0, α) = 0, ∀ |α| ≤ α0,

fB
x = 0, fB

xx = 0, fB
xxx 6= 0, fB

xα 6= 0. (4.4)

97
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We apply the same notation as in the transcritical case, including, for example, evaluation
B at the bifurcation point x = 0 and α = 0, and later, evaluation E at general parameter values
h and α.

Remark 4.1.1 In this context f is usually assumed to be odd, that is f(x, α) = −f(−x, α) for
|x| ≤ ε0 and |α| ≤ α0. The above (4.4) asymmetric pitchfork conditions are thus weaker than
the usual ones. If symmetry were assumed, the normal form transformations in the next section
would be much easier. Symmetry, however, is not essential here.

We remark that these pitchfork conditions can even be slightly weakened (cf. the corre-
sponding remark in the transcritical case). For maps of form x 7→ g(x, α), [46], for example,
uses again point conditions at the bifurcation point (0, 0), formulated in Theorem 4.1.1 below.
However, since the corresponding point conditions in [46] proved to be insufficient to define
a transcritical bifurcation, we investigated with care whether these point conditions do really
define a pitchfork now. Interestingly, this time the answer is affirmative, as shown by Theorem
4.1.1.

Summarizing, as in the transcritical case, we have not adopted the most general conditions
for a pitchfork bifurcation in (4.4), nevertheless symmetry is not assumed.

Definition A smooth map x 7→ g(x, α) defined near the origin (0, 0) and depending smoothly on
a parameter α is said to have a pitchfork bifurcation at the origin, if there exists a neighbourhood
of (0, 0) in which there are exactly three distinct branches of fixed points ρ0(α) and ρ−(α) <
0 < ρ+(α) of the map g for α < 0, while there is a unique branch of fixed points ρ0(α) of g for
α ≥ 0. (Of course, the converse situation—with inequalities α < 0 and α ≥ 0 exchanged—is
also called a pitchfork bifurcation.)

Theorem 4.1.1 (Asymmetric pitchfork bifurcation) Assume we have a smooth map x 7→
g(x, α) defined near the origin (0, 0) and depending smoothly on a parameter α such that

g(0, 0) = 0, gx(0, 0) = 1, gxx(0, 0) = 0, gxxx(0, 0) 6= 0, gα(0, 0) = 0 and gxα(0, 0) 6= 0.

Suppose that gxxx(0, 0) · gxα(0, 0) > 0. Then the map g undergoes a pitchfork bifurcation
locally at the origin, moreover, there exist positive constants c0 > 0, c2 > c1 > 0 such that
|ρ0(α)| ≤ c0|α| (for |α| ≤ α0) and c1|α|1/2 ≤ |ρ±(α)| ≤ c2|α|1/2 (for −α0 ≤ α < 0) hold with
some α0 > 0 sufficiently small.

The case gxxx(0, 0) · gxα(0, 0) < 0 yields the ”mirror-symmetrical” counterpart: there are
three branches of fixed points for α > 0 and a unique branch for α ≤ 0 with similar estimates.

Proof. Notation introduced here is understood to be ”local”, not to interfere with any nota-
tion outside this proof. An appropriate degree of smoothness of g is assumed in order for all
derivatives in the proof to exist. Let us define G(x, α) := g(x, α) − x. We are then interested in
the roots of G. By multiplying G with a suitable constant, we can assume that Gxα(0, 0) = 1.
Then conditions on g imply that G has a Taylor expansion

G(x, α) = α2s0(α) + (α+ α2s1(α))x + αs2(α)x2 + (r + αs3(α))x3 + s4(x, α)x4 (4.5)

valid locally near the origin with an r 6= 0 constant and si being smooth functions. Assume,
say, that r > 0 (corresponding to gxxx(0, 0) · gxα(0, 0) > 0), the other case is symmetrical.

Let K > 0 be such that |s0| ≤ K and set c0 := K + 1. Then, if α 6= 0, it is elementary to
see that G(c0|α|, α)/α2 and G(−c0|α|, α)/α2 have opposite signs for every α, 0 6= |α| ≤ α0 with
a suitably small α0 > 0, since the functions si are bounded. So the intermediate value theorem
applies and we get a branch of zeros |ρ0(α)| ≤ c0|α| of G(·, α) for 0 6= |α| ≤ α0. But at α = 0
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it is seen that for x = 0, G(x, 0) = 0 and—due to the boundedness of s4—this zero is unique,
provided that we are focusing on a small enough neighbourhood of the origin.

Now consider the −α0 ≤ α < 0 case and set c1 := 1
2
√

r
and c2 := 4c1. It is again elementary to

see that G(c1|α|1/2, α)/|α|3/2 < 0, while G(c2|α|1/2, α)/|α|3/2 > 0, if α0 is small enough. Hence
G(·, α) has a branch ρ+(α) of zeros in the interval [c1|α|1/2, c2|α|1/2] for every −α0 ≤ α < 0.
Similarly, G(−c1|α|1/2, α)/|α|3/2 > 0 and G(−c2|α|1/2, α)/|α|3/2 < 0 for every −α0 ≤ α < 0
with α0 being small enough, yielding another branch ρ−(α) of zeros in [−c2|α|1/2,−c1|α|1/2].

So far we have located three distinct zeros of G(·, α) for every α < 0, and one zero for every
α ≥ 0 close to zero. We have also seen that the zero at α = 0 is unique, if we are in a sufficiently
small neighbourhood of the origin (0, 0).

It is easily seen that Gxxx(x, α) > 0 if |x| and |α| are small enough, since the derivatives of
s4 (with respect to x and up to order 3) are bounded. This means that for every fixed α with
|α| ≤ α0 the function x 7→ Gx(x, α) is strictly convex, hence it has at most 2 zeros in the vicinity
of the origin. So G(·, α) can have at most 2 local extrema, thus 3 zeros at most.

Finally, observe that Gxα(x, α) > 0, too, for all small |x| and |α| values, implying that
α 7→ Gx(x, α) is strictly increasing for any such x’s, hence the graph of the convex function
x 7→ Gx(x, α) ”moves upwards” if α increases, so the number of zeros of Gx(·, α) can only
decrease as α increases—but this means that the number of zeros of G(·, α) is also a nonincreasing
function of α.

We have thus proved that G(·, α) has exactly 3 zeros for every negative α, and exactly one
zero for any nonnegative α, in a neighbourhood of the origin, therefore, fixed points of our
original map g form a local pitchfork near the origin. �

Remark 4.1.2 Let us illustrate the theorem by depicting the fixed points of the map

x 7→ α2 + (1 + 2α) x+
(
1 + α2

)
x3 − 5x4,

with the α-axis being horizontal:
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Upon having a closer look at the origin, we locally recognize the missing pitchfork.
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Remark 4.1.3 The function x 7→ G(x, α) in (4.5) can be viewed as a perturbation of the ”normal
form” x 7→ N(x, α) := αx+r x3, so Theorem 4.1.1 says that there is a one-to-one correspondence
between zeros of N(·, α) and G(·, α) for every value of the parameter α near 0, moreover, their
branches of zeros have the same order of magnitude in terms of α near 0. Generalizations of these
questions constitute the content of the preparation theorems of Weierstrass [39] or Malgrange
[1], often encountered in singularity theory and in the theory of differential operators. How the
”product structure” of a (complex or real analytic, C∞ or Ck) function over the complex or real
numbers persists under perturbations is investigated in different versions of these theorems. (As
[39] puts it: ”In many cases the investigation of an arbitrary function holomorphic at a point
(z0, w0) can be reduced to the investigation of a function which is a polynomial with respect to
one of the variables z, w.”) Our elementary proof is thus a special case of these general theorems.

Remark 4.1.4 In the previous remark we have not specified which perturbations are allowed.
If the perturbation of N(·, α) becomes ”large”, for example, condition gα(0, 0) = 0 is dropped in
Theorem 4.1.1, then the structure of the branches of zeros near the origin topologically changes.
As an example, consider the modified map

x 7→ 1

30
α+ α2 + (1 + 2α) x+

(
1 + α2

)
x3 − 5x4.

The fixed points of this map are plotted below: a pitchfork is about to be born.
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4.2 Construction of the normal forms

In this section, we compute normal forms for the maps

x 7→ Φ(h, x, α) (4.6)
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and

x 7→ ϕ(h, x, α) (4.7)

near the equilibrium being also a pitchfork bifurcation point.

To ensure that the origin x = 0 is a fixed point also for the discretization map (4.7), we
assume that

ϕ(h, 0, α) = 0 (4.8)

holds for sufficiently small h ≥ 0 and |α|. Suppose further that

ϕx(h, 0, 0) = 1 and ϕxx(h, 0, 0) = 0 (4.9)

hold for all, sufficiently small h ≥ 0. These conditions are necessary and sufficient for (4.7) with
property (4.3) to undergo a pitchfork bifurcation near the origin. Necessity is illustrated by three
examples below, while sufficiency is proved by the normal form transformations themselves in
the rest of the section.

Example 4.2.1 Suppose we are given a map

ϕ(h, x, α) := h3p+1 + (1 + hα)x + hx3.

For this map ϕ, condition ϕ(h, 0, α) = 0 does not hold, but ϕ satisfies (4.3) with Φ(h, x, α) :=
(1 + hα)x+ hx3. This latter map has a pitchfork bifurcation at the origin, ϕ however does not,
since it can be shown (for example, by computing the discriminant −h4

(
27h6p + 4α3

)
of the

cubic polynomial ϕ(h, x, α)− x, or even by determining its roots exactly) that at α = −3h2p

22/3 the
map ϕ has exactly two fixed points, thus it can not have a pitchfork bifurcation. The figure
below depicts the solution of ϕ(h, x, α) − x = 0 (the α-axis is horizontal and h > 0 is fixed).
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Example 4.2.2 Suppose now we have a map

ϕ(h, x, α) := (1 + hα)x+ hp+1x2 + hx3.

Clearly, this ϕ violates condition ϕxx(h, 0, 0) = 0, but ϕ satisfies (4.3) with Φ(h, x, α) :=

(1 + hα)x+ hx3. The fixed points of ϕ are given by x = 0 and x± = 1
2

(
−hp ±

√
h2p − 4α

)
, so

at α = 0 it has exactly two distinct fixed points, which is impossible in a pitchfork scenario.

Example 4.2.3 Suppose finally that the discretized map has the form

ϕ(h, x, α) := (1 + hα− hp+1)x+ hαx2 + hx3.
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This ϕ does not satisfy ϕx(h, 0, 0) = 1, but is sufficiently close to Φ(h, x, α) := (1+hα)x+hαx2+
hx3. It is easily seen that x 7→ Φ(h, x, α) has a pitchfork at the origin. The fixed points of ϕ are

now x = 0 and x± = 1
2

(
−α±

√
4hp − 4α+ α2

)
. But, for example, at α = 2

(
1 −

√
1 − hp

)
, it

again has exactly two fixed points, so ϕ can not have a pitchfork.

We remark that all Runge-Kutta methods satisfy the three requirements (4.8)-(4.9) above.
The following lemma would fit naturally into Chapter 5, however, now we work in one dimension.

Lemma 4.2.1 Suppose that fB = 0, fB
x = 0, fB

xx = 0 and let ϕ be a general s-stage Runge-
Kutta method with step-size h, that is

ϕ(h, x, α) ≡ x+ h

s∑

i=1

γi · ki(h, x, α),

with every function ki (i = 1, 2, . . . , s) satisfying the (implicit) equation

ki(h, x, α) = f(x+ h

s∑

j=1

βij · kj(h, x, α), α),

where γi and βij (i, j = 1, 2, . . . , s) are given real parameters. Then for every h ≥ 0 sufficiently
small we have that ϕx(h, 0, 0) = 1 and ϕxx(h, 0, 0) = 0.

Proof. Since fB = 0, from unique solvability we get for all i that ki(h, 0, 0) ≡ 0, implying the
well-known property (4.8). On the other hand, differentiating the implicit defining equation we
get that

(ki)x(h, 0, 0) =


1 + h

s∑

j=1

βi,j (kj)x(h, 0, 0)


 fx


h

s∑

j=1

βi,j kj(h, 0, 0), 0


 .

But kj(h, 0, 0) ≡ 0 and fx(0, 0) = 0, hence (ki)x(h, 0, 0) ≡ 0, so ϕx(h, 0, 0) ≡ 1.

Differentiating the defining equation again we see that

(ki)xx(h, 0, 0) = h
s∑

j=1

βi,j (kj)xx(h, 0, 0) fx


h

s∑

j=1

βi,j kj(h, 0, 0), 0


+


1 + h

s∑

j=1

βi,j (kj)x(h, 0, 0)




2

fxx


h

s∑

j=1

βi,j kj(h, 0, 0), 0


 ,

but since fx(0, 0) = fxx(0, 0) = 0, so (ki)xx(h, 0, 0) ≡ 0 and ϕxx(h, 0, 0) ≡ 0. �

Remark 4.2.1 It is remarkable that fB = 0, fB
x = 0 and fB

xx = 0 imply many other vanishing
quantities for Runge-Kutta methods. It can be proved in a similar, recursive fashion as above,
that, for example,

(ki)h(h, 0, 0) ≡ (ki)hh(h, 0, 0) ≡ (ki)hx(h, 0, 0) ≡ (ki)hxx(h, 0, 0) ≡ (ki)hhxx(h, 0, 0) ≡ 0.

These proofs require considerably more computations. A consequence, for example, is that

ϕhx(h, 0, 0) ≡ ϕhhxx(h, 0, 0) ≡ 0.
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However, these latter two formulae—needed later—directly follow from (4.9) as well, so they
hold not only for Runge-Kutta methods. �

Now let us begin with the normal form transformations, first for the time-h-map (4.6), then
for the discretized map (4.7).

Since the pitchfork conditions (4.4) are a special case of the corresponding transcritical
conditions, we start the normal form transformation just as in the transcritical case (but truncate
Taylor-expansion at fourth order instead of third). Also using the same notation and introducing
the same parameter β, we get that the map x 7→ Φ(h, x, α) takes the form

Φ(h, x, α) = (1 + hβ)x+ hx2

(
1

2
fB

xx +
1

2
α0(h, β) · I121(h, α0(h, β))

)
+

1

6
x3
(
ΦB

xxx + α · I031(α) + h · ΦB
hxxx + hα · I131(h, α) + h2 · I230(h)

)
+ x4ψ4(h, x, α)

with some smooth function ψ4, and integrals I031, I131, I230 defined analogously as the other I’s.
Here however fB

xx = 0 by (4.4), and take into account that α0(h, β) = β ·ψa(h, β), as we have
seen in the transcritical case. It is easy to see that ΦB

xxx = 0, ΦB
hxxx = fB

xxx and

I031(α) =

∫ 1

0
Φxxxα(0, 0, τα)dτ ≡ 0.

Now h can be factored out again from the last term, that is ψ4(h, x, α) = h · ψ̂4(h, x, α) holds
with a smooth function ψ̂4. With these considerations we can further rewrite Φ(h, x, α) as

Φ(h, x, α) = (1 + hβ)x+
1

2
hx2 (β · ψa(h, β) · I121(h, α0(h, β))) +

1

6
hx3

(
fB

xxx + β · ψa(h, β) · I131(h, α0(h, β)) + h · I230(h)
)

+ hx4ψ̂4(h, x, α0(h, β)).

Thus, by appropriately defining the smooth functions s2, s3 and s4, we have transformed
(4.6) into

x 7→ Ψ(h, x, β) := (1 + hβ)x+
1

2
hx2 β s2(h, β) +

1

6
hx3 s3(h, β) + hx4 s4(h, x, β). (4.10)

Notice that, due to condition fB
xxx 6= 0, the smooth function s3 is nonzero and has a constant

sign, provided that h and |β| are small. This fact will be important in the final scaling.
We are now concerned with eliminating the quadratic term from (4.10) with—as usual—a

smooth and invertible transformation. (If fB
xx were nonzero, as, for example, in the transcrit-

ical or the fold case, such transformation would not exist.) We will employ the same type of
nonlinear transformation as [35] used in the case of the flip bifurcation to remove the quadratic
term. (As opposed to [35] however, we fortunately have a multiplier β in front of s2 in (4.10).
This is crucial, since otherwise that transformation would be ”truly” singular. Anyway, we will
work with singular expressions, but these will only have removable singularities.) Moreover, we
should carefully keep track of the extra parameter h, which will make our task harder.

So let us define a smooth invertible near-identity transformation T for any h ≥ 0 and β,
sufficiently close to zero, as

x 7→ TE(x) ≡ T (h, x, β) := x+
s2(h, β)

2(1 + hβ)
x2. (4.11)
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(The evaluation operator E now evaluates at (h, x, β).) Then the inverse function of T E reads
as

(TE)[−1](x) =
−1 − hβ +

√
1 + hβ

√
1 + hβ + 2x s2(h, β)

s2(h, β)
, (4.12)

if s2(h, β) 6= 0 and (TE)[−1](x) = x, if s2(h, β) = 0.
Later it will be convenient to know how (T E)[−1] looks like in terms of x. Standard Taylor

expansion tells us that it has the form

(TE)[−1](x) = (4.13)

x− s2(h, β)

2(1 + hβ)
x2 +

s2(h, β)2

2(1 + hβ)2
x3 − x4

3!

∫ 1

0

15
√

1 + hβ s2(h, β)3

(1 + hβ + 2τx s2(h, β))
7
2

· (1 − τ)3dτ .

With this T in hand we transform map (4.6) into

x 7→ ΞE(x) :=
(

(TE)[−1] ◦ ΨE ◦ TE
)

(x).

We now prove that this new map Ξ has the desired property, that is, it no longer contains
any quadratic term. However, it will be also important for us that h’s are preserved in front
of the cubic and quartic terms, just as in the expansion of Ψ. Fortunately this can be proved,
though it is not apparent at all: neither (T E)[−1] nor T contain a factor h (see Remark 4.2.2
below).

The notation and abbreviations of the following lemma should be considered only as ”local”,
not to conflict with any existing notation outside the lemma. (The function Ψ is the same as
before, but the dependence on parameter β is now irrelevant, hence suppressed in the lemma.)

Lemma 4.2.2 Suppose we have a near-identity, invertible, quadratic change of coordinates Q
depending on a parameter h, that is Q(h, x) := x + b(h)x2 with some bounded function b. For
any fixed h ≥ 0 let (QE)[−1] denote the inverse function of x 7→ Q(h, x) and set Π(h, x) :=(
(QE)[−1] ◦ ΨE ◦QE

)
(x). Then

Π(h, 0) = 0,
(

d

dx
Π

)
(h, 0) = 1 + hβ,

(
d2

dx2
Π

)
(h, 0) = hβ (−2 (1 + hβ) b(h) + s2(h, β)) ,

(
d3

dx3
Π

)
(h, 0) = h

(
12β (1 + hβ)2 b(h)2 − 6hβ2 b(h) s2(h, β) + s3(h, β)

)
,

(
d4

dx4
Π

)
(h, x) =

−24 b3 ψ1
2

D3
+

12 b2 ψ2

D
+

144 b3 ψ1
3 q2

D5
− 72 b2 ψ1 ψ2 q

2

D3
+

12 b ψ3 q
2

D
− 120 b3 ψ1

4 q4

D7
+

72 b2 ψ1
2 ψ2 q

4

D5
− 6 b ψ2

2 q4

D3
− 8 b ψ1 ψ3 q

4

D3
+
ψ4 q

4

D
,

where D := (QE)′
(
(QE)[−1](Ψ(h,QE(x)))

)
, ψi :=

(
di

dxi Ψ
)

(h,QE(x)) (i = 1, 2, 3, 4), b := b(h)

and q := (QE)′(x).
Finally, (

d4

dx4
Π

)
(0, x) =

−24 b(0)3

D0
3 +

144 b(0)3 q0
2

D0
5 − 120 b(0)3 q0

4

D0
7 ≡ 0,

where D0 and q0 are D and q above, respectively, evaluated at h = 0.
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Proof. The proof is nothing else but formal differentiation of the composition Π.

For expressions
(

di

dxi Π
)

(h, 0) (i = 0, 1, 2, 3) we have taken into account only the follow-

ing pieces of information—yielding some further generalizations of the lemma: QE(0) = 0,
(QE)[−1](0) = 0, (QE)′(0) = 1, (QE)′′(0) = 2b(h), (QE)′′′(0) = 0, (QE)′′′′(0) = 0, Ψ(h, 0) = 0,(

d
dx Ψ

)
(h, 0) = 1 + hβ,

(
d2

dx2 Ψ
)

(h, 0) = hβ s2(h, β),
(

d3

dx3 Ψ
)

(h, 0) = h s3(h, β). Beyond these

requirements the concrete form of Q(h, x) and Ψ(h, x) is irrelevant.

For
(

d4

dx4 Π
)

(h, x) we have only used properties (QE)′′(·) = 2b(h), (QE)′′′(·) = 0 and

(QE)′′′′(·) = 0, where ”·” stands for any argument. (All of these are easily implemented in
Mathematica as replacement rules.)

Finally, for
(

d4

dx4 Π
)

(0, x) one takes into consideration only that
(

d
dx Ψ

)
(0, QE0(x)) = 1,

(
d2

dx2 Ψ
)

(0, QE0(x)) =
(

d3

dx3 Ψ
)

(0, QE0(x)) =
(

d4

dx4 Ψ
)

(0, QE0(x)) = 0, (QE0)′′(·) = 2b(0),

(QE0)′′′(·) = 0, (QE0)′′′′(·) = 0, where superscript E0 denotes evaluation at h = 0. The fact
that (QE0)[−1](Ψ(0, QE0(x))) = x means that D0 = q0, so the last expression is identically zero
indeed. �

By Taylor expansion

ΞE(x) =

ΞE(0) + (ΞE)′(0)x+
1

2!
(ΞE)′′(0)x2 +

1

3!
(ΞE)′′′(0)x3 +

x4

3!

∫ 1

0
(ΞE)′′′′(τx) · (1 − τ)3dτ,

where the evaluation operator E , as before, evaluates at general h and β values.

From the lemma we conclude that the constant term above is always 0 and the linear term
has coefficient (1 + hβ), for any choice of b(h) in (4.11). We also get that the quadratic term of
Ξ can be eliminated if and only if

b(h) =
s2(h, β)

2(1 + hβ)
,

justifying the definition of T . But beyond this, the above form of b(h) again does not play any
role: as established by the lemma, a multiplier h always appears in the coefficient of x3 and in
that of x4, regardless of the choice of the bounded function b(h).

Remark 4.2.2 In the lemma above we have used the exact and full form of the inverse function
(QE)[−1] (or (TE)[−1]). It is interesting that this seems necessary: we could not prove the
presence of a factor h in the coefficient of x4 in the expansion of Ξ when we worked with a

formula like (TE)[−1](x) = x− s2(h,β)
2(1+h β)x

2 + s2(h,β)2

2(1+h β)2
x3 + x4 s∗(h, x, β) (cf. (4.13)) without any

further assumption on the structure of the smooth function s∗.
An alternative (and more general) approach to establish that h is present in the coefficient of

x4 would be to compare coefficients of x on both sides of the equation T E ◦ΞE = ΨE ◦TE . This
avoids computing the inverse of T . The knowledge of the exact form of this inverse, however,
will ease the normal form transformations for (4.7).

We proceed further. Let us choose b(h) as in (4.11). Then by simple substitution into the
third derivative in the lemma above, we get that

ΞE(x) = (1 + hβ)x+ h · ŝ3(h, β)x3 + h · ŝ4(h, x, β)x4

with ŝ3(h, β) := (1+hβ) s3(h,β)+3β s2(h,β)2

6+6hβ and some smooth function ŝ4.
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Now we apply a final scaling η := x√
|ŝ3(h,β)|

. Then it is easy to see that x 7→ ΞE(x) becomes

η 7→ (1 + hβ)η + h · s · η3 + h · η̂4(h, η, β)η4 (4.14)

with a smooth η̂4(h, η, β) :=
ŝ4(h,η

√
|ŝ3(h,β)|,β)

|ŝ3(h,β)|3/2 and s := sign(ŝ3(h, β)) = ±1, the sign being

independent of h ∈ [0, h0] and β sufficiently close to zero, since for such parameter values

sign(ŝ3(h, β)) ≡ sign(s3(h, β)) ≡ sign(fB
xxx)

by (4.10).

Lemma 4.2.3 There are smooth invertible coordinate and parameter changes transforming the
system x 7→ Φ(h, x, α) into (4.14). �

Now let us consider the discretization map ϕ. Again, the normal form transformation begins
exactly as in the transcritical case and we will use notation of the corresponding lemma in the
transcritical case.

It is easy to see (cf. Remark 4.2.1) that conditions (4.9) imply Ĩ110(h) ≡ 0 and Ĩ220(h) ≡ 0,
so χ10(h) ≡ 0 and χ20(h) ≡ 0. Taking into account that now fB

xx = 0, we get that

ϕ(h, x, α) = (1 + hα · fB
xα + hα · χ11(h, α))x + hα · χ21(h, α)x2+

1

6
x3
(
ϕB

xxx + α · Ĩ031(α) + h · ϕB
hxxx + hα · Ĩ131(h, α) + h2 · Ĩ230(h)

)
+ x4χ4(h, x, α).

Now observe that ϕB
xxx = 0 and ϕB

hxxx = ΦB
hxxx = fB

xxx. It is also true that ϕxxxα(0, 0, α) =

Φxxxα(0, 0, α) ≡ 0, so Ĩ031(α) ≡ 0. Finally, ϕxxxx(0, τx, α) ≡ 0 and

ϕxxxx(h, τx, α) = ϕxxxx(0, τx, α) + h ·
∫ 1

0
ϕhxxxx(σh, τx, α)dσ,

so χ4(h, x, α) = h · χ̃4(h, x, α) with some smooth function χ̃4. This means that

ϕ(h, x, α) = (1 + hα · fB
xα + hα · χ11(h, α))x + hα · χ21(h, α)x2+

1

6
h
(
fB

xxx + α · Ĩ131(h, α) + h · Ĩ230(h)
)
x3 + h · χ̃4(h, x, α)x4.

The function β̃(h, α) is defined analogously as in the transcritical case. Since Ĩ110(h) ≡ 0,
β̃(h, 0) = 0, so the existing inverse α̃(h, ·) of β̃(h, ·) can be factored as α̃(h, β) = β · ψ̃a(h, β) with
some smooth ψ̃a. Therefore (4.7) has been transformed into

x 7→ Ψ̃(h, x, β̃) := (1 + hβ̃)x+
1

2
hx2 β̃ s̃2(h, β̃) +

1

6
hx3 s̃3(h, β̃) + hx4 s̃4(h, x, β̃)

with some smooth functions s̃2, s̃3 and s̃4. The same arguments as in the transcritical case show
that |β(h, α)−β̃(h, α)| ≤ const·hp, |α̃(h, β)−α0(h, β)| ≤ const·hp, |si(h, β)−s̃i(h, β)| ≤ const·hp

(i = 2, 3) and |s4(h, x, β) − s̃4(h, x, β)| ≤ const · hp.

The analogue of transformation T is defined now as

x 7→ T̃ (h, x, β̃) := x+
s̃2(h, β̃)

2(1 + hβ̃)
x2.
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Since T and T̃ have the same form, Lemma 4.2.2 guarantees that transformation

x 7→ Ξ̃(h, x, β̃) :=

((
T̃ (h, ·, β̃)

)[−1]
◦ Ψ̃(h, ·, β̃) ◦ T̃ (h, ·, β̃)

)
(x)

has the desired structure, that is, it does not contain any quadratic term, further, a factor h is
present in the coefficients of x3 and x4. Therefore, with some smooth functions ˜̂s3 and ˜̂s4 (cf.
the definition of ŝ3 and ŝ4 after Remark 4.2.2) we have that

Ξ̃(h, x, β̃) = (1 + hβ̃)x+ h · ˜̂s3(h, β̃)x3 + h · ˜̂s4(h, x, β̃)x4.

After a final scaling (cf. (4.14)) and sign consideration, we have proved that (4.7) can be
transformed into

η̃ 7→ (1 + hβ̃)η̃ + h · s · η̃3 + h · η̃4(h, η̃, β̃)η̃4

with the same s = ±1 as in (4.14) and a smooth function η̃4.

So far, the structure of the transformation has been considered. As for the closeness esti-
mates, one uses a series of standard triangle inequalities and mean value theorems to obtain
O(hp)-closeness. More precisely, since all the necessary derivatives are assumed to be bounded,
and we know that |β − β̃| = O(hp) and |si − s̃i| = O(hp) (i = 2, 3, 4), we get that

∣∣∣T (h, x, β) − T̃ (h, x, β̃)
∣∣∣ = O(hp),

∣∣∣Ψ(h, x, β) − Ψ̃(h, x, β̃)
∣∣∣ = O(hp),

and from (4.12) or (4.13) that
∣∣∣∣(T (h, ·, β))[−1] −

(
T̃ (h, ·, β̃)

)[−1]
∣∣∣∣ (x) = O(hp),

so ∣∣∣Ξ(h, x, β) − Ξ̃(h, x, β̃)
∣∣∣ = O(hp),

and ∣∣∣ŝ3(h, β) − ˜̂s3(h, β̃)
∣∣∣ = O(hp),

∣∣∣ŝ4(h, x, β) − ˜̂s4(h, x, β̃)
∣∣∣ = O(hp),

and ∣∣∣η̂4(h, η, β) − η̃4(h, η, β̃)
∣∣∣ = O(hp).

The following theorem has been established.

Theorem 4.2.4 There are smooth invertible coordinate and parameter changes transforming
the system

x 7→ ϕ(h, x, α)

into
η̃ 7→ (1 + hβ̃)η̃ + s · hη̃3 + hη̃4 · η̃4(h, η̃, β̃)

where η̃4 is a smooth function.
Moreover, the smooth invertible coordinate and parameter changes above and those in Lemma

4.2.3 are O(hp)-close to each other, further

|η̂4 − η̃4| ≤ const · hp
�
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To finish the normal form transformations, we can apply a parameter shift β̃ 7→ β (being
O(hp)-close to the identity, as we have seen) to the normal form of the discretization mapping
above. So from now on the bifurcation parameter α is used again instead of β and β̃. To simplify
our notation further, instead of dummy variables η and η̃ the letter x will be used, and subscript

4 in η̂4 and η̃4 is dropped.

4.3 Construction of the conjugacy

We have derived that the normal forms in the pitchfork case are

NΦ(h, x, α) = (1 + hα)x + s · hx3 + hx4 η̂(h, x, α) (4.15)

Nϕ(h, x, α) = (1 + hα)x+ s · hx3 + hx4 η̃(h, x, α) (4.16)

with s = 1 or s = −1, where η̂ and η̃ are smooth functions. Let K > 0 denote a uniform bound

on
∣∣∣ di

dxi η(h, ·, α)
∣∣∣ (i ∈ {0, 1, 2}, η ∈ {η̂, η̃}) in a neighbourhood of the origin for any small h > 0

and |α|, as well as a uniform bound on
∣∣∣ d
dα η(h, x, ·)

∣∣∣ (η ∈ {η̂, η̃}) in a neighbourhood of the

origin for any small h > 0 and |x|. We also have that there exists a constant c > 0 such that

|NΦ(h, x, α) −Nϕ(h, x, α)| ≤ c · hp+1x4 (4.17)

holds for all sufficiently small h > 0, |x| ≥ 0 and |α| ≥ 0. Throughout the section, c will denote
this particular positive constant.

We will consider the case s = −1, the other one is similar due to symmetry. Then it is easy
to see that ωΦ,0(h, α) ≡ 0 is an attracting fixed point of the map NΦ(h, ·, α) for α ≤ 0, and
repelling for α > 0. For any fixed h > 0 and α > 0, this map possesses another two attracting
fixed points, denoted by ωΦ,+ ≡ ωΦ,+(h, α) > 0 and ωΦ,− ≡ ωΦ,−(h, α) < 0. The three branches
of fixed points, ωΦ,0(h, α) and ωΦ,±(h, α) merge at α = 0.

Analogous results hold for the map Nϕ(h, ·, α). Its fixed points are denoted by ωϕ,0 and ωϕ,−
(or ωϕ,+).

The construction of a conjugacy is completely analogous to the transcritical case (the braches
of fixed points of the pitchfork and the transcritical bifurcation in the lower half-plane x ≤ 0
look topologically the same), there will be only one minor difference in a starting value. The
development of the closeness estimates is also similar in character, however, the proofs of the
two key lemmas will be a bit more technical. Here, again, we formulate and prove estimates
only in the x ≤ 0 region—the x > 0 case is symmetrical.

In what follows, suppose that

0 < h ≤ h0 := min

(
1

10
, 8K2

)
,

|x| ≤ ε0 := min

(
1

10
,

1

5K

)
and (4.18)

|α| ≤ α0 := min

(
1

288
,

1

72K2

)
.

(However, if the domain of definition of the functions η̂ and η̃ is smaller than (0, h0]× [−ε0, ε0]×
[−α0, α0] given above, then h0, ε0 or α0 should be decreased further.)
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Lemma 4.3.1 For every 0 < h ≤ h0 and 0 < α ≤ α0 we have that

{ωϕ,− , ωΦ,−} ⊂
(
−
√

2α,−4

5

√
α

)
⊂
(
−
√

2α,−
√

3

5
α

)
.

Proof. By definition, ωϕ,− < 0 solves α− x2 + x3 · η̃(h, x, α) = 0, that is

ωϕ,− = −
√

α

1 − ωϕ,− · η̃(h, ωϕ,− , α)
.

But |x η̃| ≤ ε0K ≤ 1
2 implies, for example, 1

2 ≤ 1 − ωϕ,− · η̃(h, ωϕ,− , α) ≤ 25
16 , completing the

proof. (In some calculations, the weaker upper bound −
√

3
5α will yield a numerically simpler

result.) The proof for ωΦ,− is similar. �

The construction of the homeomorphism JE is completely analogous to that in the transcritical
case, hence is omitted here. The only difference is that we set

x0 := −
√
α

8
(α > 0)

as a starting value in the inner region. (Set further z0 := −ε0. Then conditions (4.18) imply that
NE

ϕ and NE
Φ (together with their inverses) are monotone increasing, further |α| < 392

K2 implies

x0(α) > x1(h, α) and
√

2α0 < |z0| < 1
2K implies z0 < z1(h, α). This means that xn is monotone

decreasing, yn is monotone increasing (if α > 0 and n ≥ 0), and limn→∞ xn(h, α) = ωϕ,−,
while limn→∞ yn(h, α) = ωϕ,0 . Moreover, zn is monotone increasing, further, for α > 0,
limn→∞ zn(h, α) = ωϕ,− and for α ≤ 0, limn→∞ zn(h, α) = ωϕ,0 .)

The following figure shows the branch of stable and unstable fixed points of N E
ϕ in the (α, x)-

plane together with the first few terms of the inner sequences (xn(h, α) and yn(h, α)), and the
outer sequence zn(h, α) with some h > 0 and α fixed. The arrows indicate the direction of the
sequences.

-1 -0.5 0.5 1

-1

-0.5

0.5

1

4.4 The closeness estimate for the conjugacy

4.4.1 Optimality at the fixed points

We first prove that the constructed conjugacy JE is O(hp α)-close to the identity at the fixed
points ωϕ,−(h, α), further, an explicit example shows that this estimate is optimal in h and α.
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This means that our O(hp)-closeness estimates for | id − JE | near a pitchfork bifurcation
point on (0, h0] × [−ε0, ε0] × [−α0, α0] are optimal in h.

The following auxiliary estimate will frequently be used.

Lemma 4.4.1 For any 0 < h ≤ h0, −ε0 ≤ x < 0 and −α0 ≤ α ≤ α0, we have that

(NE
Φ )′(x) ≤ 1 + hα− 5

2
hx2.

Proof. The conditions in (4.18) have been set up to imply this inequality. �

Lemma 4.4.2 For any 0 < h ≤ h0 and 0 < α ≤ α0 (satisfying (4.18)), we have that

|ωϕ,− − ωΦ,− | ≤ 8c · hp α.

Proof. (cf. its transcritical counterpart) By Lemma 4.3.1, (4.17) and Lemma 4.4.1 we have
that

|ωϕ,− − ωΦ,−| ≤ 4c · hp+1α2 +

(
1 − hα

2

)
|ωϕ,− − ωΦ,−|,

which yields the desired result. �

Remark 4.4.1 on optimality. The example below shows a situation when the distance of
fixed points of normal forms satisfying (4.17) is bounded from below by O(hp) (h → 0). Since
now we are going to deal with cubic polynomials, we do not attempt to construct their explicit
solutions (as we did with the quadratic polynomials in the transcritical case), but we give a
more general, yet simpler argument.

Set NΦ(h, x, α) := (1 +hα)x−hx3 and Nϕ(h, x, α) := (1 +hα)x−hx3 +hp+1x4. Then these
maps satisfy (4.17) in a neighbourhood of the origin, further, ωΦ,− = −√

α. As for ωϕ,− , we see

that ωϕ,− = −
√

α
1−hp ωϕ,−

. Then by Lemma 4.3.1 we get that

ωϕ,− ∈
(
−
√

α

1 + hp 4
5

√
α
,−
√

α

1 + hp
√

2α

)

so ωϕ,− > −√
α = ωΦ,− , yielding

|ωϕ,− − ωΦ,−| ≥
∣∣∣∣∣−

√
α+

√
α

1 + hp 4
5

√
α

∣∣∣∣∣ =
√
α

∣∣∣∣1 − 1√
1 + t

∣∣∣∣

with t := hp 4
5

√
α. Then, by (4.18), t ∈ (0, 1). But for any such t

∣∣∣∣1 − 1√
1 + t

∣∣∣∣ =
t√

1 + t(1 +
√

1 + t)
≥ t

4
,

hence

|ωϕ,− − ωΦ,−| ≥
1

5
hp α.
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4.4.2 The inner region

The closeness estimate in (ωϕ,−, x0] is proved for any fixed 0 < h ≤ h0 and 0 < α ≤ α0 in a
similar way as in the transcritical case, hence most intermediate steps and inequalities are left
out or only sketched. However, the key Lemmas 4.4.3 and 4.4.8 are carefully examined.

Now we have that
sup

[x1,x0]
| id − JE | =

c

64
hp+1α2,

while for n ≥ 1

sup
[xn+1,xn]

| id− JE | ≤ sup
[xn,xn−1]

∣∣NE
ϕ −NE

Φ

∣∣+ sup
x∈[xn,xn−1]

((
sup

[{x,JE(x)}]
(NE

Φ )′
)
|x− JE(x)|

)

≤ c · hp+1x4
n +

(
1 + hα− 5

2
hmax

(
xn−1, J

E(xn−1)
)2
)

sup
[xn,xn−1]

| id− JE |,

where we have used Lemma 4.4.1, the fact that the functions id and JE are increasing, further
inequality

sup
[{x,JE(x)}]

(NE
Φ )′ ≤ sup

[{x,JE(x)}]
(1 + hα− 5

2
h · id2) ≤ 1 + hα − 5

2
hmax

(
x, JE(x)

)2
.

In order to prove that the conjugacy JE is O(hp)-close to the identity on (ωϕ,− , x0] for any
h ∈ (0, h0] and α ∈ (0, α0], we will show that

sup
h∈(0,h0]

sup
α∈(0,α0]

sup
n∈N

h
n∑

i=0

x4
i

n−1∏

j=i

(
1 + hα− 5

2
hmax

(
xj, J

E(xj)
)2
)

≤ const (4.19)

holds with a suitable const ≥ 0 (where
∏n−1

j=n is understood to be 1).

First an explicit upper estimate of the sequence max
(
xn, J

E(xn)
)

is given.

Lemma 4.4.3 For n ≥ 0, set

an(h, α) := −4

5

√
α · (1 + hα)n

√
5 + (1 + hα)2n

,

then we have that xn ∈ (ωϕ,− , an) and JE(xn) ∈ (ωΦ,− , an).

Proof. Due to assumptions (4.18), max
(
ωϕ,−, ωΦ,−

)
< an for n ≥ 0, so the intervals in the

lemma are non-degenerate. We proceed by induction. a0 > x0 ≡ JE(x0) ≡ −
√

α
8 is always

satisfied.
So suppose that the statement is true for some n ≥ 0. Condition |x| < 1

3K implies NE
ϕ (x) <

(1 + hα)x− 4
3hx

3, further, by monotonicity of N E
ϕ we get that

xn+1 = NE
ϕ (xn) < NE

ϕ (an) < (1 + hα)an − 4

3
ha3

n, (4.20)

thus it is enough to prove that

an+1 − (1 + hα)an +
4

3
ha3

n > 0. (4.21)
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For brevity, we set λ := hα > 0. Then (4.21) is equivalent to

4

375
(−A+B − C)

√
α (1 + λ)n > 0,

where A := 64 λ (1+λ)2 n

(5+(1+λ)2 n)
3
2

, B := 75 (1+λ)√
5+(1+λ)2 n

and C := 75 (1+λ)√
5+(1+λ)2+2n

. We will show that

−A+B − C > 0.

First put B − C over a common denominator. Then, to eliminate square roots from its

numerator, multiply it by

√
5+(1+λ)2 n+

√
5+(1+λ)2+2 n√

5+(1+λ)2 n+
√

5+(1+λ)2+2 n
. After these manipulations, the product

λ(1 + λ)2n > 0 can be factored out from all three terms. Hence −A+B − C > 0 becomes

−64
(

5 + (1 + λ)2 n
) 3

2

+

75 (1 + λ) (2 + λ)
√

5 + (1 + λ)2 n
√

5 + (1 + λ)2+2 n

(√
5 + (1 + λ)2 n +

√
5 + (1 + λ)2+2 n

) > 0.

The left hand side of the above inequality is decreased, if the denominator of the second term

is replaced by 2
√

5 + (1 + λ)2 n
(

5 + (1 + λ)2+2 n
)

. Then we can multiply the expression by
√

5 + (1 + λ)2 n and all square roots are got rid of: we are to verify

−64

5 + (1 + λ)2 n +
75 (1 + λ) (2 + λ)

2
(

5 + (1 + λ)2+2 n
) > 0.

By condition (4.18), (1 + λ)2 < 75
64 , so it is enough to show that

−64

5 + (1 + λ)2 n +
75 (1 + λ) (2 + λ)

2
(

5 + 75 (1+λ)2 n

64

) > 0.

However, the left hand side above can be factored to yield

32
(

22 + 225λ + 75λ2 + 45λ (1 + λ)2 n + 15λ2 (1 + λ)2 n
)

(
5 + (1 + λ)2 n

) (
64 + 15 (1 + λ)2 n

) ,

which is clearly positive.
The proof for the sequence JE(xn) is the completely similar: by construction of J , the be-

ginning of (4.20) should (and can) be replaced by JE(xn+1) = NE
Φ (JE(xn)) < NΦ(an), but then

everything is unchanged. �

Remark 4.4.2 Attempts to approximate subexpressions of the form (a+ bt)γ with their series
expansions (up to third order) turned out to be insufficient to complete the proof. To find the
above ”purely algebraical” manipulations, Mathematica has been extensively used. The defini-
tion of an is again based on the beautiful parametrized model function of [29].

The sum
∑n

i=0 in (4.19) is split into two at d 6
hαe. This choice is motivated by the following

lemma.
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Lemma 4.4.4 Suppose that n > d 6
hαe. Then

max
(
xn, J

E(xn)
)
< −

√
3

5
α,

hence

1 + hα− 5

2
hmax

(
xn, J

E(xn)
)2
< 1 − hα

2

holds for n > d 6
hαe.

Proof. By virtue of Lemma 4.4.3 it is enough to show that n > d 6
hαe implies an < −

√
3
5α. But

this latter inequality is equivalent to (1+hα)n >
√

75. However, e3 >
√

75, so the corresponding
proof given in the transcritical case suffices here, too. �

Let us turn directly to (4.19) now and fix h ∈ (0, h0], α ∈ (0, α0] and n ∈ N+ arbitrarily.
(If n ≤ d 6

hαe, then the sums
∑n

i=d 6
hα

e+1 below are absent and the proof is simpler.) Using

ωϕ,− < xi < 0, |xi| ≤
√

2α (by Lemma 4.3.1), and max
(
xj , J

E(xj)
)
≤ x0 ≡ JE(x0) ≡ −

√
α
8 (by

monotonicity), further, Lemma 4.4.4, assumption hα < 1 from (4.18) and inequality (1+ 1
A)A ≤ e

(for A ≥ 1), we see that

h

n∑

i=0

x4
i

n−1∏

j=i

(
1 + hα− 5

2
hmax

(
xj, J

E(xj)
)2
)

≤

4hα2

d 6
hα

e∑

i=0

d 6
hα

e−1∏

j=1

(
1 + hα − 5

2
· hα

8

)
+ 4hα2

n∑

i=d 6
hα

e+1

n−1∏

j=i

(
1 − hα

2

)
≤

4hα2

(
1 +

11

16
hα

) 6
hα
(⌈ 6

hα

⌉
+ 1

)
+ 4hα2

n∑

i=d 6
hα

e+1

(
1 − hα

2

)n−i

≤

4hα2

(
1 +

11

16
hα

) 16
11hα

· 11hα
16

· 6
hα
(

6 + 2hα

hα

)
+ 4hα2

∞∑

i=0

(
1 − hα

2

)i

≤

4hα2 · e 66
16 · 8

hα
+ 4hα2 · 2

hα
≤ 1988α.

Therefore, sup[xn+1,xn] | id−JE | ≤ 1988c ·hpα for any h ∈ (0, h0], α ∈ (0, α0] and n ≥ 1, further,

as we have seen, sup[x1,x0] | id − JE| = c
64h

p+1α2, which yield the following lemma.

Lemma 4.4.5 Under assumption (4.18)

sup
(ωϕ,− ,x0]

| id− JE| ≤ 1988c · hpα.

Now the closeness estimate is proved in the interval (y0, ωϕ,0). Recall that y0 = x0 =
JE(x0) ≡ −

√
α
8 and ωϕ,0 = ωΦ,0 ≡ 0.
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Suppose first that n ≥ 1. (The case n = 0 will be examined later.) Then we proceed exactly
as in the transcritical case, so we will only list the differences. We get that

sup
[yn,yn+1]

| id− JE| ≤

[
sup

x∈[yn,yn+1]
sup

[{NE
Φ (x),JE◦NE

ϕ (x)}]

(
(NE

Φ )[−1]
)′
] [

c · hp+1y4
n + sup

[yn−1,yn]
| id− JE |

]
.

The following lemma gives an upper bound on the first term above (and shows a motivation for
the choice of x0 = −

√
α
8 ).

Lemma 4.4.6 Suppose that n ≥ 1, then under assumption (4.18) we have that

sup
x∈[yn,yn+1]

sup
[{NE

Φ (x),JE◦NE
ϕ (x)}]

(
(NE

Φ )[−1]
)′

≤ 1 − hα

4
.

Proof. As in the transcritical case, we have that

sup
x∈[yn,yn+1]

sup
[{NE

Φ (x),JE◦NE
ϕ (x)}]

(
(NE

Φ )[−1]
)′

≤ sup
(−
√

α
8

,0)

1

(NE
Φ )′

≤ . . .

But assumption (4.18) together with x < 0 imply that (N E
Φ )′(x) ≥ 1 + hα− 4hx2 ≥ 0. So

. . . ≤ sup
x∈(−

√
α
8

,0)

1

1 + hα− 4hx2
≤ 1

1 + hα− 4h
(
−
√

α
8

)2 =
1

1 + 1
2hα

≤ 1 − hα

4
. �

We have thus proved (using |yn| ≤
√

α
8 also) that for n ≥ 1

sup
[yn,yn+1]

| id− JE | ≤
(

1 − hα

4

)[
c

64
· hp+1α2 + sup

[yn−1,yn]
| id− JE |

]
.

For n = 0, similarly as in the transcritical case, we get that

sup
[y0,y1]

| id− JE | ≤ 2 · c
64
hp+1α2,

and for n ≥ 1 that

sup
[yn,yn+1]

| id− JE | ≤
(

1 − hα

4

)n

sup
[y0,y1]

| id− JE | +
c

64
hp+1α2

n∑

i=1

(
1 − hα

4

)i

≤

1 · 2 · c
64
hp+1α2 +

c

64
hp+1α2 · 4

hα
≤ c

8
hpα,

using hα ≤ 1 by (4.18). Since the same upper estimate is valid for n = 0, too, we have proved
the following lemma.

Lemma 4.4.7 Under assumption (4.18)

sup
(x0,0)

| id− JE | ≤ c

8
hpα.
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4.4.3 The outer region

In this section, we first prove an O(hp) closeness-estimate in the interval [z0, ωϕ,−) for α > 0.
Then the closeness is proved on [z0, ωΦ,0) ≡ [z0, 0) for α ≤ 0.

We are well familiar with the inequalities below (cf. the transcritical case).

For n ≥ 1 we have that

sup
[zn,zn+1]

| id− JE | ≤ c · hp+1z4
0

n∏

j=1

(
1 + hα− 5

2
hmax

(
zj, J

E(zj)
)2
)

+

c · hp+1
n−1∑

i=0

z4
i

n∏

j=i+2

(
1 + hα− 5

2
hmax

(
zj , J

E(zj)
)2
)
, (4.22)

where
∏n

j=n+1 is, as always, 1, and

sup
[z0,z1]

| id − JE| ≤ c · hp+1z4
0 .

The lemma gives a lower estimate of the sequence zn for α > 0.

Lemma 4.4.8 For n ≥ 0, set

bn(h, α) := −2
√
α · (1 + hα)n

√
α− 1 + (1 + hα)2n

,

then bn ≤ min
(
zn, J

E(zn)
)
.

Proof. We prove by induction. b0 = −2 < z0 = JE(z0) holds due to assumption (4.18).
Suppose that the statement is true for some n ≥ 0.

We have that NE
ϕ (x) ≥ (1 + hα)x − 3

4hx
3 (by x < 0 and |x| ≤ ε0 <

1
4K ), further, that

(1 + hα)id − 3
4h id

3 is monotone increasing (which is implied by, for example, if |x| ≤ 2
3
√

h
, but

|bn| ≤ 2 is easily seen, and due to h ≤ 1
10 we get |bn| ≤ 2

3
√

h
also), so we obtain that

zn+1 = NE
ϕ (zn) ≥ (1 + hα)zn − 3

4
h z3

n ≥ (1 + hα)bn − 3

4
h b3n, (4.23)

thus it is sufficient to show that

(1 + hα)bn − 3

4
h b3n ≥ bn+1,

being the same as

0 ≤ 2
√
α (1 + λ)n

(
Ã− B̃ + C̃

)
,

with Ã := 3 λ (1+λ)2 n

(−1+α+(1+λ)2 n)
3
2

, B̃ := 1+λ√
−1+α+(1+λ)2 n

and C̃ := 1+λ√
−1+α+(1+λ)2+2 n

, further, with

λ := hα > 0.
Now proceeding just as in Lemma 4.4.3, we first get

0 ≤ 3
(
−1 + α+ (1 + λ)2 n

) 3
2
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− B̃ (2 + λ)
√
−1 + α+ (1 + λ)2+2 n

(√
−1 + α+ (1 + λ)2 n +

√
−1 + α+ (1 + λ)2+2 n

)

to verify. Then multiply the inequality by

√
−1 + α+ (1 + λ)2 n to get

0 ≤ 3

−1 + α+ (1 + λ)2 n

− (1 + λ) (2 + λ)
√
−1 + α+ (1 + λ)2+2 n

(√
−1 + α+ (1 + λ)2 n +

√
−1 + α+ (1 + λ)2+2 n

) .

A sufficient condition for this is

0 ≤ 3

−1 + α+ (1 + λ)2 n − (1 + λ) (2 + λ)

2
(
−1 + α+ (1 + λ)2 n

) ,

but the right hand side is equal to

(1 − λ) (4 + λ)

2
(
−1 + α+ (1 + λ)2 n

) ,

which is positive, if 0 < λ ≡ hα < 1.
When NΦ and JE(zn) are written instead of Nϕ and zn, respectively, the considerations

above remain valid, implying bn ≤ JE(zn). �

Remark 4.4.3 Notice the subtle difference between the chain of inequalities (4.20) and (4.23).
Unlike NE

ϕ (an), quantity NE
ϕ (bn) is not necessarily defined, since bn may lie outside the domain

of definition of NE
ϕ .

Now, since zj < ωϕ,− < 0 and JE(zj) < ωΦ,− < 0, by Lemma 4.3.1 we get that the right-hand
side of (4.22) is at most

c · hp+1z4
0

n∏

j=1

(
1 − hα

2

)
+ c · hp+1

n−1∑

i=0

z4
i

n∏

j=i+2

(
1 − hα

2

)
≤

c · hp+1z4
0 + c · hp+1

n−1∑

i=0

z4
i

(
1 − hα

2

)n−1−i

.

We will show that h
∑n

i=0 z
4
i

(
1 − hα

2

)n−i
is uniformly bounded for any n ≥ 0, 0 < h ≤ h0

and 0 < α ≤ α0.

If n ≥ d 1
hαe and i ≥ n, then it is easy to see that (1 + hα)i ≥ (1 + hα)

1
hα ≥ 1 + 1

hα · hα = 2

implies (1+hα)i√
α−1+(1+hα)2i

≤ 2, hence by Lemma 4.4.8

h
n∑

i=d 1
hα

e
z4
i

(
1 − hα

2

)n−i

≤ h
n∑

i=d 1
hα

e
b4i

(
1 − hα

2

)n−i

≤

16hα2
n∑

i=d 1
hα

e

(
(1 + hα)i

√
α− 1 + (1 + hα)2i

)4(
1 − hα

2

)n−i

≤ 256hα2
∞∑

i=0

(
1 − hα

2

)i

= 512α.
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On the other hand, if n < d 1
hαe, then—by inequalities e

x
2 ≤ 1 + x (x ∈ [0, 1]) and 1 + x ≤ ex

(x ∈ R)—we have that

h

n∑

i=0

z4
i

(
1 − hα

2

)n−i

≤ 16hα2
n∑

i=0

(
(1 + hα)i

√
α− 1 + (1 + hα)2i

)4(
1 − hα

2

)n−i

≤

16hα2
n∑

i=0

e4hαi

(α− 1 + (1 + hα)2i)2 · 1 ≤ 874hα2
n∑

i=0

1

(α− 1 + ehαi)
2 .

Set gh,α(x) ≡ g(x) := hα2

(α−1+ehαx)
2 , if x ∈ [0,∞). Notice that g is bounded at x = 0, and

strictly decreasing on [0,∞), because

g′(x) =
−2h2α3ehαx

(α− 1 + ehαx)
3 < 0.

So, since 0 < α < 1, we see that

874hα2
n∑

i=0

1

(α− 1 + ehαi)
2 = 874h + 874

n∑

i=1

gh,α(i) ≤ 874h + 874

∫ 1
hα

0
gh,α(x)dx =

874h + 874

[
hα2x

(α− 1)2 +
α

(α− 1) (α− 1 + ehαx)
− α ln(α− 1 + ehαx)

(α− 1)2

] 1
hα

x=0

=

874h + 874

(
e− 1 + α2 + α (e− 1 + α) (lnα− ln(e− 1 + α))

(α− 1)2 (e− 1 + α)

)
≤

874h + 874 · e− 1 + α2

(α− 1)2 (e− 1 + α)
≤ 874h +

874

(α− 1)2 < 3584,

since h ≤ 1
10 and α ≤ 1

2 , so α2 ≤ α.

Now combining all the estimates so far in the section, under assumption (4.18) we get that
if α > 0, then

sup
[z0,ωϕ,−)

| id− JE | = sup
n∈N

sup
[zn,zn+1]

| id− JE | ≤

sup
n∈N

max

(
c · hp+1z4

0 , c · hp+1z4
0 + c · hp+1

n∑

i=0

z4
i

(
1 − hα

2

)n−i
)

≤

c · hp+1z4
0 + c · hp · (3584 + 512α) ≤ 3841c · hp.

Finally, a closeness estimate on [z0, 0) for α ≤ 0 is proved. The proof of the next lemma is
identical to its counterpart in the transcritical case.

Lemma 4.4.9 Suppose that α ≤ 0 and assumption (4.18) hold. Then for any 0 < h ≤ h0,
−α0 ≤ α ≤ β ≤ 0 and n ∈ N we have that

0 > zn(α) ≥ zn(β).

So 0 > zn(α) ≥ zn(0) holds for α ≤ 0 and it is enough to give a lower estimate of zn(0).
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Lemma 4.4.10 Under assumption (4.18), we have for n ∈ N that

zn(0) ≥ z0 ≥ − 1

2K

and for n ≥ b16K2

h c
zn(0) ≥ − 2√

nh
.

Proof. Monotonicity of the sequence zn(0) and (4.18) imply the first part. The nontrivial
second inequality is proved by induction. Since zb 16K2

h
c(0) ≥ − 1

2K = − 2√
16K2

≥ − 2√
hb 16K2

h
c
, the

induction can be started. So suppose that n ≥ b 16K2

h c. The function z 7→ Nϕ(h, z, 0) is increas-
ing, so, by the induction hypothesis we have that zn+1(0) = Nϕ(h, zn(0), 0) ≥ Nϕ(h,− 2√

nh
, 0). It

is enough to show that Nϕ(h,− 2√
nh
, 0) ≥ − 2√

(n+1)h
. Multiplying this with

√
h and rearranging,

it suffices to prove that
4

n
√
n

+
8η̃

n2
√
h
≥ 1√

n
− 1√

n+ 1

holds, where is η̃ from (4.16). But 1
2n

√
n
≥ 1√

n
− 1√

n+1
, so it is enough to verify 4 + 8η̃√

nh
≥ 1

2 .

But it is easy to see that conditions n ≥ b 16K2

h c ≥ 16K2

h − 1 and h ≤ 8K2 (from (4.18)) together

with the definition of K imply
∣∣∣ 8η̃√

nh

∣∣∣ ≤ 3. �

Then we can simply estimate (4.22) for α ≤ 0 as follows. Supposing that n ≥ 1 we get that

sup
[zn,zn+1]

| id− JE | ≤ c · hp+1z4
0

n∏

j=1

(
1 + hα− 5

2
hmax

(
zj, J

E(zj)
)2
)

+

c · hp+1
n−1∑

i=0

z4
i

n∏

j=i+2

(
1 + hα− 5

2
hmax

(
zj , J

E(zj)
)2
)

≤

c · hp+1z4
0 · 1 + c · hp · h

n∑

i=0

zi(0)4 · 1 ≤

c · hp


hz4

0 + h

b 16K2

h
c∑

i=0

zi(0)4 + h

n∑

i=b 16K2

h
c+1

zi(0)4


 ,

where, of course, for n ≤ b 16K2

h c, the sum above
∑n

i=b 16K2

h
c+1

is not present. But

h

b 16K2

h
c∑

i=0

zi(0)4 ≤ h ·
(

16K2

h
+ 1

)(
− 1

2K

)4

≤ 2

K2

by h ≤ 8K2, and

h

n∑

i=b 16K2

h
c+1

zi(0)4 ≤ h

n∑

i=b 16K2

h
c+1

16

i2h2
≤ 16

h

∫ ∞

16K2

h

1

i2
=

1

K2
.

We have thus proved that

sup
[z0,0)

| id − JE | ≤ c · hp+1z4
0 + c · hp

(
hz4

0 +
3

K2

)
≤ c

(
2 +

3

K2

)
hp.



Chapter 5

Preservation of bifurcations under

Runge-Kutta methods

Summary. In this chapter we show that conditions for the fold bifurcation and

for the cusp bifurcation in N dimensions are completely preserved by Runge-

Kutta methods. A similar one-dimensional result has already been proved in

Lemma 4.2.1.

5.1 The fold bifurcation in N dimensions

Consider the ordinary differential equation

ż = f(z, α) (5.1)

depending on a parameter α ∈ R. Suppose that the smooth function f : RN × R → RN has
a fold bifurcation [3] at the equilibrium z = 0, α = 0, that is the following conditions are satisfied:

• fB = 0,

• dim null(fB
z ) = 1,

• fB
α /∈ ran(fB

z ),

• fB
zz(v, v) /∈ ran(fB

z ), where null(fB
z )=span(v),

where throughout the chapter null(A) and ran(A) denote the null space and the range of the
linear operator A, respectively. The evaluation operator B evaluates functions at z = 0, α = 0,
and also at h > 0, when it applies. Finally, the N ×N identity matrix is denoted by IN .

Now consider a discretization ϕ(h, z, α) of the above equation, with the function ϕ : R+ ×
RN × R → RN coming from an s-stage Runge-Kutta method with step-size h > 0, that is

Zn+1 := ϕ(h,Zn, α), n = 0, 1, 2, . . . (5.2)

where

ϕ(h, z, α) ≡ z + h
s∑

i=1

γi · ki(h, z, α),

119
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and every function ki (i = 1, 2, . . . , s) satisfies the (implicit) equation

ki(h, z, α) = f(z + h

s∑

j=1

βij · kj(h, z, α), α) (5.3)

with some γi, βij (i, j = 1, 2, . . . , s) given real constants.

The origin z = 0, α = 0 is a fold bifurcation point for the map ϕ(h, ·, ·), if the following
conditions hold:

• ϕB ≡ ϕ(h, 0, 0) = 0,

• dim null(ϕB
z − IN ) = 1,

• ϕB
α /∈ ran(ϕB

z − IN ),

• ϕB
zz(v, v) /∈ ran(ϕB

z − IN ), where null(ϕB
z − IN )=span(v).

Proposition 5.1.1 Suppose that the equation (5.1) has a fold bifurcation at the equilibrium
z = 0, α = 0, and Γ :=

∑s
i=1 γi 6= 0. Then the map (5.2) also has a fold bifurcation at z = 0,

α = 0 for h > 0 sufficiently small.

Remark 5.1 It is well known that the condition Γ = 1 is necessary for a Runge-Kutta method
to be of order at least one, hence the above assumption on Γ is natural.

Proof of the proposition. Step 1. The first, well-known property follows from the fact [24]
that for h small enough, there is a locally unique solution to the defining system of equations
(5.3) for the functions ki, which is seen to be kB

i ≡ ki(h, 0, 0) = fB = 0 for every i = 1, 2, . . . , s.

Step 2. Next we show that null(fB
z ) ⊂ null

(
(ki)

B
z

)
for all i = 1, 2, . . . , s. To this end, choose

0 6= v ∈ null(fB
z ) and use (5.3) to obtain for every i that

(ki)
B
z v = fB

z


IN + h

s∑

j=1

βij · (kj)
B
z


 v = fB

z h
s∑

j=1

βij · (kj)
B
z v,

that is

(ki)
B
z v − h

s∑

j=1

βij · fB
z (kj)B

z v = 0, i = 1, 2, . . . , s.

Notice that these s equations can be represented by a single matrix equation as

(
IN ·s − h · β ⊗ fB

z

)




(k1)B
z v

(k2)B
z v

...
(ks)

B
z v


 = 0 ∈ RN ·s,

where we have used the Kronecker product ⊗ of the matrices β := [βij ] ∈ Rs×s and fB
z . However,

for small h, the matrix IN ·s − h · β ⊗ fB
z is invertible, hence (ki)

B
z v = 0 for every i = 1, 2, . . . , s,

and the assertion follows.
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Step 3. The previous step also proves that null(fB
z ) ⊂ null(ϕB

z −IN ), since for any v ∈ null(fB
z )

we have that

(ϕB
z − IN )v =


h

s∑

i=1

γi · fB
z


IN + h

s∑

j=1

βij · (kj)
B
z




 v =

hΓ · fB
z v + h2 · fB

z

s∑

i=1

s∑

j=1

γiβij · (kj)B
z v = 0.

Step 4. In order to prove that null(ϕB
z − IN ) is in fact one dimensional, choose an arbitrary

nonzero vector w from this subspace. A similar rearrangement as in the previous step shows
that

0 = (ϕB
z − IN )w = h · fB

z Aw,

where we have used the abbreviation

A ≡ Γ · IN + h
s∑

i=1

s∑

j=1

γiβij · (kj)
B
z .

Therefore, Aw ∈ null(fB
z ) ⊂ null

(
(kj)

B
z

)
for all j = 1, 2, . . . , s, which implies that

AAw = Γ · Aw + h
s∑

i=1

s∑

j=1

γiβij · (kj)
B
z Aw = Γ ·Aw.

But A is invertible, because Γ 6= 0 and h is small, so we have

Aw = Γ · w,

which shows that w ∈ null(fB
z ), and also that null(ϕB

z − IN ) = null(fB
z ).

Step 5. As for the first range condition ϕB
α /∈ ran(ϕB

z − IN), suppose to the contrary that there
exists a vector w ∈ RN such that ϕB

α = (ϕB
z − IN )w holds. This is equivalent to saying that

h
s∑

i=1

γi ·


fB

z


h

s∑

j=1

βij · (kj)
B
α


+ fB

α


 = h · fB

z Aw,

which is just

fB
α =

1

Γ
· fB

z


Aw − h

s∑

i=1

s∑

j=1

γiβij · (kj)B
α


 .

This means, however, that fB
α ∈ ran(fB

z ), a contradiction.

Step 6. Finally, to prove the second range condition, one has to work with the bilinear forms
representing the second derivatives. Suppose again, to the contrary, that there exists a vector
w ∈ RN such that ϕB

zz(v, v) = (ϕB
z − IN )w, where v ∈ null(fB

z ) = null(ϕB
z − IN ). Since

ϕB
zz(v, v) = h

s∑

i=1

γi · (ki)
B
zz(v, v),

we first need to compute (ki)
B
zz(v, v). To accomplish this, introduce the functions

F (z) ≡ f(z, α)
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and for any i = 1, 2, . . . , s

Gi(z) ≡ z + h
s∑

j=1

βij · kj(h, z, α).

Now ki = F ◦Gi, so according to the higher-order chain rule [4], we get that

(ki)
B
zz(v, v) = (Fzz ◦Gi)

B ((Gi)
B
z v, (Gi)

B
z v
)

+ (Fz ◦Gi)
B ((Gi)

B
zz(v, v)

)
=

fB
zz


v + h

s∑

j=1

βij · (kj)B
z v, v + h

s∑

j=1

βij · (kj)B
z v


+ fB

z

(
(Gi)

B
zz(v, v)

)
.

But v ∈ null(fB
z ) ⊂ null

(
(kj)

B
z

)
for every j, hence

(ki)
B
zz(v, v) = fB

zz(v, v) + fB
z

(
(Gi)

B
zz(v, v)

)
.

If ϕB
zz(v, v) = (ϕB

z − IN )w were true, then

Γ · fB
zz(v, v) + fB

z

(
s∑

i=1

γi · (Gi)
B
zz(v, v)

)
= fB

z Aw

would hold, in other words

fB
zz(v, v) =

1

Γ
· fB

z

(
Aw −

s∑

i=1

γi · (Gi)
B
zz(v, v)

)
,

which would clearly violate our original assumption fB
zz(v, v) /∈ ran(fB

z ). �

5.2 The cusp bifurcation in N dimensions

As for the cusp case, consider (5.1) again, but this time with α ∈ R2. The smooth function
f : RN × R2 → RN has a cusp bifurcation [3] at the equilibrium z = 0, α = 0, if

• fB = 0,

• dim null(fB
z ) = 1,

• fB
zz(v, v) ∈ ran(fB

z ), where null(fB
z )=span(v),

• fB
zzz(v, v, v)+3fB

zz(v, x) /∈ ran(fB
z ), where v is as above and x is any solution to the equation

fB
z x = −fB

zz(v, v).

Remark 5.2 One can make x unique assuming one extra condition, but we will not make use
of this property.

Consider the corresponding Runge-Kutta discretization ϕ : R+ ×RN ×R2 → RN . The equi-
librium z = 0, α = 0 is a cusp bifurcation point for the map ϕ(h, ·, ·), if the following conditions
hold:

• ϕ(h, 0, 0) = 0,
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• dim null(ϕB
z − IN ) = 1,

• ϕB
zz(v, v) ∈ ran(ϕB

z − IN ), where null(ϕB
z − IN )=span(v),

• ϕB
zzz(v, v, v) + 3ϕB

zz(v, y) /∈ ran(ϕB
z − IN ), where v is as above and y is any solution to the

equation (ϕB
z − IN )y = −ϕB

zz(v, v).

Proposition 5.2.1 Suppose that the equation (5.1) has a cusp bifurcation at the equilibrium
z = 0, α = 0, and Γ :=

∑s
i=1 γi 6= 0. Then the corresponding Runge-Kutta discretization map

also has a cusp bifurcation at z = 0, α = 0 for h > 0 sufficiently small.

Proof. Due to Proposition 5.1.1, only the last two conditions have to be checked.
Step 1. Suppose that fB

zz(v, v) = fB
z u holds with some u ∈ RN and 0 6= v ∈ null(fB

z ). Set

w := A−1

(
Γu+

s∑

i=1

γi · (Gi)
B
zz(v, v)

)
,

where the linear operator A and the functions Gi (i = 1, 2, . . . , s) are as in the proof of Propo-
sition 5.1.1, see Step 4 and 6 there. Then we have that

(ϕB
z − IN )w = h · fB

z Aw = h · fB
z

(
Γu+

s∑

i=1

γi · (Gi)
B
zz(v, v)

)
=

h

s∑

i=1

γi · fB
z u+ h

s∑

i=1

γi · fB
z

(
(Gi)

B
zz(v, v)

)
=

h

s∑

i=1

γi

(
fB

zz(v, v) + fB
z

(
(Gi)

B
zz(v, v)

))
= h

s∑

i=1

γi · (ki)
B
zz(v, v) = ϕB

zz(v, v).

Step 2. Suppose to the contrary that there exists a vector w ∈ RN such that

ϕB
zzz(v, v, v) + 3ϕB

zz(v, y) = (ϕB
z − IN )w (5.4)

holds with 0 6= v ∈ null(ϕB
z − IN ) = null(fB

z ) and y being any solution to the equation (ϕB
z −

IN )y = −ϕB
zz(v, v).

In order to compute the trilinear and the bilinear forms here, we appeal again to the higher-
order chain rule [4] (with the same notation as in Step 6 in the proof of Proposition 5.1.1) to
get for every i = 1, 2, . . . , s that

(ki)
B
zzz(v, v, v) = (Fzzz ◦Gi)

B ((Gi)
B
z v, (Gi)

B
z v, (Gi)

B
z v
)

+

3 (Fzz ◦Gi)
B ((Gi)

B
zz(v, v), (Gi)

B
z v
)

+ (Fz ◦Gi)
B ((Gi)

B
zzz(v, v, v)

)
,

where symmetry of the bilinear forms has also been taken into account. Performing some of the
evaluations, we arrive at the following formula

(ki)
B
zzz(v, v, v) = fB

zzz(v, v, v) + 3fB
zz

(
(Gi)

B
zz(v, v), v

)
+ fB

z

(
(Gi)

B
zzz(v, v, v)

)
.

In a similar manner, we have that

(ki)
B
zz(v, y) = fB

zz


v, y + h

s∑

j=1

βij · (kj)
B
z y


+ fB

z

(
(Gi)

B
zz(v, y)

)
.
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Now (5.4) is equivalent to the following

h

s∑

i=1

γi{fB
zzz(v, v, v) + 3fB

zz

(
(Gi)

B
zz(v, v), v

)
+ fB

z

(
(Gi)

B
zzz(v, v, v)

)
+

3fB
zz


v, y + h

s∑

j=1

βij · (kj)B
z y


+ 3fB

z

(
(Gi)

B
zz(v, y)

)
} = h · fB

z Aw,

that is

fB
zzz(v, v, v) + 3fB

zz


v, 1

Γ




s∑

i=1

γi · (Gi)
B
zz(v, v) + Γy + h

s∑

i=1

s∑

j=1

γiβij · (ki)
B
z y




 =

1

Γ
· fB

z

(
Aw −

s∑

i=1

γi · (Gi)
B
zzz(v, v, v) − 3

s∑

i=1

γi · (Gi)
B
zz(v, y)

)
,

using again the symmetry of the bilinear forms.
The desired contradiction will immediately follow as soon as we have shown that

x :=
1

Γ




s∑

i=1

γi · (Gi)
B
zz(v, v) + Γy + h

s∑

i=1

s∑

j=1

γiβij · (ki)
B
z y




solves
fB

z x = −fB
zz(v, v).

But we know that y satisfies
(ϕB

z − IN )(−y) = ϕB
zz(v, v),

which—by the last part of Step 6 in the proof of Proposition 5.1.1—implies that

fB
zz(v, v) =

1

Γ
· fB

z

(
A(−y) −

s∑

i=1

γi · (Gi)
B
zz(v, v)

)
.

By the definition of x and A, the right hand side is just fB
z (−x), so the proof is complete. �
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