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Abstract

The computation of the cumulative distribution function values of Dirichlet distribution

by using several algorithms are to be described and estimation of the probability in

network models via cross entropy method and completion time estimation in PERT

network will be investigated. The results presented in this thesis were published in ([46],

[47], [48], [49], [50], [51] and [52]).

The Dirichlet distribution is one of the important multivariate distributions that ap-

pear in many applications, in order statistics, probabilistic constrained programming

models and delivery problems. Another application is the modeling of consumer pur-

chasing behavior for non durable items such as foods and toiletries. A model for multi-

brand purchasing behavior is given for the use of multivariate beta distribution for the

independent case. Suppose this is a product field with k brands and let the random

variables Zi represent the average rate of purchase of brand i let W =
∑k

i=1 Zi represent

a consumer’s rate of buying of the product field as a whole. Then the joint distribution

of (X1, X2, ..., Xk−1) follows a Dirichlet distribution where Xi = Zi

W
represents the pro-

portion of a consumer’s total purchases devoted to brand i. Another application would

be modeling the activity times in a PERT (Program Evaluation and Review Technique)

network. A PERT network has a collection of activities and each activity is usually

modeled as a random variable following a beta distribution. A Dirichlet distribution for

the entire network follows directly since each marginal distribution of Dirichlet is a beta.

Using the properties of the Dirichlet distribution we can see that any subnetwork will

follow a Dirichlet distribution.

The evaluation of multivariate probability distribution is an important problem in

applications. Methods for evaluation of multivariate probability distribution can be

classified into broad categories, numerical integration, bounding techniques,and numer-

ical approximations. While several methods have been proposed for the computation of

multivariate normal probabilities, only a few paper is dealing with the computation of

Dirichlet probabilities.

In the first part of the dissertation there will be developed a recursive algorithm for
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the calculation of Dirichlet probability distribution function values up to 7 dimensions.

This procedure is based on a generalization of Szántai’s result published in his disser-

tation for candidate degree of HAS and the Lauricella series expansion. This gives the

possibility of application all algorithms for bounding and estimating multivariate normal

probability distribution function values developed before by J. Bukszár, A. Prékopa and

T. Szántai. In stochastic programming applications one need the gradient vector and

Hessian matrix of the multivariate probability distribution function, too. A new algo-

rithm for the Hessian matrix calculation will be given. All these estimations are most

effective when the estimated probability value is close to one. However many times one

need to estimate small probability values, too. These are called rare event probabilities in

the literature, the Sequential Conditioned Sampling (SCS) and Sequential Conditioned

Importance Sampling (SCIS) algorithms will be developed to estimate the rare event

probabilities of Dirichlet distribution. Using Szántai’s result published in his disserta-

tion for candidate degree of HAS and interesting property of the Dirichlet distribution

new versions of the SCS and SCIS algorithms will be developed, called SCSA, SCSB,

SCISA and SCISB, respectively. The efficiency of the new methods will be compared

to Crude Monte Carlo (CMC) simulation method. Numerical test results will also be

presented.

In the second part of the dissertation estimation of rare event probabilities in stochas-

tic networks will be described. Stochastic simulation has proven itself in practice; it is

commonly used for accurate estimations in many problems. However, there are some

limitations to the standard stochastic simulation method in many cases. An important

class of problems that cannot be efficiently solved using standard simulation is that in-

volving rare events. Since these rare events occur so seldom in a standard simulation,

one has to apply very large sample sizes what need too much CPU time. This is why

different methods and techniques have been developed to estimate rare event probabil-

ities starting at the last decade. Lieber, Rubinstein and Elmakis ([72]) developed the

Cross Entropy (CE) method as an adaptive technique for the estimation of reference pa-

rameters applied in Importance Sampling (IS) method. The CE method can be viewed

as a model-based optimization technique, which involves two phases. (1) Generation of
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a sample of random vectors according to a specified random mechanism. (2) Updating

the parameters of the random mechanism, on the basis of the data, in order to produce

a better sample in the next iteration. The significance of the CE method is that it

defines a precise mathematical framework for deriving fast, and in some sense ”optimal”

updating rules, based on advanced simulation theory. Estimation of the probability of

rare events is essential for guaranteeing that the performance of engineering systems is

adequate. For example, consider a telecommunication system that accepts calls from

many customers. Under normal operating conditions each client may be rejected with

a very small probability. In order to estimate this small probability the system should

be simulated under normal operating conditions for a long time. A better way to es-

timate this probability is to use IS, in which the system is simulated under a different

set of parameters, so as to make the occurrence of the rare event more likely. A major

drawback of the IS technique is that the optimal reference parameters to be used in IS

are usually very difficult to obtain. The advantage of the CE method is that it provides

a simple adaptive procedure for estimating the near optimal reference parameters, and

the CE method enables simulating the system under irregular conditions and estimating

the rejection probability for normal conditions. Moreover, the CE method also enjoys

asymptotic convergence properties. The basic methodology behind the CE algorithm

will be discussed. Rubinstein ([92]) and his collaborators applied CE algorithm for es-

timation of rare event probabilities in stochastic networks with exponential distribution

(see De Boer, Kroese, Mannor and Rubinstein ([10]). We test this simulation technique

also for medium sized stochastic networks and compare its effectiveness to the simple

CMC simulation. The extension of CE method for estimation of rare event probabilities

in stochastic networks with normal and beta distributions will be developed. In second

case the calculation of reference parameters of the importance sampling distribution re-

quires numerical solution of a nonlinear equation system. This is done by applying a

Newton–Raphson iteration scheme. In this case the CPU time spent for calculation of

the reference parameter values can not be neglected. The basic CE algorithm will be

specialized for the shortest path problem with exponential, beta and normal distributed

activity duration times. Two modifications of the basic CE algorithm for rare event sim-
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ulation will be developed. The first modification is new result, the second was published

by Homem-de Mello and Rubinstein ([56]). The effectiveness of a variance reduction

simulation algorithm is measured in the following way. We calculate the product of

the necessary CPU time and the estimated variance of the estimation. This product is

compared to the same for the simple Crude Monte Carlo simulation. This was origi-

nally used for comparison of different variance reduction techniques by Hammersley and

Handscombe ([55]). Numerical results for the comparison of CMC and IS, based on CE

reference parameter estimation algorithms will be presented.

In the third part of the dissertation there will be given a stochastic programming

approach to PERT modeling. Main drawback of the traditional PERT modeling is that

the probabilistic characteristics determined for the finishing time of the project are only

valid when it is supposed that any activity can be started promptly after finishing all

of its predecessor activities. This is possible in the case of scheduling computer tasks,

however it is impossible in the case of architectural project planning what is the most

important application area of PERT modeling. A new PERT modeling technique to

solve this problem will be introduced. This modeling will produce deterministic earliest

starting times for the activities of the project. These deterministic starting times will

be attainable with prescribed probability. So we also get an estimated finishing time

of the project what is realizable with the same prescribed probability. As the random

activity duration times in PERT are supposed to be independent and beta distributed,

the application of the multivariate Dirichlet distribution is plausible in this context. The

code developed for Dirichlet probability calculations can be incorporated into the AMPL

modeling language environment. Moderate sized numerical examples will be given for

comparing the traditional and the newly introduced PERT modeling techniques.
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1 Introduction

This thesis is about the estimation of probabilities according to multivariate distri-

butions and its applications. In this introductory chapter, some definitions, notations,

background and motivation for this work is provided, and an outline of the thesis’ content

presented.

Approximation of multivariate probability integral is a hard problem in general. How-

ever, if the domain of probability integral is the multidimensional interval, then the

problem reduces to the approximation of multivariate probability distribution function

values. The evaluation of probabilities according to multivariate distribution is an im-

portant problem in many applications of statistics and related fields. Over the years,

several methods have been proposed for the computation of probabilities according to

multivariate distributions which can be classified into broad categories, numerical inte-

gration, numerical approximations, bounding techniques and simulation. While several

methods have been proposed for the computation of multivariate normal probabilities,

see for example Plackett ([83]), Szántai ([106], [107], [110]), Genz ([40], [41]), Prékopa

([87]), Ambartzumian et al. ([1]), Pandey ([80]), Gassmann ([38]), Gassmann, Deák and

Szántai ([39]), Kotz, Balakrishnan and Johnson ([65]) and Pandey and Sakar ([81]), only

a few paper is dealing with the computation of Dirichlet probabilities. Yassaee ([121],

[122], [123]) computes the probability integral of Dirichlet distribution by computing the

probability integral of inverted Dirichlet distribution, Szántai ([105], [109]), used variance

reduction simulation techniques to estimate the probability of Dirichlet distribution. For

more details see Wilks ([119]), Prékopa ([87]), Kotz, Balakrishnan and Johnson ([65]).

The Dirichlet distribution is one of the important multivariate distributions that ap-

pears in many applications, in order statistics, probabilistic constrained programming

models, delivery problems. Such applications may be found in Prékopa and Kelle ([84]),

Prékopa ([87]), Tiao and Guttman ([112]), Johnson ([61]), Sobel and Uppuluri ([104]),

Phillips ([82]), Fabius ([31]), James ([60]), Chotikapanich and Griffiths ([19]) and Good-

man and Nguyen ([44]). Another application is the modeling of consumer purchasing

behavior for non durable items such as foods and toiletries (Narayanan ([79]) and Chat-
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field and Goodhardt ([17])). A model for multibrand purchasing behavior is given for

the use of multivariate beta distribution for the independent case. Suppose this is a

product field with k brands and let the random variables Zi represent the average rate of

purchase of brand i let W =
∑k

i=1 Zi represent a consumer’s rate of buying of the prod-

uct field as a whole. Then the joint distribution of (X1, X2, ..., Xk−1) follows a Dirichlet

distribution where Xi =
Zi

W
represents the proportion of a consumer’s total purchases

devoted to brand i. Another application would be modeling the activity times in a PERT

(Program Evaluation and Review Technique) network. A PERT network has a collec-

tion of activities and each activity is usually modeled as a random variable following a

beta distribution. A Dirichlet distribution for the entire network follows directly since

each marginal distribution of Dirichlet is a beta. Using the properties of the Dirichlet

distribution we can see that any subnetwork will follow a Dirichlet distribution. Monhor

([75], [76]) uses the Dirichlet distribution for modeling the activity times of a PERT net-

work and derive’s an upper bound for the completion time of the project. More details

about the applications of Dirichlet distribution can be found in Kotz, Balakrishnan and

Johnson ([65]).

Rare event simulation. Stochastic simulation has proven itself in practice; it is

commonly used for accurate estimations in many problems. However, there are some

limitations to the standard stochastic simulation method in many cases. An important

class of problems that cannot be efficiently solved using standard simulation is that

involving rare events. Since these rare events occur so seldom in a standard simulation

the simplest method to estimate the rare event probability is the Crude Monte-Carlo

(CMC) simulation method but it needs a very large sample size, what need too much

CPU time. This is why different methods and techniques have been developed to estimate

rare event probabilities starting at the last decade. Lieber, Rubinstein and Elmakis ([72])

developed the Cross Entropy (CE) method as an adaptive technique for the estimation

of reference parameters applied in Importance Sampling (IS) method. CMC, CE and IS

are described in some more detail below.

Crude Monte Carlo simulation. The rare event probability estimation problem

is hard to do with CMC simulation when the desired probability, which we will call, is
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extremely small. In this case the CMC simulation method is very inefficient and simula-

tion takes a very long time. The CMC method consists of simulating the system without

making any changes to its stochastic behavior; as a consequence, very few samples will

actually hit the rare event. Let we have a sample of size n (X1, . . . , Xn), say, random

observations in which the rare event A may occur; let P (A) = l and the value of a ran-

dom variable Xi equals one when the rare event is seen in the i-th attempt, and equals

zero otherwise. The CMC estimator is simply

l̂ =
1

n

n∑
i=1

Xi,

and the variance of a CMC estimator using n samples is equal to

V ar
(
l̂
)

=
l (1 − l)

n
.

Importance Sampling simulation. Importance sampling is typically presented as

a method for reducing the variance of the estimate of an expectation by carefully choos-

ing a sampling distribution (Rubinstein ([91])). For example, the most direct method

for evaluating Eg[f(η)] =
∫
f (x) g (x) dx is to sample independent identical distribution

xi ∼ g (x) and use
1

n

∑
i f (xi) as the estimate. However, by choosing a different distri-

bution q(x) which has higher density in the places where |f(x)| is larger, we can get a

new estimate which is still unbiased and has lower variance. In particular, we can draw

xi ∼ q (x) and use
1

n

∑
i f (xi)

g (xi)

q (xi)
which is like approximating

∫
f (x)

g (x)

q (x)
q (x) dx

with samples drawn from q(x). If q(x) is chosen properly, our new estimate has lower

variance. It is always unbiased provided that the support of g(x) and q(x) are the same.

In this thesis we always have the same support. The density function q(x) will be choosen

from the parametric family of g(x) and q(x) to reduce variance, the CE method will be

used to estimate the reference parameters of q(x) which will achieve minimal variance.

Cross Entropy method. Rubinstein ([92]) and Lieber, Rubinstein and Elmakis

([72]) developed the CE method as an adaptive technique for the estimation of reference

parameters applied in IS variance reduction technique. The CE method can be viewed

as a model-based optimization technique, which involves two phases. (1) Generation of

a sample of random vectors according to a specified random mechanism. (2) Updating
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the parameters of the random mechanism, on the basis of the data, in order to produce

a better sample in the next iteration. The significance of the CE method is that it

defines a precise mathematical framework for deriving fast, and in some sense ”optimal”

updating rules, based on advanced simulation theory. Estimation of the probability of

rare events is essential for guaranteeing that the performance of engineering systems is

adequate. For example, consider a telecommunication system that accepts calls from

many customers. Under normal operating conditions each client may be rejected with a

very small probability. In order to estimate this small probability the system should be

simulated under normal operating conditions for a long time. A better way to estimate

this probability is to use IS, in which the system is simulated under a different set

of parameters, so as to make the occurrence of the rare event more likely. A major

drawback of the IS technique is that the optimal reference parameters to be used in IS

are usually very difficult to obtain. The advantage of the CE method is that it provides

a simple adaptive procedure for estimating the near optimal reference parameters, and

the CE method enables simulating the system under irregular conditions and estimating

the rejection probability for normal conditions. Moreover, the CE method also enjoys

asymptotic convergence properties.

PERT models. The original PERT technique, developed by Malcolm et al. ([73]), is

a technique to approximate the expected duration of the project. PERT networks have

been used extensively in the business world. Analysis of PERT networks, also known

as stochastic activity networks, has received considerable attention in the literature (El-

maghraby, [27]). PERT is based on the concept that a project is divided into a number

of activities which are arranged in some order according to the job requirements. A

PERT network consists of a set of nodes and arcs, where a node represents the begin-

ning or completion of one or more activities and an activity is represented by an arc

(arrow) connecting two nodes in activity-on-arrow (AOA) representation. Activity-on-

node (AON) representations have also been used. We use the AOA representation in

this thesis. The project starts at the initial node and ends at the terminal node. A path

is a set of nodes connected by arrows which begin at the initial node and end at the

terminal node. This collection of arcs, nodes and paths is collectively called an activity
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network. A project is deemed complete if work along all paths is complete. After the

development of the network, the next major planning step is the estimation of activity

and project times. Typical methods for estimating activity times have been to use point

estimates or some sort of ranges or distributions. The type of method used depends on

the situation facing the project manager. Hershauer and Nabielsky ([54]) categorize the

situations into three major categories, viz., certainty, risk and uncertainty. They further

subdivide these categories based on availability of knowledge regarding the mode, range

and distribution on the time estimates. They then map the situation and estimations to

the appropriate methods to be adopted. If activity times are deterministic, the duration

of the project completion time is determined by the length of the longest path in the

network. For a stochastic activity network, Kulkami and Adlakha ([70]) have identi-

fied three important measures of performance: (a)Distribution of the project completion

time. (b) The probability that a given path is critical, also known as the "path criti-

cality index". (c) The probability that a given activity belongs to a critical path, also

known as the "activity criticality index". Performance measures derived from (a) are the

most commonly used; measures and most studies have concentrated on the properties

of the completion time of the project Dodin and Sirvanci ([23]), Kamburowski ([62]),

Sculli ([99]) among others. Determination of the exact distribution of the completion

time of the project is complicated by the fact that different paths are correlated and also

because of the need to find the maximum of a set of random variables, as we shall see

later. Hence one cannot easily determine the exact distribution of the completion time

of the project. The research has branched off primarily in three directions: (1) Exact

methods, Martin ([77]), Dodin ([22]), Fisher et al. ([32]), Hagstrom ([53]) and Kulkami

and Adlakha ([70]) are some of the papers that deal with these methods. Most of their

results are limited in that they make quite restrictive assumptions. For example Martin

([77]) assumes that the arc duration density functions are polynomial. Hagstrom ([53])

assumes task durations have discrete distributions. (2) Approximating and bounding

approaches. These have been the most abundant in the literature. Malcolm et al. ([73]).

Sculli ([99]) Golenko-Ginzburg [45]), Dodin ([24]), Sculli and Wong ([100]), and Dodin

and Sirvanci ([23]) determine approximations for the distribution and moments of the
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completion time of the project. Kamburowski ([63]), Shogan ([102]), Kleindorfer ([68])

and Robillard and Trahan ([90]), on the other hand, try to find upper and lower bounds

for the distributions and moments of the completion time of the project and Prékopa,

Long and Szántai ([86]) describe new bounds and approximations for the probability

distribution of the length of the critical path. (3) Simulation methods. These methods

have been discussed in the literature by Van Slyke ([116]), Burt and Garman ([16]) and

Sigal et al.([103]). Simulation provides a powerful methodology to obtain desired statis-

tics for any network with specified distribution of activities. To obtain reliable results,

however, it may be necessary to repeat the experiments several times. Main drawback

of the traditional PERT modeling is that the probabilistic characteristics determined for

the finishing time of the project are only valid when it is supposed that any activity can

be started promptly after finishing all of its predecessor activities. This is possible in the

case of scheduling computer tasks, however it is impossible in the case of architectural

project planning what is the most important application area of PERT modeling. We

shall introduce new PERT modeling technique to solve this problem in Chapter 3.

Outline of the dissertation. The computation of the cumulative distribution func-

tion values of Dirichlet distribution by using several algorithms are to be described and

probability estimation in network models via cross entropy method and completion time

estimation in PERT network are to be investigated.

In Chapter 2 the estimation of probabilities according to Dirichlet distribution will

be described. A recursive algorithm for the calculation of Dirichlet probability distri-

bution function values up to 7 dimensions will be developed. This procedure is based

on a generalization of Szántai’s result published in his dissertation for candidate degree

of HAS and the Lauricella series expansion. This gives the possibility of application

all algorithms for bounding and estimating multivariate normal probability distribu-

tion function values developed before by J. Bukszár, A. Prékopa and T. Szántai. In

stochastic programming applications one need the gradient vector and Hessian matrix

of the multivariate probability distribution function, too. The gradient vector calcu-

lation was developed by T. Szántai, in this chapter a new algorithm for the Hessian

matrix calculation will be given. All these estimations are most effective when the esti-
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mated probability value is close to one. However many times one need to estimate small

probability values, too. These are called rare event probabilities in the literature, the Se-

quential Conditioned Sampling (SCS) and Sequential Conditioned Importance Sampling

(SCIS) algorithms will be developed to estimate the rare event probabilities of Dirichlet

distribution. Using Szántai’s result published in his dissertation for candidate degree

of HAS there will be developed new versions of these algorithms, called SCSA, SCSB,

SCISA and SCISB, respectively. The efficiency of the new methods will be compared to

CMC simulation method. The efficiency of all algorithms for the calculation of Dirichlet

probability distribution will be compared to CMC. Numerical test results will also be

presented.

In Chapter 3 the estimation of rare event probabilities in stochastic networks with

exponential, beta and normal distributions will be described. The basic methodology

behind the CE algorithm will be discussed. Two modifications of the basic CE algorithm

for rare event simulation will be discussed. The first modification is new result, the

second was published by Homem-de Mello and Rubinstein ([56]). Numerical results for

the comparison of CMC and IS, based on CE reference parameter estimation algorithms

will be presented. A stochastic programming approach to PERT modeling will be given.

This modeling will produce deterministic earliest starting times for the activities of the

project. These deterministic starting times will be attainable with prescribed probabil-

ity. So we also get an estimated finishing time of the project what is realizable with

the same prescribed probability. As the random activity duration times in PERT are

supposed to be independent and beta distributed, the application of the multivariate

Dirichlet distribution is plausible in this context. The code developed for Dirichlet prob-

ability calculations can be incorporated into the AMPL modeling language environment.

Moderate sized numerical examples will be given for comparing the traditional and the

newly introduced PERT modeling techniques.
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New scientific results

1. A recursive algorithm for the calculation of Dirichlet probability distribution func-

tion values up to 7 dimensions was developed.

2. The hypermultitree bounding algorithm and a variance reduction simulation pro-

cedure based on these bounds for the calculation of higher dimensions of Dirichlet

probability distribution function values was developed.

3. A new algorithm to calculate the Hessian matrix of Dirichlet probability distribu-

tion function values and the formulae for the calculation of the first and second

order partial derivatives were developed.

4. New sampling techniques as Sequential Conditioned Sampling (SCS), the Sequen-

tial Conditioned Importance Sampling (SCIS) algorithms and modified versions

called SCSA, SCSB, SCISA and SCISB algorithms to calculate of Dirichlet prob-

ability distribution function values were introduced.

5. The application of the basic CE algorithm for the shortest path problem with

normal and beta distributed activity duration times was developed.

6. Development of a modification of the basic CE algorithm for rare event simulation.

7. A new stochastic programming approach and the application of the multivariate

Dirichlet distribution to PERT modeling was developed.

8. The traditional and the newly developed PERT modeling techniques were com-

pared on larger sized numerical examples than it was published before.
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2 Estimation of Probabilities According to Dirichlet

Distribution

The main numerical difficulty in probabilistic constrained stochastic programming

problems is the calculation of the probability values according to the underlying mul-

tivariate probability distributions. From point of view of the nonlinear programming

algorithms to be applied it is preferable to be able to calculate the first and second order

partial derivatives of these probability functions according to the decision variables.

In this chapter there will be given a solution to the above problems in the case of

Dirichlet distribution. For the calculation of the cummulative distribution function val-

ues, the Lauricella function series expansions will be applied up to 7 dimensions. For

higher dimensions we propose the hypermultitree bound calculations and a variance

reduction simulation procedure based on these bounds. There will be given formulae

for the calculation of the first and second order partial derivatives, too. The common

property of these formulae is that they involve only lower dimensional cummulative

distribution function calculations. For estimation of the small probability values new

sampling techniques as Sequential Conditioned Sampling (SCS) and Sequential Condi-

tioned Importance Sampling (SCIS) will be introduced. On the base of an interesting

property of the Dirichlet distribution new versions of the SCS and SCIS algorithms

will be developed, called SCSA, SCSB, SCISA and SCISB, respectively. SCIS and

modified algorithms need more CPU time but they result significant variance reduction.

Their resultant efficiency will be compared to the simple " hit-or-miss Monte Carlo" sim-

ulation method with conventional sampling of the Dirichlet distributed random vectors

what we call CMC simulation method. Numerical test results will also be presented.
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2.1 Introduction

2.1. Definition We shall refer to the distribution defined by the following probability

density function (pdf)

f (x) =

⎧⎪⎨⎪⎩
Γ (ϑ1 + ϑ2)

Γ (ϑ1) Γ (ϑ2)
xϑ1−1 (1 − x)ϑ2−1 , for 0 < x < 1,

0, otherwise,
(2.1)

where ϑ1 > 0, ϑ2 > 0, as the beta distribution Be (ϑ1, ϑ2) .

The Dirichlet distribution is the multivariate generalization of the beta distribution.

2.2. Definition The random variables X1, X2, ..., Xk have k−dimensional Dirichlet dis-

tribution with parameters ϑ1 > 0, ... , ϑk > 0, ϑk+1 > 0, if their joint pdf is

f(x1, . . . , xk) =

Γ

(
k+1∑
j=1

ϑj

)
k+1∏
j=1

Γ (ϑj)

k∏
j=1

x
ϑj−1
j

(
1 −

k∑
j=1

xj

)ϑk+1−1

, (2.2)

over the simplex: Sk :

{
(x1, . . . , xk) : xi ≥ 0, i = 1, . . . , k,

k∑
j=1

xj ≤ 1

}
.

2.3. Definition Some authors (see [42]) define the k−dimensional Dirichlet distribution

with the following pdf:

f (x1, . . . , xk) =

Γ

(
k∑

j=1

ϑj

)
k∏

j=1

Γ (ϑj)

k−1∏
j=1

x
ϑj−1
j

(
1 −

k−1∑
j=1

xj

)ϑk−1

, (2.3)

at any point in the simplex S ′
k :

{
(x1, . . . , xk) : xi ≥ 0, i = 1, . . . , k,

k∑
j=1

xj = 1

}
.

In the particular case when ϑ1 = ϑ2 = . . . = ϑk = a, we obtain the k-dimensional

symmetric Dirichlet distribution whose density function is given by

f (x1, . . . , xk) = (Γ (a))−k Γ (ka)
k−1∏
j=1

xa−1
j

(
1 −

k−1∑
j=1

xj

)a−1

,



2.1 Introduction 11

at any point in the simplex S
′
k :

{
(x1, . . . , xk) : xi ≥ 0, i = 1, . . . , k,

k∑
j=1

xj = 1

}
.

Let X1, ..., Xk;Xk+1 be independent random variables having standard gamma distri-

butions with parameters ϑ1, . . . , ϑk, ϑk+1 and

Yj =
Xj

X1 + · · ·+Xk +Xk+1
, j = 1, . . . , k, (2.4)

then (Y1, ..., Yk) have a k−dimensional Dirichlet distribution, denoted by

Dk(ϑ1, . . . , ϑk;ϑk+1).

There is a natural deduction of the Dirichlet distribution from χ2 distribu-

tions. Let Y1, . . . , Yk, Yk+1 be independent random variables distributed as χ2 with

ϑ1, . . . , ϑk, ϑk+1degrees of freedom, respectively. The joint probability density function

of Yj, j = 1, . . . , k + 1 is then

f (y1, . . . , yk, yk+1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

k+1∏
j=1

Γ

(
ϑj

2

))−1

2
−

k+1∑
j=1

ϑj

2
k+1∏
j=1

y

ϑj

2
−1

j exp

(
−

k+1∑
j=1

yj

)
, for 0 ≤ yj,

0, otherwise.

Now apply the transformation

Xi = Yi/
k+1∑
j=1

Yj (i = 1, . . . , k) ; Xk+1 =
k+1∑
j=1

Yj,

so that

Yi = XiXk+1 (i = 1, . . . , k) ; Yk+1 = Xk+1

(
1 −

k∑
j=1

Xj

)
.

The Jacobian of this transformation is

∂ (y1, . . . , yk, yk+1)

∂(x1, . . . , xk, xk+1)
= (xk+1)

k ,

and so the joint probability density function of X1, . . . , Xk, Xk+1 is

f(x1, . . . , xk, xk+1) =

= 2

−
k+1∑
j=1

ϑj

2
k+1∏
j=1

Γ

⎛⎝ϑj

2

⎞⎠
[
xk+1

(
1 −

k∑
j=1

xj

)]ϑk+1

2
−1

k∏
j=1

(xjxk+1)

ϑj

2
−1

exp
(
−xk+1

2

)
(xk+1)

k .
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Integrating out the variable xk+1, we find the pdf of X1, . . . , Xk is

f(x1, . . . , xk) =

Γ

(
k+1∑
j=1

ϑj

2

)
k+1∏
j=1

Γ

(
ϑj

2

) (
1 −

k∑
j=1

xj

)ϑk+1

2
−1

k∏
j=1

x

ϑj

2
−1

j .

It is usual to replace
ϑj

2
by ϑj for all j, j = 1, . . . , k + 1. The (standard) Dirichlet

distribution with parameters ϑ1, . . . , ϑk, ϑk+1 has pdf (2.2).

Properties. The Dirichlet is a convenient distribution on the simplex: it is an expo-

nential family and has finite sufficient statistics. The expected values, variances and

covariances of the random variables X1, . . . , Xk are

E (Xi) =
ϑi

ϑ1 + . . .+ ϑk + ϑk+1
, 1, . . . , k,

V ar (Xi) =
ϑi (ϑ1 + . . .+ ϑi−1 + ϑi+1 + . . .+ ϑk + ϑk+1)

(ϑ1 + . . .+ ϑk + ϑk+1)
2 (ϑ1 + . . .+ ϑk + ϑk+1 + 1)

,

Cov (Xi, Xj) =
−ϑiϑi

(ϑ1 + . . .+ ϑk + ϑk+1)
2 (ϑ1 + . . .+ ϑk + ϑk+1 + 1)

, i, j = 1, . . . , k, i �= j.

Marginal Distribution. If the random variables X1, . . . , Xn have n–variate Dirichlet

distribution D(ϑ1, . . . , ϑn;ϑn+1) then the marginal distribution of the random variables

X1, . . . , Xk, k < n is the k–variate Dirichlet distribution D(ϑ1, . . . , ϑk; ϑk+1 + · · ·+ϑn +

ϑn+1). In the special case k = 1, the one dimensional marginal probability distribution

is the beta distribution with parameters ϑ1 and ϑ2 + · · ·+ ϑn + ϑn+1.

Conditional Distribution. Let us regard the k–variate marginal Dirichlet distribu-

tion D(ϑ1, . . . , ϑk;ϑk+1 + · · ·+ϑn+ϑn+1). The conditional random variable Xk given the

values of X1 = x1, . . . , Xk−1 = xk−1 has the property that the transformed conditional

random variable
Xk

1 − x1 − · · · − xk−1

given the values of X1 = x1, . . . , Xk−1 = xk−1 has

the beta distribution B(ϑk; ϑk+1 + · · ·+ ϑn +ϑn+1), i.e. its probability density function

is
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f (t;ϑk;ϑk+1 + · · ·+ ϑn + ϑn+1) =

=
Γ(ϑk + ... + ϑn + ϑn+1)

Γ(ϑk)Γ(ϑk+1 + · · · + ϑn + ϑn+1)
tϑk−1 (1 − t)ϑk+1+···+ϑn+ϑn+1−1 ,

if 0 ≤ t ≤ 1 and zero otherwise. The corresponding cdf is F (x;ϑk;ϑk+1

+ · · ·+ ϑn + ϑn+1) which is the incomplete beta function. The general form of the con-

ditional Dirichlet distribution can given by the next theorem.

2.1. Theorem: If X = (X′
1,X

′
2)

′ ∼ Dk (ϑ′1, ϑ
′
2) where X1 and ϑ1 consist of r elements

and X2 and ϑ2 consist of s elements and k = r + s, then

(1 − 1′x2)
−1

X1 | X2 = x2 ∼ Dr(ϑ1
′).

More details and proof of this theorem can be found in Wilks ([119]).

Dirichlet distribution can be used for imputation of multivariate missing item values

(see [111]). In general there are two types of linear edit constraints:

c1X1 + · · ·+ ckXk = Xk+1, (2.5)

c1X1 + · · ·+ ckXk ≤ Xk+1,

which are called balance and inequality edits, respectively. We will first consider balance

edit constraints. We believe that we can impute the missing items, satisfying the edit

constraint directly and preserving the distribution of the data, by making use of the

Dirichlet distribution. Consider edit rule (2.5) and transform it by dividing the different

parts by the total Xk+1, this is done in order to restrict the domain of the variables

X̃1, . . . , X̃k to the simplex; we take X̃i = ciXi/Xk+1.

c1X1

Xk+1

+ · · ·+ ckXk

Xk+1

= 1, Xk+1 > 0

X̃1 + · · ·+ X̃k = 1.

Note that we assume that the total, Xk+1, is known. This is done for two reasons. First

of all since it is an aggregate the nonresponse rate will probably be low. And secondly,

if it is indeed missing we expect to be able to estimate this value very well based on
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the other variables in the survey, whereas the different subtotals are far more difficult to

estimate this way. A special case arises when only one X̃i, i = 1, . . . , k is missing. In

this instance deductive imputation can be used. Deductive imputation means that the

value of the missing item can be established with certainty based on the other items in

the survey. If all items of X̃; are missing, we can obtain imputations by drawing from

Dn(ϑ1, . . . , ϑn; ϑn+1). However, a common circumstance is that a few item values are

missing and the others are observed. In this case one needs to draw values from the

conditional distribution of the missing items given the observed ones, which is also a

Dirichlet distribution Partition X̃ in X̃mis and X̃obs, where X̃mis represents the missing

items and X̃obs represents the observed items. The vector with missing, X̃mis, consists

of m elements and X̃obs consists of o elements, which are the number of observed items

and k = m+ o. Partition ϑ accordingly. Then it holds that

(
1 − 1′x̃obs

)−1
X̃mis | X̃obs = x̃obs ∼ Dm(ϑ1, . . . , ϑm;ϑm+1). (2.6)

Thus imputations for missing items can be obtained by drawing from the conditional

Dirichlet distribution (2.6).

Concavity. Prékopa ([88]) states the following theorem of Dirichlet distribution, which

is important in probabilistic constrained programming problems.

2.2. Theorem: The probability distribution of a k–variate Dirichlet distribution with

parameters ϑ1, . . . , ϑk;ϑk+1is concave in the set {t | t ≥ 0} if α ≤ 0 and in {t | ti ≥ α, i =

1, . . . , k}, if α > 0, where α =
ϑ1 + . . .+ ϑk − 1

ϑ1 + . . .+ ϑk + ϑk+1 − 2
≤ 1, (if ϑ1+ . . .+ϑk +ϑk+1−2 �=

2).

More details about the concavity of multivariate probability distribution functions and

proof of this theorem can be found in Prékopa ([88]).

Logconcavity and Logconvexcty. From (2.2) if ϑ1 ≥ 1, . . . , ϑk+1 ≥ 1,then

log f (x1, . . . , xk) = logK +
k∑

j=1

(ϑj − 1) log xj + (ϑk+1 − 1) log(1 −
k∑

i=1

xi),
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Figure 1: A: Support of a Bivariate Dirichlet Distribution B: Support of a Bivariate

Ordered Dirichlet Distribution

where, K =
Γ (ϑ1 + . . .+ ϑk+1)

Γ (ϑ1) · · ·Γ (ϑk+1)
, is a concave function in the convex set where

f (x1, . . . , xk) > 0. In fact, the sum of concave functions is also concave and since

the concavity of the first k terms is trivial, we have to remark that an increasing concave

function of a concave function (1 − x1 − · · · − xk in this case) is also concave. Thus,

f (x1, . . . , xk) is logconcave in Rk. If ϑ1 ≤ 1, . . . , ϑk+1 ≤ 1, then f (x1, . . . , xk) is logcon-

vex in the convex set where f (x1, . . . , xk) > 0 (see Prékopa ([87])).

Distributions derived from Dirichlet:

Inverted Dirichlet distribution. Let (ξ1, . . . , ξn)T be Dirichlet distributed random

vector, then the transformed random variables

ηi =
ξi

1 − ξ1 − · · · − ξn
, i = 1, . . . , n

define a random vector (η1, . . . , ηn)T , which probability distribution is called inverted

Dirichlet distribution. Its pdf is:

g (y1, . . . , yn) =
Γ(ϑ1 + ... + ϑn+1)

Γ(ϑk) · · ·Γ(ϑn+1)
yϑ1−1

1 · · · yϑn−1
n (1 + y1 + · · · yn)

−
n+1∑
i=1

ϑi

,

0 < yi <∞, i = 1, . . . , n.
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Ordered Dirichlet distribution. Let (ξ1, . . . , ξn)
T be Dirichlet distributed random

vector, then the transformed random variables

η1 = ξ1,

η1 = ξ1 + ξ2,

...

η1 = ξ1 + ξ2 + · · · + ξn,

define a random vector (η1, . . . , ηn)
T , which probability distribution is called ordered

Dirichlet distribution. Its pdf is:

g (y1, . . . , yn) =
Γ(ϑ1 + ...+ ϑn+1)

Γ(ϑk) · · ·Γ(ϑn+1)
yϑ1−1

1 (y2 − y1)
ϑ2−1 · · · (yn − yn−1)

ϑn−1 (1 − yn)
ϑn+1−1 ,

0 < y1 < · · · < yn < 1.

The problem considered in this chapter is that of finding the probability of a Dirichlet

random vector over a cube. Let (a,b) = (a1, b1) × (a2, b2) × . . . × (ak, bk) be a k–

dimensional cube. The problem is then to find

b1∫
a1

· · ·
bk∫

ak

Γ(ϑ1 + ... + ϑk + ϑk+1)

Γ(ϑ1) · · ·Γ(ϑk)Γ(ϑk+1)

k∏
j=1

t
ϑj−1
j

(
1 −

k∑
j=1

tj

)ϑk+1−1

dtk · · · dt1, (2.7)

if a =(0, . . . , 0) ,b = (x1, . . . , xk) and 0 ≤ x1 ≤ 1, . . . , 0 ≤ xk ≤ 1, then the problem is

to find the cumulative distribution function (cdf) of Dirichlet distribution.

The problem of computation probabilities according to Dirichlet distribution has a

little work in the literature and only a few solution methods have been proposed. Exton

([30]) used Lauricella series of the first type, Yassaee ([121], [122], [123]) proposed a

procedure to evaluate the inverted Dirichlet distribution function and used the inverted

Dirichlet distribution to evaluate Dirichlet distribution. Szántai ([105], [109]) proposed

a variance reduction simulation algorithm and applied it for the numerical solution of

probabilistic constrained stochastic programming problems.
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The cumulative distribution function (cdf) of Dirichlet distribution is

F (x1, . . . , xk;ϑ1, . . . , ϑk;ϑk+1) =

=
Γ(ϑ1 + ...+ ϑk + ϑk+1)

Γ(ϑ1) · · ·Γ(ϑk)Γ(ϑk+1)
×

× ∫ x1

0
· · · ∫ xk

0
tϑ1−1
1 · · ·tϑk−1

k (1 − t1 − · · · − tk)
ϑk+1−1dtk · · · dt1,

(2.8)

if 0 ≤ x1 ≤ 1, . . . , 0 ≤ xk ≤ 1 and in all other cases or the cdf has one of the trivial

values zero and one, or it can be expressed with lower dimensional Dirichlet cdf’s. For

simplicity, we will omit the parameters in the cdf of the Dirichlet distribution, i.e. instead

of F (x1, . . . , xn;ϑ1, . . . , ϑn;ϑn+1) simply write F (x1, . . . , xn). So F (xi) and F (xi, xj) will

simply designate the marginal cdf’s of Xi and Xi, Xj, respectively. As the Dirichlet

probability density function equals zero out of the unit simplex, by the application of

the inclusion–exclusion formula easy to prove the following theorem (see Szántai ([105])

and Prékopa ([87])).

2.3. Theorem: Let x(1) ≤ · · · ≤ x(n) be the ordered sequence of x1, . . . , xn, the argu-

ments of the cdf of a Dirichlet distribution.

Case (a) If x(1) + x(2) > 1, then we have

F (x1, ..., xn) = 1 − n +

n∑
i=1

F (xi). (2.9)

Case (b) If x(1) + x(2) + x(3) > 1, then we have

F (x1, ..., xn) =
1

2
(n− 1)(n− 2) − (n− 2)

n∑
i=1

F (xi)

+
n∑

1≤i<j≤n

F (xi, xj).
(2.10)

Proof. Let be Āi = {Xi > xi} , i = 1, . . . , n then by the inclusion exclusion formula we

have
F (x1, . . . , xn; ν1, . . . , νn; νn+1) = P (A1 · · ·An) = 1 −

n∑
i=1

P
(
Āi

)
+

+
∑
i<j

P
(
ĀiĀj

)− ∑
i<j<k

P
(
ĀiĀjĀk

)
+ · · ·+ (−1)nP

(
Āi · · · Ān

)
,
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As we know that all the marginal distributions of a Dirichlet distribution are also Dirich-

let distributions in case (a) we have

F (x1, . . . , xn; ν1, . . . , νn; νn+1) = P (A1 · · ·An) =

= 1 −
n∑

i=1

P
(
Āi

)
= 1 − n+

∑n
i=1 Fi (xi) ,

where all the remaining terms equal zero, and in case (b) we have

F (x1, . . . , xn; ν1, . . . , νn; νn+1) = P (A1 · · ·An) =

= 1 −
n∑

i=1

P
(
Āi

)
+

∑
1≤i<j≤n

P
(
ĀiĀj

)
= 1 − n+

+
∑n

i=1 Fi(xi) +
(

n
2

)− (n− 1)
∑n

i=1 Fi(xi) +
n∑

1≤i<j≤n

Fij(xi, xj) =

=
1

2
(n− 1)(n− 2) − (n− 2)

n∑
i=1

Fi(xi) +
n∑

1≤i<j≤n

Fij(xi, xj),

where all the remaining terms equal zero.

In this chapter, the formulae (2.9) and (2.10) will be generalized and a recursive

algorithm for the calculation of Dirichlet cumulative distribution function values up to

7 dimensions will be developed in Section 2. This procedure is based on the Lauricella

function series expansion and the inclusion–exclusion formula. In Section 3 we propose

the calculation of the hypermultitree lower and upper bounds developed by Bukszár

([14]) for higher dimensions. These bounds need the calculation of low (say up to seven)

dimensional marginal cdf values and many times provide a sufficiently tight interval

for the exact value of the higher dimensional Dirichlet cumulative distribution function

value. If this interval is not tight enough we propose the application of a variance

reduction simulation procedure based on these bounds. This technique was proposed

for estimating multivariate normal probability distribution function values by Szántai

([110]). The application of the recursive algorithm and the hypermultitree bounding

technique will be presented on numerical test problems. The efficiency of the proposed

simulation procedure will be compared to CMC simulation method. In Section 4 the

calculation of the first and second order partial derivatives will be given. The common

property of these formulae is that they involve only lower dimensional cummulative

distribution function calculations. In Section 5 SCS and SCIS will be introduced. On

the base of an interesting property of the Dirichlet distribution new versions of the SCS
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and SCIS algorithms will be developed, called SCSA, SCSB, SCISA and SCISB,

respectively. Their resultant efficiency will be compared to CMC simulation method

with conventional sampling of the Dirichlet distributed random vectors.

2.2 The recursive algorithm by Lauricella function

For the evaluation of Dirichlet cumulative distribution function F (x1, ..., xn;ϑ1,

. . . , ϑn;ϑn+1) on the unit simplex, we can use the following series expansion proposed by

Exton ([30])

F (x1, ..., xn;ϑ1, . . . , ϑn;ϑn+1) =

=
Γ(ϑ1 + ... + ϑn + ϑn+1)

Γ(ϑ1) · · ·Γ(ϑn)Γ(ϑn+1)

xϑ1
1

ϑ1
· · · x

ϑn
n

ϑn
×

×F (n)
A (1 − ϑn+1, ϑ1, . . . , ϑn;ϑ1 + 1, . . . , ϑn + 1; x1, ..., xn),

(2.11)

if x1 + ...+ xn ≤ 1, x1 ≥ 0, . . . , xn ≥ 0, where

F
(n)
A (a, b1, . . . , bn; c1, . . . , cn; x1, ..., xn) =

=
∞∑

m1,...,mn=0

(a,m1 + ... +mn)(b1, m1) · · · (bn, mn)

(c1, m1) · · · (cn, mn)

xm1
1

m1!
· · · x

mn
n

mn!
,

(2.12)

is the Lauricella function of the first kind and the symbol (λ, k) is defined by the relations

(λ, k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ(λ+ k)

Γ(λ)
= λ(λ+ 1) · · · (λ+ k − 1), if k > 0

(−1)k

(1 − λ, k)
, if k < 0

1, if k = 0

Our recursive algorithm will based on the following consideration. When we want to

calculate the cdf of the Dirichlet distribution, first we should check wether the argument
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1

0 1

Figure 2: The Lauricella function

vector is in the unit cube or not. If it is outside of the unit cube then the cdf value is

trivially zero (when at least one argument value is less then zero), one (when all argument

values are greater than one) or it can be determined by calculating a lower dimensional

cdf value. If the argument vector is inside the unit cube we should check wether it is

in the unit simplex or not (see Figure 2). If it is in the unit simplex we can apply the

Lauricella series expansion given by Equation (2.11). Otherwise as the cdf represents

the probability P (X1 ≤ x1, . . . , Xn ≤ xn) we can take one minus the opposite event

probability and then can apply the inclusion–exclusion formula where the last term will

trivially be zero.

Let designate F (x1, . . . , xk) = P (X1 > x1, . . . , Xk > xk) for k = 1, . . . , n.

First, we give formulae for the calculation of F (x1) and F (x1):

F (x1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if x1 < 0,

by Equation (2.11), if 0 ≤ x1 < 1,

1, if x1 ≥ 1

and trivially

F (x1) = 1 − F (x1).

As the one dimensional Dirichlet distribution is beta distribution, the cdf is the so called
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incomplete beta function, so we can also apply one of the existing library routines instead

of using the Lauricella series expansion given by Equation (2.11).

Now, we are able to calculate F (x1, x2) by Equation (2.11) if x1 + x2 < 1, otherwise

if x1 + x2 ≥ 1 we can apply the inclusion–exclusion formula as its last term vanishes:

F (x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
by Equation (2.11), if x1 + x2 < 1,

1 − F (x1) − F (x2), if x1 + x2 ≥ 1.

Further, as now we can calculate F (x1, x2), we can apply the inclusion–exclusion formula

for the calculation of F (x1, x2), if x1 + x2 < 1, and it is trivially zero, if x1 + x2 ≥ 1:

F (x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − F (x1) − F (x2) + F (x1, x2), if x1 + x2 < 1

0, if x1 + x2 ≥ 1

Proceeding this way, in the general case, we can calculate F (x1, . . . , xk) and

F (x1, . . . , xk) for k = 3, . . . , n in the following way:

F (x1, . . . , xk)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

by Equation (2.11), if x1 + · · ·+ xk < 1

1 − ∑
1≤i1≤k

F (xi1)+

+
∑

1≤i1<i2≤k

F (xi1 , xi2)−
...

+(−1)k−1
∑

1≤i1<···<ik−1≤k

F (xi1 , . . . , xik−1
), if x1 + · · ·+ xk ≥ 1

and

F (x1, . . . , xk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − ∑
1≤i1≤k

F (xi1)+

+
∑

1≤i1<i2≤k

F (xi1 , xi2)−
...

+(−1)kF (x1, . . . , xk), if x1 + · · ·+ xk < 1

0, if x1 + · · ·+ xk ≥ 1.
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Theoretically this way we can determine the Dirichlet cdf for any high dimensions.

However the application of Equation (2.11), i.e. the Lauricella series expansion will take

too much CPU time in higher dimensions. This is why we propose the above described

recursive calculation procedure only up to seven dimensions. In the same time we call

the attention, that if in a higher dimensional case one can observe that the sum of the

first eight smallest argument values is greater then one, the inclusion–exclusion formula

can be applied again as in this case F (x1, . . . , xk) = 0, if k ≥ 8 and our recursion can be

applied when k ≤ 7. In this sense the recursive algorithm of this Section can be regarded

as the generalization of Theorem 2.3.

2.3 Bounding and simulations

The research on the probability of the union of a finite number of events has a long

history. In the most cases an explicit calculation of the probability is impossible. Thus

approximate methods are required. One of this is bounding the probability by upper

and lower bounds. Let A1, A2, . . . , An be arbitrary events of a probability space (Ω, P ).

We begin by considering bounds on the probability of a union P (A1 + . . .+ An) . If we

have the complete information about these events A1, A2, . . . , An, the inclusion exclusion

method proved the following formula to compute the exact value of P (A1 + . . .+ An) :

P (A1 + . . .+ An) =
n∑

i=1

P (Ai) −
n∑

i=1

i−1∑
j=1

P (AiAj) +
n∑

i=1

i−1∑
j=1

j−1∑
k=1

P (AiAjAk)−

− . . .+ (−1)n P (A1 . . . An) ,

and we can write the exact value of P (A1 . . . An) :

P (A1 . . . An) = 1 −
n∑

i=1

P
(
Āi

)
+

n∑
i=1

i−1∑
j=1

P
(
ĀiĀj

)− n∑
i=1

i−1∑
j=1

j−1∑
k=1

P
(
ĀiĀjĀk

)
+

+ − . . .+ (−1)n P
(
Ā1 . . . Ān

)
.

Truncating this expansion after k terms gives a lower or upper bound depending on

whether k is even or odd, respectively. A well known bound was presented by Boole ([8])

and Bonferroni ([7]).
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The Bonferroni bounds

2r∑
k=1

(−1)k−1Sk ≤ P (

n∑
i=1

Ai) ≤
2r−1∑
k=1

(−1)k−1Sk,

where

Sk =
∑

1≤i1<...<ik≤n

P (Ai1 · · ·Aik), k = 1, . . . , n,

are the so called binomial moments of the random variable µ defined as the number of

those events A1, A2, . . . , An which occur in a random trial.

The Boole–Bonferroni bounds

The sharpest possible bounds in possession of the information involved in the first few

Sk, k = 1, . . . , m,m << n terms are called Boole–Bonferroni bounds. These are known

in explicit form only for the following special cases:

Lower and upper bounds when S1, S2 are given (m = 2)

2

k∗ + 1
S1 − 2

k∗(k∗ + 1)
S2

≤ P (A1 + A2 + . . .+ An)

≤ S1 − 2

n
S2,

where

k∗ = 1 +

⌊
2S2

S1

⌋
.

Lower and upper bounds when S1, S2, S3 are given (m = 3)

i∗ + 2n− 1

(i∗ + 1)n
S1 − 2(2i∗ + n− 2)

i∗(i∗ + 1)n
S2 +

6

i∗(i∗ + 1)n
S3

≤ P (A1 + A2 + . . .+ An)

≤ S1 − 2(2j∗ − 1)

j∗(j∗ + 1)
S2 +

6

j∗(j∗ + 1)
S3,
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where

i∗ = 1 +

⌊−6S3 + 2(n− 2)S2

−2S2 + (n− 1)S1

⌋
,

and

j∗ = 2 +

⌊
3S3

S2

⌋
.

Upper bound when S1, S2, S3, S4 are given (m = 4)

P (A1 + A2 + . . .+ An)

≤ S1 − 2((i∗ − 1)(i∗ − 2) + (2i∗ − 1)n)

i∗(i∗ + 1)n
S2 +

6(2i∗ + n− 4)

i∗(i∗ + 1)n
S3 − 24

i∗(i∗ + 1)n
S4,

where

i∗ = 1 +

⌊−12S4 + 3(n− 4)S3 + (n− 2)S2

−3S3 + (n− 2)S2

⌋
.

The Kounias bounds

In 1968, Kounias established the following linear lower bound

P

(
n∑

i=1

Ai

)
≥ max

j

⎧⎪⎨⎪⎩
∑
i∈j

P (Ai) −
∑
i,j∈j
i<j

P (AiAj)

⎫⎪⎬⎪⎭ ,

where the maximum is taken over all subsets j of set S= {1, 2, . . . , n} . Since there are

in total 2n − 1 non-empty subsets of S Kounias ([69]) also provided a Bonferroni type

upper bound as follows

P

(
n∑

i=1

Ai

)
≤

n∑
i=1

P (Ai) − max
j

∑
i=1,i�=j

P (AiAj) ,

where the maximum is taken over j ∈{1, 2, . . . , n} .
The Kounias upper bound is a special case of the upper bound due to Hunter ([58])

and Worsley ([120]).

Hunter- Worsley upper bound

Hunter ([58]) and Worsley ([120]) gave an upper bound for P (A1 +A2 + . . .+An) by

the use of S1 and the individual probabilities P (AiAj), 1 ≤ i < j ≤ n involved in S2.
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Construct a non-oriented complete graph with n vertices and assign to vertex i the

event Ai (or the probability P (Ai)) and to edge (i, j) the weight P (AiAj). A connected,

acyclic subgraph of a graph is called tree. A spanning tree of a graph is a tree in the

graph such that it connects all vertices. Find T , a maximal weight spanning tree, then

P (A1 + A2 + . . .+ An) ≤
n∑

j=1

P (Aj) −
∑

(i,j)∈T

P (AiAj).

The maximal spanning tree in a graph can be found quickly by greedy algorithms (by

Kruskal, Prim etc.). Denote the weight of spanning tree T by w(T ) then the Hunter–

Worsley bound can be written simply as

P (A1 + A2 + . . .+ An) ≤ S1 − w(T ).

It is easy to see that the Hunter–Worsley bound is always sharper than the best Boole–

Bonferroni upper bound using S1 and S2. Designating by T � the maximal weight span-

ning tree, by w(T �) its weight and by T1, T2, . . . , TN the existing spanning trees in the

graph, we have the relations

Nw(T �) ≥
N∑

j=1

w(Tj) = N(n− 1)

∑
1≤i<j≤n

P (AiAj)(
n
2

) = N
2

n
S2.

Dividing both sides of the above inequality by N one can conclude

S1 − w(T �) ≤ S1 − 2

n
S2.

Tomescu bounds

Tomescu ([113]) generalized Hunter’s and Worsley’s bound by introducing the concept

of hypertrees. Hypertrees are defined in hypergraphs like trees were defined in simple

graphs.

An h–uniform hypergraph H is a pair H = (V, Eh), where V is a set of vertices and Eh

is a family of h–sets of V , i.e. Eh = (E1, . . . , Em) so that |Ei| = h for all i = 1, . . . , m and

h ≥ 2. The sets Ei, i = 1, . . . , m are called the edges of H . The order of a hypergraph

H is equal to |V |. The degree of a vertex v ∈ V , denoted by dH(v), is the number of

edges of H containing it.
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By definition an h–hypertree or an h–tree is an h–uniform hypergraph T = (V, Eh)

such that for h = 2, T is a tree with vertex set V and for h ≥ 3, T is defined recursively

by the following two rules:

(i) If V = {v1, . . . , vh} then T has a unique edge E1 = {v1, . . . , vh}.
(ii) If |V | ≥ h+ 1 then there exists a vertex vi ∈ V such that if E1, . . . , Eq denote all

edges containing vi then E1 \ {vi}, . . . , Eq \ {vi} induce an (h− 1)–hypertree with vertex

set V \ {vi}.
We remark that every h–hypertree of order n has

(
n−1
h−1

)
edges and every h–hypertree

T of order n has the property that dT (v) ≥ (
n−2
h−2

)
for any v ∈ V and dT (v) =

(
n−2
h−2

)
for

any v ∈ V if and only if v is a terminal vertex of T .

Some examples for the h–hypertrees are the following.

Let us regard the set of vertices {1, 2, 3, 4, 5} and the 3–sets:

E1 = {1, 2, 3},
E2 = {1, 2, 4},
E3 = {2, 3, 4},
E4 = {1, 2, 5},
E5 = {2, 3, 5},
E6 = {3, 4, 5}

are edges. The following are 3–hypertrees:

a) H1 = ({1, 2, 3}, {E1})

b) H2 = ({1, 2, 3, 4}, {E1, E2, E3}) since E2 \ {4} = {1, 2} and E3 \ {4} = {2, 3} are

the edges of a tree on vertices 1, 2 and 3.

c) H3 = ({1, 2, 3, 4, 5}, {E1, E2, E3, E4, E5, E6}) since {1, 2}, {2, 3}, {3, 4} are the

edges of a tree with vertex set {1, 2, 3, 4}.

The h–hypertrees like trees in Hunter–Worsley bound can improve the Bonferroni

bounds. The following theorem proved by Tomescu shows this fact.
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2.4. Theorem: Let T n
h = {V, Eh} denote any h–hypertree with vertex set V =

{1, . . . , n}. The following inequalities hold:

P (

n∑
i=1

Ai) ≤
2p−1∑
k=1

(−1)k−1Sk −
∑

(i1,...,i2p)εE2p

P (Ai1 · · ·Ai2p),

for every 1 ≤ p ≤ n/2, where the second sum is over all edges of T n
2p and hence contains(

n−1
2p−1

)
terms;

P (
n∑

i=1

Ai) ≥
2p∑

k=1

(−1)k−1Sk +
∑

(i1,...,i2p+1)εE2p+1

P (Ai1 · · ·Ai2p+1),

for every 1 ≤ p ≤ (n − 1)/2, where the second sum is over all edges T n
2p+1 and hence

contains
(

n−1
2p

)
terms.

Bukszár bounds

Bukszár ([14]) generalized Tomescu bounds by introducing a new hypergraph struc-

ture called (h,m)–hypermultitree. This has the following definition.

(h,m)-hypermultitrees

We need the following two definitions, to introduce the concept of (h,m)-hypermultitrees.

2.4. Definition Let m be a positive integer. An m-multicherry is a hypergraph of the

form (V, E2, . . . , Em+1), where V = {v1, . . . , vm+1} is the set of vertices and the family of

hyperedges Ei is the set of all subsets of {v1, . . . , vm+1} containing i vertices with vm+1

included, i.e. Ei = {H | vm+1 ∈ H ⊂ {v1, . . . , vm+1}, | H |= i}. The vertex vm+1 is called

the dominating vertex of the m-multicherry.

The m-multicherry with dominating vertex vm+1 and with non-dominating vertices

v1, . . . , vm is denoted by ({v1, . . . , vm}, vm+1).

The 3-multicherry ({1, 2, 3}, 4) is illustrated in Figure 3 by its vertices and edges. Its

hyperedges containing more than two vertices {1, 2, 4}, {1, 3, 4}, {2, 3, 4} and {1, 2, 3, 4}
are not marked in the figure because of the perspicuity.

Note that a 1-multicherry is a single edge together with its incident vertices.
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1

2

3

4

Figure 3: The 3-multicherry ({1, 2, 3}, 4).

2.5. Definition Let m be a positive integer. An m-multitree is a hypergraph of the form

(V, E2, . . . , Em+1), where V is the set of vertices and Ei’s are sets of hyperedges containing

i vertices. An m-multitree is recursively defined by the following two rules.

i) The smallest m–multitree ∆ = (V, E2, . . . , Em+1) has m vertices and Ei is the family

of all subsets of V containing i vertices, where i = 2, . . . , m, and Em+1 = ∅.

ii) From an m–multitree ∆ = (V, E2, . . . , Em+1) we can obtain a new m–multitree

∆′ = (V ′, E ′
2, . . . , E ′

m+1) by adjoining an m–multicherry ({v1, . . . , vm}, vm+1), where

v1, . . . , vm ∈ V and vm+1 is a new vertex (i.e. vm+1 /∈ V ). More precisely V ′ =

V ∪ {vm+1}, E ′
i = Ei ∪ {H | vm+1 ∈ H ⊂ {v1, . . . , vm+1}, | H |= i}.

A 3-multitree ∆ = (V, E2, E3, E4) is illustrated in Figure 4. Given

1, 2, 3 and the hyperedges {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}, we subsequently ad-

join the 3-multicherries ({1, 2, 3}, 4), ({1, 4, 4}, 5) and ({2, 3, 5}, 6) as shown

in the figure. The edges of a 3-multicherry are drawn with the same line-

style. The vertices and hyperedges of ∆ are V = {1, 2, 3, 4, 5, 6}, E2 =

{{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 6}, {3, 4}, {3, 5}, {3, 6}, {4, 5}, {4, 6}}, E3 =

{{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 3, 5}, {1, 4, 5}, {3, 4, 5}, {2, 3, 6}, {2, 5, 6}, {3, 5, 6}},
E4 = {{1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 5, 6}}.
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1

2

4

5

6

3

Figure 4: A 3-multitree.

Note that a 1-multitree is a usual tree. It can be proved that a 1-multitree is deter-

mined by its vertices and edges.

2.6. Definition Let h ≥ 0 and m ≥ 1 be arbitrary integers. An (h,m)–hypermultitree

is a hypergraph of the form (V,h E2, . . . ,h Em+1), where V is the set of vertices and hEi’s

are sets of hyperedges containing h + i vertices. An (h,m)–hypermultitree is defined

recursively by the following rules:

(i) The (0, m)–hypermultitrees are the same as the m–multitrees.

(ii) The smallest (h,m)–hypermultitree ∆ = (V,h E2, . . . ,h Em+1) has h + m vertices

and hEi consists of all subsets of the vertices of V containing h+ i vertices, where

i = 2, . . . , m, and hEm+1 = ∅.

(iii) From an (h,m)–hypermultitree ∆ = (V,h E2, . . . ,h Em+1) we can obtain a new

(h,m)–hypermultitree in the following manner. Let Γ = (V,h−1 E∗
2 , . . . ,h−1 E∗

m+1)

be an arbitrary (h − 1, m)–hypermultitree with the same set of vertices as in ∆.

By adjoining a new vertex v to ∆ and hyperedges of Γ extended by v, we obtain

the new (h,m)–hypermultitree ∆′ = (V ′,h E ′
2, . . . ,h E ′

m+1) with V ′ = V ∪ {v} and

hE ′
i = hEi ∪

⋃
E∈ h−1Ei

{E ∪ {v}} .

The smallest (h,m)–hypermultitrees are generalizations of Tomescu’s hypertrees, which

are the (h, 1)–hypermultitrees in our definition.
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2.1. Example ∆ = (V,1 E2,1 E3), with 1E2 = {{1, 2, 3}} and 1E3 = ∅ is an (1, 2)–

hypermultitree by (ii). From ∆ we can obtain the (1, 2)–hypermultitree ∆′ = (V ′,1 E ′
2,1 E ′

3)

on the basis of (0, 2)–hypermultitree Γ1 = ({1, 2, 3}, {{1, 2}, {1, 3}, {2, 3}}, {{1, 2, 3}})
shown in Figure 5 by adjoining vertex 4 by (iii), where V = {1, 2, 3, 4}, 1E ′

2 =

{{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}, 1E ′
3 = {{1, 2, 3, 4}}. From ∆′ we obtain

∆′′ = (V ′′,1 E ′′
2 ,1 E ′′

3 )on the basis of Γ2, where V ′′ = {1, 2, 3, 4, 5}, 1E ′′
2 =1 E ′

2 ∪
{{1, 3, 5}, {1, 4, 5}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}}, 1E ′′

3 =1 E ′
3 ∪ {{1, 3, 4, 5}, {2, 3, 4, 5}}. Fi-

nally, from ∆′′ we obtain ∆′′′ = (V ′′′,1 E ′′′
2 ,1 E ′′′

3 ) on the basis of Γ3, where V ′′′ =

{1, 2, 3, 4, 5, 6}, 1E ′′′
2 =1 E ′′

2 ∪ {{1, 3, 6}, {1, 4, 6}, {2, 3, 6}, {2, 4, 6}, {3, 5, 6}, {4, 5, 6}},
1E ′′′

3 =1 E ′′
3 ∪ {{1, 3, 5, 6}, {2, 3, 4, 6}}.

2.7. Definition Let A1, . . . , An be arbitrary events. Then the weight of (h,m)–

hypermultitree ∆ = (V,h E2, . . . ,h Em+1) is:

w(∆) =
∑

(i1,...,ih+2)∈hE2

P (Ai1 · · ·Aih+2
)

−
∑

(i1,...,ih+3)∈hE3

P (Ai1 · · ·Aih+3
)

+ . . .+ (−1)m+1
∑

(i1,...,ih+m+1)∈hEm+1

P (Ai1 · · ·Aih+m+1
).

� � �

� � � � �

� �

� �

Γ1 Γ2 Γ3

Figure 5: The Γ1, Γ2, Γ3, hypermultitrees of Example 2.1.
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2.5. Theorem: Let A1, . . . , An be arbitrary events and let ∆ = (V,h E2, . . . ,h Em+1) be an

arbitrary (h,m)–hypermultitree, where V = {1, . . . , n}. The following inequalities hold:

If h is even:

P

(
h+1∑
i=1

Ai

)
≤

h+1∑
k=1

(−1)k−1Sk − w(∆), (2.13)

If h odd:

P

(
h+1∑
i=1

Ai

)
≥

h+1∑
k=1

(−1)k−1Sk + w(∆), (2.14)

where Sk =
∑

1≤i1<...<ik≤n

P (Ai1 · · ·Aik). For the proof see Bukszár ([15]). The theorem

has been proved for the special case of m = 1 by Tomescu ([113]) and in the more

special case of m = 1 and h = 0 by Hunter ([58]) and Worsley ([120]). In the case of

m = 2 and h = 0 and some other results are detailed in Bukszár and Prékopa ([12]).

For higher levels their calculation may become very time consuming, the best choice is

to use the possible smallest value, i.e. h = 0 for upper and h = 1 for lower bounds. The

(h,m)–hypermultitree bounds are as good as heavy hypermultitrees are applied. The

construction of heavy weighted (0, m)- and (1, m)–hypermultitrees algorithms given by

Bukszár’s ([14]).

Bukszár algorithms:

Bukszár ([14]) found a heavy (0, m)–hypermultitree as follows. Create the input data

by evaluating the probabilities P (AiAj)(1 ≤ i < j ≤ n) first, then introduce a weight

function on the edges of the complete graph Λ with vertex set {1, . . . , n}: the edge

incident to the vertices i and j has the weight P (AiAj). Find the maximum weight

(1-multi)tree on Λ by Prim’s algorithm and obtain the Hunter-Worsley bound with the

maximum weight tree (see Theorem 2.5.). Then, extended the maximum weight tree to

a 2-multitree by the following recursion.

i) Take the maximum weight edge together with the vertices incident to it. Then

adjoin 2-multicherries subsequently, where an edge of the 2-multicherry is in the

tree and its other one is the heaviest possible.

ii) Extend the r-multitree to an r + 1 vertices of which are those selected first in the

recursion producing the r-multitree. (The r + 1-multitree with r + 1 vertices has
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a unique structure.) Then, we subsequently adjoin an (r+ 1)-multicherry which is

an extension of an r-multicherry of the r-multitree with the heaviest possible edge.

To execute the algorithm, we need to evaluate all P (AiAj) probabilities and to

compute the weight of the m-multitree obtained by the algorithm we need to

evaluate only n−m probabilities of the intersection of m+ 1 events.

Bukszár ([14]) found a heavy (1, m)–hypermultitree as follows.

Create the input data by evaluating the probabilities P (AiAjAk)(1 ≤ i < j < k ≤ n)

and construct a (1, 1)–hypermultitree by the following greedy algorithm. First take a

hyperedge h, l,m for which P (AhAlAm) = max{P (AiAjAk) | (1 ≤ i < j < k ≤ n)} and

construct the (1, 1)–hypermultitree {{h, l,m}, {{h, l,m}}, 0}.

i) Create a sequence of P (AiAjAk) a member of which is obtained by adjoining a

vertex and some hyperedges to the previous member of the sequence. The last

member of the sequence will be required heavy (1, 1)–hypermultitree.

More precisely, assume that we have already constructed a (1, 1)–hypermultitree

the vertex set of which is denoted by V .

ii) Assign a tree to all vertices in {1, . . . , n} \ V in the following way. Let k be

a vertex in {1, . . . , n} \ V. We introduce a weight function on the edges of the

complete graph with vertex set V : the edge incident to the vertices i and j has

the weight P (AiAjAk). Then we find the maximum weight tree on the complete

graph by Prim’s algorithm and assign this tree to vertex k. We adjoin the hy-

peredges obtained by extending vertex. To obtain (1, m)–hypermultitree from

(1, 1)–hypermultitree constructed above we extended the (1-multi)trees which were

assigned to the adjoined vertices to m-multitrees as described previously.

To execute the algorithm, we need to evaluate all P (AiAjAk) probabilities and

to compute the weight of the (1, m)-hypermultitree obtained by the algorithm we

need to evaluate only
(

n−m
2

)
probabilities of the intersection of m+ 2 events.
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The general scheme of (h,m)–hypermultitree bounds is the following:

P (
n∑

i=1

Ai) ≤
h+1∑
k=1

(−1)k−1Sk

−
∑

(i1,...,ih+2)∈hE2

P (Ai1 · · ·Aih+2
)

+
∑

(i1,...,ih+3)∈hE3

P (Ai1 · · ·Aih+2
Aih+3

) (2.15)

...

+ (−1)m
∑

(i1,...,ih+m+1)∈hEm+1

P (Ai1 · · ·Aih+2
· · ·Aih+m+1

),

where h is an arbitrary even number, ∆ = (V, hE2, . . . , hEm+1) is an (h,m)–

hypermultitree, in which V is the set of vertices and hE i’s are sets of hyperedges con-

taining h+ i vertices.

P (

n∑
i=1

Ai) ≥
h+1∑
k=1

(−1)k−1Sk

+
∑

(i1,...,ih+2)∈hE2

P (Ai1 · · ·Aih+2
)

−
∑

(i1,...,ih+3)∈hE3

P (Ai1 · · ·Aih+2
Aih+3

) (2.16)

...

+ (−1)m+1
∑

(i1,...,ih+m+1)∈hEm+1

P (Ai1 · · ·Aih+2
· · ·Aih+m+1

),

where h is an arbitrary odd number, ∆ = (V, hE2, . . . , hEm+1) is an (h,m)–

hypermultitree, in which V is the set of vertices and hE i’s are sets of hyperedges con-

taining h+ i vertices.
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In the special case h = 0 the upper bound is the following:

P (
n∑

i=1

Ai) ≤ S1

−
∑

(i1,i2)∈0E2

P (Ai1Ai2)

+
∑

(i1,i2,i3)∈0E3

P (Ai1Ai2Ai3) (2.17)

...

+ (−1)m
∑

(i1,...,im+1)∈0Em+1

P (Ai1Ai2 · · ·Aim+1) = 0Um.

In the special case h = 1 the lower bound is the following:

P (
n∑

i=1

Ai) ≥ S1 − S2

+
∑

(i1,i2,i3)∈1E2

P (Ai1Ai2Ai3)

−
∑

(i1,...,i4)∈1E3

P (Ai1Ai2Ai3Ai4) (2.18)

...

+ (−1)m
∑

(i1,...,im+2)∈1Em+1

P (Ai1Ai2Ai3 · · ·Aim+2) = 1Lm.

In Bukszár’s ([14]) paper there was given a practical reformulation of the above lower

and upper bounds, by allowing some events to be opposite in the products of the events

Ai, i = 1, . . . , n.

The reformulated upper bound is:

P (
n∑

i=1

Ai) ≤ 1 − P
(
Ai1Ai2 · · ·Aim+1

)
+

∑
{{j1,...,jm},jm+1}∈M

P
(
Aj1 · · ·AjmAjm+1

)
,

(2.19)

where {{i1, . . . , im} , im+1} is the first m–multicherry of the (0, m)–hypermultitree, while

M is the set of all m–multicherries of the (0, m)–hypermultitree, except the first one.

As the m–multitree consists of n − m number of m–multicherries, the calculation of
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the upper bound by the new formula (2.19) need only n −m number of product event

probability calculations where all products consist of m+ 1 events.

The reformulated lower bound is:

P (
n∑

i=1

Ai) ≥ 1 − P (Ai1 · · ·Aim+2)

+
n−m−1∑

k=2

[
P (A

i
(k)
1

· · ·A
i
(k)
m+1

Aj(k))

− ∑{{
j
(k)
1 ,...,j

(k)
m

}
,j

(k)
m+1

}
∈M(k)

P (A
j
(k)
1

· · ·A
j
(k)
m
A

j
(k)
m+1

Aj(k))

]
,

(2.20)

where {i1, . . . , im+2} is the firstm–multicherry in the recursive construction of the (1, m)–

hypermultitree, j(k) is the index of the vertex to be entered in the k-th step;
{{

i
(k)
1 , . . . ,

i
(k)
m

}
, i

(k)
m+1

}
is the first m–multicherry of the (0, m)–hypermultitree constructed from

the verteces existing in the k-th step; while M(k) is the set of all m–multicherries of the

(0, m)–hypermultitree constructed from the verteces existing in the k-th step, except the

first one. It is easy to check that this way the calculation of the lower bound by the new

formula (2.20) need only (n−m) (n−m− 1) /2 number of product event probability

calculations where all products consist of m+ 2 events.

In the case of Dirichlet cdf calculations the probability terms in the formulae (2.19)

and (2.20) can be calculated by our recursive calculation algorithm:

P (X1 > x1, . . . , Xk > xk, Xk+1 ≤ xk+1)

= P (X1 > x1, . . . , Xk > xk)

−P (X1 > x1, . . . , Xk > xk, Xk+1 ≤ xk+1)

= F (x1, . . . , xk)

−F (x1, . . . , xk, xk+1)
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and
P (X1 > x1, . . . , Xk > xk, Xk+1 ≤ xk+1, Xk+2 ≤ xk+2)

= P (X1 > x1, . . . , Xk > xk)

−P (X1 > x1, . . . , Xk > xk, Xk+1 > xk+1)

−P (X1 > x1, . . . , Xk > xk, Xk+2 > xk+2)

+P (X1 > x1, . . . , Xk > xk, Xk+1 > xk+1, Xk+2 > xk+2)

= F (x1, . . . , xk) − F (x1, . . . , xk, xk+1) − F (x1, . . . , xk, xk+2)

+F (x1, . . . , xk, xk+1, xk+2).

The variance reduction simulation procedure for the estimation of the probability

P (A1 + · · · + An) can be designed in the following way. Let us make large number of

random trials in the probability space where A1, . . . , An are arbitrary events. Let µ

designate the number of those A1, . . . , An events which occur; 0τ 2, . . . , 0τm+1 designate

the number of occurring product events according to the elements of the 0E2, . . . , 0Em+1

hyperedge sets in the 0Um–hypermultitree upper bound (see Equation (2.9)); and finally

1τ 2, . . . , 1τm+1 designate the number of occurring product events according to the ele-

ments of the 1E2, . . . , 1Em+1 hyperedge sets in the 1Lm–hypermultitree lower bound (see

Equation (2.10)). Define the following random variables:

νCR =

⎧⎨⎩ 0, if µ = 0

1, if µ ≥ 1

0νm =

⎧⎨⎩ 0, if µ ≤ 1

1 − µ+ 0τ 2 − . . .+ (−1)m+1
0τm+1, if µ ≥ 2

1νm =

⎧⎨⎩ 0, if µ ≤ 2

1/2(µ− 1)(µ− 2) − 1τ 2 + . . .+ (−1)m
1τm+1, if µ ≥ 3.

Then it is easy to check that the expected value of the random variables νCR, 0νm + 0Um,

1νm + 1Lm equals the probability value P (A1 + · · · + An). Now, if we estimate in a

simulation procedure the expected values of these random variables and the elements of

their variance–covariance matrix, then by the well known regression technique we can

combine these estimators into a final estimator with minimal variance. More details of

the similar simulation procedures can be found in the paper by Szántai ([110]).
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2.4 First and second order partial derivatives

When we know the conditional probability distribution of a random vector according

to a condition on any one of its components, then the partial derivative of its cdf can be

determined by the following general formula (see Prékopa ([87])):

∂F (x1, . . . , xn)

∂xk
= F (x1, . . . , xk−1, xk+1, . . . , xn|xk)f(xk). (2.21)

In the case of the Dirichlet distribution the conditional random vector (X1, . . . ,

Xk−1, Xk+1, . . . , Xn|Xk = xk) has the property that the transformed conditional random

vector (
X1

1 − xk

, . . . ,
Xk−1

1 − xk

,
Xk+1

1 − xk

, . . . ,
Xn

1 − xk

|Xk = xk) has the n− 1–variate Dirichlet

distribution D(ϑ1, . . . , ϑk−1, ϑk+1, . . . , ϑn;ϑn+1).

So the general formula (2.21) leads to the first order partial derivatives:

∂F (x1, . . . , xk−1, xk, xk+1, . . . xn; Θ;ϑn+1)

∂xk

= F (
x1

1 − xk
, . . . ,

xk−1

1 − xk
,
xk+1

1 − xk
, . . . ,

xn

1 − xk
; Θ \ {ϑk};ϑn+1)

×f(xk;ϑk;
∑

ϑi∈Θ\{ϑk}
ϑi + ϑn+1), k = 1, . . . , n,

(2.22)

where Θ designates the parameter set {ϑ1, . . . , ϑn}.
Equation (2.22) shows that the first order partial derivatives can be calculated as a

product of an n − 1–variate Dirichlet cdf and a 1–variate Dirichlet, i.e. beta pdf. So

when we are taking the second order derivatives we can apply again our general formula

(2.21).

For the mixed second order partial derivatives we get

∂2F
(
x1, . . . , xk−1, xk, xk+1, . . . , xl−1, xl, xl+1, . . . xn; Θ;ϑn+1

)
∂xk∂xl

=
1

1 − xk
F
( x1

1 − xk − xl
, . . . ,

xk−1

1 − xk − xl
,

xk+1

1 − xk − xl
, . . . ,

xl−1

1 − xk − xl
,

xl+1

1 − xk − xl
, . . . ,

xn

1 − xk − xl
; Θ \ {ϑk, ϑl};ϑn+1

)
·f
( xl

1 − xk
;ϑl;

∑
ϑi∈Θ\{ϑk}

ϑi + ϑn+1

)
f
(
xk;ϑk;

∑
ϑi∈Θ\{ϑk ,ϑl}

ϑi + ϑn+1

)
,

k = 1, . . . , n− 1, l = k + 1, . . . , n.

(2.23)
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For the pure second order partial derivatives we get

∂2F
(
x1, . . . , xk−1, xk, xk+1, . . . xn; Θ;ϑn+1

)
∂2xk

=

[
n∑

i=1,i�=k

xi

(1 − xk)2
F
( x1

1 − xk − xi
, . . . ,

xk−1

1 − xk − xi
,

xk+1

1 − xk − xi

, . . . ,
xi−1

1 − xk − xi

,
xi+1

1 − xk − xi

, . . . ,
xn

1 − xk − xi

;

Θ \ {ϑk, ϑi};ϑn+1

)
f
( xi

1 − xk
;ϑi;

∑
ϑj∈Θ\{ϑk,ϑi}

ϑj + ϑn+1

)]

·f
(
xk;ϑk;

∑
ϑi∈Θ\{ϑk}

ϑi + ϑn+1

)
+F

( x1

1 − xk
, . . . ,

xk−1

1 − xk
,
xk+1

1 − xk
, . . . ,

xn

1 − xk
; Θ \ {ϑk};ϑn+1

)

·
Γ
( ∑

ϑi∈Θ

ϑi + ϑn+1

)
Γ(ϑk)Γ

( ∑
ϑi∈Θ\{ϑk}

ϑi + ϑn+1

)[(ϑk − 1)xϑk−2
k

(
1 − xk

) ∑
ϑi∈Θ\{ϑk}

ϑi+ϑn+1−1

−xϑk−1
k

( ∑
ϑi∈Θ\{ϑk}

ϑi + ϑn+1 − 1
)(

1 − xk

) ∑
ϑi∈Θ\{ϑk}

ϑi+ϑn+1−2
]
,

k = 1, . . . , n.

(2.24)

Numerical results

2.2. Example Let us regard a 20–dimensional Dirichlet distribution. The parameter

values ϑi, i = 1, . . . , 21 and the argument values of the cdf xi, i = 1, . . . , 20 are given

in Table 1. As the sum of the 8 smallest argument values is greater than one, the cdf

value can be calculated by our Lauricella series expansion based recursive algorithm. If

we restrict the summation upper limits to 20 in the Lauricella series expansion, the result

is accurate only for two digits. If the summation upper limits are increased to 30, then

the result becomes accurate, but the CPU time of the calculations increases significantly,

too. The gap between the 0L1 lower and the 1U1 upper bound is small and the variance

reduction simulation produces accurate estimation with N = 100, 000 sample size. In

Table 2 the Crude Monte Carlo estimator with the same sample size and the efficiency
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Table 1: Parameter and cdf argument values of the Dirichlet distribution in Example

2.2.

index ϑ values x values index ϑ values x values

1 1.5 0.3 11 1.5 0.3

2 1.4 0.2 12 1.4 0.2

3 1.3 0.2 13 1.3 0.2

4 1.2 0.2 14 1.2 0.2

5 1.1 0.2 15 1.1 0.2

6 1.2 0.3 16 1.2 0.3

7 1.3 0.2 17 1.3 0.2

8 1.4 0.3 18 1.4 0.3

9 1.2 0.2 19 1.2 0.2

10 1.3 0.3 20 1.3 0.3

21 2.1

of the variance reduction simulation compared to the crude Monte Carlo estimation are

also given. The efficiency means the ratio of the estimated variance times CPU time for

the two compared simulation procedures. Observe that the (0,1)–hypermultitree bound

is lower bound and the (1,1)–hypermultitree bound is upper bound for the cdf as it is

probability of intersection of events and not union of events.

2.3. Example Let us regard the same 20–dimensional Dirichlet distribution as in Ex-

ample 2.2, but the argument values of the cdf let be modified such a way that replace all

0.3 values by 0.1. These new xi, i = 1, . . . , 20 values are given in Table 3. Now the sum

of the 8 smallest argument values is less than one, so the Lauricella series expansion

based recursive algorithm cannot be applied. The gap between the 0L1 lower and the 1U1

upper bound is not as small as it was before, however the variance reduction simulation

produces quite accurate estimation with N = 100, 000 sample size in reasonable CPU

time.
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Table 2: Numerical results for the Dirichlet cdf of Example 2.2.

Lauricella (m = 20) = 0.941206

CPU in seconds = 21.58

Lauricella (m = 30) = 0.943113

CPU in seconds = 189.11

Estimated value (crude) = 0.943270

Std. deviation (crude) = 0.000732

CPU in seconds = 1.21

Lower bound (0L1) = 0.942888

Upper bound (1U1) = 0.943113

Estimated value (var. red.) = 0.943113

Std. deviation (var. red.) = 0.000010

CPU in seconds = 3.57

Efficiency = 1813.72

Table 3: Cdf argument values of the Dirichlet distribution in Example 2.3.

index x values index x values index x values index x values

1 0.1 6 0.3 11 0.1 16 0.1

2 0.2 7 0.2 12 0.2 17 0.2

3 0.2 8 0.1 13 0.2 18 0.1

4 0.2 9 0.2 14 0.2 19 0.2

5 0.2 10 0.1 15 0.2 20 0.1
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Table 4: Numerical results for the Dirichlet cdf of Example 2.3.

Estimated value (crude) = 0.367700

Std. deviation (crude) = 0.001525

CPU in seconds = 1.21

Lower bound (0L1) = 0.238344

Upper bound (1U1) = 0.377891

Estimated value (var. red.) = 0.367073

Std. deviation (var. red.) = 0.000255

CPU in seconds = 3.57

Efficiency = 12.12

Lower bound (0L2) = 0.290188

Upper bound (1U1) = 0.377891

CPU in seconds = 3.63

Lower bound (0L3) = 0.322980

Upper bound (1U2) = 0.371765

CPU in seconds = 10.76

Lower bound (0L4) = 0.345615

Upper bound (1U3) = 0.368858

CPU in seconds = 211.79

In Table 4 again the Crude Monte Carlo estimator with the same sample size and

the efficiency of the variance reduction simulation compared to the crude Monte Carlo

estimation are given. The efficiency of the variance reduction simulation is much less

than it was before. The higher order 0Lm, 1Um−1, m = 2, 3, 4 lower and upper bounds

were also determined, however their CPU calculation time increased quickly.

2.4. Example Let us generate a 5–dimensional Dirichlet distribution from the 20–

dimensional Dirichlet distribution of Example 2.2 so, that keep the first five parameter

and argument values and the sixth parameter value be equal the value of ϑ21 in Example

2.2. In Table 5 we give the estimated cdf value, and in Table 6 the estimated gradient
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Table 5: Numerical results for the Dirichlet cdf of Example 2.4.

Estimated value (crude) = 0.134431

Std. deviation (crude) = 0.000341

CPU in seconds = 2.78

Lower bound (0L1) = 0.000000

Upper bound (1U1) = 0.157245

Estimated value (var. red.) = 0.134502

Std. deviation (var. red.) = 0.000102

CPU in seconds = 2.66

Efficiency = 11.69

Table 6: Estimators of the gradient vector and Hessian matrix elements in Example 2.4.

estimator estimator estimator estimator

g1 0.717479 h11 -1.191840 h33 -1.645818 h51 2.035615

g2 0.657314 h21 3.682934 h41 2.803651 h52 1.848502

g3 0.597790 h22 -1.449139 h42 2.587722 h53 1.664471

g4 0.538996 h31 3.575082 h43 2.367718 h54 1.483955

g5 0.442658 h32 3.291370 h44 -1.782822 h55 -1.110385

vector and Hessian matrix elements.

2.5. Example Let us generate a 5–dimensional Dirichlet distribution from the 20– di-

mensional Dirichlet distribution of Example 2.3 in the same way as it was done in the

case of Example 2.4 from the 20–dimensional Dirichlet distribution of Example 2.2. In

this case the cdf value is small enough and the variance reduction simulation procedure

is not very effective. Hence in Table 7 we give also the results of the SCIS simulation

method (Gouda and Szántai ([48])), which is more effective for this example and becomes

even more better for the estimation of smaller cdf values. We will describe SCIS in the

next section.
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Table 7: Numerical results for the Dirichlet cdf of Example 2.5.

Estimated value (crude) = 0.035870

Std. deviation (crude) = 0.000588

CPU in seconds = 0.55

Lower bound (0L1) = 0.000000

Upper bound (1U1) = 0.150463

Estimated value (var.red.) = 0.034756

Std. deviation (var. red.) = 0.000370

CPU in seconds = 0.50

Efficiency (var. red.) = 2.77

Estimated value (SCIS) = 0.034971

Std. deviation (SCIS) = 0. 000031

CPU in seconds = 12.99

Efficiency (SCIS) = 15.23

2.5 New Sampling Techniques

In this section, we will describe and compare several simulation algorithms for comput-

ing the cumulative distribution function values of Dirichlet distribution. In the previous

section, we have described the variance reduction simulation procedure for the estima-

tion of Dirichlet probabilities which are most effective when the estimated probability

value is close to one, but in case of small probability values (rare event probability) is

not very effective. Thus we will apply SCS and SCIS methods for this purpose. We

will show that the simulation algorithms based on SCS and SCIS techniques can be

successfully applied for finding the cumulative distribution function values of Dirichlet

distribution.

The SCS and SCIS techniques were applied first for the estimation of the cumulative

distribution function of a multivariate normal distribution by Ambartzumian et al. ([1]).

These algorithms will be described first. The application of SCS and SCIS simulation

methods in the estimation of Dirichlet cumulative distribution function values will be
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given later in this section. Based on properties of the Dirichlet distribution and Theorem

2.3., new versions of the SCS and SCIS algorithms will be developed, called SCSA,

SCSB, SCISA and SCISB, respectively. We present some numerical results, too.

Crude Monte Carlo Algorithm:

We will call CMC the simple "hit-or-miss Monte Carlo" simulation method with

conventional sampling of the Dirichlet distributed random vectors ( i.e. using the con-

struction given in the formula (2.4)). This is the simplest method for computing the

Dirichlet cumulative distribution function values.

2.1. Algorithm The steps of CMC algorithm are as follows:

1. Generate N Dirichlet distributed random vectors by each time generating n + 1

standard gamma distributed Yi random numbers and using the construction given

in the formula (2.4).

2. Count the number K of those random points that fall inside the domain of the cdf

and estimate

P̂ =
K

N
,

with variance

V ar(P̂ ) = P (1 − P )/N,

which can be estimated (consistently) by

P̂ (1 − P̂ )/N.

The Sequential Conditioned Sampling Algorithm(SCS)

It is well known that any multivariate probability density function f(x1, x2, . . . , xn)

can be expressed in a product form of a series of one dimensional conditional probability

density functions:

f(x1, x2, . . . , xn) = f1(x1)f2(x2 | x1) · · ·fn(xn | x1, x2, . . . , xn−1).

As in the case of Dirichlet distribution we know the conditional probability distributions

involved in the above expression (all of them are one dimensional beta distributions),
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the cumulative probability distribution function can be easily expressed in the following

form:
D(a1, . . . , an; ν1, . . . , νn; νn+1) =

=
a1∫
0

· · ·
an∫
0

d(x1, . . . , xn; ν1, . . . , νn; νn+1)dxn · · · dx1 =

=
a1∫
0

b (x1; ν1; ν2 + · · · + νn + νn+1)

...
ak

1 − x1 − · · · − xk−1∫
0

b (xk; νk; νk+1 + · · ·+ νn + νn+1)

...
an

1 − x1 − ...− xn−1∫
0

b (xn; νn; νn+1) dxn · · · dxk · · ·dx1,

(2.25)

where ν1, . . . , νn, νn+1 are positive parameters of the Dirichlet distribution.

Using the equation (2.25) one can construct the sequential conditioned sampling

(SCS) algorithm for estimation of the Dirichlet cdf. The outcome of a trial by SCS

algorithm is random and can be failure or success.

2.2. Algorithm The steps of SCS algorithm are as follows:

1. We generate a random value X1 = x1 from beta distribution with parameters

ν1, ν2+ ... +νn + νn+1.

2. If x1 /∈ [0, a1] the trial is terminated and the outcome is failure, if x1 ∈ [0, a1] we

go to the next step

3. If in the first k− 1 steps we have success, then the outcome of k− 1 steps satisfy

0 ≤ xi ≤ ai

1 − x1 − · · ·xi−1
, i = 1, ... , k−1. Thus we generate Xk = xk using beta

distribution with parameters νk, νk+1+ ... + νn + νn+1.

4. If xk /∈ [0,
ak

1 − x1 − · · ·xi−1
] then the trial is terminated and the outcome is failure,

otherwise k = k + 1 and repeat the iteration until k = n.

5. If no failure occur in the iterations then the trial is terminated and the outcome is

success.
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We perform N independent SCS trials and estimate P (Q) by

P̂ =
number of successes

N
,

with estimated variance

var
(
P̂
)

=
P̂ (1 − P̂ )

N
.

The Modified Versions of the Sequential Conditioned Sampling Algorithm

(SCSA and SCSB)

The SCS algorithm will be modified by the application of formulae (2.9) and (2.10)

when it becomes possible in the iterations of the algorithm. When trying to apply

formula (2.9) we obtain algorithm SCSA and when trying to apply formula (2.10) we

obtain algorithm SCSB.

2.3. Algorithm The steps of SCSA and SCSB algorithms are as follows:

1. Initialize as p = 0.0 and sort the argument values of the cumulative distribution

function and the according parameters of the Dirichlet distribution in increasing

order of the argument values.

2. For i = 1, to n do:

Generate a random value Xi = xi from beta distribution with parameters νi, νi+1 +

...+ νn + νn+1.

Case SCSA: If for any value i the inequality
ai+1

1 − x1 − · · · − xi
+

ai+2

1 − x1 − · · · − xi
> 1 is fulfilled, then let us calculate the value

q = 1 − (n− i)+

+
∑n

j=i+1B(
aj

1 − x1 − · · · − xi

, νj ; νj+1 + · · ·+ νn + νn+1).

As result of the trial let us accept the value q:

p = p+ q,

otherwise proceed the SCS algorithm and if the result of the trial becomes ’success’

add one to the value of p else if the result of the trial becomes ’failure’ add zero to

the value of p i.e. its value remains unchanged.
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Case SCSB: If for any value i the inequality
ai+1

1 − x1 − · · · − xi

+

ai+2

1 − x1 − · · · − xi

+
ai+3

1 − x1 − · · · − xi

> 1 is fulfilled, then let us calculate

the values

d1 =
∑n

j=i+1B(
aj

1 − x1 − · · · − xi
, νj ; νj+1 + · · ·+ νn + νn+1),

d2 =
n−1∑

j=i+1

n∑
k=j+1

D(
aj

1 − x1 − · · · − xi
,

ak

1 − x1 − · · · − xi
; νj , νk;

∑n+1
l=i+1 νl − νj − νk).

Using these two auxiliary values calculate the value

q = (n− i− 1)(n− i− 2)/2 − (n− i− 2)d1 + d2.

and as result of the trial let us accept the value q:

p = p+ q,

otherwise proceed the SCS algorithm and if the result of the trial becomes ’success’

add one to the value of p else if the result of the trial becomes ’failure’ add zero to

the value of p i.e. its value remains unchanged.

The Sequential Conditioned Importance Sampling Algorithm (SCIS)

First we introduce importance sampling densities in the equation (2.25) i.e. we take
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truncated beta sampling densities in the following way.

D(a1, . . . , an; ν1, . . . , νn; νn+1) =

=
a1∫
0

b (x1; ν1; ν2 + · · ·+ νn + νn+1)

...
ak

1−x1−···−xk−1∫
0

b (xk; νk; νk+1 + · · · + νn + νn+1)

...
an

1−x1−...−xn−1∫
0

b (xn; νn; νn+1) dxn · · · dxk · · · dx1 =

=
1∫
0

B(a1; ν1; ν2 + ...+ νn + νn+1)·

·b (x1; ν1; ν2 + · · · + νn + νn+1)

B(a1; ν1; ν2 + ... + νn + νn+1)
I[0,a1](x1)

...
1∫
0

B

(
ak

1 − x1 − ...− xk−1

; νk; νk+1 + · · ·+ νn + νn+1

)
·

· b (xk; νk; νk+1 + · · ·+ νn + νn+1)

B

(
ak

1 − x1 − ...− xk−1
; νk; νk+1 + · · ·+ νn + νn+1

)I[
0,

ak

1 − x1 − · · · − xk−1

](xk)

...
1∫
0

B

(
an

1 − x1 − ...− xn−1
; νn; νn+1

)
·

· b (xn; νn; νn+1)

B

(
an

1 − x1 − ...− xn−1

; νn; νn+1

)I[
0,

an

1 − x1 − ...− xn−1

](xn)dxn · · · dxk · · · dx1

(2.26)

The outcome of a trial by SCIS algorithm is a real number and each trial consists of

exactly n steps.

2.4. Algorithm The steps of SCIS algorithm are as follows:
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1. Generate a random value x1 from the pdf

b (x1; ν1; ν2 + · · ·+ νn + νn+1)

B(a1; ν1; ν2 + ...+ νn + νn+1)
I[0,a1](x1).

2. After the values x1, ..., xk−1 have been sampled, we sample a random value xk from

the pdf

b (xk; νk; νk+1 + · · ·+ νn + νn+1)

B(
ak

1 − x1 − ...− xk−1

; νk; νk+1 + · · · + νn+1)
I
[0,

ak

1 − x1 − ...− xk−1
]
(xk).

3. The trial is terminated after we generate the nth value xn.

4. Compute the value of random variable

T =
n∏

i=1

B(
ai

1 − x1 − · · · − xi−1
; νi; νi+1 + ... + νn + νn+1).

We perform N independent SCIS trials and obtain the N outcomes t1, ..., tN of the

random variable T in Step 4. Then estimate

P̂ =
1

N

N∑
i=1

ti,

with estimated variance

var
(
P̂
)

= (
1

N

N∑
i=1

t2i − P̂ 2)/N.

The Modified Versions of the Sequential Conditioned Importance Sampling

Algorithm(SCISA and SCISB)

The SCIS algorithm will be modified by the application of formulae (2.9) and (2.10)

when it becomes possible in the iterations of the algorithm. When trying to apply

formula (2.9) we obtain algorithm SCISA and when trying to apply formula (2.10) we

obtain algorithm SCISB.

2.5. Algorithm The steps of SCISA and SCISB algorithms are as follows:

1. Initialization: Let p = 0.0, T = 1.0 and sort the components of the Dirichlet

distributed random vector X according to increasing order of x1, . . .,xn.
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2. Iteration step: For i = 1 to n generate xi from pdf

b (xi; νi; νi+1 + · · ·+ νn + νn+1)

B(
ai

1 − x1 − · · · − xi−1
; νi; νi+1 + · · ·+ νn + νn+1)

I
[0,

ai

1 − x1 − · · · − xi−1
]
(xi)

calculate

T = TB(
ai

1 − x1 − ...− xi−1

; νi; νi+1 + ...+ νn + νn+1).

Case SCISA : If for any value i the inequality

ai+1

1 − x1 − · · · − xi
+

ai+2

1 − x1 − · · · − xi
> 1,

is fulfilled, then let us calculate the value

q = 1 − (n− i)+

+
n∑

j=i+1

B(
aj

1 − x1 − · · · − xi
; νj, νj+1 + · · ·+ νj+1),

let T = Tq and accept p = p + T as result of the trial else proceed with computing

the result of the trial from the SCIS algorithm.

Case SCISB: If for any value i the inequality

ai+1

1 − x1 − · · · − xi

+
ai+2

1 − x1 − · · · − xi

+
ai+3

1 − x1 − · · · − xi

> 1,

is fulfilled, then let us calculate the values

d1 =

n∑
j=i+1

B(
aj

1 − x1 − · · · − xi
, νj ; νj+1 + · · · + νn + νn+1),

d2 =

n−1∑
j=i+1

n∑
k=j+1

D(
aj

1 − x1 − · · · − xi
,

ak

1 − x1 − · · · − xi
;

νj , νk;

n+1∑
l=i+1

νl − νj − νk),

Using these two auxiliary values calculate the value

q = (n− i− 1)(n− i− 2)/2 − (n− i− 2)d1 + d2,

let T = Tq and accept p = p + T as result of the trial else proceed with computing

the result of the trial from the SCIS algorithm.
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Table 8: Comparison of the algorithms: high probability case

Dimension = 10, N = 100000, x1 = x2 = · · · = x10 = 0.3

Parameters = 1.1, 1.2, 1.3, 1.4, 1.5, 1.1, 1.2, 1.3, 1.4, 1.5, 4.1

Est.value Std.deviation Time(sec) Efficiency

CMC 0.93058 8.04 × 10−4 3.13 1.00

SCS 0.93144 7.99 × 10−4 2.97 1.07

SCSA 0.93117 7.07 × 10−4 5.33 0.76

SCSB 0.93047 3.99 × 10−4 208.27 0.06

SCIS 0.93080 1.87 × 10−4 103.09 0.56

SCISA 0.93106 1.81 × 10−4 69.75 0.88

SCISB 0.93067 1.18 × 10−4 169.17 0.86

Numerical Results

We present different examples to estimate the Dirichlet cumulative distribution func-

tion value and compare the numerical efficiency of SCS, SCSA, SCSB, SCIS, SCISA

and SCISB methods with CMC method.

The sequential conditioned sampling and importance sampling can be applied in de-

veloping of effective algorithms for estimating the cumulative probability distribution

function values of Dirichlet distribution. Although in the case of the multivariate nor-

mal distribution these sampling techniques proved to be more effective than the classical

sampling techniques in almost the whole possible domain of the estimated probability

value this is not true for the case of Dirichlet distribution. We have seen that these

new sampling techniques, mainly importance sampling became effective enough only for

the estimation of very small probability values. This difference may be caused by the

fact that the classical sampling technique for Dirichlet distribution, i.e. transformation

of Dirichlet distributed random vector from independent standard gamma distributed

random numbers is fast enough while the same for the multivariate normal distribution,

i.e. transformation of multivariate normally distributed random vector from independent

standard normally distributed random numbers is quite slow. The modified versions of
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Table 9: Comparison of the algorithms: medium probability case

Dimension = 10, N = 100000, x1 = x2 = · · · = x10 = 0.2

Parameters = 1.1, 1.2, 1.2, 1.4, 1.5, 1.1, 1.2, 1.2, 1.4, 1.5, 4.1

Est.value Std.deviation Time(sec) Efficiency

CMC 0.53278 1.58 × 10−3 2.97 1.00

SCS 0.53606 1.58 × 10−3 2.14 1.39

SCSA 0.53530 1.55 × 10−3 2.74 1.12

SCSB 0.53545 1.31 × 10−3 32.03 0.13

SCIS 0.53589 4.86 × 10−4 126.54 0.25

SCISA 0.53567 4.87 × 10−4 145.67 0.21

SCISB 0.53610 4.66 × 10−4 105.51 0.32

Table 10: Comparison of the algorithms: low probability case

Dimension = 10, N = 100000, x1 = x2 = · · · = x10 = 0.1

Parameters = 1.1, 1.2, 1.3, 1.4, 1.5, 1.1, 1.2, 1.3, 1.4, 1.5, 4.1

Est.value Std.deviation Time(sec) Efficiency

CMC 6.80 × 10−3 2.60 × 10−4 3.02 1.00

SCS 6.82 × 10−3 2.60 × 10−3 1.09 2.74

SCSA 6.80 × 10−3 2.60 × 10−4 0.93 3.25

SCSB 6.92 × 10−3 2.62 × 10−4 1.26 2.36

SCIS 7.12 × 10−3 1.35 × 10−5 112.38 9.93

SCISA 7.13 × 10−3 1.34 × 10−5 144.89 7.84

SCISB 7.10 × 10−3 1.33 × 10−5 112.71 10.22
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Table 11: Comparison of the algorithms: very low probability case

Dimension = 10, N = 100000, x1 = x2 = · · · = x10 = 0.075

Parameters = 1.1, 1.2, 1.3, 1.4, 1.5, 1.1, 1.2, 1.3, 1.4, 1.5, 4.1

Est.value Std.deviation Time(sec) Efficiency

CMC 2.99 × 10−4 5.38 × 10−5 2.96 1.00

SCS 4.60 × 10−4 6.78 × 10−5 0.71 2.63

SCSA 3.10 × 10−4 5.57 × 10−5 0.71 3.90

SCSB 3.30 × 10−4 5.74 × 10−7 0.72 3.61

SCIS 3.71 × 10−4 5.57 × 10−7 114.74 241.27

SCISA 3.72 × 10−4 5.58 × 10−7 145.93 188.75

SCISB 3.72 × 10−4 5.53 × 10−7 121.01 231.56

the new algorithms (SCSA, SCSB, SCISA and SCISB) reduced the variance of the

estimation significantly however they needed too much CPU time, so their efficiency has

been destroyed.
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3 Probability Estimation in Network Models

In the first part of this chapter, we describe the estimation of rare event probabilities

in stochastic networks. The well known variance reduction technique, called Importance

Sampling (IS) is an effective tool for doing this. The main idea of IS is to simulate the

random system under a modified set of parameters, so as to make the occurrence of

the rare event more likely. The major problem of the IS technique is that the optimal

modified parameters, called reference parameters to be used in IS are usually very difficult

to obtain. Rubinstein ([92]) developed the CE method for the solution of this problem of

IS technique and then he and his collaborators applied this for estimation of rare event

probabilities in stochastic networks with exponential distribution (see De Boer, Kroese,

Mannor and Rubinstein ([10]) . In this chapter we test this simulation technique also

for medium sized stochastic networks and compare its effectiveness to the simple CMC

simulation. The effectiveness of a variance reduction simulation algorithm is measured in

the following way. We calculate the product of the necessary CPU time and the estimated

variance of the estimation. This product is compared to the same for the simple Crude

Monte Carlo simulation. This was originally used for comparison of different variance

reduction techniques by Hammersley and Handscombe ([55]).

The main result of the first part of this chapter is the extension of CE method for

estimation of rare event probabilities in stochastic networks with normal and beta distri-

butions. In this case the calculation of reference parameters of the importance sampling

distribution requires numerical solution of a nonlinear equation system. This is done

by applying a Newton–Raphson iteration scheme. In this case the CPU time spent for

calculation of the reference parameter values can not be neglected. Numerical results

will also be presented.

In the second part of this chapter, a stochastic programming based PERT modeling

will be introduced. This modeling will produce deterministic earliest starting times for

the activities of the project. These deterministic starting times will be attainable with

prescribed probability. So we also get an estimated finishing time of the project what

is realizable with the same prescribed probability. Moderate sized numerical examples
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will be given for comparing the traditional and the newly introduced PERT modeling

techniques.

3.1 Cross Entropy Algorithm for the Shortest Path Problem

3.1.1 Introduction

Stochastic simulation has proven itself in practice; it is commonly used for accurate

estimations in many problems. However, there are some limitations to the standard

stochastic simulation method in many cases. An important class of problems that cannot

be efficiently solved using standard simulation is that involving rare events. Since these

rare events occur so seldom in a standard simulation, one has to apply very large sample

sizes what need too much CPU time. This is why different methods and techniques have

been developed to estimate rare event probabilities starting at the last decade.

The rest of this section is organized in the following way. we will discuss the basic

methodology behind the CE algorithm. The basic CE algorithm for rare event simu-

lation will also be given. The application of the basic CE algorithm for the shortest

path problem in stochastic networks will be described. The basic CE algorithm will be

specialized for the shortest path problem with exponential, beta and normal distributed

activity duration times. We will discuss two modifications of the basic CE algorithm for

rare event simulation. The first modification is new result, the second was published by

Homem-de Mello and Rubinstein ([56]). The specialization of the modified algorithms

for the shortest path problem will not be given, it can be done in the same way as it

happened in the case of the basic CE algorithm. Numerical results for the comparison of

CMC and IS algorithms based on CE reference parameter estimation will be presented.

3.1.2 Importance Sampling, Cross Entropy and Rare Event Probabilities

We briefly review the ideas behind the IS and CE methods for rare event simulation.

Let us regard a random system described with a random vector X taking on its values in

some space X . Let f(x,v) be a parametric family of probability densities on X . Let us
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suppose that the investigated random vector X has probability density function f(x,v�),

where v� is a fixed parameter vector. Let S(X) be a score function of the investigated

random system. We are looking for the probability that S(X) is greater than some real

number γ. So we wish to estimate

L = P (S(X) > γ) = E[H(X)], (3.1)

by using discrete event simulation, where E is the expected value and H (x) is the

indicator function given by

H(x) = I{S(X)>γ} =

⎧⎨⎩ 1, if S(x) > γ,

0, otherwise.

Equation (3.1) can be estimated straightforward way by CMC simulation, we draw a ran-

dom sample X(1), . . . ,X(n) from f(x;v�) and compute the following unbiased estimator

for L

L̂ =
1

n

n∑
i=1

H(X(i)). (3.2)

When γ is large the probability L will be very small and we say that {S(x) > γ} is a rare

event. In this case CMC requires a large sample size in order to estimate L accurately

(this means that n is very large). An alternative is to use IS (Rubinstein and Melamed

([97]), Rubinstein ([92]) and Rubinstein ([93])), i.e. change measure in the following way

L = P (S(X) > γ) = Ef [H(X)]

=
∫
I{S(X)>γ}f(x;v�)dx

=
∫
I{S(X)>γ}

f(x,v�)

g(x)
g(x)dx

=
∫
I{S(X)>γ}W (x,v�)g(x)dx

= Eg [H(X)W (X;v�)] ,

(3.3)
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where W (x;v�) = f(x;v�)/g(x) is the so called likelihood ratio. Now drawing a random

sample X(1), · · · ,X(n) from the probability density function g(x), we can compute the

following estimator

L̂ =
1

n

n∑
i=1

H(X(i))W (X(i);v�). (3.4)

This is called IS estimator of L and it is also an unbiased estimator.

The aim is now to change for the best possible measure, i.e. to fix the probability

density function g(x) so that the resulting IS estimator have minimal variance. It is easy

to see that the solution of this problem is the following probability density function

g(x) = CH(x)f(x;v�) (3.5)

with normalization factor

C−1 =

∫
H(x)f(x;v�)dx,

i.e. g(x) is the original distribution conditioned on the rare event. The IS estimator

based on the probability density function (3.5) would have variance zero, however we

can not use this as the normalization factor is not at hand, it is exactly that value what

we are just looking for, i.e. Ef [H(X)] = P (S(X) > γ) = L. So we must look after some

good approximation to the optimal probability density function given by equation (3.5).

For measuring the distance between two probability measures one can use the

Kullback–Leibler cross entropy, which is defined as follows. Let g(x) and h(x) be two

probability density functions. Their Kullback–Leibler cross entropy is defined as

CE =

∫
g(x) log

g(x)

h(x)
dx. (3.6)

If g(x) and h(x) have identical distributions, then CE = 0; otherwise, CE > 0.

When looking for approximation of the optimal probability density function given

by equation (3.5) we restrict our attention to those probability densities only which

belong to the same parametric family as our original probability density does. This

way our problem is now to find a parameter vector v̂, called tilting parameter, such

that the probability density function f(x; v̂) approximates the best possible probability

density function (3.5) as well as it is possible. To do this, substitute in equation (3.6)
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the probability density function g(x) by the optimal probability density function given

in equation (3.5) and the probability density function h(x) by f(x;v) and choose v̂ to

minimize this expression.

v̂ = arg min
v

∫
CH(x)f(x;v�) log

CH(x)f(x,v�)

f(x;v)
dx

= arg min
v

[
∫
CH(x)f(x;v�) logCH(x)f(x,v�)dx

− ∫ CH(x)f(x;v�) log f(x;v)dx]

= arg max
v

∫
H(x) log f(x;v)f(x;v�)dx

= arg max
v

∫
H(x) log f(x;v)

f(x;v�)

f(x;vk)
f(x;vk)dx

= arg max
v

Evk
[H(x)W (x;v�,vk) log f(x;v)],

(3.7)

where

W (x;v�,vk) =
f(x;v�)

f(x;vk)
,

and vk is any other tilting vector.

Therefore, the main CE algorithm for rare event simulation by using a smoothing

parameter 0 ≤ λ ≤ 1 (De Boer at el. ([9])) is

3.1. Algorithm Basic CE algorithm for rare event simulation.

1. Set a starting value v0. An appropriate choice may be v0 = v�. Let k = 0 and

start the iteration at step 2.

2. Generate a random sample X(1), . . . ,X(n) from f(x;vk).

3. Compute the score function S(i) = S(X(i)) for all i and order them from smallest

to biggest, S(1) ≤ · · · ≤ S(n). Let γ̂k+1be the (1−ρ) sample quantile of performances

γ̂k+1 = S([(1−ρ)n]), provided this is less than γ. Otherwise set γ̂k+1 = γ.
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4. Use the same sample to estimate the vector vk+1 by solving the following equation

with respect to v

n∑
i=1

I{S(X(i))>γ̂k+1}W (X(i);v�,vk)� log f(X(i);v) = 0T . (3.8)

5. Smooth the new parameter vector by vk+1 := λvk+1 + (1 − λ)vk, where 0 ≤ λ ≤ 1

is a fixed smoothing parameter.

6. If γ̂k+1 = γ then denote the final tilting parameter vector vk+1 by v̂ and go to step

7; otherwise set k = k + 1 and repeat steps 2–6 until γ̂k+1 = γ is reached.

7. Generate a random sample X(1), . . . , X(N) with the final tilting parameter vector v̂.

Estimate the value of rare event probability by the IS estimator:

L̂ =
1

N

N∑
i=1

H(X(i))W (X(i);v�, v̂),

with estimated variance(
1

N

N∑
i=1

H(X(i))W 2(X(i);v�, v̂) − L̂2

)
/N.

3.1.3 Application of the Basic CE Algorithm for the Shortest Path Problem

The shortest path problem is to find the shortest path from one specific node to

another in a network. The arcs connecting successive nodes on a path must point in the

direction of travel. Such paths are sometimes referred to as directed paths. To determine

a shortest path, we assume that we have a random network G(N,A), where N is the

set of nodes and A is the set of arcs. The arcs represent the activity durations with

random variables X(1), · · · , X(m). Naturally, we assume that these arcs are nonnegative.

To find the shortest path from one node (say, O) to another (say, R), we will see that

it is necessary to compute the shortest path from many, perhaps all, other nodes to R.

Hence, we define the shortest path problem as the problem of finding the shortest path

from every node in N to a specific node R ∈ N . Let S(X) be the shortest path from

the source node O to the destination node R.
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Let us assume first that the activity durations X(1), . . . , X(m) are independent and

exponentially distributed with means α�
1, . . . , α

�
m and so their joint probability density

function is given by

f (x;α�) = exp

(
−

m∑
j=1

xj

α�
j

)
m∏

j=1

1

α�
j

. (3.9)

The likelihood ratio involved in (3.8) is now given by

W (X(i);α�, αk) =
f (X(i);α�)

f (X(i);αk)

= exp

(
−

m∑
j=1

X
(i)
j

(
1

α�
j

− 1

αkj

))
m∏

j=1

αkj

α�
j

,

where αk = (αk1, . . . , αkm)T is the parameter vector of the k-th iteration and

X(1), · · · ,X(n) is a random sample from f(x;αk). The logarithm of the probability

density function f (x;α) is

log f (x;α) = −
m∑

j=1

logαj −
m∑

j=1

xj

αj

.

After partial derivation according to αj:

∂ log f (x;α)

∂αj

= − 1

αj

+
xj

α2
j

.

So equation (3.8) will now be specialized to:

n∑
i=1

I{S(X(i))>γ̂k+1}W (X(i);α�, αk)

(
− 1

αj
+
xj

α2
j

)
= 0, j = 1, . . . , m. (3.10)

From equation (3.10) αj , j = 1, . . . , m can be expressed explicitly so Algorithm 3.1. will

become the following.

3.2. Algorithm Basic CE algorithm for the shortest path problem with exponentially

distributed activity duration times.

1. Set the starting value α0 = α�. Let k = 0 and start the iteration at step 2.

2. Generate a random sample X(1), . . . ,X(n) from the exponential distribution

f (x;αk).
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3. Compute the shortest paths S(i) = S(X(i)) for all i and order them from smallest to

biggest, S(1) ≤ · · · ≤ S(n). Let γ̂k+1be the (1 − ρ) sample quantile of shortest paths

γ̂k+1 = S [(1−ρ)n], provided this is less than γ. Otherwise set γ̂k+1 = γ.

4. Use the same sample to estimate the components of the parameter vector αk+1 by

the following explicit formula

αk+1,j =

n∑
i=1

I{S(X(i))>γ̂k+1}W (X(i);α�, αk)X
i
j

n∑
i=1

I{S(X(i))>γ̂k+1}W (X(i);α�, αk)
, j = 1, . . . , m. (3.11)

5. Smooth the new parameter vector by αk+1 := λαk+1 + (1 − λ)αk, where 0 ≤ λ ≤ 1

is a fixed smoothing parameter.

6. If γ̂k+1 = γ then denote the final tilting parameter vector αk+1 by α̂ and go to step

7; otherwise set k = k + 1 and repeat steps 2–6 until γ̂k+1 = γ is reached.

7. Generate a random sample X(1), · · · , X(N) from the exponential distribution with

the final tilting parameter vector α̂. Estimate the value of rare event probability by

the IS estimator:

L̂ =
1

N

N∑
i=1

H(X(i))W (X(i);α�, α̂)

with estimated variance(
1

N

N∑
i=1

H(X(i))W 2(X(i);α�, α̂) − L̂2

)
/N.

Let us now assume that the activity durations X(i), i = 1, . . . , m are independent random

variables distributed according to beta distribution with parameters α�
i , β

�
i , i = 1, . . . , m

and so their joint probability density function is given by

f (x;α�, β�) =
m∏

j=1

Γ
(
α�

j + β�
j

)
Γ
(
α�

j

)
Γ
(
β�

j

) ( 1

b− a

)α�
j +β�

j −1

×(xj − a)α�
j−1(b− xj)

β�
j −1,

(3.12)

where

a ≤ xj ≤ b, α�
j > 0, β�

j > 0, j = 1, . . . , m.
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The likelihood ratio involved in (3.8) is now given by

W (X(i);α�, β�, αk, βk) =
f
(
X(i);α�, β�

)
f (X(i);αk, βk)

=
m∏

j=1

Γ
(
α�

j + β�
j

)
Γ
(
α�

j

)
Γ
(
β�

j

) Γ (αkj) Γ (βkj)

Γ (αkj + βkj)
(b− a)αkj+βkj−α�

j−β�
j

×(b−X
(i)
j )β�

j −βkj(X
(i)
j − a)α�

j−αkj .

The logarithm of the probability density function f (x;α, β) is

log f (x;α, β) =
∑m

j=1 [log Γ(αj + βj) − log Γ(αj) − log Γ(βj)

+ (1 − αj − βj) log(b− a) + (αj − 1) log(xj − a)

+ (βj − 1) log(b− xj)] .

After partial derivation according to αj:

∂ log f (x;α, β)

∂αj
= ψ(αj + βj) − ψ(αj) − log(b− a) + log(xj − a).

After partial derivation according to βj:

∂ log f (x;α, β)

∂βj

= ψ(αj + βj) − ψ(βj) − log(b− a) + log(b− xj).

Here

ψ (x) =
d log(Γ(x))

dx
=

d

dx
Γ (x)

Γ (x)
,

is the so called digamma function.

So equation (3.8) will now be specialized to:

n∑
i=1

I{S(X(i))>γ̂k+1}W (X(i);α�, β�, αk, βk)×

×
[
ψ (αj + βj) − ψ (αj) − log(b− a) + log(X

(i)
j − a)

]
= 0,

j = 1, . . . , m,

(3.13)
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and
n∑

i=1

I{S(X(i))>γ̂k+1}W (X(i);α�, β�, αk, βk)×

×
[
ψ (αj + βj) − ψ (βj) − log(b− a) + log(b−X

(i)
j )
]

= 0,

j = 1, . . . , m.

(3.14)

From equations (3.13) and (3.14) we obtain the system of nonlinear equations

ψ (αj + βj) − ψ (αj) − log(b− a) = Aj , j = 1, . . . , m (3.15)

ψ (αj + βj) − ψ (βj) − log(b− a) = Bj, j = 1, . . . , m, (3.16)

where

Aj =

−
n∑

i=1

I{S(X(i))>γ̂k+1}W (X(i);α�, β�, αk, βk) log(X
(i)
j − a)

n∑
i=1

I{S(X(i))>γ̂k+1}W (X(i);α�, β�, αk, βk)
,

and

Bj =

−
n∑

i=1

I{S(X(i))>γ̂k+1}W (X(i);α�, β�, αk, βk) log(b−X
(i)
j )

n∑
i=1

I{S(X(i))>γ̂k+1}W (X(i);α�, β�, αk, βk)
.

Equations (3.15) and (3.16) will be solved in αj , βj, j = 1, . . . , m by Newton–Raphson

method to obtain α̂j, β̂j, j = 1, . . . , m.

3.3. Algorithm Basic CE algorithm for the shortest path problem with beta distributed

activity duration times.

1. Set the starting value α0 = α�, β0 = β�. Let k = 0 and start the iteration at Step

2.

2. Generate a random sample X(1), . . . ,X(n) from the beta distribution

f (x;αk, βk).

3. Compute the shortest paths S(i) = S(X(i)) for all i and order them from smallest

to biggest, S(1) ≤ · · · ≤ S(n). Let γ̂k+1 be the (1 − ρ) sample quantile of shortest

paths γ̂k+1 = S [(1−ρ)n], provided this is less than γ. Otherwise set γ̂k+1 = γ.
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4. Use the same sample to estimate the components of the parameter vectors

αk+1, βk+1 from equations (3.15), (3.16) by Newton–Raphson method.

5. Smooth the new parameter vectors by αk+1 := λαk+1 + (1 − λ)αk and βk+1 :=

λβk+1 + (1 − λ)βk where 0 ≤ λ ≤ 1 is a fixed smoothing parameter.

6. If γ̂k+1 = γ then denote the final tilting parameter vectors αk+1, βk+1 by α̂, β̂ and

go to step 7; otherwise set k = k+1 and repeat steps 2–6 until γ̂k+1 = γ is reached.

7. Generate a random sample X(1), · · · , X(N) from the beta distribution with the final

tilting parameter vectors α̂, β̂. Estimate the value of rare event probability by the

IS estimator:

L̂ =
1

N

N∑
i=1

H(X(i))W (X(i);α�, β�, α̂, β̂),

with estimated variance(
1

N

N∑
i=1

H(X(i))W 2(X(i);α�, β�, α̂, β̂) − L̂2

)
/N.

Let us now assume that the activity durations X(i), i = 1, . . . , m are independent ran-

dom variables distributed according to normal distribution with parameters µ�
i , σ

2�
i , i =

1, . . . , m and so their joint probability density function is given by

f
(
x;µ�, σ2�

)
=

m∏
j=1

1√
2πσ2�

j

e
−

1

2σ2�
j

(xj−µ�
j )2

, (3.17)

where

−∞ < xj <∞,−∞ < µ�
j <∞, σ2�

j > 0, j = 1, . . . , m.

The likelihood ratio involved in (3.8) is now given by

W (X(i);µ�, σ2�, µk, σ
2
k) =

f
(
X(i);µ�, σ2�

)
f (X(i);µk, σ2

k)

=
m∏

j=1

(
σkj

σ�
j

)
e
−

1

2

m∑
j=1

⎡⎣ 1

σ2
kj

(x
(i)
j −µkj)

2−
1

σ2�
j

(x
(i)
j −µ�

j )2

⎤⎦
.
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The logarithm of the probability density function f (x;µ, σ2) is

log f (x;µ, σ2) = −m
2

log (2π)) − 1

2

∑m
j=1 log σ2

j −
1

2σ2
j

∑m
j=1(xj − µj)

2.

After partial derivation according to µj:

∂ log f (x;µ, σ2)

∂µj

=
1

σ2
j

(xj − µj).

After partial derivation according to σ2
j :

∂ log f (x;µ, σ2)

∂σ2
j

= − 1

2σ2
j

+
1

2σ4
j

(xj − µj)
2.

So equation (3.8) will now be specialized to:

n∑
i=1

I{S(X(i))>γ̂k+1}W (X(i);µ�, σ2�, µk, σ
2
k)

[
1

σ2
j

(xj − µj)

]
= 0,

j = 1, . . . , m

(3.18)

and

n∑
i=1

I{S(X(i))>γ̂k+1}W (X(i);µ�, σ2�, µk, σ
2
k)

[
− 1

2σ2
j

+
1

2σ4
j

(xj − µj)
2

]
= 0,

j = 1, . . . , m.

(3.19)

From equations (3.18) and (3.19) we obtain the system of equations where

µk+1,j =

n∑
i=1

I{S(X(i))>γ̂k+1}W (X(i);µ�, σ2�, µk, σ
2
k)X

(i)
j

n∑
i=1

I{S(X(i))>γ̂k+1}W (X(i);µ�, σ2�, µk, σ2
k)

, (3.20)

and

σ2
k+1,j =

n∑
i=1

I{S(X(i))>γ̂k+1}W (X(i);µ�, σ2�, µk, σ
2
k)(X

(i)
j − µ̂j)

n∑
i=1

I{S(X(i))>γ̂k+1}W (X(i);µ�, σ2�, µk, σ2
k)

. (3.21)

From (3.20) and (3.21) we obtain µ̂j, σ̂
2
j , j = 1, . . . , m.

3.4. Algorithm Basic CE Algorithm for Normal Distribution
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1. Set the starting value µ0 = µ�, σ2
0 = σ�2. Let k = 0 and start the iteration at Step

2.

2. Generate a random sample X(1), . . . ,X(n) from normal distribution N (µk, σ
2
k) .

3. Compute the shortest paths S(i) = S(X(i)) for all i and order them from smallest

to biggest, S(1) ≤ · · · ≤ S(n). Let γ̂k+1 be the (1 − ρ) sample quantile of shortest

paths γ̂k+1 = S [(1−ρ)n], provided this is less than γ. Otherwise set γ̂k+1 = γ.

4. Use the same sample to estimate the components of the parameter vectors

µk+1, σ
2
k+1 from equations (3.20), (3.21).

5. Smooth the new parameter vectors by µk+1 := λµk+1 + (1 − λ)µk and σ2
k+1 :=

λσ2
k+1 + (1 − λ)σ2

k, where 0 ≤ λ ≤ 1 is a fixed smoothing parameter.

6. If γ̂k+1 = γ then denote the final tilting parameter vectors µk+1, σ
2
k+1 by µ̂, σ̂2 and

go to step7; otherwise set k = k+ 1 and repeat steps 2–6 until γ̂k+1 = γ is reached.

7. Generate a random sample X(1), · · · , X(N) from the normal distribution with the

final tilting parameter vectors µ̂, σ̂2. Estimate the value of rare event probability

by the IS estimator:

L̂ =
1

N

N∑
i=1

H(X(i))W (X(i);µ�, σ�2, µ̂, σ̂2),

with estimated variance(
1

N

N∑
i=1

H(X(i))W 2(X(i);µ�, σ�2, µ̂, σ̂2) − L2

)
/N.

3.1.4 Two Modifications of the Basic CE Algorithm for Rare Event Simu-

lation

The idea of the basic algorithm is to introduce two sequences {v̂k}and{γ̂k} depending

on the parameter ρ such that ρ >> L.We start by a not very small ρ. The basic algorithm

aims to reach the optimal reference parameter v∗ by a sequence of calculations controlled

by the parameter ρ which is used to estimate the sequence of sample quantile {γ̂(vk, ρ)}.
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In fact may occur the condition γ̂(vk, ρ) > γ̂(vk−1, ρ) will never be fulfilled. This means

that γ̂(vk, ρ) < γ̂(vk−1, ρ) and the convergence can not be reached in this case. To

overcome this problem we propose a modification of the basic algorithm. If the estimated

sample quantile γ̂(vk, ρ) fails to satisfy γ̂(vk, ρ) > γ̂(vk−1, ρ), then we replace γ̂(vk, ρ) by

γ̂(vk−1, ρ) and estimate the vector of reference parameter and if γ̂(vk, ρ) ≥ γ, then we set

γ̂(vk, ρ) = γ and compute the estimator by IS, otherwise reiterate until convergence is

reached. The modified algorithm for estimating the rare event probability can be written

by the following:

3.5. Algorithm Modified CE algorithm for rare event simulation

1. Initialize: Let k = 0, n = sample size and the initial parameter v0. Generate a

sample X(1), · · · , X(n)from the f (x;v0) .

2. Compute the scores function S(X(i)) for all i = 1, · · · , n. Order all values of S

from the smallest to largest S(1) ≤ · · · ≤ S(n). Compute the quantile γ̂0 = S [(1−ρ)n].

Set k = 1, choose a starting value v0 and v0 = v.

3. Generate a random sample X(1), · · · , X(n) from f(.;vk). Compute the (1 − ρ)-

quantile γ̂k = S [(1−ρ)n].

4. If γ̂k ≥ γ, then set γ̂k = γ;otherwise if γ̂k < γ̂k−1, then set γ̂k−1 = γ̂k, and estimate

the vector vk by solving the stochastic Program (3.8).

5. Smooth the new parameter vector by vk := λvk + (1 − λ)vk−1, where 0 ≤ λ ≤ 1 is

a fixed smoothing parameter.

6. If γ̂k = γ then denote the final tilting parameter vector vk by v̂ and go to step 7;

otherwise set k = k + 1 and repeat steps 3–6 until γ̂k = γ is reached.

7. Generate a random sample X(1), . . . , X(N) with the final tilting parameter vector v̂.

Estimate the value of rare event probability by the IS estimator:

L̂ =
1

N

N∑
i=1

H(X(i))W (X(i);v�, v̂)
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with estimated variance(
1

N

N∑
i=1

H(X(i))W 2(X(i);v�, v̂) − L̂2

)
/N.

The value of ρ used in the CE algorithm plays a crucial role in the convergence of the

CE algorithm, we can only expect the CE algorithm converge to the correct values if

ρ is sufficiently small. To determine a priority which ρ is acceptable can be a difficult

task. To overcome this problem, we can change the value of ρ, adaptively (see Rubinstein

([93]), Homem-de Mello and Rubinstein ([56])). The modified version of Algorithm 3.1 is

stated below. It requires the definition of constants ρ; (0.01 ≤ ρ ≤ 0.1), θ > 1.0, δ > 0.0

and 0.0 < λ ≤ 1.

3.6. Algorithm Homem-de Mello and Rubinstein’s CE algorithm for rare event simu-

lation

1. Initialize: Let k = 0, ρ0 = ρ, n =initial sample size and the initial parameter

α= α0, β = β0. Generate a sample X(1), · · · , X(n) from the f (x;α0, β0) .

2. Compute the scores function S(X(i)) for all i = 1, · · · , n. Order all values of S

from the smallest to largest S(1) ≤ · · · ≤ S(n). Compute the sample quantile γ̂0 =

S [(1−ρk)n]. Set k = 1.

3. Use the same current sample to get v̂k = v̂k(γ̂k−1) from stochastic Program (3.8).

4. Generate a new sample X(1), · · · , X(n) from the f
(
x; α̂k, β̂k

)
and ρk = ρ.

5. Compute the (1 − ρ)-quantile γ̂k = S [(1−ρk)n].

6. If γ̂k ≥ γ. then set γ̂k = γ, and solve stochastic Program 3.8 to get v̂K . Go to Step

8.

7. Otherwise, check whether there exists ρ̄ such that

S [(1−ρ̄)n] ≥ min {γ, γ̂k−1 + δ}.

7.1 If ρ̄ = ρk, then set k = k + 1 and reiterate from Step 3.
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7.2 If ρ̄ < ρk, then set ρk = ρ̄ and go to Step 5.

7.3 If there exists no such ρ̄, let n = θn and go back to Step 4.

8. Estimate the rare event probability by IS:

L̂ =
1

n

n∑
i=1

H(x(i))W (x(i);α0, β0, α̂K , β̂K).

3.1.5 Numerical Results

In this section we present numerical examples, illustrating different versions of CE

algorithms for the estimation of rare event probabilities in small and medium sized

stochastic networks. The activity duration times are supposed to be exponentially or

beta distributed independent random variables. The efficiency of the CE estimators will

be compared to the crude Monte Carlo estimator in the following way (see Hammersley

and Handscombe ([55])).

Efficiency=
Variance × Time (CMC)
Variance × Time (CE)

The computations were implemented in Fortran language on a personal computer

with an Intel c© Pentium 4 c© processor at 3.06 GHz.

3.1. Example Small sized stochastic network with exponentially distributed activity du-

rations times. Let us regard the stochastic network with number of nodes 4 and number

of arcs 5, as it is given in Figure 6, respectively. Let the arcs be distributed according

 1 

 2 

4

 3

Figure 6: Small network.
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to exponential distribution and the parameters of the exponential distributions be given

in the following vector v = (0.350, 0.400, 0.310, 0.430, 0.420). Suppose we want to esti-

mate the probability that the length of the shortest path is greater than γ = 2. First we

applied a Crude Monte Carlo simulation with sample size N = 1000000. As a result we

got estimation 1.9 × 10−5 for the probability value with 4.4 × 10−6 estimated standard

deviation. The necessary CPU time was 3.66 seconds. Then we used the three different

CE algorithms with 12 different parameter settings to find the reference parameters to be

applied in an IS variance reduction technique. In the CE part of the algorithms N = 1000

sample size while in the IS part of the algorithms N = 1000000 sample size was applied.

In Table 12 the estimators, their standard deviations and calculated efficiency coefficients

relative to the CMC simulation are given for the different CE algorithms and parameter

settings.
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3.2. Example Medium sized stochastic network with exponentially distributed activity

durations times.

In this example the medium sized network in (Prékopa, Long, and Szántai, ([86]))

was used. It has 28 nodes and 66 arcs. Nodes 1 and 28 are the original and terminal

nodes,and it is given in Figure 7, respectively. The activities represented by the arcs
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Figure 7: PERT network by A. Prékopa and J. Long

of the network are supposed to be distributed according to exponential distribution.

The parameters of the exponential distributions were generated randomly according to

uniform distribution in the interval (1, 2). The Crude Monte Carlo simulation with

sample size N = 1000000 resulted estimation 8.0 × 10−6 with 2.8 × 10−6 estimated

standard deviation. The necessary CPU time was 38.56 seconds. Three different CE

algorithms with 12 different parameter settings were used again to find the reference

parameters to be applied in an IS variance reduction technique. In the CE part of

the algorithms N = 10000 sample size while in the IS part of the algorithms N =

1000000 sample size was used. In Table 13 the estimators, their standard deviations

and calculated efficiency coefficients relative to the CMC simulation are given for the

different CE algorithms and parameter settings.
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3.3. Example Small sized stochastic network with beta distributed activity durations

times.

In this example we use the same stochastic network as in Example 1. Now we

assume that the activity durations are stochastically independent and have beta dis-

tribution. We suppose that the α parameters of the beta distributions are given in

the vector α = (0.350, 0.400, 0.310, 0.430, 0.420) and the β parameters in the vector

β = (0.350, 0.440, 0.310, 0.430, 0.420). Suppose we want to estimate the probability that

the length of the shortest path is greater than γ = 1.99. The Crude Monte Carlo simula-

tion with sample size N = 1000000 gave the estimate 5.0×10−5 with 7.1×10−6 estimated

standard deviation. The necessary CPU time was 10.06 seconds. Three different CE al-

gorithms with 12 different parameter settings were used to find the reference parameters

to be applied in an IS variance reduction technique. In the CE part of the algorithms

N = 1000 sample size while in the IS part of the algorithms N = 1000000 sample size

was used. In Table 14 the estimators, their standard deviations and calculated efficiency

coefficients relative to the CMC simulation are given for the different CE algorithms and

parameter settings.
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For this example we show the iteration steps for the first phase of the basic CE

algorithm, when the parameters are ρ = 0.01 and λ = 0.1. The changing values of the α

and β parameters and the converging (1 − ρ)-quantile values are given in Table 15.

Table 15: Iteration steps for the first phase of the basic

CE algorithm (ρ = 0.01, λ = 0.1)

k α̂ β̂ γ̂k

0 0.35 0.40 0.31 0.43 0.42 0.35 0.44 0.31 0.43 0.42

1 0.64 2.01 0.36 1.16 0.82 0.34 0.49 0.35 0.45 0.41 1.69

2 6.18 7.98 0.34 3.96 8.37 0.36 0.59 0.35 0.48 0.47 1.92

3 22.42 25.12 0.33 16.98 20.68 0.41 0.59 0.39 0.47 0.47 1.98

4 46.28 52.99 0.33 45.68 42.52 0.41 0.60 0.41 0.49 0.48 1.99

We also show the converging (1 − ρ)-quantile values for the basic, modified and

Homem-de Mello and Rubinstein’s CE algorithms. The next three tables belong to

different parameter settings.

Table 16: Convergence of the γ̂t, t = 1, 2, . . . values for

different versions of CE, case ρ = 0.1, λ = 0.1.

t Basic CE Modified CE HM and R CE

1 1.174 1.197 1.396

2 1.356 1.432 1.599

3 1.554 1.575 1.716

4 1.739 1.713 1.834

5 1.803 1.833 1.889

6 1.881 1.881 1.919

7 1.933 1.927 1.952

8 1.953 1.954 1.969

9 1.971 1.969 1.980
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Table 16: (continuation)

10 1.985 1.979 1.990

11 1.988 1.987

12 1.990 1.990

Table 17: Convergence of the γ̂t, t = 1, 2, . . . values for

different versions of CE, case ρ = 0.05, λ = 0.7.

t Basic CE Modified CE HM and R CE

1 1.366 1.459 1.447

2 1.885 1.902 1.908

3 1.983 1.983 1.990

4 1.990 1.990

Table 18: Convergence of the γ̂t, t = 1, 2, . . . values for

different versions of CE, case ρ = 0.01, λ = 0.5.

t Basic CE Modified CE HM and R CE

1 1.689 1.754 1.690

2 1.975 1.974 1.990

3 1.990 1.990

3.4. Example Medium sized stochastic network with beta distributed activity durations

times.

In this example we use the same stochastic network as in Example 2. Now we assume

that the activity durations are stochastically independent and have beta distribution.

The activities represented by the arcs of the network are supposed to be distributed

according to beta distribution. The parameters of the beta distributions were generated

randomly according to uniform distribution in the interval (1, 2). Suppose we want to
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estimate the probability that the length of the shortest path is greater than γ = 3.00.

The Crude Monte Carlo simulation with sample size N = 1000000 resulted estimation

1.0 × 10−5 with 3.2 × 10−6 estimated standard deviation. The necessary CPU time was

129.24 seconds. Three different CE algorithms with 12 different parameter settings were

used again to find the reference parameters to be applied in an IS variance reduction

technique. In the CE part of the algorithms N = 10000 sample size while in the IS part

of the algorithms N = 1000000 sample size was used. In Table 19 the estimators, their

standard deviations and calculated efficiency coefficients relative to the CMC simulation

are given for the different CE algorithms and parameter settings.
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For this example we can show the converging (1−ρ)-quantile values only for the basic,

modified and Homem-de Mello and Rubinstein’s CE algorithms. The next three tables

belong to different parameter settings.

Table 20: Convergence of the γ̂t, t = 1, 2, . . . values for

different versions of CE, case ρ = 0.05, λ = 0.7.

t Basic CE Modified CE HM and R CE

1 2.179 2.193 2.186

2 2.191 2.506 2.484

3 2.508 2.718 2.696

4 2.713 2.853 2.865

5 2.863 2.993 3.000

6 3.000 3.000

Table 21: Convergence of the γ̂t, t = 1, 2, . . . values for

different versions of CE, case ρ = 0.1, λ = 0.1.

t Basic CE Modified CE HM and R CE

1 2.403 2.413 2.469

2 2.489 2.479 2.539

3 2.537 2.575 2.586

4 2.613 2.619 2.635

5 2.664 2.653 2.692

6 2.720 2.709 2.745

7 2.774 2.767 2.798

8 2.805 2.834 2.863

9 2.856 2.867 2.903

10 2.900 2.925 2.944

11 2.953 2.990 3.000

12 3.000 3.000
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Table 22: Convergence of the γ̂t, t = 1, 2, . . . values for

different versions of CE, case ρ = 0.01, λ = 0.5.

t Basic CE Modified CE HM and R CE

1 2.402 2.411 2.391

2 2.689 2.715 2.701

3 2.937 2.917 3.000

4 3.000 3.000

The numerical results show that an appropriate parameter setting of the CE

algorithm may result significant improvement in the efficiency of the algorithm. Un-

fortunately it is not easy to give any general advise according to the best or near best

possible parameter setting in any of the described three different CE algorithms. Our

experiments show that producing a γ̂t sequence reaching the γ value too quickly is gener-

ally not a good idea as may result a reference parameter set with relatively poor variance

reduction in the IS phase of the algorithms.

3.2 Completion Time Estimation in the PERT Networks

Main drawback of the traditional PERT modeling is that the probabilistic character-

istics determined for the finishing time of the project are only valid when it is supposed

that any activity can be started promptly after finishing all of its predecessor activities.

This is possible in the case of scheduling computer tasks, however it is impossible in the

case of architectural project planning what is the most important application area of

PERT modeling.

3.2.1 Introduction

A project is defined as the collection of activities (or events) {a, b, . . .} among which a

precedence relation a ≺ b is defined. It is supposed to be transitive, i.e., if a ≺ b and

b ≺ c then a ≺ c. Any project can be depicted as a directed network, where the directed
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arcs represent the activities. Without restricting generality, we may assume that there

is exactly one node such that no arc leads into it and there is exactly one node such

that no arc goes out of it. These two nodes will be called original and terminal nodes,

respectively.

Each activity has a duration (or length). The duration (or length) of a path is the

sum of the durations of the arcs contained in the path.

Of particular importance are the paths connecting the original and terminal nodes.

The maximum length of these paths is the shortest time needed to complete the project

and we call it the project completion time. The corresponding path is the critical path.

Suppose that there are n arcs numbered by 1, 2, . . . , n. Suppose furthermore that

there are p paths, numbered by 1, 2, . . . , p, which connect the original and terminal

nodes. The elements of the path-arc incidence matrix A = (aij) are defined as

aij =

⎧⎨⎩ 1, if activity j is contained in path i

0, otherwise.

We will designate by Ai the ith row of the matrix A (1 ≤ i ≤ p). Let ξ = (ξ1, . . . , ξn)
T

be the vector of the activity durations. Then the critical path length R(ξ) equals

R (ξ) = max
1≤i≤p

Aiξ.

Designating by P1, . . . , Pp the paths from the origin to the terminal nodes, we may

also write

R (ξ) = max
1≤i≤p

∑
j∈Pi

ξj .

If the durations ξ1, . . . , ξn are random variables then R(ξ) is a random variable, too.

Its probability distribution function (cdf) will be designated by F (x), i.e.,

F (x) = P (R (ξ) ≤ x) . (3.22)

The original PERT technique, developed by Malcolm et al. ([73]), is a technique to

approximate the expected duration of the project. Further approximations and bounds

to this value are due to Fulkerson ([35]), Clingen ([18]), Elmaghraby ([26]), Robillard

and Trahan ([89], [90]), Devroye ([20]) and others.
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Even more important is, from the point of view of applications, to bound or approx-

imate the probability distribution function of the critical path. In connection with this

we mention the works by Kleindorfer ([68]), Shogan ([102]), Nádas ([78]), Meilijson and

Nádas ([74]), Dodin ([22]), Weiss([118]), Monhor ([76]), Wallace ([117]) and (Prékopa,

Long, and Szántai,([86])).

3.2.2 Singular normal distribution for PERT modeling

This section is based on the work Prékopa, Long, and Szántai, ([86]). The probability

distribution of an activity duration ξi is frequently assumed to be the distribution of

a random variable of the form ξi = Li + (Ui − Li)ηi, where Li and Ui (Li < Ui) are

called optimistic and pessimistic estimates, respectively, made by experts and ηi has

beta distribution in the interval (0, 1), i = 1, . . . , n. In addition to Li and Ui, a third

estimate Mi is also made which is the most likely duration of the activity i (the value

maximizing the probability density function of Li + (Ui − Li)ηi). Given these three

estimates, we obtain (see Battersby([5]), Littlefield and Randolph ([71]):

E (ξi) =
Li + 4Mi + Ui

6
, i = 1, . . . , n (3.23)

Var (ξi) =
(Ui − Li)

2

36
, i = 1, . . . , n. (3.24)

If the non-eliminated paths contain a large number of arcs, then, whether or not the

individual activities have the above "transformed beta distributions" or some other ones,

is not decisive because the path lengths are approximately normally distributed by the

central limit theorem. Formulas (3.23) and (3.24) can be used to obtain the expectation

and the variance of each path.

Let q be the number of non-eliminated paths and suppose, for the sake of simplic-

ity, that those are P1, . . . , Pq. In what follows we approximate not only the univariate

marginal distributions of the random vector

(A1ξ, . . . , Aqξ)
T ,
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by normal distributions, but also the joint distribution of the components by a multivari-

ate normal distribution. (For theoretical foundation of such an approximation see Fomin

([33]).) If ξ1, . . . , ξn are stochastically independent, then all characteristics (the expec-

tation vector and the covariance matrix) are determined by the quantities µi = E(ξi),

σ2
i =Var(ξi), i = 1, . . . , n. If, however, ξ1, . . . , ξn are stochastically dependent, then,

in addition to the above mentioned expectations and variances, we need to know the

covariance matrix of the random vector (ξ1, . . . , ξn). Designating by Ã the matrix con-

sisting of the first q rows of A, the random vector (3.23) equals Ãξ. We have that

E
(
Ãξ
)

= Ãµ, µ = (µ1, . . . , µn)T and the covariance matrix of Ãξ equals ÃCÃT , where

C is the covariance matrix of the random vector ξ = (ξ1, . . . , ξn)
T .

Since the (random) length of Pi equals Aiξ, we have the relations

F (x) = P

(
max
1≤i≤q

Aiξ ≤ x

)
= P (A1ξ ≤ x, . . . , Aqξ ≤ x)

= P

(
A1ξ−A1µ√

A1CAT
1

≤ x−A1µ√
A1CAT

1

, . . . , Aqξ−Aqµ√
AqCAT

q

≤ x−Aqµ√
AqCAT

q

)
,

(3.25)

where the random variables

Aiξ −Aiµ√
AiCA

T
i

, i = 1, . . . , q.

have standard normal probability distributions and their correlation matrix can easily

be obtained from the covariance matrix ÃCÃT . This way the probability distribution

function F (x) of the critical path length R (ξ) can be bounded and approximated by

the techniques developed for bounding and approximating the value of the multivariate

standard normal probability distribution function value (see ([86]).

Remark 1. The 0− 1 matrix Ã may have many columns with all zero elements. These

columns and the corresponding components of the random vector ξ = (ξ1, . . . , ξn)
T can

be deleted, they do not play any role in the probability distribution of the critical path

length. The number of remaining components of ξ can be smaller than the number of

non-eliminated paths, so the multivariate normal probability distribution of the random

variables (3.5) can be singular. Of course singularity can be caused also by the linear

dependence of the rows of the matrix Ã.
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3.2.3 New Stochastic Programming Approach to PERT

Let be described the project by the (N ,A) directed graph, which doesn’t contain any

loop. Here N is the set of nodes (events) and A is the set of arcs (activities). Let

be designated by cj , j = 1, . . . , n the nodes in the set N , among which c1 let be the

original and cn let be the terminal node. Let be assigned the variable xj to the node

cj representing the earliest starting time for all activities starting from the node cj,

j = 1, . . . , n. Let be designated by ei, i = 1, . . . , m the arcs in the set A and let be

assigned the number di to the arc ei as the duration time of the represented activity. If

these are deterministic numbers, then the shortest execution time of the whole project

represented by the loopless directed graph (N ,A) can be determined by solving the

following linear programming problem:

xfi
− xsi

≥ di, i = 1, . . . , m

xj ≥ 0, j = 1, . . . , n

min(xn − x1),

(3.26)

where si, fi are the indeces of the starting and finishing nodes of arc ei. Obviously one

can suppose, that x1 ≡ 0 and the problem (3.26) can be simplified. If the activity

duration times di, i = 1, . . . , m are random variables, then let be designated these by

ξi, i = 1, . . . , m and let us solve the following jointly probabilistic constrained stochastic

programming problem for finding the xj , j = 1, . . . n earliest starting times:

P (xfi
− xsi

≥ ξi, i = 1, . . . , m) ≥ p

xj ≥ 0, j = 1, . . . , n

min(xn − x1),

(3.27)

where p is a prescribed, large enough probability. If the activity starting times determined

by the x1, . . . , xn variables according to the optimal solution of the optimization problem

(3.27) are strictly applied then we can guarantee at reliability level p that the whole

project can be executed without any conflict in the activity starting and finishing times.

In the literature of PERT the activity duration times are usually supposed to be

independent. In these cases in the stochastic programming problem (3.27) the joint

probability can easily be calculated by taking the product of the probabilities calculated
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from the one dimensional marginal probability distributions. These problems are easy

to solve from numerical point of view.

In the first problem of the next section we will show that the stochastic programming

problem (3.27) can also be solved if we suppose the random activity duration times

to be Dirichlet distributed. In the second problem the duration times are supposed to

be independent normally distributed and the model will be solved both by the original

PERT optimization technique as it is described in the paper [86] and by the solution of

the stochastic programming problem (3.27). The numerical results will be compared.

3.2.4 Numerical results

Let us regard first the PERT problem given by the loopless, directed graph of Figure

8. In the Figure 8. di, i = 1, . . . , 15 denotes the duration times of 15 activities and xj

denotes the earliest starting times for all activities starting at event j, j = 1, . . . , 8. The

event No. 1 is the original and the event No. 8 is the terminal event and we suppose that

x1 = 0. Now, if the activity duration times di, i = 1, . . . , 15 are given deterministically,

then the PERT model can be regarded as a CPM (Critical Path Method) problem and

we have to solve the problem (3.26) according to the linear programming problem (3.28).

The solution component x8 gives the total execution time of the project and the solution

components xj , j = 2, . . . , 8 give the earliest starting times for the appropriate activities.

All questions of the CPM model can be answered from these results. For determining

the critical path see ([66]).
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Figure 8: PERT network

x2 ≥ d1

x3 ≥ d2

x4 ≥ d3

x7 ≥ d4

−x2 +x5 ≥ d5

−x2 +x7 ≥ d6

−x2 +x8 ≥ d7

−x3 +x4 ≥ d8

−x3 +x5 ≥ d9

−x3 +x6 ≥ d10

−x4 +x7 ≥ d11

−x5 +x8 ≥ d12

−x6 +x7 ≥ d13

−x6 +x8 ≥ d14

−x7 +x8 ≥ d15

xi ≥ 0, i = 2, . . . , 8

min( x8)

(3.28)

If however the activity duration times di, i = 1, . . . , 15 are stochastic, then we have to
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solve the problem (3.29) according to the stochastic programming problem (3.27). For

the definition of this problem let be

ξi = ai + (bi − ai)ηi, i = 1, . . . , 15,

where ai, bi are the optimistic and the pessimistic estimators of the duration times of the

ith activity, i = 1, . . . , 15 and the random variables η1, . . . , η15 are Dirichlet distributed

with parameters ϑ1 > 0, . . . , ϑ15 > 0, ϑ16 > 0. Their joint probability density function is

f (x1, . . . , x15) = Γ(ϑ1+...+ϑ15+ϑ16)
Γ(ϑ1)···Γ(ϑ15)Γ(ϑ16)

xϑ1−1
1 · · ·xϑ15−1

15 (1 − x1 − . . .− x15)
ϑ16−1 ,

if x1 ≥ 0, . . . , x15 ≥ 0 and x1 + . . .+x15 ≤ 1. So if we take the optimistic and pessimistic

estimators for the duration times of activities and the set of parameters ϑi, i = 1, . . . , 16,

as they are given in Table 23, then the most likely values, expected values and standard

deviations of the activity duration times can be calculated in the following way. As ηi

has beta marginal distribution with parameters ϑi, ϑi =
16∑

i=1,j �=i

ϑj the most likely value

of ξi is given by

mi = ai + (bi − ai)
ϑi − 1

ϑi + ϑi − 2
,

its expected value is

E (ξi) = ai + (bi − ai)
ϑi

ϑi + ϑi

,

and its standard deviation is

D (ξi) = bi − ai)

√
ϑiϑi

(ϑi + ϑ̄i)2(ϑi + ϑ̄i + 1)
.

We remark that in the above formula ϑi +ϑi =
16∑

j=1

ϑj , always. In Table 23 the calculated

most likely values, expected values and standard observations are also given.

Now the joint probabilistic constrained stochastic programming problem is the fol-
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lowing:

P

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
(b1−a1)

( −a1 +x2 ) ≥ η1

1
(b2−a2)

( −a2 +x3 ) ≥ η2

1
(b3−a3)

( −a3 +x4 ) ≥ η3

1
(b4−a4)

( −a4 +x7 ) ≥ η4

1
(b5−a5)

( −a5 −x2 +x5 ) ≥ η5

1
(b6−a6)

( −a6 −x2 +x7 ) ≥ η6

1
(b7−a7)

( −a7 −x2 +x8) ≥ η7

1
(b8−a8)

( −a8 −x3 +x4 ) ≥ η8

1
(b9−a9)

( −a9 −x3 +x5 ) ≥ η9

1
(b10−a10)

( −a10 −x3 +x6 ) ≥ η10

1
(b11−a11)

( −a11 −x4 +x7 ) ≥ η11

1
(b12−a12)

( −a12 −x5 +x8) ≥ η12

1
(b13−a13)

( −a13 −x6 +x7 ) ≥ η13

1
(b14−a14)

( −a14 −x6 +x8) ≥ η14

1
(b15−a15)

( −a15 −x7 +x8) ≥ η15

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≥ p (3.29)

xi ≥ 0, i = 2, . . . , 8

min x8,

where p is the prescribed probability of finishing the project for the prescribed due date.

In the table 23. the parameters of the Dirichlet distribution are given. The correlation

coefficients between different pairs of activity duration times can be determined from

these parameter values. We don’t do it here just remark that the values of the correlation

coefficients are between 0 and −0, 124409.

Table 24. contains the solutions of the linear programming problem (3.28) for those

cases, when the optimistic, the pessimistic and the most likely activity duration times

are applied as deterministic values. There are given in the same table the solutions of the

stochastic programming problem (3.29) for three different probability levels: 0.9, 0.95

and 0.99. The parameters of the Dirichlet distribution were taken from the Table 23.

In Table 24 the value of the variable x8 means also the completion time of the project.

It can be seen that the deterministic cases do not provide appropriate results. If we
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Table 23: Parameters of the Dirichlet distribution

No. optimistic pessimistic most likely θ expected standard

estimation estimation value parameter value deviation

1 70 130 70.171 1.06 72.765 2.568

2 10 40 11.500 2.05 12.674 1.745

3 50 75 50.048 1.04 51.130 1.060

4 10 40 12.957 3.07 14.004 2.083

5 100 125 100.238 1.20 101.304 1.135

6 70 95 70.071 1.06 71.152 1.070

7 40 75 40.133 1.08 41.643 1.511

8 85 95 85.524 2.10 85.913 0.588

9 10 35 10.060 1.05 11.141 1.065

10 105 135 105.007 1.005 106.311 1.252

11 45 90 47.175 2.015 48.942 2.597

12 25 45 25.067 1.07 25.930 0.860

13 25 50 25.060 1.05 26.141 1.065

14 15 35 16.048 2.10 16.826 1.176

15 55 75 55.029 1.03 55.896 0.844

16 1.02
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Table 24: Solutions of the linear and stochastic programming problems

deterministic cases stochastic cases

variables optimistic pessimistic most likely p = 0.90 p = 0.95 p = 0.99

x1 0 0 0 0 0 0

x2 70 130 70.171 79.695 82.784 96.084

x3 10 40 11.500 15.291 24.443 27.131

x4 95 135 97.024 104.492 114.908 117.901

x5 170 255 170.410 177.479 181.694 193.509

x6 115 175 116.507 126.897 138.993 148.067

x7 140 225 144.199 162.424 181.097 184.299

x8 195 300 199.227 226.194 247.067 250.336

work with the optimistic or with the most likely activity duration times then the project

will be finished in the given time with less then 0.9 probability only. When working

with the pessimistic activity duration times then the completion time of the project will

be too large (300) although the reliability level is also high (0.99). The decision maker

can choose from the stochastic versions according to his acceptable reliability level of

completing the whole project for the calculated finishing time. We belive this choice will

be easier for him than the choice between the deterministic versions. The solution of

the stochastic programming problems may happen by the application of the code PCSP

(Probabilistic Constrained Stochastic Programming) by T. Szántai (see [108], and by the

versions of the code which can handle Dirichlet and multivariate gamma distributed right

hand sides,

As a second numerical example let us regard the network of the Figure 7 what was
applied in the paper by J. Long, A. Prékopa and T. Szántai (see [86]). This network
consists of 66 activities and 28 events, the original event is the first one and the terminal
event is the event No. 28. The optimistic and pessimistic estimates of the activity
duration times are given in Table 25.



3.2 Completion Time Estimation in the PERT Networks 92

Table 25: Lower and upper bounds for the duration times of 66

activities

No. Activity Lower Upper No. Activity Lower Upper

bound bound bound bound

1 ( 1, 2) 24 32 34 (13,18) 47 55

2 ( 1, 3) 48 56 35 (13,19) 44 52

3 ( 1, 4) 49 57 36 (14,23) 11 19

4 ( 1,13) 24 32 37 (14,28) 36 44

5 ( 2, 4) 21 29 38 (15,16) 39 47

6 ( 2, 5) 43 51 39 (15,17) 18 26

7 ( 2,15) 30 38 40 (16,17) 13 21

8 ( 3, 6) 14 22 41 (16,18) 41 49

9 ( 3, 8) 28 36 42 (16,22) 42 50

10 ( 3,13) 29 37 43 (17,22) 38 46

11 ( 4,13) 36 44 44 (17,24) 27 35

12 ( 4,15) 19 27 45 (18,19) 26 34

13 ( 5, 7) 49 57 46 (18,20) 39 47

14 ( 5,17) 12 20 47 (18,22) 25 33

15 ( 6, 8) 35 43 48 (19,20) 13 21

16 ( 6, 9) 28 36 49 (19,21) 16 24

17 ( 7,10) 15 23 50 (20,22) 29 37

18 ( 7,17) 26 34 51 (20,23) 42 50

19 ( 8,11) 33 41 52 (20,25) 33 41

20 ( 8,13) 46 54 53 (20,26) 43 51

21 ( 9,11) 41 49 54 (20,27) 44 52

22 ( 9,12) 47 55 55 (21,23) 22 30

23 ( 9,21) 42 50 56 (22,24) 46 54

24 (10,24) 40 48 57 (22,26) 19 27

25 (10,28) 37 45 58 (23,25) 33 41

26 (11,13) 27 35 59 (23,28) 39 47

27 (11,19) 26 34 60 (24,26) 15 23

28 (11,21) 31 39 61 (24,28) 48 56

29 (12,14) 38 46 62 (25,27) 27 35

30 (12,21) 48 56 63 (25,28) 26 34

31 (12,23) 29 37 64 (26,27) 29 37
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Table 25: (Continuation)

No. Activity Lower Upper No. Activity Lower Upper

bound bound bound bound

32 (13,15) 32 40 65 (26,28) 22 30

33 (13,16) 20 28 66 (27,28) 20 28

In the PERT network of Figure 7. there exist 1623 paths from the original to the

terminal node. With the lower and upper bounds on duration times of the activities

given in Table 25. the number of the remaining paths after the application of the first

path elimination algorithm described in the paper [86] is 201, while after subsequent

application of the second path elimination algorithm only 8 paths will remain as paths

ever may become critical. As in these 8 paths only 21 activities are involved, the path–

arc incidence matrix reduced to these paths only, has a size of 8 × 21 and it is given in

Table 26.

Table 26: The path–arc incidence matrix of the remained 8 paths

2 8 15 16 19 21 26 32 38 41 45 46 48 50 51 56 58 60 62 64 66

1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1

2 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1

3 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1

4 1 1 1 0 1 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1

5 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1

6 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1

7 1 1 0 1 0 1 1 1 1 1 0 1 0 0 1 0 1 0 1 0 1

8 1 1 1 0 1 0 1 1 1 1 0 1 0 0 1 0 1 0 1 0 1

This matrix has only 4 linearly independent column vectors, so the 8–variate normal

probability distribution is restricted to a 4–dimensional subspace, i.e. the distribution is

singular. Let us compare the results of the multivariate normal approach published in

paper [86] with the results of the new stochastic programming based approach. Suppose
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Table 27: Parameters of the multivariate normal probability distribution of remaining 8

paths

Expected value 508 507 504 503 487 486 483 482

Variance 8.9443 8.9443 8.6410 8.6410 8.6410 8.6410 8.267 8.3267

1.0000 0.8667 0.8971 0.7591 0.7591 0.6211 0.6445 0.5013

0.8667 1.0000 0.7591 0.8971 0.6211 0.7591 0.5013 0.6445

0.8971 0.7591 1.000 0.8571 0.6429 0.5000 0.7412 0.5930

Correlation 0.7591 0.8971 0.8571 1.0000 0.5000 0.6429 0.5930 0.7412

matrix 0.7591 0.6211 0.6429 0.5000 1.0000 0.8571 0.8895 0.7412

0.6211 0.7591 0.5000 0.6429 0.8571 1.0000 0.7412 0.8895

0.6445 0.5013 0.7412 0.5930 0.8895 0.7412 1.0000 0.8462

0.5013 0.6445 0.5930 0.7412 0.7412 0.8895 0.8462 1.0000

the random duration times of activities to be independent with given expected values and

variations but otherwise their probability distributions be arbitrary. The expected values

are defined as the arithmetical mean values of their lower and upper bounds given in

Table 25. The variances will be defined as the squares of the differences between the lower

and upper bounds divided by twelve, i.e. as if the probability distributions of the activity

duration times would be uniform between their lower and upper bounds. Now the lengths

of the remaining 8 paths have a singular multivariate normal probability distribution,

concentrated on a 4–dimensional subspace. The parameters of this multivariate normal

probability distribution are given in Table 27.

For comparing the two different approaches first the stochastic programming problem

(3.29) has been solved with different probability levels ranging from 0 to 1. This can

be done easily by using the AMPL modeling language (see Fourer, R., Gay,D. M. and

Kernighan,B. W. [34]) and the LOQO solver (see Vanderbei,R. J. [114] and [115]) as

the random duration times of activities were supposed to be independent and normally

distributed. The results are given in Table 28.
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Table 28: The solutions of the stochastic programming problem for different probability

levels

prob. execution prob. execution prob. execution

level time level time level time

0.01 531.358 0.35 560.794 0.70 577.641

0.05 540.927 0.40 563.087 0.75 580.677

0.10 546.329 0.45 565.351 0.80 584.153

0.15 550.112 0.50 567.624 0.85 588.333

0.20 553.206 0.55 569.945 0.90 593.796

0.25 555.927 0.60 572.353 0.95 602.312

0.30 558.427 0.65 574.897 0.99 619.592

The cummulative probability distribution function of the project completion time

was calculated by linear interpolation in the interval 495–625 with unit steplength. The

results of the multivariate normal approach are given in Table 29. In this table there

are given not only the calculated values of the cummulative probability distribution

function but its binomial moment and hypermultitree lower and upper bounds, too. The

definition and calculation algorithms for these bounds were published in the paper [86]

and they are designated by BML3, BMU3, resp. HML(0, 2), HML(0, 3), HMU(1, 1)

and HMU(1, 2).

Table 29: Exact values and lower and upper bounds of the cdf of

critical path length calculated by multivariate normal distribution

X BML3 HML(0, 2) HML(0, 3) exact HMU(1, 2) HMU(1, 1) BMU3

480 0.0000 0.0002 0.0003 0.0003 0.0003 0.0003 0.0070

481 0.0000 0.0003 0.0004 0.0004 0.0004 0.0005 0.0085

482 0.0000 0.0005 0.0006 0.0006 0.0006 0.0008 0.0102

483 0.0000 0.0007 0.0009 0.0009 0.0009 0.0012 0.0114
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Table 29: (continuation)

X BML3 HML(0, 2) HML(0, 3) exact HMU(1, 2) HMU(1, 1) BMU3

484 0.0000 0.0011 0.0013 0.0013 0.0013 0.0017 0.0124

485 0.0000 0.0016 0.0019 0.0020 0.0020 0.0025 0.0138

486 0.0000 0.0024 0.0028 0.0028 0.0028 0.0037 0.0155

487 0.0000 0.0035 0.0040 0.0040 0.0040 0.0052 0.0178

488 0.0000 0.0050 0.0056 0.0057 0.0057 0.0073 0.0208

489 0.0000 0.0070 0.0078 0.0079 0.0079 0.0100 0.0248

490 0.0000 0.0097 0.0108 0.0108 0.0108 0.0137 0.0300

491 0.0000 0.0133 0.0146 0.0146 0.0146 0.0184 0.0366

492 0.0000 0.0180 0.0195 0.0195 0.0195 0.0244 0.0448

493 0.0000 0.0240 0.0258 0.0258 0.0258 0.0320 0.0551

494 0.0000 0.0316 0.0337 0.0337 0.0337 0.0415 0.0675

495 0.0000 0.0410 0.0434 0.0435 0.0435 0.0531 0.0824

496 0.0000 0.0526 0.0554 0.0554 0.0554 0.0670 0.0962

497 0.0000 0.0666 0.0697 0.0697 0.0697 0.0837 0.1125

498 0.0000 0.0833 0.0867 0.0867 0.0868 0.1032 0.1320

499 0.0000 0.1030 0.1067 0.1067 0.1067 0.1259 0.1549

500 0.0103 0.1258 0.1297 0.1297 0.1297 0.1518 0.1812

501 0.0487 0.1518 0.1560 0.1560 0.1560 0.1810 0.2109

502 0.0873 0.1812 0.1855 0.1855 0.1856 0.2134 0.2439

503 0.1270 0.2139 0.2183 0.2183 0.2183 0.2489 0.2800

504 0.1683 0.2497 0.2541 0.2541 0.2541 0.2873 0.3188

505 0.2179 0.2884 0.2928 0.2928 0.2928 0.3283 0.3600

506 0.2731 0.3296 0.3340 0.3340 0.3340 0.3714 0.4031

507 0.3270 0.3730 0.3772 0.3772 0.3772 0.4161 0.4476

508 0.3798 0.4180 0.4220 0.4220 0.4220 0.4619 0.4928

509 0.4318 0.4641 0.4678 0.4678 0.4679 0.5082 0.5334

510 0.4830 0.5106 0.5141 0.5141 0.5141 0.5543 0.5741

511 0.5330 0.5569 0.5601 0.5601 0.5601 0.5996 0.6148

512 0.5816 0.6024 0.6052 0.6053 0.6053 0.6436 0.6549

513 0.6284 0.6465 0.6490 0.6490 0.6490 0.6857 0.6938

514 0.6729 0.6887 0.6909 0.6909 0.6909 0.7255 0.7310

515 0.7148 0.7285 0.7304 0.7304 0.7304 0.7626 0.7661
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Table 29: (continuation)

X BML3 HML(0, 2) HML(0, 3) exact HMU(1, 2) HMU(1, 1) BMU3

516 0.7538 0.7656 0.7671 0.7671 0.7671 0.7967 0.7987

517 0.7895 0.7996 0.8009 0.8009 0.8009 0.8277 0.8285

518 0.8220 0.8305 0.8315 0.8315 0.8315 0.8555 0.8555

519 0.8510 0.8581 0.8589 0.8589 0.8589 0.8801 0.8795

520 0.8766 0.8824 0.8831 0.8831 0.8831 0.9015 0.9006

521 0.8989 0.9037 0.9041 0.9042 0.9042 0.9199 0.9189

522 0.9181 0.9219 0.9223 0.9223 0.9223 0.9357 0.9346

523 0.9344 0.9374 0.9377 0.9377 0.9377 0.9488 0.9478

524 0.9480 0.9504 0.9506 0.9506 0.9506 0.9598 0.9583

525 0.9593 0.9611 0.9613 0.9613 0.9614 0.9687 0.9667

526 0.9685 0.9699 0.9700 0.9701 0.9700 0.9760 0.9737

527 0.9759 0.9769 0.9771 0.9770 0.9770 0.9817 0.9796

528 0.9818 0.9825 0.9827 0.9826 0.9825 0.9863 0.9843

529 0.9865 0.9869 0.9870 0.9869 0.9869 0.9898 0.9881

530 0.9900 0.9903 0.9904 0.9904 0.9904 0.9925 0.9911

531 0.9927 0.9929 0.9932 0.9931 0.9929 0.9946 0.9934

532 0.9948 0.9949 0.9949 0.9949 0.9951 0.9961 0.9952

533 0.9963 0.9963 0.9963 0.9964 0.9964 0.9973 0.9965

534 0.9974 0.9974 0.9977 0.9975 0.9976 0.9981 0.9975

535 0.9982 0.9982 0.9984 0.9983 0.9983 0.9987 0.9983

536 0.9987 0.9987 0.9989 0.9989 0.9990 0.9991 0.9988

537 0.9991 0.9992 0.9994 0.9993 0.9994 0.9994 0.9992

538 0.9994 0.9994 0.9996 0.9996 0.9995 0.9996 0.9994

539 0.9996 0.9996 0.9997 0.9997 0.9997 0.9997 0.9996

CPU 16.02 7.46 18.23 15.69 0.003 0.003 0.003

mean abs. err. 0.0069 0.0064 0.0000 - - - -

max. abs. err. 0.0184 0.0001 - - - - -

mean rel. err. 0.0374 0.0007 - - - - -

max. rel. err. 0.9059 0.0820 0.0250 - - - -

3The lower and upper bounds were calculated simultaneously
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Figure 9 shows the cummulative distribution functions of the project completion times

when the two different, multivariate normal and stochastic programming approaches are

applied. It can be seen, that the cdf curve produced by the stochastic programming

approach runs along significantly higher values than the cdf curve produced by the

multivariate normal approach. This means, if we were able to start any activity promptly

when all of its predecessor activities are finished in a random instant, then the whole

project could be finished in a much shorter time. On the contrary, if we prescribe a

deterministic starting time for all of the activities in the project before the starting time of

the first activities and guarantee a reliability level to beeing the whole project executable

without any conflict, then the project can be finished in a much longer time only. Even

so may happen the decision maker sometimes will accept this longer completion time as

he cannot guarantee to start the activities of the project in random time instants.

���

���

���

���

���

���

���

���

��	

��


���

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
	
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

������

����������

Figure 9: The cdf’s of the project completion times determined by the multivariate

normal and stochastic programming approaches.
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