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3 Gröbner bases of boxes 28
3.1 Harima’s theorem for finite sets of points . . . . . . . . . . . . 28
3.2 Alon’s Combinatorial Nullstellensatz and a conjecture of Rédei 31
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Chapter 1

Introduction

1.1 History of Gröbner bases and combina-

torial applications

Gröbner bases are special systems of generators of a polynomial ideal. Al-
though similar concepts appeared in the earlier works of H. Hironaka and
A. I. Shirshov, the precise definitions and the bases of the theory have been
laid down by the Austrian mathematician Bruno Buchberger. He discovered
the main properties of Gröbner bases (and an algorithm to compute them)
40 years ago in his Ph. D. thesis [10] and in the paper [11] published a few
years later. He was motivated mainly by questions in commutative algebra,
but since then, Gröbner bases—which have been named after Buchberger’s
supervisor—found their applications in various topics of mathematics.

While getting better and better known in the 70s, Gröbner bases have
been applied in algebraic geometry, symbolic computations, coding theory,
automated reasoning, partial differential equations and numerical analysis.
The proceedings of the conference 33 years of Gröbner bases [13] give a
good overview of these, and contain the English translation of Buchberger’s
original work as well. The theory keeps on being researched: last spring a
special semester on Gröbner bases in Linz took place, where beside the topics
already mentioned, a one week workshop was dedicated to combinatorial
applications, a relatively new area where Gröbner bases may be used.

From the combinatorial point of view, Gröbner theory of zero dimensional
ideals are of special interest. The present thesis investigates this topic: we
contribute with theoretical examination of Gröbner bases of zero dimensional
ideals, while giving equal importance to the applications of the new results
in (algebraic) combinatorics. I will often refer to papers of Lajos Rónyai and
Gábor Hegedűs who founded the basis of this theory.
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1.2 Introduction to the theory

To get a better overview of what is contained in this thesis, let us shortly
(and sometimes informally) introduce the basic concepts.

Let F be a field, F[x1, . . . , xn] = F [x] the ring of polynomials in n inde-
terminates and I be an ideal in F [x]. We say that I is zero dimensional if
F [x] /I is a finite dimensional F-vector space. The simplest such ideals are
the vanishing ideals I(V ) of finite subsets V of Fn: they contain all polyno-
mials, which vanish on V as functions. A more general example of a zero
dimensional ideal is the vanishing ideal of a finite multiset, consisting of all
polynomials which not only vanish on V , but also have a prescribed multi-
plicity at each point of V (where the definition of multiplicity can be rather
complicated).

To define Gröbner bases, one first needs a term order—a complete order-
ing of the monomials of F [x], with some additional properties. The greatest
monomial of a polynomial is its leading monomial. In the univariate case,
the leading monomial is simply the highest degree term of the polynomial. A
finite subset G of an ideal I is a Gröbner basis of I, if the leading monomial
of any f ∈ I is divisible by the leading monomial of some g ∈ G. Then G
also generates the ideal in a ’nice’ manner. To get an impression of what
’nice’ means, one may think of an ideal which is generated by a system of
linear equations. A Gröbner basis of this ideal is an equivalent system of
linear equations, but which is in upper diagonal form. Actually, the power
of Gröbner bases lives in the fact that they provide a symbolic method to
examine solutions of systems of multivariate polynomial equations, similarly
to the linear case above.

As the title suggests, we are interested in Gröbner bases of zero dimen-
sional ideals. But also, we include a further concept in the term Gröbner
theory, which is of great importance in the applications. The set of stan-
dard monomials Sm (I) of an ideal I consists of those monomials which do
not occur as the leading monomial of any polynomial in I. The standard
monomials form a linear basis of F [x] /I, which for instance implies that for
a finite V ⊆ Fn, all functions V → F can be represented uniquely as linear
combinations of elements of Sm (I(V )).

The latter observation comes from the easy fact that the linear space
of functions V → F is isomorphic to F [x] /I(V ), provided that V is finite.
And this is the point where combinatorics comes into the picture. Several
interesting properties of V can be formalized in terms of functions on V ; the
simplest such being the cardinality of V , which is the dimension of the vector
space F [x] /I(V ) by the above.

Let us pick an example, which is probably the most complex one discussed
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in the thesis. Let G be a modulo q L-intersecting, L-avoiding family. We shall
give the precise definition in Chapter 6, it is enough now that G is a subset of
the power set of {1, 2, . . . , n}, with some additional criteria. A problem from
extremal combinatorics is to give an upper bound for the cardinality of G.
Define VG ⊆ {0, 1}n ⊆ Fn as the set of characteristic vectors of members of G.
In particular |VG| = |G|. Thus if we could compute the standard monomials
of I(VG), we would immediately get the cardinality of G. We shall see that
it is not that simple, but still we will be able to give an upper bound for |G|.

Buchberger’s algorithm is a general method to get a Gröbner basis of an
arbitrary ideal, but it is far from being efficient from a computational point
of view. For zero dimensional vanishing ideals I(V ), the Buchberger–Möller
algorithm [12] gives a fast way to obtain a Gröbner basis and the standard
monomials at once. However, this algorithm is still not applicable for a para-
metric family of ideals, which would be needed in combinatorial applications.
Think for example of the ideals I(Vn,d), where Vn,d ⊆ Fn consists of all 0-1
vectors of Hamming weight d in {0, 1}n. We investigate in Gröbner theory of
zero dimensional ideals, with the aim of being able to work with these kinds
of ideals.

1.3 Main results and structure of the thesis

We tried to do our best to make the thesis self-contained. All the neces-
sary concepts and theorems needed to understand the subsequent parts are
collected in Chapter 2. In particular we give the definition of term orders,
standard monomials, Gröbner bases, and prove the basic theorems of the
subject. The interested reader may find more details in [1], [9] or [28]. Sec-
tion 2.2 contains useful facts about zero dimensional ideals. After defining
the general notion of multiplicity and vanishing ideals of finite multisets, we
give the characterization of these ideals in terms of primary decomposition
to relate them to general zero dimensional ideals.

Right away in Chapter 3, we present two applications, both of which use
Gröbner bases of I(V ), where V is a direct product of finite subsets of F.
The first result is an easy proof of a theorem of Harima [30]. We shall give
a formula for the Hilbert function of complementary sets of points in V , and
show an interesting consequence in boolean complexity theory. The special
case, when V = {0, 1}n have been investigated earlier by Pintér and Rónyai
in [35]. Our proof is different from their approach, and applies for more
general sets V .

The second application of the chapter is to the solvability of certain poly-
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nomial equations over finite fields. Rédei’s Conjecture [37] suggests a suffi-
cient condition on multivariate polynomials f for having a root over finite
prime fields. The conjecture in general has been disproved recently [38],
however for special classes of polynomials it is still open. Under a slightly
stronger assumption, we are able to prove the conjecture for generalized diag-
onal polynomials. Here, we make use of Alon’s Combinatorial Nullstellensatz
[3], which we translate to (and prove in) the language of Gröbner bases.

We turn back to the theoretical line in Chapter 4, and introduce the Lex
Game, which plays a central role in the remaining of the thesis.

In general, Gröbner bases and standard monomials depend on the term
order we use on the monomials. We shall consider the lexicographic order
in that chapter, and give an equivalent description of lexicographic standard
monomials of some classes of zero dimensional ideals. In fact, we define the
Lex Game played by two players Lea and Stan. A zero dimensional ideal and
a monomial are the parameters of the game, which determines the player who
have winning strategy. For a fixed ideal I, the set of monomials such that
Stan can win is denoted by Stan (I). For a quite wide class of ideals, this set
is the same as Sm (I), and thus the game yields a combinatorial description
of the standard monomials for these ideals.

It is proven in Section 4.2, that for vanishing ideals I of finite multisets
Stan (I) = Sm (I).

The subsequent section is divided into two subsections. In the first one,
we prove a theorem on the ’shape’ of reduced Gröbner bases of some zero di-
mensional ideals of bivariate polynomial rings. This result—which we think
is interesting also on its own right—will then be applied in the second sub-
section to obtain Stan (I) = Sm (I) for ideals I, such that the points of I
(common zeros of the polynomials in I over the algebraic closure of F) can
be differentiated by their last two coordinates. Note that this is a slightly
weaker condition than expecting points in general position.

The shorter Section 4.4 shows that Stan (I) 6= Sm (I) in general. We
formulate a conjecture, which claims that (just like Sm (I)) Stan (I) forms a
monomial basis of the linear space of polynomials modulo I.

The last section of Chapter 4 contains an algorithm to obtain Stan (I)
in general, that is Sm (I) in certain cases. The fastest known algorithm to
compute the lexicographic standard monomials of multiset ideals is Cerlienco
and Mureddu’s method [15]. As for such ideals Stan (I) = Sm (I), our al-
gorithm does the same job, and performs it faster. For more general ideals,
the known methods are variants of the above mentioned Buchberger–Möller
algorithm, at which one has to pay a lot in running time for the generality.
Therefore, when Stan (I) = Sm (I), the algorithm presented in this thesis
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is the fastest known method to get Sm (I). We implemented the algorithm
for vanishing ideals of finite sets in Singular. The code can be found in the
Appendix.

We collected several applications in Chapter 5. Except for those of Section
5.1, the theorems presented there are already known ones. Using the Lex
Game, we tried to give elegant and simpler proofs for these results.

In Section 5.1 we shall show the rather surprising fact that the reduced
lexicographic Gröbner basis of a vanishing ideal of a finite multiset is inde-
pendent from the base field, provided that the points of the multiset are all
in {0, 1}n.

The following section contains a proof of a generalization of the fundamen-
tal theorem of symmetric polynomials obtained first by Garsia [27]. Actually,
the proof is a simplified version of Hegedűs and Rónyai’s [31], using the Lex
Game.

In the remaining part of the thesis, we shall focus on vanishing ideals of
finite sets VF , where VF consists of the characteristic vectors of some family
of sets F . In Section 5.3 we include a well-known theorem which relates
the Hilbert function and standard monomials of I(VF) with the rank of an
inclusion matrix. A similar theorem is also shown, which is applied in the
next section to prove a rank formula of the inclusion matrix of all d-subsets
versus all m-subsets of [n]. The proof was originally found by Wilson [39].
Our argument is adopted from [26], but it gets remarkably simplified by the
Lex Game.

The goal of the last chapter is to show two different applications to ex-
tremal combinatorics. The common basis of the proofs is the good under-
standing of the algebraic properties of I(VF), where F is a modulo q complete
`-wide family of sets. The first section is quite a long one, as a lot of work is
needed to compute the standard monomials, a Gröbner basis and the Hilbert
function of I(VF). But then we shall be able to prove our results concerning
the maximal size of two interesting set families in the last two sections.

We examine modulo q L-avoiding L-intersecting set families G in Section
6.2. After giving a short insight to the known results of the topic, we prove
that if q is a power of a prime, L is a modulo q interval, and |L| ≤ n− q + 2,
then |G| ≤ ∑q−1

k=|L|

(
n
k

)
. We note that the statement in the case |L| = q − 1

is known as the Babai–Frankl Conjecture, recently proven by Hegedűs and
Rónyai [32].

The last section of the thesis gives a sharp upper bound to the cardinality
of modulo q `-wide families G, which do not shatter any set of size m + 1,
namely |G| ≤ ∑∞

i=0

∑`−1
k=0

(
n

m−iq−k

)
, if q is a prime power and 0 ≤ m ≤ n+`

2
.

We connect this result to an open conjecture of Frankl.
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The present thesis is based on our papers [18], [19], [20], [21] and [22].
However no one-to-one correspondence between these articles and the chap-
ters of the thesis can be found (which respects the contents), as we tried to
select topics in an order that is easier to understand. Some parts—at least
in this generality—have not been published yet.



Chapter 2

Preliminaries

Let us introduce first some general notation.
Throughout the thesis, n will be a positive integer, and [n] stands for the

set {1, 2, . . . , n}. By N we mean the nonnegative integers, Z is the set of
integers, Q is the field of rational numbers, and Fq is the field of q elements,
where q is a prime power. If A is any set, then 2A is the power set of A.

Let F be a field. As usual, we denote by F [x1, . . . , xn] = F [x] the ring of
polynomials in the variables x1, . . . , xn over F. To shorten our notation, we
write f(x) for f(x1, . . . , xn). Also in general, vectors of length n are denoted
by boldface letters, for example y = (y1, . . . , yn) ∈ Fn. If w ∈ Nn, we write
xw for the monomial xw1

1 . . . xwn
n ∈ F [x]. If y ∈ Fn, then (x− y)w stands for

the polynomial (x1 − y1)
w1 . . . (xn − yn)wn .

We will quite often meet vectors of length n − 1, and sometimes of
length n − 2. For y = (y1, . . . , yn) ∈ Fn we set y = (y1, . . . , yn−1) and
ỹ = (y1, . . . , yn−2). We shall also use y (or ỹ) for denoting a vector of length
n− 1 (or n− 2 respectively), even if it is not a prefix of a vector of length n.
Similarly we shall write sometimes w, w̃, F[x], or even xw and x̃ew instead
of xw1

1 . . . x
wn−1

n−1 and xw1
1 . . . x

wn−2

n−2 .
If I is an ideal of the ring F [x], we denote it by I E F [x]. The ideal

generated by some polynomials f1, . . . , fm ∈ F [x] is 〈f1, . . . , fm〉.

2.1 Gröbner basics

2.1.1 Monomials and term orders

Monomials form a linear basis of F [x] as an F-vector space. We say that a
polynomial f contains the monomial xw (or xw is a monomial of f , or xw

appears in f), if the coefficient of xw is not zero when f is written as a linear
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combination of monomials.
Note that the set of all monomials in n indeterminates forms a semigroup

S (with multiplication of monomials), which is isomorphic to (Zn, +). Ideals
of S are exactly its upwards closed subsets (with respect to division), that is
if a monomial in a semigroup ideal I divides xw, then also xw ∈ I. It is easy
to see that S ∼= Zn is a Noetherian semigroup, that is any strictly increasing
chain of its ideals is finite. (It may be verified via the equivalent statement
that all ideals of Zn are finitely generated, but it follows as well from the fact
that F [x] is a Noetherian ring.) It shall be useful sometimes to think of the
set of monomials as a semigroup.

A polynomial ideal I E F [x] is a monomial ideal if it can be generated
by a set of monomials. Monomial ideals and semigroup ideals of S are in
one-to-one correspondence in the following sense.

Proposition 2.1.1. If H is a set of monomials, I = 〈H〉, then the semigroup
ideal generated by H is exactly the set of all monomials which appears as a
monomial of some polynomial f ∈ I. In particular every monomial of an
f ∈ I is in I, and I has a finite set of generators consisting of monomials.

Proof. As every element of the semigroup ideal generated by H is divisible
with a member of H, it is also contained in I. For the other direction, let
f ∈ I = 〈H〉. Then there are monomials xw1 , . . . ,xwm ∈ H and polynomials
h1, . . . hm ∈ F [x], such that

f(x) =
m∑

i=1

hi(x)xwi .

Every monomial on the right hand side is divisible with some xwi , and so the
same is true for monomials of f , that is they are contained in the semigroup
ideal generated by H.

As the semigroup of monomials are Noetherian, H may be replaced with
a finite set, which also generates I.

Definition 2.1.2. A total order ≺ on the monomials of F [x] is a term order,
if 1 is the minimal element of ≺, and ≺ is compatible with multiplication by
monomials, that is xu ≺ xv implies xu ·xw ≺ xv ·xw for all xw,xu,xv ∈ F [x].

Two important term orders are the lexicographic (lex for short) and the
degree compatible lexicographic (deglex ) orders. We have xw ≺lex xu if and
only if wi < ui holds for the smallest index i such that wi 6= ui. As for deglex,
we have that a monomial of smaller degree is smaller in deglex, and among
monomials of the same degree lex decides the order.

Also in general, ≺ is degree compatible, if deg (xw) < deg (xu) implies
xw ≺ xu.



CHAPTER 2. PRELIMINARIES 15

Example 2.1.3. For n = 3, the ordering of the first few monomials with
respect to lex is

1 ≺ x3 ≺ x2
3 ≺ x3

3 ≺ · · · ≺ x2 ≺ x2x3 ≺ x2x
2
3 ≺ · · · ≺ x2

2 ≺ x2
2x3 ≺ x2

2x
2
3 ≺

· · · ≺ x1 ≺ x1x3 ≺ x1x
2
3 ≺ . . . ,

with respect to deglex:

1 ≺ x3 ≺ x2 ≺ x1 ≺ x2
3 ≺ x2x3 ≺ x2

2 ≺ x1x3 ≺ x1x2 ≺ x2
1 ≺ x3

3 ≺ . . .

and here is a different degree compatible one (it is called degrevlex):

1 ≺ x3 ≺ x2 ≺ x1 ≺ x2
3 ≺ x2x3 ≺ x1x3 ≺ x2

2 ≺ x1x2 ≺ x2
1 ≺ x3

3 ≺ . . .

We prove two fundamental properties of term orders. The one which
claims that ≺ is a well founded order is known as Dickson’s Lemma.

Proposition 2.1.4. Any term order ≺ is a refinement of division of mono-
mials (that is if xw | xu, then xw ¹ xu) and is a well founded order.

Proof. For the first statement, assume that xw | xu. Then xu

xw is also a
monomial, therefore 1 ¹ xu

xw holds. If we multiply this inequality with xw,
we immediately get the desired result.

Suppose now for contradiction that ≺ is not well founded, thus there
exists an infinite chain of monomials

xw1 Â xw2 Â xw3 Â · · · Â xwi Â xwi+1 Â . . .

Consider the ascending chain of semigroup ideals

〈xw1〉 ⊆ 〈xw1 ,xw2〉 ⊆ 〈xw1 ,xw2 ,xw3〉 ⊆ . . .

which cannot be infinite, as the semigroup of monomials is Noetherian. In
particular there exists an i, such that xwi+1 ∈ 〈xw1 , . . . ,xwi〉. But then xwj

divides xwi+1 for some j ≤ i, and so xwj ¹ xwi+1 by the first statement of
the Proposition. This contradicts to xwj Â xwi+1 .

2.1.2 Standard and leading monomials

Let us fix a term order ≺.

Definition 2.1.5. The leading term (or monomial) lm (f) of a nonzero poly-
nomial f ∈ F [x] is the largest monomial (with respect to ≺) which appears
in f .

We denote the set of all leading monomials of polynomials of a given ideal
I E F [x] by Lm (I) = {lm (f) : f ∈ I}, and we simply call them the leading
monomials of I.
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As every term order is compatible with multiplication, it is easy to verify
that the leading monomial of a product f · g of two nonzero polynomials is
lm (f) · lm (g). It follows that Lm (I) is a semigroup ideal in the semigroup of
monomials, or in other words a monomial divisible with a leading monomial
is again in Lm (I).

Definition 2.1.6. A monomial is called a standard monomial of I, if it is
not a leading monomial of any f ∈ I. Let Sm (I) denote the set of standard
monomials of I.

Being the complement of a semigroup ideal, Sm (I) is a dual ideal, which
in our case means that any divisor of a standard monomial is also a standard
monomial.

If we use more orderings in parallel, or want to emphasise the dependence
of these concepts from the term order, we may write for instance Sm≺ (I),
Lmlex (I), etc.

We shall occasionally use the notation Sm (F ) and Lm (F ) for arbitrary
sets F ⊆ F [x] of polynomials instead of ideals.

Definition 2.1.7.

Lm (F ) = {xw : ∃ f ∈ F lm (f) | xw} ,

Sm (F ) = {xw ∈ F [x]} \ Lm (F ) .

Thus Lm (F ) is the semigroup ideal generated by the leading monomials
of elements of F . Of course, if F is a polynomial ideal, then the earlier
definition formulated only for ideals coincide with this more general one.

It is important to note that in general Lm (F ) 6= Lm (〈F 〉). We shall
shortly find that Lm (F ) = Lm (〈F 〉) is one of the properties which charac-
terize Gröbner bases (provided that F is finite).

To simplify arguments (like the proof of Proposition 2.1.4), we will extend
the term orderings from monomials to nonzero polynomials. By f ≺ g, we
mean lm (f) ≺ lm (g).

2.1.3 The existence of Gröbner bases

Definition 2.1.8. A finite subset G ⊆ I is a Gröbner basis of I, if for every
nonzero f ∈ I there exists a g ∈ G, such that lm (g) divides lm (f). In other
words, a Gröbner basis of I is a finite set G ⊆ I, with Lm (I) = Lm (G), or
equivalently Sm (I) = Sm (G).

Note that being a Gröbner basis depends on the underlying term order.
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It is not transparent from the above definition, but we shall prove that a
Gröbner basis of I in fact generates I.

Example 2.1.9. Suppose that the characteristic of F is not 2. Then a Gröbner
basis of the ideal I = 〈x1 − x2, x1 + x2〉 is G = {x1, x2} (with respect to any
term order in this case). It is easy to see that G ⊆ I (and therefore Lm (G) ⊆
Lm (I)), and also that Lm (I) ⊆ Lm (G). But the set G′ = {x1 −x2, x1 +x2}
is not a Gröbner basis of I, since if for example x2 ≺ x1, then x2 ∈ I is not
divisible by the leading monomial of any element in G′. We can also write
Sm (G) = {1} and Sm (G′) = {1, x2} (if x2 ≺ x1).

Theorem 2.1.10. Every ideal I has a Gröbner basis.

Proof. Since Lm (I) is a semigroup ideal in a Noetherian semigroup, there
exists a finite set H of monomials, which (in the semigroup sense) generates
Lm (I). Then by the definition Lm (H) = Lm (I). For all monomials xw ∈ H,
let gw be a polynomial in I, such that lm (gw) = xw. (Such a polynomial
exists by xw ∈ Lm (I).) It is clear that G = {gw : xw ∈ H} is a Gröbner
basis of I.

2.1.4 Reduction

The most important property of the Gröbner bases is that they generate the
corresponding ideals in a nice way. We will now examine this.

The leading coefficient of a polynomial is the coefficient of its leading
term. Suppose that f ∈ F [x] contains a monomial xw · lm (g), where g is
some other polynomial with leading coefficient c. Then we can reduce f with
g, that is, we can replace xw · lm (g) in f with xw ·

(
lm (g) − 1

c
g
)
. In other

words, we subtract
cfxw

c
·g from f , where cf is the coefficient of the monomial

xw · lm (g) in f . We will refer to this as a reduction step. For example, if
f = x3

1x2 + x3, and g = x2
1 − x1, then the result of the reduction step will be

x2
1x2 + x3.

Definition 2.1.11. We say that a polynomial f is reduced with respect to
a finite set of polynomials G, if none of the monomials of f is divisible by
lm (g) for any g ∈ G. This is exactly the case when no reduction steps on f
can be carried out with any element of G.

Note that lm
(
xw ·

(
lm (g) − 1

c
g
))

≺ xw · lm (g). As ≺ is a well founded
order, this guarantees that if we reduce f repeatedly using a finite set of
polynomials G, then we end up with a reduced f̂ in finitely many steps.
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Moreover, we get a decomposition

f(x) =
m∑

i=1

gi(x)hi(x) + f̂(x) (2.1)

of f , where G = {g1, . . . , gm}, h1, . . . , hm ∈ F [x], f̂ is reduced with respect
to G, and lm (gihi) ¹ lm (f) holds.

Definition 2.1.12. A polynomial f can be reduced to f̂ , if there exists a
decomposition of the form (2.1). We emphasise that it is not required that
the decomposition is a result of reduction steps.

Example 2.1.13. Let g1(x1, x2) = x1x2 + x1, g2(x1, x2) = x1x2 + x2 be poly-
nomials, G = {g1, g2} and f(x1, x2) = 2x1x2 + x1 + x2. If we reduce f first
with g1, then we get x2 − x1, and when reducing f with g2, then the re-
sult is x1 − x2. That is, f can be reduced to both polynomials. And also
f = g1 +g2, thus f can be reduced to 0 as well, although 0 cannot be a result
of subsequent reduction steps.

We shall see that this happens because G is not a Gröbner basis of the
ideal 〈G〉. We are going to prove that the reduction of any polynomial with
respect to a Gröbner basis is unique, and therefore can be obtained using
reduction steps.

Here is our first theorem which can be proven with the aid of Gröbner
bases.

Theorem 2.1.14. If I is an ideal of F [x], then the cosets of the elements of
Sm (I) in the factor space F [x] /I form a linear basis of the F-vector space
F [x] /I. It follows that

dimF (F [x] /I) = |Sm (I)| ,

in particular I is a zero dimensional ideal if and only if |Sm (I)| < ∞.

Proof. The cosets of elements of Sm (I) are linearly independent in F [x] /I,
since if

m∑

i=1

ai (x
wi + I) = 0,

then

f(x) =
m∑

i=1

aix
wi ∈ I.
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If f 6= 0, then lm (f) ∈ Lm (I) which contradicts the fact that f is a linear
combination of standard monomials.

We want to show that Sm (I) generates F [x] modulo I. Let f ∈ F [x] be
a polynomial, G an arbitrary Gröbner basis of I, and f̂ a reduction of f with

respect to G. Then as
m∑

i=1

gi(x)hi(x) ∈ I, f and f̂ represent the same coset

in F [x] /I. Since f̂ is reduced with respect to G, its monomials cannot be in
Lm (G) = Lm (I), that is f̂ is a linear combination of standard monomials of
I. But this means that modulo I, f is also a linear combination of elements
of Sm (I).

Proposition 2.1.15. If G is a Gröbner basis of the ideal I, then for every
polynomial f ∈ F [x], there exists a unique polynomial f̂ , such that f can be
reduced to f̂ with G, and f ∈ I if and only if f̂ = 0. In particular 〈G〉 = I.

Proof. If f can be reduced to both f̂1 and f̂2 with G, then f̂1 − f̂2 ∈ I, while
f̂1 − f̂2 is a linear combination of standard monomials, thus f̂1 − f̂2 = 0.

It is clear that f and f̂ are the same modulo I, if f can be reduced to
f̂ . But when f̂ is reduced with respect to a Gröbner basis of I, then it is a
linear combination of standard monomials of I, and so f̂ ∈ I if and only if
f̂ = 0.

The previous statement explains the power of Gröbner bases. We say that
a finite set of polynomials G is a Gröbner basis if it is a Gröbner basis of 〈G〉.
Reduction steps can be used to calculate the reduction of a polynomial with
respect to a Gröbner basis G, taking elements of G in an arbitrary order.
This means for example that given a Gröbner basis of I, it can be decided
easily whether a polynomial is in I. In general, a polynomial f represents
the same coset in F [x] /I as f̂ , and a system of representatives of the cosets
of I are the linear combinations of standard monomials.

It worth noting that these properties actually characterize Gröbner bases.
We thus have the following equivalent definitions of Gröbner bases.

Theorem 2.1.16. The following are equivalent for a finite subset G of an
ideal I E F [x].

1. For all f ∈ I \ {0}, there exists a g ∈ G, such that lm (g) | lm (f).

2. Sm (G) = Sm (I)

3. Every f ∈ I can be reduced to 0 with G.

4. 〈G〉 = I and the reduction of every f ∈ F [x] with G is unique.
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In these cases G is a Gröbner basis of I.

To complete the proof, one needs to show that claim 3 (or 4) implies
claim 1 (or 2). The proof is not too complicated (see [1] for instance), but
as we shall not use these facts later, we omit it here.

2.1.5 The reduced Gröbner basis

Gröbner bases of an ideal are not unique, for example if G is a Gröbner
basis of I, then we get a different Gröbner basis by adding arbitrary, but
finitely many polynomials from I to G. However there exist some reasonable
conditions to make it unique.

Definition 2.1.17. If the leading coefficient of every polynomial g in a
Gröbner basis G of I is 1, and g is reduced with respect to G \ {g}, then G
is a reduced Gröbner basis of I.

In other words, a Gröbner basis G is reduced if and only if the leading
coefficients are 1, and for all g ∈ G, the polynomial g − lm (g) is a linear
combination of standard monomials (of G).

Theorem 2.1.18. There exists a unique reduced Gröbner basis for every
ideal.

Proof. To show the existence, let G be any Gröbner basis of I, such that the
leading coefficient of all g ∈ G is 1. Let us modify G as follows. We throw
away those polynomials g ∈ G (working with them in a fixed order), for
which lm (g) is divisible by the leading monomial of some other, previously
not dropped polynomial. The set of polynomials G1 obtained this way is still
a Gröbner basis, as for all minimal elements xw of Lm (I) with respect to
division, we kept exactly one g ∈ G, such that lm (g) = xw.

If g ∈ G1, then put ĝ for the reduction of g − lm (g) with G1, and

G2 = {lm (g) + ĝ : g ∈ G1} .

Then G2 is again a Gröbner basis, since the leading monomials of elements of
G1 and of G2 are the same, and lm (g)+ ĝ equals to g modulo I, in particular
lm (g) + ĝ ∈ I. It is also clear that G2 is reduced.

Suppose for the proof of uniqueness that both G and H are reduced
Gröbner bases of I. Since the leading monomials can not divide each other
in a reduced Gröbner basis, we get that {lm (g) : g ∈ G} (just like {lm (h) :
h ∈ H}) is the set of minimal elements (with respect to division) of Lm (I).
Let g ∈ G and h ∈ H, such that lm (g) = lm (h). Then g − h is a linear
combination of standard monomials and g − h ∈ I, hence g − h = 0. We
conclude that G = H.
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The set of leading monomials of the reduced Gröbner basis of I is called
the minimal generators of Lm (I), since, as we have seen in the previous proof,
these are exactly the minimal elements of Lm (I) with respect to division.

2.1.6 The Hilbert function

Finally, we write about the Hilbert function, an algebraic concept, which is
related to Gröbner basis theory, and appears quite often in algebraic and
combinatorial applications.

We write F [x]≤m for the vector space of polynomials over F with degree
at most m. Similarly, if I E F [x] is an ideal then I≤m = I ∩ F [x]≤m stands
for the linear subspace of polynomials in I with degree at most m.

Definition 2.1.19. The Hilbert function of the F-algebra F [x] /I is HI :
N → N, where

HI(m) = dimF

(
F [x]≤m

/
I≤m

)
.

The next proposition is a slight generalization of Theorem 2.1.14.

Proposition 2.1.20. Let ≺ be a degree compatible ordering. The cosets of
standard monomials of degree at most m form a linear basis of F [x]≤m

/
I≤m.

Proof. As the standard monomials are linearly independent modulo I, and
I≤m ⊆ I, we have that they are linearly independent modulo I≤m as well.
We shall show that they generate the linear space of polynomials of degree
at most m modulo I≤m.

Let f ∈ F [x]≤m and let f̂ be the reduction of f with some Gröbner basis
of I. Note that when reducing f , we can only use polynomials of degree
at most m, since by the degree compatibility, the leading monomial of a
polynomial of degree greater than m would be greater with respect to ≺
than any monomial of f . Therefore both f̂ and f − f̂ is of degree at most
m. In particular f − f̂ ∈ I≤m, so it is enough to generate f̂ by standard

monomials of degree at most m. As f̂ is reduced, it is a linear combination
of standard monomials, which by the bound on the degree of f̂ have degree
at most m.

An immediate consequence is the following.

Corollary 2.1.21. If ≺ is a degree compatible order, then HI(m) is the
number of standard monomials of I of degree at most m.
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2.2 Zero dimensional ideals

Let V be a finite set of points V ⊆ Fn. The vanishing ideal of V is the set of
all polynomials from F [x], which, as functions Fn → F vanish on V . That is

I(V ) = {f ∈ F [x] : f(y) = 0 for all y ∈ Fn} .

To go further, we want to work with ideals of polynomials, which also have
prescribed multiplicities at given points. We shall give the precise definition
of multiplicity in Subsection 2.2.1, and also define the notion of a finite
algebraic multiset, which encodes a finite set and multiplicities in each of its
points.

We shall examine lexicographic standard monomials of zero dimensional
ideals in Chapter 4. As a preparation, we investigate in the primary de-
composition of zero dimensional ideals in this section, in particular give a
characterization of vanishing ideals of finite algebraic multisets in terms of
primary decomposition.

Although results of this section are derived by simple arguments from
well-known facts, some of them may not be found in the literature.

Note that the factor space F [x] /I(V ) is isomorphic to the space of func-
tions V → F, where the isomorphism maps a coset f(x) + I(V ) to the
function v 7→ f(v), where v ∈ V . To see this, one should check that by the
finiteness of V , every function V → F can be represented by a polynomial in
F [x]. From this, and from Theorem 2.1.14, it follows that |Sm (I(V ))| = |V |,
which is a special case of the upcoming Corollary 2.2.13.

2.2.1 Algebraic multisets

We say that M ⊆ Nn is a downset if m ∈ M , r ∈ Nn and ∀ i ri ≤ mi implies
r ∈ M . Let y ∈ Fn be a point, M ⊆ Nn a downset and f ∈ F [x] a polynomial.
Write f as a polynomial of the variables x − y = (x1 − y1, . . . , xn − yn) and
let cw ∈ F be the coefficient of (x − y)w, that is

f(x) =
∑

w∈Nn

cw(x − y)w. (2.2)

Definition 2.2.1. For a finite downset M ⊆ Nn, we say that f has multi-
plicity M in y, if cw = 0 whenever w ∈ M .

This definition of multiplicity is slightly different from what is usual in
the literature, but for us it shall be more convenient. Note that f has also
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multiplicity M ′ in y for each downset M ′ ⊆ M . In particular, every polyno-
mial f has multiplicity M = ∅ at every point y, while if f has multiplicity
M 6= ∅ at y, then 0 ∈ M , and hence f vanishes at y.

To work with this notion, we need to get the coefficients cw in (2.2) easily.
For this purpose, consider the linear map Pw : F [x] → F [x], Pw : xu 7→(
u

w

)
xu−w, where

(
u

w

)
=
(

u1

w1

)
. . .
(

un

wn

)
. Note that in characteristic 0 we have

Pw = 1
w!

· ∂w

∂xw , where w! = w1! . . . wn!. By slight abuse of notation, instead of
Pw we shall use the latter—even if the characteristic is not zero and w! = 0
in F. Properties of Pw that are well known for differential operators (like the
Leibniz rule) will be clearer this way.

From the Taylor series of f , we have that the value of the polynomial

1

w!
· ∂w

∂xw
f(x) =

1

w1! . . . wn!
· ∂w1+···+wn

∂xw1
1 . . . ∂xwn

n

f(x1, . . . , xn)

in y is cw. We shall write 1
w!

· ∂w

∂xw f(y) instead of the complicated expression
1
w!

· ∂w

∂xw f(x) taken in y.

Definition 2.2.2. A (finite) algebraic multiset is a function V : Fn → 2Nn

,
such that V(y) = ∅ with only finitely many exceptions y ∈ Fn, and for all y ∈
Fn, the image V(y) ⊆ Nn is a finite downset. The set V = {y : V(y) 6= ∅}
contains the points of V .

Any V ⊆ Fn is also an algebraic multiset by setting V(y) = {0} if y ∈ V
and V(y) = ∅ otherwise.

Definition 2.2.3. The vanishing ideal of V is

I(V) = {f ∈ F [x] : f has multiplicity V(y) in y for all y ∈ Fn} .

If V is the set of points of some V , then I(V) ⊆ I(V ). Algebraic multisets
appear naturally in interpolation problems involving constraints on higher
derivatives.

2.2.2 Primary decomposition

By the Noether–Lasker theorem ([6] Chapter 4) every ideal I E F [x] is a
finite intersection of primary ideals, each corresponding to a different prime
ideal. For zero dimensional ideals we can be more specific:

Proposition 2.2.4. Let I EF [x] be a zero dimensional ideal. Then there are

uniquely determined primary ideals Qj (j = 1, . . . , k) such that I =
k∏

j=1

Qj

and the radicals
√

Qj = Mj are pairwise different maximal ideals. The Mj

are exactly those maximal ideals which contain I.
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Proof. The Noether–Lasker theorem gives that there exist primary ideals Qj

such that the
√

Qj are all different and I =
k⋂

j=1

Qj. As I ⊆ Qj ⊆
√

Qj = Mj,

the Mj have dimension zero as well, but a zero dimensional prime ideal is
maximal. Now the second uniqueness theorem of primary decomposition
gives immediately the uniqueness of the decomposition.

Since the Mj are pairwise different, the Qj are relatively prime, so we

have
k⋂

j=1

Qj =
k∏

j=1

Qj.

Finally if M ⊇ I is any maximal ideal then M ⊇
√

I =
k⋂

j=1

√
Qj =

k∏
j=1

Mj.

As M is prime, there exists an Mj ⊆ M , but then Mj = M by the maximality
of Mj.

Definition 2.2.5. We say that an ideal Q E F [x] corresponds to a point
y ∈ Fn if

√
Q = 〈x1 − y1, . . . , xn − yn〉. Let I be a zero dimensional ideal

with primary decomposition I =
k∏

j=1

Qj. If every Qj corresponds to some

point yj, then we say that I is a splitting ideal.

For example the ideal 〈x2 + 1〉 in Q[x] is not a splitting ideal, although it
is of dimension zero. Note that 〈x2 + 1〉 E Q(i)[x] is a splitting ideal (where
i2 = −1).

From now on, we will only work with splitting ideals. As we are mainly
interested in the standard monomials of I, this is not a serious restriction.
Indeed, if I is an arbitrary zero dimensional ideal, then we can pass to the
algebraic closure F and change I to IF = I · F [x]. It is not hard to see
that the standard monomials of IF and I are the same. Moreover, for every
primary component Q of IF, the radical

√
Q is maximal, hence by Hilbert’s

Nullstellensatz it is of the form 〈x1 − y1, . . . , xn − yn〉 for some y ∈ F
n
. In

fact, for a fixed I it suffices to pass to a finite extension F′ of F instead of
the algebraic closure.

We shall simply write

I =
∏

y∈Fn

Qy (2.3)

as the primary decomposition of I, keeping in mind that if Qy 6= F [x], then
Qy is 〈x1 − y1, . . . , xn − yn〉-primary, but of course Qy = F [x] with only
finitely many exceptions.

Definition 2.2.6. We call y ∈ Fn a point of I (or a point associated to I) if
Qy 6= F [x] in the primary decomposition of I.
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Definition 2.2.7. Let Q E F [x] be an ideal and y ∈ Fn be a point. We say
that Q is y-monomial if it can be generated by some polynomials of the form
(x − y)w. A 0-monomial ideal is a monomial ideal in the usual sense.

The next theorem claims that finite multiset ideals are exactly the zero
dimensional ideals which locally look like monomial ideals.

Theorem 2.2.8. Suppose that

I =
∏

y∈Fn

Qy

is the primary decomposition of a zero dimensional splitting ideal. Then there
exists a finite multiset V, such that I = I(V) if and only if Qy is y-monomial
for all y associated to I. In this case

w ∈ V(y) ⇐⇒ (x − y)w 6∈ Qy.

Proof. Assume first that I = I(V). Then we decompose V to the finite
’union’ of its points. That is, let Vy be the multiset which is ∅ on Fn \ {y},
and Vy(y) = V(y). Then I(V) =

⋂
y∈Fn

I(Vy). If y is a point of V , then

the radical
√

I(Vy) = 〈x1 − y1, . . . , xn − yn〉 is a maximal ideal so the I(Vy)
are relatively prime primary ideals thus I(V) =

∏
y∈Fn

I(Vy) is the primary

decomposition of I. Uniqueness of primary decomposition implies that Qy

has to be equal to I(Vy).
It remains to verify that I(Vy) is y-monomial. Suppose that f(x) =∑

w∈Nn

cw(x − y)w is in I(Vy). If cw 6= 0 then w 6∈ Vy(y) and so (x − y)w is

also in I(Vy), which proves the first part.

Conversely, suppose that all Qy are y-monomial. Define V by

V(y) = {w : (x − y)w 6∈ Qy} (2.4)

for all points y of I. Using the above defined decomposition of V to multisets
Vy, we obtain (x − y)w ∈ I(Vy) ⇐⇒ w 6∈ Vy(y) ⇐⇒ w 6∈ V(y) ⇐⇒
(x − y)w ∈ Qy. As Qy is y-monomial this yields I(Vy) = Qy, thus

I =
⋂

y∈Fn

Qy =
⋂

y∈Fn

I(Vy) = I(V).

The equivalence is proved.

To show that the only right choice for V is the one given by (2.4), note
that it follows from the first part of the proof that I(V) = I(V ′) implies
V = V ′.
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Corollary 2.2.9. Let Qy be a y-monomial primary component of I(V).
Then

xw ∈ Sm (Qy) ⇐⇒ w ∈ V(y).

In particular |Sm (Qy)| = |V(y)|.
Proof. The monomial xw is in Lm (Qy) if and only if there exists an f(x) ∈
Qy with lm (f) = xw. Writing f as a polynomial in the variables xi − yi, we
have that the coefficient of (x − y)w is not zero, and as Qy is y-monomial,
(x − y)w itself is in Qy (see Proposition 2.1.1). But (x − y)w ∈ Qy is
equivalent to w 6∈ V(y) by the last statement of Theorem 2.2.8.

Example 2.2.10. The primary decomposition of the vanishing ideal I(V ) of
a finite set V ⊆ Fn has the additional property that all primary components
are maximal, that is Qy = 〈x1 − y1, . . . , xn − yn〉.

Suppose now that V is such that for all y there exists some my ∈ N with

V(y) = {m ∈ Nn :
n∑

i=1

mi < my}. Then I(V) contains those polynomials

which have a root in y of multiplicity (in the usual sense) my, and Qy =
〈x1 − y1, . . . , xn − yn〉my in the primary decomposition of I(V).

Definition 2.2.11. The cardinality of a finite multiset V is

|V| =
∑

y∈Fn

|V(y)| .

Lemma 2.2.12. If I =
k∏

j=1

Ij where the ideals Ij of F [x] are relatively prime

in pairs, then |Sm (I)| =
k∑

j=1

|Sm (Ij)|.

Proof. By the Chinese Remainder Theorem,

F [x]
/
I ∼=

k⊕

j=1

F [x]
/
Ij.

Theorem 2.1.14 implies that by taking dimensions of both sides, we get the
required equality.

The next corollary is extremely important, we shall use it several times
in the thesis.

Corollary 2.2.13. For every finite multiset V

|Sm (I(V))| = |V| .
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Proof. Put Lemma 2.2.12, Corollary 2.2.9 and Definition 2.2.11 together.

We now prove an easy characterization of Gröbner bases of vanishing
ideals of finite multisets.

Lemma 2.2.14. If V is a finite multiset, G ⊆ I(V) is finite, then G is a
Gröbner basis of I(V) if and only if |V| = |Sm (G)|.

Proof. We know that G is a Gröbner basis of I(V) if and only if Sm (I(V)) =
Sm (G). But Sm (I(V)) ⊆ Sm (G) always holds when G ⊆ I(V), so G is
a Gröbner basis iff |Sm (I(V))| = |Sm (G)| (using also that |Sm (I(V))| is
finite). Corollary 2.2.13 tells us that this last equality holds if and only if
|V| = |Sm (G)|, and this is what we wanted to show.



Chapter 3

Gröbner bases of boxes

Having learned the basics of Gröbner theory, we have arrived at a place where
our first combinatorial and algebraic applications can be shown. The easiest,
yet interesting case is that of a vanishing ideal of a set of points which
is a direct product of finite subsets of F. The two topics included in this
chapter are based on such calculations. We reprove a theorem of Harima in
a special case and Alon’s Combinatorial Nullstellensatz using Gröbner bases.
We present applications of both theorems.

For more complicated sets of points, further investigation in the theory
of Gröbner bases of vanishing ideals will be needed, which will be carried out
in Chapter 4.

Results of Section 3.1 appeared in a less general form in our paper [22].
The application of Alon’s theorem is published in [18], together with other
results on the topic which are not included in the thesis.

3.1 Harima’s theorem for finite sets of points

Here we prove an important special case of a theorem by T. Harima. It
establishes a connection among the Hilbert functions of I(V ) and I(V c),
where V is a finite set of points and V c is the complement of V in some box
B ⊇ V . The precise definitions follow.

Definition 3.1.1. Let V ⊆ Fn, and suppose that V ⊆ B1×B2×· · ·×Bn = B
for some finite nonempty sets B1, . . . , Bn ⊆ F. Such a set B is called a box.
The complement of V (in B) is V c = B \ V .

Throughout this section, we suppose that B1, . . . , Bn ⊆ F are finite sets,
and that V ⊆ B1 × B2 × · · · × Bn = B, as in the previous definition. Set
ki = |Bi|, k = (k1, . . . , kn) and k = deg

(
xk
)

=
∑

i∈[n]

ki.
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The main result of this section is the following.

Theorem 3.1.2. For the Hilbert functions of I(V ) and I(V c), we have

HI(B)(m) − |V | = HI(V c)(m) − HI(V )(k − n − m − 1).

for every m = 0, 1, . . . , k − n.

In formula (3.1.5) of [30], Tadahito Harima presents a similar formula for
more general point sets, namely for two disjoint finite point sets X, Y ⊂ Pn(F)
in the projective n-space over F, instead of V and V c, such that X ∪ Y is
a complete intersection. The formula was used in his characterization of
the Hilbert functions of Artinian Gorenstein algebras with the weak Stanley
property.

Here we focus on disjoint point sets (V and V c), such that their union
is a box. Our approach is based on direct computations with polynomial
functions.

The important special case, when the box B is {0, 1}n, has already been
treated in our survey paper [22]. A different proof for that case had been
given earlier by Pintér and Rónyai [35]. An advantage of their method is that
it works for more general coefficient rings, rather than fields (which include
the rings Zd = Z/dZ, where d is a positive integer). An application to the
(modular weak degree) complexity of Boolean functions is also given in [35].

The proof of Theorem 3.1.2 is obtained through a proposition, which
establishes a one-to-one correspondence between standard monomials of I(V )
and a certain subset of leading monomials of I(V c). But first, let us show
a simple lemma, describing the reduced Gröbner bases of boxes, which is
needed for the proof of the proposition.

Lemma 3.1.3. The reduced Gröbner basis of I(B) is

G =

{
∏

b∈Bi

(xi − b) : i ∈ [n]

}

with respect to any term order. In particular, the minimal leading monomials
of I(B) are xki

i (i ∈ [n]), and Sm (I(B)) = {xw : ∀ i ∈ [n] wi < ki}.
Proof. Since G ⊆ I(B), and |Sm (G)| =

∏
i∈[n]

ki = |B|, by Lemma 2.2.14 G is

indeed a Gröbner basis. It is obvious then that G is also reduced.

Proposition 3.1.4. Let xw be a monomial such that wi < ki for all i ∈ [n].
Then

xw ∈ Sm (I(V )) ⇐⇒ xk−w−1 ∈ Lm (I(V c)) ,

where xk−w−1 = xk1−w1−1
1 . . . xkn−wn−1

n .
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Proof. Suppose that xw ∈ Lm (I(V )) and also xk−w−1 ∈ Lm (I(V c)). If
f ∈ I(V ) with leading monomial xw, and g ∈ I(V c) with lm (g) = xk−w−1,
then clearly f · g ∈ I(B), and lm (f · g) =

∏
i∈[n]

xki−1
i = xk−1. That is xk−1 ∈

Lm (I(B)), a contradiction to Lemma 3.1.3.
Therefore, xk−w−1 ∈ Lm (I(V c)) implies xw ∈ Sm (I(V )). For the other

direction, consider the map σ : Sm (I(B)) → Sm (I(B)), xw 7→ xk−w−1. It is
an involution, and so what we have just proven is that σ maps Lm (I(V c))∩
Sm (I(B)) to Sm (I(V )). To complete the proof, it remains to see that σ is a
one-to-one correspondence between Lm (I(V c)) ∩ Sm (I(B)) and Sm (I(V )),
for which it is enough to show that |Lm (I(V c)) ∩ Sm (I(B))| = |Sm (I(V ))|.

By V c ⊆ B, we have Sm (I(V c)) ⊆ Sm (I(B)), thus

|Lm (I(V c)) ∩ Sm (I(B))| = |Sm (I(B)) \ Sm (I(V c))| =

= |Sm (I(B))| − |Sm (I(V c))| = |B| − |V c| = |V | = |Sm (I(V ))| .

Proof of Theorem 3.1.2. Let ≺ be a degree compatible term order. The num-
ber of monomials in Lm (I(V c)) ∩ Sm (I(B)) = Sm (I(B)) \ Sm (I(V c)) of
degree d is HI(B)(d)−HI(B)(d− 1)−

(
HI(V c)(d) − HI(V c)(d − 1)

)
. By Propo-

sition 3.1.4, this is the same as HI(V )(k − d− n)−HI(V )(k − d− n− 1), the
number of standard monomials of degree k − d − n for I(V ). We have

HI(B)(d) − HI(B)(d − 1) =

= HI(V c)(d) − HI(V c)(d − 1) + HI(V )(k − d − n) − HI(V )(k − d − n − 1)

for every 0 ≤ d ≤ k − n (we use the convention HI(−1) = 0). By adding
these up for d = 0, . . . ,m, we obtain

HI(B)(m) = HI(V c)(m) + HI(V )(k − n) − HI(V )(k − n − m − 1).

Since every standard monomial of I(V ) has degree at most k − n (as they
are divisors of xk1−1

1 . . . xkn−1
n ), we have HI(V )(k − n) = |V |, and the theorem

follows.

Theorem 3.1.2 allows us to formulate an interesting minimax relation
among two metrics known from boolean complexity theory. For V ( B, let
a(V ) stand for the smallest degree of a polynomial with monomials only from
Sm (I(B)), which vanishes on V . We have 0 ≤ a(V ) ≤ k − n.

Also, when V ⊆ B is nonempty, we define b(V ) to be the smallest integer
d such that HI(V )(d) = |V |. In other words, b(V ) is the smallest degree d
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such that every function from V to F can be represented by a polynomial
from F [x] of degree at most d. Then 0 ≤ b(V ) ≤ k − n holds. One may
observe that b(V ) is the Castelnuovo–Mumford regularity of I(V ).

Corollary 3.1.5. Assume that V ⊆ B is nonempty. Then we have

a(V c) + b(V ) = k − n.

Proof. Let us show first that a(V c) + b(V ) ≥ k − n. If v ∈ B, then denote
by χv the function on B, which vanish on B \ {v}, and χv(v) = 1. Lagrange
interpolation yields a polynomial representation h of χv, which consists only
of monomials from Sm (I(B)) and whose leading monomial is xk1−1

1 . . . xkn−1
n .

In particular, deg(h) = k − n. As h is a linear combination of standard
monomials, χv cannot be represented by a polynomial of smaller leading
monomial, thus neither by a polynomial of smaller degree.

Suppose that f ∈ I(V c) is a linear combination of elements of Sm (I(B)),
such that deg(f) = a(V c). Clearly f cannot vanish on B; assume that
f(v) 6= 0, v ∈ V . Let g be a polynomial function on V , such that g(v) = 1

f(v)
,

g is zero on every other point of V , and deg(g) ≤ b(V ). Then f ·g is of degree
at most a(V c)+b(V ), it represents the function χv, thus a(V c)+b(V ) ≥ k−n.

The other inequality is easy when V = B, so we may suppose that V ( B,
and so that a(V c) > 0. We apply Theorem 3.1.2 with m = a(V c) − 1. Note
first, that HI(V c)(m) = HI(B)(m), because monomials from Sm (I(B)) of
degree ≤ m are linearly independent over F, as functions on V c. Theorem
3.1.2 gives now that HI(V )(k−n−m−1) = |V |, hence b(V ) ≤ k−n−m−1 =
k − n − a(V c). This proves the assertion.

3.2 Alon’s Combinatorial Nullstellensatz and

a conjecture of Rédei

The famous paper [3] of Noga Alon is one of the most important milestones
of applications of polynomial techniques in combinatorics and algebra. Al-
though in his paper he does not explicitly mention Gröbner bases, Lemma
3.1.3 can be considered as a reformulation of Alon’s Combinatorial Nullstel-
lensatz. This is applied in lots of other papers through the ’non-vanishing
theorem’ ([3, Theorem 1.2]) which will be placed in our context and proved
in this section.

To illustrate the applicability of Alon’s statement, we present a theorem,
which claims that a generalized diagonal polynomial over a finite prime field
has at least one root, provided that some condition on the number of variables
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and the degree of the polynomial is fulfilled. We connect this result, which
appeared originally in [18], to a conjecture of Rédei.

Theorem 3.2.1 (Alon’s non-vanishing theorem). Let Bi ⊆ F be finite
nonempty sets with |Bi| = ki for i ∈ [n], and let f ∈ F [x] be a polynomial,

such that deg(f) =
n∑

i=1

(ki − 1) and that the coefficient of xk−1 =
n∏

i=1

xki−1
i

is not 0. Then f does not vanish on the box B = B1 × · · · × Bn, that is
f 6∈ I(B).

Proof. Let us reduce f with the reduced Gröbner basis of I(B), and denote
the result with f̂ . Note that xk−1 is a standard monomial of I(B). By
the special form of the above Gröbner basis (see Lemma 3.1.3), every re-
duction step replaces a monomial with other monomials of smaller degree.
These imply that the coefficient of xk−1 in f and f̂ are the same. (Actually,

lm
(
f̂
)

= xk−1.) In particular f̂ 6= 0. Being a linear combination of standard

monomials, this implies f̂ 6∈ I(B) and thus that f 6∈ I(B).

We now turn to an application of the previous result.

In 1946 László Rédei formulated a conjecture (see [37]) about the solvabil-
ity of polynomial equations over finite fields. Although Rónyai [38] showed
that there are counterexamples, for polynomials of certain special forms the
conjecture holds. A description of some cases when the conjecture is true,
together with Rónyai’s counterexamples can be found in [18].

Let p be a prime, and f ∈ Fp [x] be a polynomial. Suppose that the
degree of f in xi (degxi

(f) for short) is at most p − 1 for all i ∈ [n], that is
the polynomial is reduced with respect to the Gröbner basis of I(Fn

p ).
The rank of f is defined to be the least positive integer r for which there

exists an invertible homogeneous linear change of variables which carries f
into a polynomial with r variables. We then write rank(f) = r. One may
think of the rank as the effective number of variables of the polynomial.
While this definition captures well the intuitive meaning of the rank, the
following equivalent definition is easier to use for computations.

Let us denote the linear subspace of Fp [x] spanned by the partial deriva-
tives of f by F , that is

F = LinFp

{
∂f(x)

∂xi

: i ∈ [n]

}
.

It can be shown (see [38]) that rank(f) = dimFp
(F ).

We can now state Rédei’s conjecture.
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Conjecture 3.2.2 (Rédei). If f ∈ Fp [x] is not constant, degxi
(f) ≤ p − 1

(i ∈ [n]), and deg(f) ≤ rank(f) then f has a root in Fn
p .

We shall examine a family of polynomials for which the conjecture is still
open. Assuming a slightly stronger condition than Rédei’s, we are able to
prove the existence of a root of any member of the family.

Definition 3.2.3. Let p be a prime. A polynomial of the form

f(x) =
n∑

i=1

aix
d
i + g(x) ∈ Fp [x]

is a generalized diagonal polynomial, whenever 1 ≤ d ≤ p − 1, a1 . . . an 6= 0
and deg g < d.

Theorem 3.2.4. Suppose that

⌈
p−1

b p−1
d c

⌉
≤ n. Then the generalized diagonal

polynomial f =
n∑

i=1

aix
d
i + g has a root in Fn

p .

Proof. We can assume that

⌈
p−1

b p−1
d c

⌉
= n, for otherwise we may get a similar

polynomial in

⌈
p−1

b p−1
k c

⌉
variables by substituting zeros in the place of some

xi. Let h = 1−f p−1. We intend to show that h does not vanish on Fn
p . Since

the value of f p−1 at any point of Fn
p can only be either 0 or 1, this will imply

that there exists a root of f . Let

ki =

⌊
p − 1

d

⌋
d + 1 for i ∈ [n − 1] and

kn = (p − 1) d − (n − 1)

⌊
p − 1

d

⌋
d + 1.

It is obvious that 1 ≤ ki ≤ p for i ∈ [n − 1] and
n∑

i=1

(ki − 1) = (p − 1)d =

deg(h). The following simple calculation

kn = (p − 1) d −
(⌈

p − 1⌊
p−1

d

⌋
⌉
− 1

)⌊
p − 1

d

⌋
d + 1

≤ (p − 1) d −
(

p − 1⌊
p−1

d

⌋ − 1

)⌊
p − 1

d

⌋
d + 1 =

⌊
p − 1

d

⌋
d + 1 ≤ p and

kn > (p − 1) d − p − 1⌊
p−1

d

⌋
⌊

p − 1

d

⌋
d + 1 = 1
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gives that also 1 ≤ kn ≤ p.

In h, there is a monomial xk−1 contributed by

(
d∑

i=1

aix
d
i

)p−1

, since xki−1
i =

(
xd

i

)b p−1
d c

(for i ∈ [n − 1]), and xkn−1
n =

(
xd

n

)p−1−(n−1)b p−1
d c

. The coefficient
of xk−1 is therefore

− (p − 1)!
n∏

i=1

ki−1
d

!

n∏

i=1

a
ki−1

d

i 6= 0.

By choosing arbitrary subsets Bi ⊆ Fp with |Bi| = ki, the conditions of the
non-vanishing theorem hold, therefore h does not vanish on B ⊆ Fn

p . This
proves the claim.

If d | p − 1 then the statement is also true in an arbitrary finite field.
We shall obtain this result by a slight modification of the previous proof.
Actually, this claim has already been proved by Carlitz [14], in a way different
from ours.

Theorem 3.2.5. Assume that q = pr is a prime power. If d divides p − 1,

d ≤ n and f =
n∑

i=1

aix
d
i + g ∈ Fq[x] (with deg(g) < d), then f has a root in

Fn
q .

Proof. We may suppose that d = n. We apply Alon’s non-vanishing theorem
for the polynomial h = 1 − f q−1 with all ki = q and B = Fn

q . The coefficient
of xk−1 is

−(q − 1)!
(

q−1
d

!
)d

d∏

i=1

a
q−1

d

i .

(Here we used that d divides q − 1, which follows from the fact that pr − 1
is divisible with p − 1.) To see that this coefficient is not zero in Fq, it is

enough to show that p does not divide (q−1)!
((q−1)/d)!d

. The largest power of p
which divides the numerator is

∞∑

i=1

⌊
pr − 1

pi

⌋
=

r−1∑

i=1

⌊
pr−i − 1

pi

⌋
=

r−1∑

i=1

(
pr−i − 1

)
.

This is the same for the denominator. Indeed

d

∞∑

i=1

⌊
pr−1

d

pi

⌋
= d

r−1∑

i=1

⌊
pr−i − 1

d
+

pi − 1

pid

⌋
=
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d

r−1∑

i=1

pr−i − 1

d
=

r−1∑

i=1

(
pr−i − 1

)
.

The second to the last equality holds since 0 < pi−1
pid

< 1 and d | p− 1 implies

that pr−i−1
d

is an integer.

To compare Theorem 3.2.4 with Rédei’s conjecture, we observe that for a
generalized diagonal polynomial f , if d = 1 then rank(f) = 1, otherwise we
have rank(f) = n. Indeed, put

fi(x) =
∂f

∂xi

(x) = daix
d−1
i +

∂g

∂xi

(x).

Suppose that there exist some αi such that
n∑

i=1

αifi = 0 holds. As deg
(

∂g
∂xi

)
<

d − 1, the coefficient of xd−1
i is αidai, hence αi = 0 for each i, which means

that the fi are linearly independent, and rank(f) = n.
We conclude that Rédei’s conjecture predicts that there is a root of f in

Fn
p , in case d ≤ n. Unless d|p − 1, this is a slightly weaker condition than⌈

p−1

b p−1
d c

⌉
≤ n, the one we used to prove Theorem 3.2.4.



Chapter 4

The Lex Game

In this chapter we introduce the Lex Game. This is our main tool which
can be applied to compute the lexicographic standard monomials of ideals of
combinatorial interest. Such applications are treated in the next chapters,
for which one has to know the lex standard monomials of vanishing ideals
I(V ) of finite sets of points V . However, the game can be used to compute
lex standard monomials for more general zero dimensional ideals.

For a fixed ideal, we somehow obtain a set of monomials Stan (I) as a
result of the game. We shall show in Section 4.2, that if I = I(V) for some
algebraic multiset V , then Stan (I) = Smlex (I). The subsequent section
proves the same for a different class of zero dimensional ideals. In fact, there
we also reveal interesting properties of the structure of lexicographic Gröbner
bases. We shall see that Stan (I) 6= Smlex (I) in general; we formulate a
conjecture about Stan (I) instead. The last section of this chapter provides
an algorithm that computes Stan (I), and hence Smlex (I) in certain cases.

The Game was first introduced in [20], and the general form appeared in
[21], where the proof of the multiset case can also be found. The results in
Section 4.3 have not yet been published. The algorithm in the case I = I(V )
is in [20], the general one is a simple modification of that treatment.

Throughout the chapter, we use the lexicographic ordering, so—even if it
is not stated explicitly—Sm (I) and Lm (I) are defined with respect to lex.

4.1 Rules of the Lex Game

Let I be a zero dimensional splitting ideal with primary decomposition of the
form (2.3) and let w ∈ Nn be an n dimensional vector of natural numbers.
With these data fixed, we define the Lex Game Lex (I;w), which is played
by two people Lea and Stan.
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Both Lea and Stan know I and w.

1 Lea chooses wn (not necessarily different) elements of F.

Stan (knowing Lea’s choices) picks a value yn ∈ F.

They set rn to be the multiplicity of yn among Lea’s guesses.

2 Lea now chooses wn−1 (not necessarily different) elements of F.

Stan (knowing Lea’s choices) picks a yn−1 ∈ F.

They record the result rn−1, the number of yn−1 among Lea’s choices.

. . . (The game goes on in the same fashion.)

n Lea chooses w1 (not necessarily different) elements of F.

Stan (knowing Lea’s choices) finally picks a y1 ∈ F.

They put the number of correct guesses in r1.

Suppose that the result vector of the game is r = (r1, . . . , rn) ∈ Nn. The
winner is Lea precisely if xr ∈ Lm (Qy).

When I = I(V) or I = I(V ) we may also write Lex (V ;w) or Lex (V ;w)
respectively.

From the combinatorial point of view, the most interesting case is that
of I = I(V ) for a finite subset V ⊆ Fn. Then the primary decomposition
consists of maximal ideals 〈x1 − y1, . . . , xn − yn〉 corresponding to the points
y ∈ V , and so Sm (Qy) = {1} for all y ∈ V . If Stan picks the yi such that
y 6∈ V then Qy = F [x], Sm (Qy) = ∅, so Lea wins the game even without any
successful guess (r = 0). But when Stan chooses a y in V then xr ∈ Lm (Qy)
if and only if there exists an ri ≥ 1. That is, Lea’s goal in Lex (V ;w) is to
find out at least one coordinate of y, and Stan will pick the yi to prevent Lea
from this, while paying attention to have y ∈ V .

Example 4.1.1. Let n = 5, and α, β ∈ F be different elements. Let V be the
set of all α-β sequences in F5 in which the number of the α coordinates is 1,
2 or 3. We claim that Lea can win in the game Lex (V ;w) if w = (11100),
but if w = (01110), then Stan has a winning strategy.

Indeed, let w = (11100). To have y ∈ V , Stan is forced to select values
from {α, β}. If Stan gives only β for the last 2 coordinates, then Lea will
choose α in the first three, therefore either y does not contain any α coordi-
nates, or one of Lea’s guesses are correct. However if Stan gives at least one
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α for the last 2 coordinates, then Lea, by keeping on choosing β, can prevent
y to have at least two β coordinates.

In the case w = (01110) Stan’s winning strategy is to pick y5 = β, and
choose the complement of Lea’s guess from {α, β} (for the 4th, 3rd and 2nd
coordinates). One can easily check that y1 then can always be taken such
that y ∈ V .

Another special case, which contains the previous one, is when I is the
vanishing ideal of a finite algebraic multiset V of Fn. By Theorem 2.2.8
we know that in this case each primary component Qy is y-monomial so
Corollary 2.2.9 applies: Lea wins the game if and only if the result vector r
is not in V(y).

Our goal is to determine the winner of the game. As the Lex Game is
a finite and deterministic game, depending on I and w, either of the two
players always has a winning strategy. From now on, we say that Lea (Stan)
wins the game if she (he) has a winning strategy.

Definition 4.1.2. For I fixed, the set

Stan (I) = {xw : Stan wins Lex (I;w)}

is the set of Stan monomials.

We investigate Stan (I). In particular we show that for any finite algebraic
multiset Stan (I(V)) = Sm (I(V)). We will also see that Stan (I) = Sm (I)
holds when every two points associated with I can be distinguished by looking
only at their last two coordinates, in particular when n ≤ 2.

Before going on, we take a look at the quite easy case n = 1.

Proposition 4.1.3. If n = 1, then for every splitting ideal I we have
Sm (I) = Stan (I).

Proof. Let w ≥ 0 be an integer. Then xw ∈ Sm (I) if and only if w <
|Sm (I)| =

∑
y∈F

|Sm (Qy)| by the fact that Sm (I) is a downset with respect

to division and Lemma 2.2.12. But this means precisely that no matter how
Lea is trying, there has to be a y ∈ F which is at most |Sm (Qy)| − 1 times
among her guesses, thus Stan wins the game as x|Sm(Qy)|−1 ∈ Sm (Qy).
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4.2 The multiset case

We show in this section that the Lex Game gives a combinatorial description
of the standard monomials of I(V). We remind the reader that in this case
the condition that determines the winner is r ∈ V(y).

Theorem 4.2.1. Let V be a finite algebraic multiset. Then Sm (I(V)) =
Stan (I(V)). In other words: Lea wins Lex (V ;w) iff xw ∈ Lm (I(V)).

Before the proof, we introduce some notation. If y ∈ F and m ≥ 0 is an
integer, then let Vy,m be the finite multiset of Fn−1 for which

Vy,m(y) =
{
m ∈ Nn−1 : (m,m) ∈ V(y, y)

}

holds for all y ∈ Fn−1.
This somewhat cumbersome piece of notation intends to capture a simple

aspect of the game: suppose that at the first step of a Lex (V ;w) game
Lea guessed y precisely m times and Stan revealed that yn = y. Then
they continue as if they have just started a Lex (Vy,m;w) game. Indeed,
(r,m) ∈ V(y, y) if and only if r ∈ Vy,m(y), which means that Lea wins the
original game with exactly m = rn correct guesses for y = yn given in the
first round if and only if she wins Lex (Vy,m;w).

Recall from Subsection 2.2.1 that the coefficient of (x−y)w in f(x), when
written as a polynomial in the variables x − y is

1

w!
· ∂w

∂xw
f(y) =

1

w1! . . . wn!
· ∂w1+···+wn

∂xw1
1 . . . ∂xwn

n

f(x) at x = y.

We will need the following lemma.

Lemma 4.2.2. Suppose that f(x) = xwg(xn)+h(x) ∈ I(V), h(x) ≺ xw. Let
m be a nonnegative integer and y ∈ F such that the polynomial (xn − y)m+1

does not divide g(xn) in F [xn]. Then xw ∈ Lm (I (Vy,m)).

Proof. If m′ < m then I (Vy,m′) ⊆ I (Vy,m) holds and also Lm (I (Vy,m′)) ⊆
Lm (I (Vy,m)), hence we may assume without loss of generality that g(xn) =
(xn − y)mĝ(xn), with some ĝ not vanishing at y. Set

f̂(x) =
1

m!
· ∂m

∂xm
n

f(x, y).

As f(x) = xw(xn − y)mĝ(xn) + h(x), the Leibniz rule gives that

f̂(x) = xwĝ(y) +
1

m!
· ∂m

∂xm
n

h(x, y).
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Every monomial of h(x) is less than xw, hence the same is true for every

monomial of 1
m!

· ∂m

∂xm
n

h(x, y). Thus lm
(
f̂
)

= xw, using also that ĝ(y) 6= 0.

We shall be done, once we show that f̂(x) ∈ I (Vy,m).
Let y ∈ Fn−1 and m ∈ Vy,m(y) be arbitrary. We need to prove that

1

m!
· ∂m

∂xm
f̂(y) = 0.

By the definitions, (m,m) ∈ V(y, y). Using that f(x) ∈ I(V) we have

0 =
1

(m,m)!
· ∂(m,m)

∂xmxm
n

f(y, y) =
∂m

(
1

m!
· ∂m

∂xm
n

f(x, y)
)

m! · ∂xm

∣∣∣∣∣∣
x=y

=
1

m!
· ∂m

∂xm
f̂(y)

as we stated.

Proof of Theorem 4.2.1. We prove the statement by induction on n, the case
n = 1 already being covered in Proposition 4.1.3. Suppose that n > 1 and
that the theorem is true for n − 1. Set

Z =
{
(y,m) ∈ F × N : xw ∈ Sm (I(Vy,m))

}
.

The inductive hypothesis yields that Stan wins Lex (Vy,m;w) if and only if
(y,m) ∈ Z. From what we said about the connection between the games
Lex (V ;w) and Lex (Vy,m;w) it follows that Stan wins Lex (V ;w) if and only
if wn < |Z|. Therefore it is enough to show that

xw ∈ Sm (I(V)) ⇐⇒ wn <
∣∣{(y,m) ∈ F × N : xw ∈ Sm (I(Vy,m))

}∣∣ .
(4.1)

Suppose first that xw ∈ Lm (I(V)), and let f(x) ∈ I(V) be a witness of
this fact, that is lm (f) = xw. By collecting the terms of the form xwxi

n

(i ∈ N) we get a decomposition f(x) = xwg(xn) + h(x), where h(x) ≺ xw

and deg(g) = wn.
If for some (y,m) ∈ F × N the polynomial (xn − y)m+1 does not divide

g(xn), then by Lemma 4.2.2 we have xw ∈ Lm (I (Vy,m)) and so (y,m) 6∈ Z.
But there are at most deg(g) pairs (y,m) ∈ F × N such that (xn − y)m+1

divides g as F[xn] is a unique factorization domain. This means that |Z| ≤
deg(g) = wn.

For the other direction, assume that xw ∈ Sm (I(V)). It suffices to show

that xwx
|Z|
n ∈ Lm (I(V)), since in this case xwx

|Z|
n cannot be a divisor of xw,

that is wn < |Z|.
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Put my = min {m ∈ N : (y,m) 6∈ Z} for all y ∈ F. On the one hand,
(y,my) 6∈ Z implies the existence of a polynomial fy(x) such that f(x) ≺ xw

and xw + fy(x) ∈ I(Vy,my
). On the other hand, by the minimality of my we

know that (y, 0), (y, 1), . . . , (y,my − 1) ∈ Z, from which we get

|Z| =
∑

y∈F

my. (4.2)

Set F = {y ∈ F : ∃y ∈ Fn−1such that V(y, y) 6= ∅}. As F is the set of
the last coordinates of points of V , F is finite. For every y ∈ F let My =
max {m : ∃y ∈ Fn−1 : Vy,m(y) 6= ∅} and χy(xn) be a polynomial such that
for 0 ≤ m ≤ My and y′ ∈ F

1

m!
· ∂m

∂xm
n

χy(y
′) =

{
1, if m = 0 and y′ = y
0 otherwise

. (4.3)

Since F is finite, we have finitely many conditions on χy which can be satisfied
by a polynomial.

And eventually let

s(x) =

(
xw +

∑

y∈F

χy(xn)fy(x)

)
·
∏

y∈F

(xn − y)my .

By the properties of the lexicographic order, the leading monomial of(
xw +

∑
y∈F

χy(xn)fy(x)

)
is xw, and so (4.2) implies that lm (s(x)) = xwx

|Z|
n .

It remains to verify s(x) ∈ I(V).
Let (y, y) ∈ Fn and (m,m) ∈ V(y, y) be arbitrary. (The existence of such

an (m,m) implies y ∈ F .) We want to show that 1
(m,m)!

· ∂(m,m)

∂xmxm
n

s(y, y) = 0.

Property (4.3) of the polynomials χy′(xn) gives

1

i!
· ∂i

∂xi
n

(
xw +

∑

y′∈F

χy′(y)fy′(x)

)
=

{
xw + fy(x) if i = 0
0 if 0 < i ≤ m

using also that m ≤ My. This yields

1

m!
· ∂m

∂xm
n

s(x, y) =
(
xw + fy(x)

)
· 1

m!
· ∂m

∂xm
n

∏

y′∈F

(y − y′)my′ .

If m < my then we are done, as every term of 1
m!

· ∂m

∂xm
n

∏
y′∈F

(xn − y′)my′

is divisible by (xn − y), and hence it vanishes at y. Assume therefore that
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m ≥ my. As (m,m) is in the downset V(y, y) we also have (m,my) ∈ V(y, y)
or equivalently m ∈ Vy,my

(y). Since xw + fy(x) ∈ I(Vy,my
), we have

1

m!
· ∂m

∂xm

(
yw + fy(y)

)
= 0,

and so

1

(m,m)!
· ∂(m,m)

∂xmxm
n

s(y, y) =
1

m!
· ∂m

∂xm

(
1

m!
· ∂m

∂xm
n

s(y, y)

)
=

1

m!
· ∂m

∂xm

(
(
yw + fy(y)

)
· 1

m!
· ∂m

∂xm
n

∏

y′∈F

(y − y′)my′

)
=

(
1

m!
· ∂m

∂xm

(
yw + fy(y)

))
·
(

1

m!
· ∂m

∂xm
n

∏

y′∈F

(y − y′)my′

)
= 0.

This completes the proof.

As it is clear from the above proof, the ’essence’ of Theorem 4.2.1 can be
formulated without the game. (Although it might be a bit harder to interpret
this result.)

Theorem 4.2.3. If V is a finite algebraic multiset, n ≥ 2, and w ∈ Nn then

xw ∈ Sm (I(V)) ⇐⇒ wn <
∣∣{(y,m) ∈ F × N : xw ∈ Sm (I(Vy,m))

}∣∣ .

It worth to mention the following, which is actually proven here without
the game.

Proposition 4.2.4.

|Sm (I(V))| =
∑

(y,m)∈F×N

|Sm (I(Vy,m))|

Proof. A simple calculation shows that |V| =
∑

(y,m)∈F×N

|Vy,m|, so the claim

follows from Corollary 2.2.13.



CHAPTER 4. THE LEX GAME 43

4.3 Points in almost general position

We now consider zero dimensional splitting ideals I such that every point of
I can be recognised by its last two coordinates, that is if y and y′ are points
of I, yn = y′

n and yn−1 = y′
n−1 then y = y′. Our goal in this section to prove

that for such an I the standard and the Stan monomials are the same.
As a preparation we examine the lex Gröbner bases of ideals of F[s, t].

4.3.1 Vanishing ideals of the plane

We shall characterize the reduced lex Gröbner bases of ideals I EF[s, t], such
that t ∈

√
I and t ≺ s. One could easily generalize our results to the case

when t − y ∈
√

I (instead of t ∈
√

I), where y ∈ F.
By degs(h)—as we did before—we mean the degree of the multivari-

ate polynomial h in s. To slightly shorten our statements, we shall write
degs(h) < w, even when h does not depend on s, in particular if h = 0.

Lemma 4.3.1. Let I E F [s, t] be an ideal such that t ∈
√

I. Suppose that
swp(t) + h(s, t) ∈ I, p 6= 0 and degs(h) < w. Then there is an ĥ(s, t) ∈
F[s, t] such that degs(ĥ) < w and swt` + ĥ(s, t) ∈ I, where ` = max{`′ :
t`

′

divides p(t)}.

The Lemma claims that for example s(t2 + 1) ∈ I implies that s + c ∈ I
for some c ∈ F, provided that t ∈

√
I.

Proof. Assume that t`0 ∈ I. We may suppose that ` < `0 because otherwise
the statement is trivial. Thus t` is the greatest common divisor of p(t) and t`0 ,
and so there exist polynomials g1(t), g2(t) such that p(t)g1(t) + t`0g2(t) = t`.
Now swp(t) + h(s, t) ∈ I and t`0 ∈ I so

(swp(t) + h(s, t)) g1(t) + swt`0g2(t) = swt` + h(s, t)g1(t)

is also in I, that is choosing ĥ(s, t) = h(s, t)g1(t) will do.

The ’shape’ of the lex reduced Gröbner basis of our ideals can now be
formulated as follows.

Theorem 4.3.2. Let I E F [s, t] be an ideal such that t ∈
√

I. Put `w =
min{` : swt` ∈ Lm (I)} for (w = 0, 1, . . . ), where Lm (I) is understood with
respect to the lex order induced by t ≺ s. If g(s, t) ∈ I and lm (g) = swt`w

then g(s, t) = c · swt`w + h(s, t) for some c ∈ F, h(s, t) ∈ F[s, t] such that
degs(h) < w and t`w divides h(s, t).
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Proof. It is clear that `0 ≥ `1 ≥ . . . so—since I contains a power of t—all `w

is finite.
Let g ∈ I be a polynomial with lm (g) = swt`w . Collecting together in

swp(t) the terms divisible with sw we get g(s, t) = swp(t) + h(s, t) to which
one can apply Theorem 4.3.1. By the minimality of `w, we have that p(t) is
c · t`w for some c ∈ F, thus g(s, t) = c · swt`w + h(s, t), and degs(h) < w.

We shall show that t`w divides h(s, t) by induction on w. If w = 0 then
h can only be 0. Suppose that the statement is true for w′ < w and suppose
for contradiction that h is not divisible with t`w . Let v ∈ N be maximal such
that svt` is a monomial of h and ` < `w. We know that v ≤ degs(h) < w, so
`v ≥ `w. Let gv be in I and lm (gv) = svt`v , so by the induction hypothesis
we know that t`v divides gv.

Consider the polynomial g(s, t)·t`v−`w ∈ I and reduce it with gv to get the
polynomial ĝ. There is a monomial svt`+`v−`w in gw(s, t)·t`v−`w , which cannot
be cancelled in the reduction, since `+ `v − `w < `v but every monomial of gv

is divisible with t`v . Thus ĝ 6= 0 and if lm (ĝ) = sv′

t`
′

then v′ ≥ v. But this
gives `′ < `v since otherwise sv′

t`
′

could have been reduced with gv, which
also means that sv′

t`
′

is a monomial of g(s, t) ·t`v−`w . Thus by the maximality
of v we have v = v′ and so svt`

′ ∈ Lm (I) a contradiction to the definition of
`v as `′ < `v.

We benefit from this statement in the n variable case as follows. Recall
that x̃ew = xw1

1 . . . x
wn−2

n−2 .

Corollary 4.3.3. Assume that n ≥ 2, I E F [x], xn ∈
√

I and that

x̃ewp(xn−1, xn) − h(x̃, xn−1, xn) ∈ I

with h(x) ≺ x̃ew. Then there are polynomials ĥ(x), p̂(xn−1, xn) such that

x̃ewp̂(xn−1, xn)xwn

n − ĥ(x̃, xn−1, xn) ∈ I,

ĥ(x) ≺ x̃ew and lm (p̂) = x
wn−1

n−1 , where lm (p) = x
wn−1

n−1 xwn
n .

Proof. Set

Iew =
{

g ∈ F[xn−1, xn] : ∃ĥ ∈ F [x] such that ĥ ≺ x̃ew and x̃ewg − ĥ ∈ I
}

.

Obviously Iew is an ideal in F[xn−1, xn] and x`
n ∈ Iew if x`

n ∈ I. Since
p ∈ Iew, there is a g ∈ Iew, whose leading monomial divides lm (p), say
lm (g) ·xun−1

n−1 xun
n = x

wn−1

n−1 xwn
n and which is in the reduced Gröbner basis of I ew.

Theorem 4.3.2 applies to Iew so g(xn−1, xn) · x
un−1

n−1 xun
n is divisible with xwn

n .

Set p̂ =
g·x

un−1
n−1 xun

n

xwn
n

. Then lm (p̂) = x
wn−1

n−1 , and p̂ · xwn
n ∈ Iew, which guarantees

the required properties of p̂.
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4.3.2 The game for almost general points

Without forgetting the ultimate goal of this section (to prove Stan (I) =
Sm (I) for certain ideals) we show two statements about leading monomials
of some product ideals, which actually will be crucial in the proof of the main
theorem.

Proposition 4.3.4. Suppose that I1 and I2 are zero dimensional splitting
ideals such that their points can be distinguished by their last coordinate (that
is if y is a point of I1 and z is a point of I2 then yn 6= zn).
If xwxm1

n ∈ Lm (I1) and xwxm2
n ∈ Lm (I2) then xwxm1+m2

n ∈ Lm (I1I2).

Proof. For every y ∈ Fn associated to I1, the primary component of I1 cor-
responding to y is 〈x1 − y1, . . . , xn − yn〉-primary and thus contains a poly-
nomial (xn − yn)cy for some cy ∈ N. Multiplying these together, we get a
polynomial f1(xn) ∈ I1. Similarly we have f2(xn) ∈ I2. As the irreducible
components of f1(xn) are of the form xn − yn, where yn is a possible last
coordinate of a point of I1, it follows that f1 and f2 are relatively prime
polynomials. Therefore there exist g1(xn), g2(xn) ∈ F[xn] such that

1 − f1(xn)g1(xn) − f2(xn)g2(xn) = 0. (4.4)

We also have two polynomials xwpj(xn)− hj(x) ∈ Ij (j = 1, 2) such that
deg(pj) = mj and hj(x) ≺ xw. Such polynomials do exist since xwx

mj
n ∈

Lm (Ij), hence in any polynomial showing this fact we can collect together
the terms divisible with xw in a polynomial xwp(xn), and put every other
term in −h(x).

Multiplying (4.4) with xwp1(xn)p2(xn) we get

xwp1(xn)p2(xn) − xwp2(xn)f1(xn)p1(xn)g1(xn)−
xwp1(xn)f2(xn)p2(xn)g2(xn) = 0

Note that
(
xwp2(xn) − h2(x)

)
f1(xn) ∈ I1I2 and

(
xwp1(xn) − h1(x)

)
f2(xn) ∈

I1I2, and so

f(x) = xwp1(xn)p2(xn)−h2(x)f1(xn)p1(xn)g1(xn)−h1(x)f2(xn)p2(xn)g2(xn)

is in I1I2. The leading monomial of f is lm (f) = xwx
deg(p1p2)
n = xwxm1+m2

n

using that h1(x) ≺ xw (and h2(x) ≺ xw), so the same is true for h1f2p2g2

(and h2f1p1g1) by the properties of the lexicographic order. This proves the
statement.
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The next proposition (and its proof as well) looks similar, except that
we have to apply Corollary 4.3.3 in the proof, which was not at all trivial
to verify. In fact, the reason why Stan monomials are in general not equal
to standard monomials is that the straightforward generalization of these
propositions is not true (see Example 4.4.1).

Proposition 4.3.5. Suppose that I1 and I2 are zero dimensional splitting
ideals such that their points have all the same last coordinates but they can
be distinguished by their second to the last coordinate (that is if y is a point
of I1 and z is a point of I2 then yn = zn and yn−1 6= zn−1).
If x̃ewxm1

n−1x
wn
n ∈ Lm (I1) and x̃ewxm2

n−1x
wn
n ∈ Lm (I2) then x̃ewxm1+m2

n−1 xwn
n ∈

Lm (I1I2).

Proof. Without loss of generality, we may suppose that the common last
coordinate of the points of I1 and I2 is 0, since a change of variables x′

n =
xn − yn does not affect the standard monomials.

The ideal I1 has dimension zero, thus a power of xn is in I1, that is
it satisfies the conditions of Corollary 4.3.3. Applying our usual trick, any
polynomial which shows x̃ewxm1

n−1x
wn
n ∈ Lm (I1) can be written in the form

x̃ewp(xn−1, xn) − h(x) from which by Corollary 4.3.3 we get that there exist
polynomials such that x̃ewp1(xn−1, xn)xwn

n − h1(x) ∈ I1, lm (p1) = xm1
n−1 and

h1 ≺ x̃ew. Similarly we have x̃ewp2(xn−1, xn)xwn
n − h2(x) ∈ I2, lm (p2) = xm2

n−1

and h2 ≺ x̃ew.
Exactly as in the proof of Proposition 4.3.4, there are relatively prime

polynomials f1(xn−1) ∈ I1 and f2(xn−1) ∈ I2 and g1(xn−1), g1(xn−1) ∈ F[xn−1]
such that

1 − f1(xn−1)g1(xn−1) − f2(xn−1)g2(xn−1) = 0

Multiplying this with x̃ewp1(xn−1)p2(xn−1)x
wn
n we get

x̃ewp1(xn−1, xn)p2(xn−1, xn)xwn
n −

x̃ewp2(xn−1, xn)xwn
n f1(xn−1)p1(xn−1, xn)g1(xn−1) −

x̃ewp1(xn−1, xn)xwn
n f2(xn−1)p2(xn−1, xn)g2(xn−1) = 0.

As we see that the polynomials
(
x̃ewp2(xn−1, xn)xwn

n − h2(x)
)
f1(xn−1) and(

x̃ewp1(xn−1, xn)xwn
n − h1(x)

)
f2(xn−1) are both in I1I2, we have that

f(x) := x̃ewp1(xn−1, xn)p2(xn−1, xn)xwn
n −

h2(x)f1(xn−1)p1(xn−1, xn)g1(xn−1) − h1(x)f2(xn−1)p2(xn−1, xn)g2(xn−1)

is in I1I2. The leading monomial of f is lm (f) = x̃ew · lm (p1p2) · xwn
n =

x̃ewxm1+m2
n−1 xwn

n since by h1(x) ≺ x̃ew (and h2(x) ≺ x̃ew) we have h1f2p2g2 ≺ x̃ew

(and h2f1p1g1 ≺ x̃ew). The proposition follows.
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Theorem 4.3.6. If I is a zero dimensional splitting ideal, and for all differ-
ent points y, z of I either yn 6= zn or yn−1 6= zn−1 then

Stan (I) = Sm (I) .

In particular if n = 2, then the standard and the Stan monomials are the
same for every zero dimensional splitting ideal.

Proof. Suppose that n ≥ 2. Let the primary decomposition be I =
∏

y∈Fn

Qy

and for y, y′ ∈ F put

Iy =
∏

y∈Fn

yn=y

Qy and Iy,y′ =
∏

y∈Fn

yn=y,yn−1=y′

Qy.

In fact, the assumption on I implies that Iy,y′ is either F[x] or a primary
component of I.

A game Lex (Iy,y′ ;w) is quite simple. If Iy,y′ is primary, then there is
only one point y of Iy,y′ , so if Lea guesses for the coordinates of y in each
round respectively, then the result vector r is either w (if Stan’s point was
y) or 0 (if it was any other). But in the latter case Lea wins the game as
x0 = 1 ∈ Lm (F [x]). Therefore we see that Stan (Iy,y′) = Sm (Iy,y′) (and
obviously Stan (F [x]) = ∅ = Sm (F [x])).

We now prove that Stan (Iy) = Sm (Iy). As |Stan (Iy)| = |Sm (Iy)| (see
Proposition 4.4.2 in the next section), it is enough to show that the left hand
side contains the right.

Fix a w ∈ Nn such that Lea can win the game Lex (Iy;w). We have to
see that xw ∈ Lm (Iy). Set

my,y′ = min
{
m ∈ N : x̃ewxm

n−1x
wn

n ∈ Lm (Iy,y′)
}

.

In the first round Lea guesses y as this is the only possible last coordinate of
the points of Iy. If wn−1 <

∑
y′∈F

my,y′ , then in the next round there exists a y′

for which Lea can guess only m < my,y′ times. We claim that if Stan picks
such a point of Iy then Lea cannot win the game. This contradiction will yield
wn−1 ≥ ∑

y′∈F

my,y′ . The result vector is now (∗, . . . , ∗,m,wn), which means

that Lea can win this game if and only if she can win Lex (Iy,y′ ; (w̃,m,wn))
We have just seen that this latter is equivalent to x̃ewxm

n−1x
wn
n ∈ Lm (Iy,y′),

which is not the case as m < my,y′ .
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Therefore we have wn−1 ≥ ∑
y′∈F

my,y′ . We now apply Proposition 4.3.5 to

get from x̃ewx
my,y′

n−1 xwn
n ∈ Lm (Iy,y′) that

x̃ewx
P

y′∈F my,y′

n−1 xwn

n ∈ Lm

(
∏

y′∈F

Iy,y′

)
= Lm (Iy) .

Therefore also xw = x̃ewx
wn−1

n−1 xwn
n ∈ Lm (Iy). This proves Stan (Iy) = Sm (Iy).

To show Stan (I) = Sm (I) we will do essentially the same thing. Again
fix a w ∈ Nn such that Lea wins Lex (I;w). Put

my = min
{
m ∈ N : xwxm

n ∈ Lm (Iy)
}

.

If wn <
∑
y∈F

my then there has to be a y that is guessed by Lea in the first

round only m < my times. Lea can still win the game, thus she can win
Lex (Iy; (w,m)) as well which implies xwxm

n ∈ Lm (Iy), a contradiction to
the minimality of my.

Using Proposition 4.3.4 we have

xwx
P

y∈F my

n ∈ Lm

(
∏

y∈F

Iy

)
= Lm (I)

and by wn ≥ ∑
y∈F

my also xw = xwxwn
n ∈ Lm (I).

We conclude that Stan (I) ⊇ Sm (I) which yields our statement.
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4.4 The general case

The standard monomials and Stan monomials are not the same in general.

Example 4.4.1. Let I E F [x1, x2, x3] be the product of the primary ideals
Q(0,0,0) = (x3

1, x
2
2, x

3
3, x1x2 + x2

3), Q(1,0,0) = ((x1 − 1)3, x2
2, x

3
3, (x1 − 1)x2 + x2

3).
It can be checked that x2

1x2 is a standard monomial, but not a Stan monomial,
while x4

1x
2
3 is a Stan monomial and a leading monomial at the same time.

(To see this, it may be useful that {x3
1, x

2
2, x

3
3, x1x2 + x2

3, x2x
2
3, x

2
1x

2
3} is the

reduced Gröbner basis of Q(0,0,0), and we get that of Q(1,0,0) if we replace x1

with x1 − 1.)

Suppose that I =
∏

y∈Fn

Qy with Qy being a primary ideal corresponding

to y. For each y ∈ Fn set

Q′
y = {(x − y)w : xw ∈ Lm (Qy)}

and let I ′ =
∏

y∈Fn

Q′
y. Clearly Q′

y is a y-monomial primary ideal, thus I ′ is

the vanishing ideal of a finite multiset.

An immediate consequence of the definition is that the games Lex (I;w)
and Lex (I ′;w) are the same, more precisely Stan (I) = Stan (I ′), as the
standard monomials of Qy and Q′

y coincide.
By Theorem 4.2.1 we have Stan (I ′) = Sm (I ′), thus

Stan (I) = Sm (I ′)

for every splitting ideal I.
We conjecture that just like Sm (I), also Stan (I) = Sm (I ′) is a linear

basis of the vector space F [x] /I. At least we have the following simple
observation.

Proposition 4.4.2. Let I be an arbitrary zero dimensional splitting ideal.
Then

|Stan (I)| = dimF (F [x] /I) .

Proof. Using Lemma 2.2.12 we get

|Stan (I)| = |Sm (I ′)| =
∑

y∈Fn

∣∣Sm
(
Q′

y

)∣∣ =
∑

y∈Fn

|Sm (Qy)| = |Sm (I)| ,

which, by Theorem 2.1.14, yields the desired equality.

One could think that Sm (I) may be a linear basis of F [x] /I ′, but it is
not true. On the contrary, computational experiments suggest that, as a
subset of the linear space F [x] /I ′, the set Sm (I) has as low rank as it can
have, namely Sm (I) and Sm (I)∩ Sm (I ′) generate the same linear subspace
of F [x] /I ′.
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4.5 Computing the Stan monomials

Here we introduce a fast combinatorial algorithm to compute the Stan mono-
mials of any zero dimensional splitting ideal, provided that the primary de-
composition

I =
∏

y∈Fn

Qy

and Sm (Qy) for all y ∈ Fn is known. Actually, we will only make use of the
list of the points of I, and Sm (Qy) for all point y of I.

We have seen that the Stan monomials of I(V) and I are the same, if V
is defined by V(y) = {w : xw ∈ Sm (Qy)}. From now on, we suppose that
I = I(V). Note that in this case, Sm (Qy) = {xw : w ∈ V(y)}, therefore
knowing all Sm (Qy) and V is equivalent.

The importance of our algorithm is that by Theorem 4.2.1 in fact we get
Sm (I(V)). Such an algorithm was first given by Cerlienco and Mureddu [15].
Here we present a computationally more efficient variant. The method in [15]
is combinatorial in the sense that algebraic operations in F are not needed.
Algorithm MB in [15] determines Sm (I(V)) in an incremental fashion by
adding new points and multiplicities to a given multiset and modifying the set
of standard monomials accordingly. Implementation details and complexity
are not discussed there. It appears that the best implementation of MB takes
at least c |V|2 n2 steps for some fixed positive c. (See Definition 2.2.11 for the
meaning of |V|.)

Here we take a somewhat different approach. First we carry out some
preprocessing of V by building a trie (see below for the definitions or Sub-
section 6.3 in [33] for more detailed discussion). This way, we organize the
relevant information about V in a data structure which allows afterwards a
very fast computation.

The algorithm for the case of vanishing ideals of sets has been imple-
mented in Singular [29], the code is included in the Appendix, and may be
downloaded from
http://www.math.bme.hu/~fbalint/publ/singular.html

4.5.1 Standard monomials of a trie

First we remind the reader of the definitions related to the data structure
trie.

A trie is a tree in the graph theoretical sense, with a special vertex called
root. We say that a vertex v is on the ith level of the trie if the distance
between v and the root is i. In particular, the root is on the 0th level. The
children of a vertex v of the ith level are all those vertices on the (i + 1)st
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level which are connected to v. As one would expect, if u is a child of v,
then v is the parent of u. Vertices which have no child are called leaves. The
root has no parent. Here we shall suppose that the leaves of a trie are all on
the same level. By the depth of a trie we mean the level of the leaves. If v
is a vertex different from the root and u is on the path from v to the root,
then v is a descendant of u. The subtrie of a trie corresponding to a vertex
v contains all descendants of v, and the root of this subtrie is v.

We shall speak about the standard monomials Sm (T ) of a trie T in the
following sense.

Definition 4.5.1. Suppose that T is a trie of depth n. If T consists of
a single root (n = 0), then Sm (T ) = {1}. Otherwise, when the depth is
n ≥ 1, we say that a monomial xw is in Sm (T ) if and only if there exist
more than wn children of the root for which xw is a standard monomial of
the corresponding subtrie.

We define the trie T (V) recursively. If n = 1 then the root of T (V) has |V|
children, which are all leaves of the trie. If n > 1 then T (V) consists of a root
whose children are the roots of the tries T (Vy,m) for each pair (y,m) ∈ F×N
such that the multiset Vy,m is not empty (that is Vy,m is not constant ∅ on
Fn−1).

1

1 2 1

3

2 3 4 4 1 3

Figure 4.1: The trie T (V ) of V = {(2, 1, 1), (3, 1, 1), (4, 1, 1), (4, 2, 1), (1, 1, 3),
(3, 1, 3)} (where V is understood as a multiset in the straightforward way).

Recall that Theorem 4.2.3 claims that

xw ∈ Sm (I(V)) ⇐⇒ wn <
∣∣{(y,m) ∈ F × N : xw ∈ Sm (I(Vy,m))

}∣∣ .

Corollary 4.5.2. For any nonempty algebraic multiset V, we have

Sm (I(V)) = Sm (T (V)) .

We will therefore concentrate on computing the standard monomials of
tries.
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A simple consequence of Corollary 4.5.2, and Proposition 4.2.4 is that

r∑

j=1

|Sm (Tj)| = |Sm (T )| , (4.5)

where T1, . . . , Tr are the subtries of T corresponding to the children of the
root of T . And from this, by easy induction we infer that

|Sm (T )| = |{leaves of T}| . (4.6)

4.5.2 The naive approach

The recursive definition of Sm (T ) yields a straightforward recursive algo-
rithm. We shall compute the standard monomials of T ′ for all subtries T ′ of
T .

For a leaf of T—considering it as a trie T ′ of depth 0— we set Sm (T ′) =
{1}. Suppose now that T ′ is subtrie of T , such that the root of T ′ is on
the n− ith level of T . Denote by T1, . . . , Tr the subtries of T , corresponding
to the children of the root of T ′. Assume that Sm (Tj) ⊆ F[x1, . . . , xi−1] is
already computed (j ∈ [r]). Consider the following procedure.
S := ∅;
For all j ∈ [r] and xw1

1 . . . x
wi−1

i−1 ∈ Sm (Tj) do

w := 1 + max
(
{` ≥ 0 : xw1

1 . . . x
wi−1

i−1 x`
i ∈ S} ∪ {−1}

)
;

S := S ∪ {xw1
1 . . . x

wi−1

i−1 xw
i };

endfor;

Note that when i = 1, then the empty product xw1
1 . . . x

wi−1

i−1 is defined to be
1.

We claim that the result S is precisely Sm (T ′). When xw1
1 . . . x

wi−1

i−1 xw
i

is put in S, then we know that xw1
1 . . . x

wi−1

i−1 xw−1
i is already in S (if w >

0) implying that there were w occurrences of the monomial xw1
1 . . . x

wi−1

i−1 in
Sm (T1) , . . . , Sm (Tj−1). Thus, together with Sm (Tj) there are w+1 of those,
hence xw1

1 . . . x
wi−1

i−1 xw
i is indeed a standard monomial of Sm (T ′). On the other

hand,

|S| =
r∑

j=1

|Sm (Tj)| = |Sm (T ′)|

using equation (4.5), which justifies the claim.

To make this algorithm efficient we have to compute quickly the quantities
max{` ≥ 0 : xw1

1 . . . x
wi−1

i−1 x`
i ∈ S}. In the remainder of this section we will

show how one can do this. This will substantially change the outlook of the
algorithm as well. The idea to use another trie for this purpose was suggested
by Balázs Rácz.
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4.5.3 Another try

We intend to build a second trie U for the exponent vectors of Sm (T ) in
the following sense. The children of any vertex are labelled with 0, 1, . . . in
turn. Thus a leaf l of U is associated with a vector w ∈ Nn, where wi is the
ith label on the path from the root to l. Our goal is to construct U , such
that the set of vectors corresponding to leaves of U is the set of the exponent
vectors of Sm (T ).

We build U level by level. This way, the vertices on the ith level of U will
correspond to monomials in variables x1, . . . , xi (or equivalently to vectors
from Ni).

Furthermore, the algorithm gives a one-to-one correspondence between
leaves of T and U . This is the key point of the algorithm, which can be
summarized in an informal way as follows. We put every leaf of T in the root
of U at the beginning. Then they will walk down in the trie, each of them to a
separate leaf. Actually, they will help us to construct the lower levels of U by
showing in which direction they want to go further. And they have a strange
nature: if the paths in T from two leaves l1 and l2 meets in the (n − i)th
level, then they want to be in different vertices of U from the ith level, but
otherwise they prefer to go to the vertex with the smallest possible number.
(Recall that the vertices of U are numbered.) In the following pseudo code
of the algorithm we record the current place (vertex) of the leaves of T in an
array A.

Let U be a tree consisting of a single root r;
For l ∈ {leaves of T} do A[l] := r; endfor;

For i = 1, . . . , n do

//We now build the ith level of U
For v ∈ {vertices on the (n − i)th level of T} do

For l ∈ {leaves of T which are descendants of v} do

b[A[l]] := 0;
endfor;

For l ∈ {leaves of T which are descendants of v} do

A[l] := (the child of A[l] with number b[A[l]]);
//If such a child does not exist, we create a new one

b[A[l]] := b[A[l]] + 1;
endfor;

endfor;

endfor;

The following example gives the result of the algorithm applied to T =
T (V ) of the set V of Figure 4.1. We numbered the leaves of T to make the
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assignment and their path from the root visible. However we left out the
labels of the vertices of U , as they can be reconstructed easily: number the
vertices having the same parent with 0, 1, . . . from left to right.

1 2 3 4 5 6

123456

4

145

15

51 4 2 6 3

3

3

26
2 6

T U

As we will soon prove, the trie U that we finally get by the algorithm
is the trie of the exponent vectors of Sm (T (V )). Thus the figure shows
that Sm (T (V )) = {1, x3, x2, x1, x1x3, x

2
1}. The monomials are listed in the

left-to-right order of the leaves of U .
To prove the correctness of the algorithm, we have to verify three basic

properties of the paths of the leaves of T in U . To be more precise, by the
trace of l, we mean the set of those vertices of U in which l sometimes have
been (that is, the different values of A[l]) during the algorithm.

Lemma 4.5.3. The path of l forms a path from the root to a leaf of U .

Proof. This is trivial as at first we assigned l to the root and in every phase
l moved to a child of its current place.

Lemma 4.5.4. If two leaves l1 and l2 of T have been in the same vertex on
the ith level of U , then the ancestors of l1 and l2 on the (n − i)th level of T
are different.

Proof. Suppose by contradiction that l1 and l2 have a common ancestor v on
the (n − i)th level of T and that l1 and l2 have been in the same vertex on
the ith level of U . By Lemma 4.5.3 we know that l1 and l2 have been in the
same vertex on the (i − 1)th level of U as well. That is, when building the
ith level of U and working in the

For v ∈ {vertices on the (n − i) level of T} do

loop with the common ancestor v, then we have A[l1] = A[l2], hence the
counter b should have separated them on the ith level of U .

Lemma 4.5.5. Let l be a leaf of T and for some 0 ≤ i ≤ n let v be the
ancestor of l on the (n − i)th level of T . Suppose that the trace of l in U
from the root to the ith level leads through vertices labelled with w1, . . . , wi

respectively. Then
xw1

1 . . . xwi

i ∈ Sm (Tv) ,

where Tv is the subtrie of T corresponding to v.
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Proof. We use induction on i. If i = 0 then the statement is immediate.
Suppose that the claim is true for the (i − 1)st level of U , and let

w1 . . . wi−1w be the labels of the path in U of a leaf l of T .
By the algorithm, there exist leaves l0, l1, . . . , lw−1, lw = l of T , such that

they all have been to the vertex w1 . . . wi−1 of U (the place of l in the (i−1)th
level), and their common ancestor on the (n − i)th level of T is v. Denote
the ancestor of lj on the (n− i + 1)st level of T by vj. By Lemma 4.5.4, the
vj are pairwise different. The induction hypothesis gives that xw1

1 . . . x
wi−1

i−1 ∈
Sm
(
Tvj

)
for j = 0, . . . , w, hence xw1

1 . . . x
wi−1

i−1 xw
i ∈ Sm (Tv) by the definition

of Sm (Tv).

UT

v

v0 v1 . . . vw

l0 l1 . . . lw = l

w1...
wi−1l0 . . . lw

l0 . . . lw

l0 l1 . . . lw = l

We now have everything to prove the correctness of the algorithm.

Theorem 4.5.6. The trie U given by the above algorithm is the trie of the
exponent vectors of Sm (T ).

Proof. On the one hand, we apply Lemma 4.5.5 with i = n: This implies
that every monomial corresponding to a leaf of U is in Sm (T ).

On the other hand, since the root of T is a common ancestor for every
leaf of T , Lemma 4.5.4 yields that every leaf of U contains exactly one leaf l
of T . This gives that the number of leaves of U and T is the same, and by
equation (4.6), this also equals to |Sm (T )|, proving our claim.

4.5.4 Running time

To sum up, the algorithm that computes Sm (I(V)) consists of two major
stages. We first construct the trie T (V), and then use the above algorithm
to compute Sm (T (V)) = Sm (I(V)).

Throughout we use the uniform cost measure (Section 1.3 in [2]) to discuss
bounds on the running time of the algorithms. In this setting the cost of an
elementary instruction is 1. We assume that reading or writing an element
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of F and testing the equality of two elements of F are elementary operations
and hence have unit costs. We need no arithmetic operations in F.

Proposition 4.5.7. Let m be the number of leaves of T . When T is given,
the above algorithm computes Sm (T ) in O(nm) time.

Proof. Consider the two For loops
For v ∈ {vertices on the (n − i)th level of T} do

For l ∈ {leaves of T which are descendants of v} do.
As every leaf l of T has exactly one ancestor v on the (n − i)th level of T ,
we work with every l only once, and so building of the ith level of U requires
O(m) steps.

We have not treated yet the algorithm to build the trie T (V) of V . This
can be done in an incremental fashion. We start with an empty trie and
insert points and multiplicities of V in turn. We can add either a new point
y with a single multiplicity set {0}, or an already existing point y, with a
new multiplicity m, such that {m}∪V(y) is still a downset. Adding the new
element (y,m) to the structure implies the creation of a new root-to-leaf
path in T (V). It is an easy exercise to prove that such a step can be done
in O(nr) time, where r is the maximum number of children a vertex of T (V)
has. It follows that constructing T (V) requires O (|V|nr) elementary steps.
We have therefore proven

Theorem 4.5.8. Let r be the maximal number of children of the vertices of
T (V). Then the algorithm presented in this section computes Sm (I(V)) in
O (|V|nr) time. A rough upper bound is O

(
|V|2 n

)
.



Chapter 5

Applications of the Game – a
warm up

The Lex Game is a powerful tool in the Gröbner theory of zero dimensional
ideals. We shall illustrate this through several examples in the remaining
of the thesis. While Chapter 6 is devoted to a single subject—extremal
combinatorics—, this present chapter contains three different topics: appli-
cations to the theory of Gröbner bases, to a different field of algebra, and to
algebraic combinatorics.

We shall examine first the dependence of the lex standard monomials
and Gröbner bases of vanishing ideals of finite multisets from the base field.
Corollary 5.1.1 in a less general form appeared in our paper [20] on the Lex
Game, while Corollary 5.1.2 is not yet published.

Section 5.2 deals with a generalization of the fundamental theorem of
symmetric polynomials. The approach is a simplified version (with the aid
of the Lex Game, of course) of that of Hegedűs, Nagy and Rónyai [31].

We then start to investigate ideals associated to set families and include a
well-known theorem which establishes a connection between Hilbert functions
and inclusion matrices. A similar theorem is used in Section 5.4, where
we compute the rank of a certain inclusion matrix modulo p. The original
method of [26] to obtain this rank is again simplified by the Lex Game. This,
as well as the application to symmetric polynomials is taken from our survey
paper [22].

In the last three sections, we shall work with ideals of finite sets of points.
Recall that if V ⊆ Fn is finite, then the primary components of I(V ) are
maximal ideals, which in terms of the game means that it is enough for Lea
to find out only one coordinate of y if y ∈ V , and Lea is the winner also if
y 6∈ V .
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5.1 Properties of lex Gröbner bases

Here we shall examine some immediate consequences of the Lex Game for
vanishing ideals of finite multisets V .

It follows from Theorem 4.2.1 that the standard monomials are largely
independent of the base field F, and of the precise embedding of V into Fn.
As we consider more than one field here, let us temporarily put IF(V) for the
ideal I(V) in F [x].

Corollary 5.1.1. Let V be a finite multiset in Fn and assume that Bi ⊆ F
(i ∈ [n]) are finite sets, such that B = B1 × · · · × Bn contains all points of
V. Let F̂ be any field and suppose that ϕi : Bi → F̂ are injective maps for
i ∈ [n]. For y ∈ B, put ϕ(y) = (ϕ1(y1), . . . , ϕn(yn)). The image of V is
then V̂, where V̂(ϕ(y)) = V(y), and if ŷ ∈ F̂n is not in the image of ϕ, then
V̂(ŷ) = ∅. Then

Smlex (IF(V)) = Smlex

(
IF̂

(
V̂
))

.

In particular, if all points of V are in {0, 1}n, then Smlex (IF(V)) is indepen-
dent of the base field F.

Proof. The standard monomials of the primary components of the two cor-
responding ideals are the same by

xw ∈ Sm (Qy) ⇐⇒ w ∈ V(y) ⇐⇒ w ∈ V̂(ϕ(y)) ⇐⇒ xw ∈ Sm
(
Qϕ(y)

)
,

using Corollary 2.2.9. Therefore the Lex (V ;w) game is essentially the same

as the Lex
(
V̂ ;w

)
game, since we have changed only the names of the coor-

dinates to guess (bijectively).
The second part follows from the first, because 0 6= 1 in any field F.

The second part of the corollary concerning (not multi-) sets V ⊆ {0, 1}n

has been proven in [5] by a different method.
We now show that the reduced lexicographic Gröbner basis of IF(V) for

a multiset with points from {0, 1}n is essentially the same over any field. We
remark that this can be generalized with some restrictions to finite multisets
with more than two integer coordinate values.

If f ∈ Z[x], then for all fields F of characteristic 0 we clearly have f ∈
F [x], but also if the characteristic of F is p > 0, we can still consider f as an
element of F [x] by reducing its integer coefficients modulo p.

Corollary 5.1.2. If the points of V are in {0, 1}n, then the reduced lex
Gröbner basis G of IQ(V) has integer coefficients. For an arbitrary field F,
the set in F [x] corresponding to G is the reduced lex Gröbner basis of the
ideal IF(V).



CHAPTER 5. APPLICATIONS OF THE GAME – A WARM UP 59

Proof. Let xw + g(x) be an element of the reduced lex Gröbner basis of
IQ(V), where g ∈ Q[x], and every monomial of g is contained in Sm (IQ(V )).
Suppose by contradiction that g 6∈ Z[x].

Let z be a minimal positive integer, such that zg(x) has integer coef-
ficients. If a prime p divides z, then the minimality of z implies that not
all coefficients of zg(x) are divisible with p. Reduce zg ∈ Z[x] modulo p
to get a nonzero polynomial over Fp, which (modulo p) vanishes on V , as
zxw + zg(x) vanishes on V and p | z. Thus the leading monomial of zg(x) is
in Lm

(
IFp

(V)
)

= Lm (IQ(V)), by Corollary 5.1.1. That is a contradiction.
For the second statement, let F be an arbitrary field and let us think of

G as a subset of F [x]. Obviously G ⊆ IF(V) is still true and the leading
monomials of G remain the same. By Sm (IF(V)) = Sm (IQ(V)) = Sm (G),
we have that G is a Gröbner basis of IF(V). As the elements of G, except for
their leading monomials, are linear combinations of standard monomials, G
is also reduced.

5.2 Generalization of the fundamental theo-

rem of symmetric polynomials

We present an easy proof of a theorem by Garsia [27], which is a general-
ization of the fundamental theorem of symmetric polynomials. The original
source of this proof is [31], where the authors used a different way to com-
pute the lex standard monomials of the ideal in question. The reason why
we chose to include this topic is that we think that the proof by the Lex
Game is easier than the original one, and also since it is a good practice for
the reader to get familiar with the game in a nice algebraic application. This
approach has appeared in [22].

The ith elementary symmetric polynomial is

σi(x) =
∑

w∈{0,1}n

deg(xw)=i

xw,

provided that 0 ≤ i ≤ n. Later we will also use the complete symmetric
polynomial of degree i ≥ 0, which is

hi(x) =
∑

w∈Nn

deg(xw)=i

xw.

The fundamental theorem of symmetric polynomials claims that if f(x)
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is a symmetric polynomial, then it can be written uniquely as a finite sum

f(x) =
∑

u∈Nn

αuσ(x)u,

where αu ∈ F, and σ(x)u stands for
∏

i∈[n]

σi(x)ui .

We intend to prove the following generalization, which was obtained by
A. Garsia [27].

Theorem 5.2.1. Any polynomial f(x) ∈ F[x] can be written uniquely as a
finite sum

f(x) =
∑

w∈Nn

w≤v

∑

u∈Nn

αw,ux
w
σ(x)u,

where v = (0, 1, . . . , n− 1), w ≤ v is understood coordinatewise, and αw,u ∈
F.

We need some preparations before the proof. Let z1, . . . , zn be different
elements of a field and set

V = {(zπ(1), . . . , zπ(n)) : π ∈ Sn}

the set of all permutations of the sequence z1, . . . , zn.
We first show that the lexicographic standard monomials of I(V ) are

exactly the divisors of x2x
2
3 . . . xn−1

n . In other words, the minimal lex leading
monomials are of the form xi

i for i ∈ [n].

Proposition 5.2.2. For the set of points V defined above, we have that xw is
a lexicographic standard monomial of I(V ) if and only if w ≤ (0, 1, . . . , n−1).

Proof. One can get the lexicographic standard monomials of V using the Lex
Game. Suppose that w ≤ (0, 1, . . . , n − 1). Then Stan’s strategy will be to
pick in the (n− i + 1)th step (for yi) any element from the set {z1, . . . , zn} \
{yn, . . . , yi+1}. This set has exactly i elements, so wi < i guarantees that
Lea cannot choose all of them, that is there will always be a proper choice
for Stan.

On the other hand, if for example wi ≥ i, then in the (n − i + 1)th step
Lea can choose all the elements of {z1, . . . , zn}\{yn, . . . , yi+1}. If Stan wants
to pick a value for yi which is different from Lea’s guesses, then yi will either
be the same as a previously selected yj (and then y 6∈ V ) or an element
different from all zj (again y 6∈ V ). It means that Stan loses the game either
ways.
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We use the following easy fact without proof (see for example [16]) which
holds for all i ∈ [n]:

i∑

j=0

(−1)jhi−j(xi, . . . , xn)σj(x) = 0. (5.1)

Let i ∈ [n] and set

fi(x) =
i∑

j=0

(−1)jhi−j(xi, . . . , xn)σj(z).

Proposition 5.2.3. The set of polynomials {fi : i ∈ [n]} is the reduced
Gröbner basis of V for all term orders, such that the order of the variables
is x1 Â x2 Â · · · Â xn.

Proof. Clearly, if x1 Â x2 Â · · · Â xn holds for a term order, then lm (fi) =
xi

i, and the leading coefficient of fi is 1. It is also obvious by Proposition
5.2.2 that every monomial of fi(x)−xi

i is a lex standard monomial. Equation
(5.1) implies that fi vanishes on V . As the minimal lex leading monomials
(again by Proposition 5.2.2) are {xi

i : i ∈ [n]}, we have that {fi : i ∈ [n]}
is indeed a reduced lex Gröbner basis. But the leading monomials of the
fi for all term orders ≺ considered in the statement are the same, thus
Smlex (I(V )) ⊇ Sm≺ (I(V )). Due to the equality of the cardinalities of the
two sides, we have that the standard monomials are the same for all term
orders considered. We conclude that {fi : i ∈ [n]} is a reduced Gröbner
basis also with respect to ≺.

Proof of Theorem 5.2.1. We had a good reason for not choosing base field
for V until now. Let F(z) be the function field over F in n variables z1, . . . , zn

and let V ⊆ F(z) be the set of all permutations of these variables, as before.
Let f(x) ∈ F [x] ⊆ F(z)[x] be any polynomial, and reduce f(x) by the

Gröbner basis {fi(x) ∈ F(z)[x] : i ∈ [n]} of V . The result is an F(z)-linear
combination of monomials xw ∈ Sm (I(V )). Furthermore, since actually fi ∈
F [z] [x], and fi is symmetric in the variables z1, . . . , zn, the coefficients of the
xw ∈ Sm (I(V )) in this F(z)-linear combination are symmetric polynomials
from F[z]. (Note that as the leading coefficients of members of a reduced
Gröbner basis are 1, there is no need of any division during the reduction.)
Thus as functions on V , we have an equality

f(x) =
∑

xw∈Sm(I(V ))

xwgw(z),



CHAPTER 5. APPLICATIONS OF THE GAME – A WARM UP 62

where gw(z) ∈ F[z] is a symmetric polynomial. Therefore putting z in the
place of x (since z ∈ V ) we get the equation

f(z) =
∑

zw∈Sm(I(V ))

zwgw(z)

of elements of F(z). An application of the fundamental theorem of symmetric
polynomials, together with Sm (I(V )) = {xw : w ≤ (0, 1, . . . , n− 1)} yields
the existence of the required form for f .

Uniqueness now follows: suppose that

f(x) =
∑

xw∈Sm(I(V ))

∑

u∈Nn

αw,ux
w
σ(x)u.

Then as functions on V we have

f(x) =
∑

xw∈Sm(I(V ))

∑

u∈Nn

αw,ux
w
σ(z)u =

∑

xw∈Sm(I(V ))

xwg̃w(z),

for some polynomials g̃w(z) ∈ F[z]. We have expressed f(x) as an F(z)-
linear combination of standard monomials. However this is unique, hence
g̃w(z) = gw(z), and so (using the uniqueness part of the fundamental theorem
of symmetric polynomials) the claim follows.

5.3 Hilbert function and inclusion matrices

This section can be considered as a preparation for the combinatorial applica-
tions of the theory. We introduce the notation to be used in the remaining of
the thesis. We also prove a well-known connection between Hilbert functions
and inclusion matrices.

Definition 5.3.1. A set family or set system is a subset of 2[n].

For example
(
[n]
m

)
denotes the family of all m-subsets of [n] (subsets which

have cardinality m), and
(

[n]
≤m

)
is the family of those subsets that have at most

m elements.
The characteristic vector vF of a set F ⊆ [n] is an element of {0, 1}n,

such that its ith coordinate is 1 if and only if i ∈ F . The set of characteristic
vectors of a family of sets F is denoted by VF . We shall simplify our notation
by writing

I(F) = {f ∈ F [x] : f(vF ) = 0 for all F ∈ F}
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instead of I(VF) for the vanishing ideal of VF . In what follows, we shall
always work with vanishing ideals of this kind. Note that VF ⊆ {0, 1}n, and
therefore, when playing Lex (VF ;w), we shall assume that Stan always picks
yi from {0, 1} even if both numbers were among Lea’s guesses and so Stan
loses the game by such a choice. But this is reasonable, since if yi 6∈ {0, 1},
then y 6∈ V , that is, Stan would lose the game anyway.

When F is a system of sets, we call HI(F)(m) the Hilbert function of F
and denote it simply by HF(m). In the combinatorial literature HF(m) is
usually given in terms of inclusion matrices.

Definition 5.3.2. For two families F ,G ⊆ 2[n] the inclusion matrix I(F ,G)
is a matrix of size |F| × |G|, whose rows and columns are indexed by the
elements of F and G, respectively. The entry at position (F,G) is 1 if G ⊆ F
and 0 otherwise (F ∈ F , G ∈ G).

Definition 5.3.3. For a subset M ⊆ [n], the monomial xM is defined to be∏
i∈M

xi (and x∅ = 1). We say that a polynomial is multilinear or squarefree if

it is a linear combination of some xM (M ⊆ [n]).

Proposition 5.3.4.

HF(m) = dimF

(
F [x]≤m

/
I(F)≤m

)
= rankF I

(
F ,

(
[n]

≤ m

))
.

Proof. Since for all i ∈ [n] we have x2
i − xi ∈ IF , we see that all standard

monomials of I(F) are squarefree.
Proposition 2.1.20 implies that among all multilinear monomials of de-

gree at most m, the maximum number of modulo I(F) linearly independent
monomials is the same as the number of standard monomials of I(F) of
degree at most m, that is HF(m). Therefore

HF(m) = rankF {xM + I(F) : |M | ≤ m} , (5.2)

where the rank of a set is the maximum number of linearly independent
elements it contains.

As F [x] /I(VF) is isomorphic to the space of functions on VF , it is also
isomorphic to F|F|. The isomorphism maps a function f(x) to a vector f , such
that the coordinate of f corresponding to a set F ∈ F is f(vF ). Rewriting
equation (5.2) in line with this isomorphism we obtain

HF(m) = rankF

{
(xM(vF ))F∈F : M ∈

(
[n]

≤ m

)}
.
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To finish the proof, note that xM(vF ) equals to 1 if and only if M ⊆ F , and
it is zero otherwise. It means that (xM(vF ))F∈F is exactly the column of the

inclusion matrix in question corresponding to M ∈
(

[n]
≤m

)
.

We will benefit from a similar statement in Section 5.4.

Proposition 5.3.5. Let PF ,m be the linear space of functions from VF to F
which can be represented as homogeneous multilinear polynomials of degree
m. (With a slight abuse of notation we could write PF ,m = F [x]=m

/
I(F)=m.)

Then

dimF (PF ,m) = rankF I

(
F ,

(
[n]

m

))
.

Proof. The proof is very much similar to that of Proposition 5.3.4. Here, the
monomials of degree m generate PF ,m, and columns of the inclusion matrix

I
(
F ,
(
[n]
m

))
correspond exactly to these monomial functions.

Incidence matrices and their ranks are important in the study of finite
geometries as well. Standard monomials and Hilbert functions are also useful
in that setting. The reader is referred to Moorhouse [34] for an account on
applications of this type.

5.4 Wilson’s rank formula

Consider the inclusion matrix A = I
((

[n]
d

)
,
(
[n]
m

))
, where m ≤ d ≤ n − m.

A famous theorem of Richard M. Wilson [39, Theorem 2] describes a
diagonal form of A over Z, that is A is shown to be row-column equivalent
over Z to a diagonal matrix with diagonal entries

(
d−i
m−i

)
with multiplicity(

n
i

)
−
(

n
i−1

)
for 0 ≤ i ≤ m. As a corollary, the following rank formula holds:

Theorem 5.4.1. Let p be a prime. Then

rankFp
(A) =

∑

0≤i≤m

p-( d−i
m−i)

(
n

i

)
−
(

n

i − 1

)
.

We shall outline a proof which uses polynomial functions, and notions
related to Gröbner bases. The idea follows that of [26], however the proof
is notably simplified by the Lex Game. Compared to our paper [22], where
we originally published the result, we have implemented only slight modifi-
cations.
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We note first that the rank of A is exactly the dimension of the linear
space Pd,m over Fp of the functions from V([n]

d ) to Fp which are spanned by

the monomials xM with |M | = m (see Proposition 5.3.5).
Let Pm denote the subspace of homogeneous multilinear polynomials in

Fp [x] of degree m. Suppose that m ≤ n
2
, and for a set M ⊆ [n], |M | ≤ m we

define the squarefree polynomial

yM =
∑

M ′⊇M
|M ′|=m

xM ′ ∈ Pm.

To simplify our notation, we write I for the vanishing ideal I
((

[n]
m

))
of
(
[n]
m

)
.

Lemma 5.4.2. The collection of polynomials yM , where xM ∈ Sm (I), is a
linear basis of Pm over Fp.

Proof. Since {xM + I : xM ∈ Sm (I)} is a linear basis of Fp [x] /I, and xM +
I = yM + I (they represent the same function on V([n]

m)), we obtain that

{yM + I : xM ∈ Sm (I)} is a basis of Fp [x] /I. As yM ∈ Pm, it is also clear
that Pm + I = Fp [x]. From the fact that Pm ∩ I = {0}, we have a natural
isomorphism Pm → Fp [x] /I which sends yM to yM + I. We conclude that
{yM : xM ∈ Sm (I)} is indeed a basis of Pm.

We can state Wilson’s rank formula in this setting as follows.

Theorem 5.4.3. Let p be a prime, suppose that m ≤ d ≤ n − m and put

I = I
((

[n]
m

))
. A basis of the space Pd,m of Fp-valued functions on V([n]

d ),

which are Fp-linear combinations of monomials xM , |M | = m is

B =

{
yM : xM ∈ Sm (I) , p -

(
d − |M |
m − |M |

)}
.

In particular,

dimFp
(Pd,m) = |B| =

∑

0≤i≤m

p-( d−i
m−i)

(
n

i

)
−
(

n

i − 1

)
.

Proof. Let vF be the characteristic vector of a d-subset of [n]. It is immediate
that

yM(vF ) =

(
d − |M |
m − |M |

)
· xM(vF ). (5.3)
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We obtain that, as a function on V([n]
d ), yM is a scalar multiple of xM . This,

together with the linear independence of the xM gives that B is an inde-
pendent set. Also, B spans Pd,m, because Pm spans Pd,m by definition, and
the yM span Pm by Lemma 5.4.2. To conclude, it remains to verify that for
0 ≤ i ≤ m there are exactly

(
n
i

)
−
(

n
i−1

)
monomials of degree i in Sm (I).

This will be proven in Lemma 5.4.4.

We say that a vector w ∈ {0, 1}n is a ballot sequence if in every prefix
of w there are at least as many 0, as 1 coordinates. In the proof of the

next lemma, we shall see that xw is a lex standard monomial of I
((

[n]
m

))
iff

deg (xw) ≤ m and w is a ballot sequence.

Lemma 5.4.4. For an arbitrary term order and any integers 0 ≤ i ≤ m ≤ n
2
,

there are exactly
(

n
i

)
−
(

n
i−1

)
monomials of degree i in Sm

(
I
((

[n]
m

)))
.

Proof. We will restrict ourselves to the lex order. Note that this is enough for
completing the proof of Theorem 5.4.3. In fact, this lemma is a consequence
of a more general theorem (Theorem 6.1.22) we shall prove in Chapter 6.

We claim that xw is a lex standard monomial of I = I
((

[n]
m

))
if and

only if deg (xw) ≤ m and w is a ballot sequence. We can use the Lex Game

Lex
(
V([n]

m);w
)

to prove this.

First of all, if w 6∈ {0, 1}n, then say wi ≥ 2. Lea may guess for both 0
and 1 in the ith step of the game, and so one of her guesses shall be correct.

If the number of 1 coordinates in w is more than m, then Lea will choose
0 at each of her guesses. This way, Stan has to put yi = 1 for more than m
times, therefore y 6∈ V([n]

m) at the end, and Lea wins. That is, if deg (xw) > m,

then xw ∈ Lm (I).
Suppose now that deg (xw) ≤ m and w ∈ {0, 1}n is not a ballot sequence.

Let i ∈ [n] be such that (w1, . . . , wi) is the shortest prefix of w that violates
the ballot condition. It is easy to see that i is odd, and there are exactly i+1

2

coordinates equal to 1. Assume that when in the game Stan picks yi+1, then
there are m − k ones among yn, . . . , yi+1. Stan would win only if he could
pick the remaining yi, . . . , y1, such that k of them was 1, i−k of them was 0.
But if k ≤ i−1

2
, then Lea always chooses 0, thus there will be at least i+1

2
> k

ones among yi, . . . , y1. And when k > i−1
2

, then i − k ≤ i−1
2

, so if Lea keeps
on choosing 1, then Stan has to claim at least i+1

2
> i − k zero coordinates,

and hence he loses the game.
Next we show how Stan can win if w is a ballot sequence with at most m

ones. Set J = {j ∈ [n] : wj = 1}. For all j ∈ J let us pick an `(j) ∈ [n], such
that w`(j) = 0, `(j) < j, and ` : J → [n] is injective. (This can be done if w
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is a ballot sequence.) Let us put L = {`(j) : j ∈ J}, and K = [n] \ (J ∪L).
Stan’s strategy to choose yi is the following. If i ∈ J , then Lea will guess
something, so he just claims the opposite (in {0, 1}). If i ∈ L, say i = `(j),
then he picks y`(j), such that {yj, y`(j)} = {0, 1}. (Note that when choosing
the `(j)th coordinate, he already fixed yj by `(j) < j.) This way, Stan will
have exactly |J | ones in (yi : i ∈ J ∪ L). Therefore he picks m − |J | ones
from the yk (k ∈ K), and wins.

Now it follows immediately, that the lex standard monomials of I
((

[n]
m

))

of degree at most i are the same as the lex standard monomials of I
((

[n]
i

))
.

In particular, there are
(

n
i

)
of them, and then there are

(
n
i

)
−
(

n
i−1

)
standard

monomials of degree i. This proves the lemma.

The approach given here allows a considerable generalization of the rank
formula. We mention without proof a result of this type (for details, see
[26]). Suppose that 0 ≤ m1 < m2 · · · < mr ≤ d ≤ n − mr and let p be a
prime. Consider the set family F =

(
[n]
m1

)
∪
(

[n]
m2

)
∪ · · · ∪

(
[n]
mr

)
. Then

rankFp

(
I

((
[n]

d

)
,F
))

=
∑

0≤i≤mr

p-ni

(
n

i

)
−
(

n

i − 1

)
,

where ni = gcd
((

d−i
m1−i

)
,
(

d−i
m2−i

)
, . . . ,

(
d−i

mr−i

))
.



Chapter 6

Applications to extremal
combinatorics

The focus now will be on a certain family of subsets F of [n]. We shall
work really hard in Section 6.1 to get familiar with the vanishing ideal I(F)
of VF : we compute its standard monomials, Hilbert function and one of its
Gröbner bases. Then, with this information given, the two applications in
the following two sections will be relatively easy; they use the formula for
the Hilbert function of I(F).

The first part of Section 6.1 concerning the lex standard monomial cal-
culations has been included in [20], the same paper where the Lex Game
has been published. Further results, particularly the formula for the Hilbert
function, and the two applications to extremal combinatorics have appeared
in [19].

6.1 Calculations with modulo q complete `-

wide families

The final goal of this section is to compute the Hilbert function of the ideal
I(F) over Fp, where F is a modulo q complete `-wide family, and q is a power
of p.

Definition 6.1.1. Let q, d, ` be integers such that 1 ≤ ` < q. Then the
modulo q complete `-wide family is

F = {F ⊆ [n] : ∃ f ∈ Z such that d ≤ f < d + ` and |F | ≡ f (mod q)} .

Subfamilies of this F are called modulo q `-wide families.
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As substituting d′ for d where d ≡ d′ (mod q) does not affect F , from
now on, we may suppose that also

n − q − `

2
< d ≤ n + q − `

2

holds.

In other words, F contains all subsets of [n] which have cardinality modulo
q in the interval [d, d+`−1] (of length `). The restrictions on the parameters
` and q tell us exactly that if |F | ≡ d + ` (mod q), then F 6∈ F (that is, F
is in fact `-wide).

An example, which we already know from the previous chapter is
(
[n]
m

)
, a

modulo q complete 1-wide family, with d = m and any q > n.

The computation of HF(m) is done in three major stages: we determine
the set of lexicographic standard monomials of I(F), then compute a lex
Gröbner basis, and verifying that it is also a deglex Gröbner basis, we count
the deglex standard monomials of any given degree to get the Hilbert func-
tion.

6.1.1 Lexicographic standard monomials

We start the description of lex standard monomials for a more general class
of ideals. Proposition 6.1.3 is valid for all ideals of the form I(F), where F
is any family such that for all f ∈ Z either

(
[n]
f

)
⊆ F or

(
[n]
f

)
∩F = ∅. Let us

introduce a convenient notation for these families of sets.
If D ⊆ Z, then we write

FD,n = {F ⊆ [n] : |F | ∈ D} .

For t ∈ Z and A ⊆ Z we put

A − t = {a − t : a ∈ A} .

For any A ⊆ Z, we set

A(0) = A ∪ (A − 1) and A(1) = A ∩ (A − 1).

If w = (w1, . . . , wn) ∈ {0, 1}n then

D(w) =
(
. . .
((

D(w1)
)(w2)

)...)(wn)

.

We shall see shortly that D(w) is a convenient tool to decide whether xw

is a lex standard monomial of I(FD,n): we prove that xw ∈ Smlex (I(FD,n))
if and only if 0 ∈ D(w). We illustrate this by taking another look at our old
Example 4.1.1 from Chapter 4.
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Example 6.1.2. Set D = {1, 2, 3} and I = I(FD,5). We have already seen
that with w = (11100) the monomial xw is in Lm (I) while if w = (01110)
then xw ∈ Sm (I). Computing D(w) gives D(1) = {1, 2}, D(1,1) = {1},
D(1,1,1) = ∅, thus D(1,1,1,0) = D(1,1,1,0,0) = ∅, indeed 0 6∈ D(w) in the first case.
If w = (01110) then one can check that D(w) = {−1, 0} which agrees with
xw ∈ Sm (I).

Proposition 6.1.3.

xw ∈ Smlex (I(FD,n)) ⇐⇒ w ∈ {0, 1}n and 0 ∈ D(w).

Proof. We shall show that Stan wins Lex
(
VFD,n

;w
)

if and only if w ∈ {0, 1}n

and 0 ∈ D(w), which implies the claim.
We have VFD,n

⊆ {0, 1}n, hence if wi ≥ 2 for some i, then Lea wins. Thus,
for the rest of the proof we assume that w ∈ {0, 1}n.

We prove by induction on n that

A :=
{
t ∈ Z : Stan wins Lex

(
VFD−t,n

;w
)}

= D(w). (6.1)

This will be sufficient, because by definition 0 ∈ A if and only if Stan wins
Lex

(
VFD,n

;w
)
.

To prove (6.1), first we consider the case n = 1. If w = 0 then Stan wins
Lex

(
VFD−t,1

; w
)

if and only if FD−t,1 6= ∅, since Lea is not allowed to guess

anything. This means (D − t) ∩ {0, 1} 6= ∅, so t ∈ D ∪ (D − 1) = D(w). If
w = 1 then Stan wins if and only if |FD−t,1| = 2, since Lea can check only one
of the two possibilities. Thus {0, 1} ⊆ (D− t) hence t ∈ D∩ (D− 1) = D(w).

Suppose that the statement is true for n − 1, that is with

C =
{
t ∈ Z : Stan wins Lex

(
VFD−t,n−1

;w
)}

,

we have C = D(w). We have to prove that C(wn) = A.
When Stan and Lea play a Lex

(
VFD−t,n

;w
)

game, and Stan reveals the

last coordinate yn, then they keep on playing either a Lex
(
VFD−t,n−1

;w
)

game

(if yn = 0) or a Lex
(
VFD−t−1,n−1

;w
)

game (if yn = 1).

If wn = 0 then Stan wins Lex
(
VFD−t,n

;w
)

if and only if he wins either

Lex
(
VFD−t,n−1

;w
)

or Lex
(
VFD−t−1,n−1

;w
)
, since he can choose yn accordingly.

If wn = 1 then Stan wins Lex
(
VFD−t,n

;w
)

if and only if he wins both of

the games Lex
(
VFD−t,n−1

;w
)

and Lex
(
VFD−t−1,n−1

;w
)
, since in this case Lea

can force either of the above alternatives by a suitable guess for yn.
We conclude that C(wn) = A, hence A = D(w) and the proof is complete.
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We now focus on sets D, such that FD,n is a modulo q complete `-wide
family, that is when d, q and ` are integers with 1 ≤ ` < q, and

D = {f ∈ Z : ∃f ′ ∈ Z such that d ≤ f ′ ≤ d + ` − 1 and f ′ ≡ f (mod q)} .

We still assume that n−q−`
2

< d ≤ n+q−`
2

.
The notion of a lattice path is essential for going further. A lattice path

is a polygon in a square grid in the X,Y -plane with the following properties.
It starts at the origin (0, 0) and proceeds in finitely many unit length steps.
We allow two kinds of steps: it can either be horizontal (X direction), going
from a point (i, j) to (i + 1, j), or vertical (Y direction), moving from (i, j)
to (i, j + 1). Thus for example a step from (i + 1, j) to (i, j) is forbidden. A
lattice path always ends at a point (nX , nY ) with nX , nY ∈ N.

There is an easy one-to-one correspondence between lattice paths of
length n and elements of {0, 1}n. If w ∈ {0, 1}n, then the corresponding
lattice path ŵ is such that the ith step of ŵ is horizontal if and only if
wi = 1 (and vertical otherwise).

Denote the line Y = X − ` + q by L+ and the line Y = X − ` by L−.
Now the description of the lexicographic standard monomials of a modulo q
complete `-wide family is the following.

Theorem 6.1.4. Let F be a modulo q complete `-wide family. We have
xw ∈ Smlex (I(F)) if and only if

1. w ∈ {0, 1}n,

2. ŵ does not touch the line L− before touching the line L+, and

3. if ŵ does not reach any of these two lines, then the X coordinate of its
endpoint nX (which is in fact the degree of xw) satisfies nX ≤ min{d+
` − 1, n − d}.

It is instructive to visualize the above theorem.
Every ŵ corresponding to a w ∈ {0, 1}n intersects one of the thick lines

of Figure 6.1. Theorem 6.1.4 states that if ŵ reaches the thicker line first
then xw is a leading monomial, otherwise xw is a standard monomial.

Proof of Theorem 6.1.4. By Proposition 6.1.3, it is enough to show that the
lattice path criteria of the theorem hold if and only if 0 ∈ D(w). We may
suppose that w ∈ {0, 1}n.

The sketch of the proof is the following. A bit long, but completely ele-
mentary argument will show that D(w) = ∅ iff ŵ touches L− before reaching
L+, and D(w) = Z iff ŵ touches L+ before reaching L−. Once we will be
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L− : Y = X − `

X + Y = n

L+ : Y = X − ` + q

ŵ

Y

X

min{d + ` − 1, n − d}
Figure 6.1: n = 15, q = 7, ` = 3 and d = 5 or d = 8. We see that
x2x6x10x11x12x13x14x15 is a lex standard monomial.

ready with these, we shall consider the case, when ŵ does not touch any of
the two above lines.

Let a, b be integers. We define the interval [a, b] as

[a, b] := {c ∈ Z : a ≤ c ≤ b} ,

in particular if a > b then [a, b] = ∅. If [a, b] 6= ∅ then [a, b](0) = [a− 1, b] and
[a, b](1) = [a, b− 1]. More generally suppose that in w ∈ {0, 1}n there are nX

one and n − nX = nY zero coordinates, and for every proper prefix w′ of w
we have [a, b](w

′) 6= ∅. Then

[a, b](w) = [a − nY , b − nX ]. (6.2)

Here [a − nY , b − nX ] is empty if and only if a − nY > b − nX , that is, the
length b − a + 1 of the interval [a, b] is at most nX − nY . From [a, b](w) 6= ∅
and [a, b](w) = ∅ it follows that wn = 1 and a−nY ≤ b− (nX − 1). Therefore
if w is as above, then [a−nY , b−nX ] = ∅ if and only if b− a+1 = nX −nY .
One may generalize easily these observations as follows: if w∗ is the shortest
prefix of w ∈ {0, 1}n for which [a, b](w

∗) = ∅ then w∗ has exactly b − a + 1
more one coordinates than zeros.

Suppose now that A ⊆ Z is a union of intervals A =
⋃
i∈Γ

[ai, bi], which

are separated in the sense that for i, j ∈ Γ the set [ai, bi] ∪ [aj, bj] is not an
interval unless i = j. Then clearly we have

A(w) =
⋃

i∈Γ

[ai, bi]
(w) for w ∈ {0, 1}. (6.3)
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If A ⊆ Z, q ∈ Z and w ∈ {0, 1}n then

(A − q)(w) = A(w) − q. (6.4)

In our case we have D =
⋃
i∈Z

(A − iq), with A = [d, d + ` − 1]. By the

assumption ` < q one can see that the intervals A− iq = [d− iq, d+`−1− iq]
are separated. From (6.3) and (6.4) easy induction on n gives that

D(w) =
⋃

i∈Z

(
A(w) − iq

)
, (6.5)

provided that
∣∣A(w′)

∣∣ < q for every prefix w′ of w. If there exists a prefix

w′ for which
∣∣A(w′)

∣∣ = q, then the intervals of D merge in D(w′), that is

D(w′) = Z. Since Z(0) = Z(1) = Z, in this case D(w) = Z as well.
Thus (6.5) allows us to reduce the calculation of D(w) to that of the

interval A(w). In particular D(w) = ∅ if and only if A(w) = ∅ and there is no
prefix w′ of w such that

∣∣A(w′)
∣∣ = q. Let w∗ be the shortest prefix of the

above w for which A(w∗) = ∅. We have seen that w∗ has ` more 1 coordinates
than zeros, that is, the path ŵ∗ reaches the line L− (Y = X − `) at its
endpoint. The condition

∣∣A(w′)
∣∣ < q for every prefix w′ of w∗ together with

the condition on w∗ is equivalent to that w′ has less than q−` more zeros than
ones, or equivalently, the path ŵ′ stays under the line L+ (Y = X + q − `).

To sum up, D(w) is empty if ŵ touches the line L− before reaching L+.
In particular we have 0 6∈ D(w) in this case. If ŵ reaches L+ first, then
D(w) = Z, hence 0 ∈ D(w).

It remains to consider the case when ŵ stays between the two lines. Let
the endpoint of ŵ be (nX , nY ). Here D(w) can be calculated according to
(6.5). By (6.2) we have

A(w) = [d, d + ` − 1](w) = [d − nY , d + ` − 1 − nX ],

hence we obtain that

D(w) =
⋃

i∈Z

[d + iq − nY , d + iq + ` − 1 − nX ]. (6.6)

The intersection of L+ and X + Y = n is the point
(

n−q+`
2

, n+q−`
2

)
. Since

(nX , nY ) is on X + Y = n, and below L+, it follows that

nY ≤ n + q − `

2
and (6.7)

nX ≥ n − q + `

2
. (6.8)
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By (6.6) we have 0 ∈ D(w) if and only if there exists an i ∈ Z such that
d + iq − nY ≤ 0 ≤ d + ` − 1 + iq − nX . From this, we infer

d + iq ≤ nY ≤ n + q − `

2

by (6.7) and

d + iq ≥ nX − ` + 1 ≥ n − q + `

2
− ` + 1 >

n − q − `

2

follows from (6.8). We obtained that 0 ∈ D(w) implies n−q−`
2

< d+iq ≤ n+q−`
2

,
which holds only for i = 0. Therefore 0 ∈ D(w) if and only if d − nY ≤ 0 ≤
d + ` − 1 − nX which is precisely the condition nX ≤ min{n − d, d + ` − 1}
by nY = n − nX .

From now on, it will be much more convenient to write xM for a multilin-
ear polynomial instead of xw. (Actually, the reason why we have not switched
to this before is that explaining D(M) would have been quite cumbersome.)
We also replace our notation for the lattice path ŵ to M̂ , if xw = xM . That
is, the ith step of the lattice path M̂ is vertical exactly when i ∈ M .

The next goal is to determine the minimal lex leading monomials of I(F).

Corollary 6.1.5. A multilinear monomial xM is a minimal element with
respect to divisibility of Lmlex (I(F)) if and only if

1. M̂ reaches any of the two lines L− and X = min{d + `− 1, n− d}+ 1,
say in the ith step for the first time,

2. before the ith step M̂ does not touch the line L+, and

3. after the ith step it proceeds only upwards.

The corollary claims that xM is a minimal element of Lmlex (I(F)) if M̂
touches the thicker line of Figure 6.2 before reaching the thiner one and
proceeds upwards from that point.

Proof of Corollary 6.1.5. By Theorem 6.1.4 it is clear that every multilinear
leading monomial xM satisfies conditions (1) and (2) of the corollary. Suppose
that M̂ touches L− or X = min{d+`−1, n−d}+1 in the ith step for the first
time. The third condition follows from minimality: if N := {j ∈ M : j ≤ i}
then the same theorem implies that xN is a leading monomial. Since xN

divides xM , we have that xM = xN which in terms of lattice paths means
that after the ith step M̂ proceeds only upwards.
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L− : Y = X − `

X + Y = n
L+ : Y = X − ` + q

X = min{n − d, d + ` − 1} + 1

N̂
M̂

Y

X

min{d + ` − 1, n − d}

Figure 6.2: We have n = 15, q = 7, ` = 3 and d = 5 or d = 8. From Corollary
6.1.5 we learn that xM = x1x2x4x6x8x9 is a minimal leading monomial, while
xN = x3x4x7x10x11x12x13x14x15 is a leading monomial which is not minimal.
Indeed, leaving out one of the variables x11, x12, x13, x14, x15 from xN we get
a (minimal) leading monomial.

Conversely, assume that the three conditions of the corollary hold for xM .
We will show that if M̂ touches X = min{d+ `−1, n−d}+1, then it cannot
reach later L+, or in other words: the last point of the thicker line of Figure
6.2 is below L+. If this holds then the conditions (1) and (2) of the corollary
together with Theorem 6.1.4 imply that xM is a leading monomial. Using
that n−`−q+1

2
≤ d ≤ n−`+q

2
we get

min {d + ` − 1, n − d} + 1 ≥ min

{
n + ` − q − 1

2
,
n + ` − q

2

}
+ 1 =

=
n + ` − q + 1

2
(6.9)

The X coordinate of the intersection of L+ and X +Y = n is n+`−q
2

, therefore
equation (6.9) gives the desired result.

It remains to verify the minimality of xM . If xN is a proper divisor of xM ,
then the degree of xN is at most min {d + ` − 1, n − d}, so, to be a leading
monomial, N̂ has to reach the line L− according to Theorem 6.1.4. But it
cannot, as N̂ is to the left of M̂ while L− is to the right.

We are left with collecting the non-squarefree minimal elements of the
set Lmlex (I(F)). Obviously x2

i − xi ∈ I(F) for all i ∈ [n], thus we only
have to check if the x2

i are minimal generators of the initial ideal. The
next corollary claims that in the non-degenerate cases x2

2, . . . , x
2
n are minimal

leading monomials; and also x2
1, as long as ` ≥ 2.
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Corollary 6.1.6. The non-multilinear minimal generators of the initial ideal
〈Lmlex (I(F))〉 are characterized as follows.

• If F = {∅} or F = {[n]}, then all the minimal elements of Lmlex (I(F))
are squarefree.

• If F = {∅, [n]}, then the only non-squarefree minimal leading monomial
is x2

n.

• In every remaining case, x2
2, . . . , x

2
n are among the minimal generators

of the initial ideal, and if ` ≥ 2 then so is x2
1.

Proof. We have to look for those i ∈ [n] such that xi is a standard monomial.
The first case is trivial as |Smlex (I(F))| = |F| = 1, so Smlex (I(F)) = {1}.

In the second case note that setting ` = 1, q = n and d = 0 gives F as a
modulo q complete `-wide family. Thus Theorem 6.1.4 yields Smlex (I(F)) =
{1, xn}, hence we are done.

Again from the theorem, we have that if min{d + `− 1, n− d} > 0, then
x2, . . . , xn are standard monomials, and if ` > 1 then x1 ∈ Smlex (I(F)) too.
Therefore, to prove the last statement, it suffices to show that min{d + ` −
1, n − d} ≤ 0 implies F = {∅}, F = {[n]} or F = {∅, [n]}.

In the proof of Corollary 6.1.5 we have seen that the intersection of the
lines X + Y = n and X = min{d + ` − 1, n − d} + 1 is below L+, thus if
min{d + `− 1, n− d} ≤ 0 then by Theorem 6.1.4 the only possible standard
monomials of I(F) are 1 and xn, in particular |F| ≤ 2. But when n > 2,
then |F| > 2, as F contains all

(
n
f

)
subsets of [n] of some given cardinalities

f , and for 0 < f < n we have
(

n
f

)
> 2. It may happen that n = 2 and

F = {{1}, {2}}, but then min{d + ` − 1, n − d} = 1. We conclude that one
of the first two cases occurs here.

Let M = {m1, . . . ,mk} ⊆ [n] be a set with m1 < · · · < mk. Using
Corollary 6.1.5, we will formulate now in terms of the mi that xM is a minimal
element of Lmlex (I(F)).

To decide whether M̂ intersects L− until a certain point along the lattice
path, it suffices to check those points (nX , nY ) of M̂ , for which the previous
point of M̂ is (nX − 1, nY ). The ith such point is (i,mi − i), as the ith
horizontal step occurs in the mith step of M̂ . Clearly (i,mi − i) is above
Y = X − ` if and only if mi − i > i − `. Therefore a lattice path M̂ stays
strictly above L− before its mkth step, where it touches L− if and only if
2i − ` < mi for all 1 ≤ i ≤ k − 1 and mk = 2k − `.

On the other hand, M̂ stays below L+ if and only if the points (i−1,mi−i)
are below L+. This is equivalent to mi − i < (i − 1) − ` + q, that is to
mi < 2i − ` + q − 1.
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Definition 6.1.7. Let M = {m1, . . . ,mk} ⊆ [n] be such that m1 < · · · < mk.
The set M is in L1 if and only if 1 ≤ k ≤ min{d + ` − 1, n − d} + 1,

2i − ` < mi < 2i − ` + q − 1 for all 1 ≤ i ≤ k − 1 and mk = 2k − `.
Hence L1 contains those sets M corresponding to minimal elements of

Lmlex (I(F)) for which M̂ touches the line L−.
The set M is in L2 if and only if k = min{d + ` − 1, n − d} + 1, 2i − ` <

mi < 2i − ` + q − 1 for all 1 ≤ i ≤ k.
Thus, L2 contains those sets M corresponding to minimal leading mono-

mials for which M̂ touches the line X = min{d + `− 1, n− d}+ 1 but not at
its intersection with L−.

Finally, we introduce a similar notation for the non-squarefree minimal
generators of 〈Lmlex (I(F))〉.

Set

L3 =





∅, if F = {∅} or F = {[n]};
{n}, if F = {∅, [n]};
{2, . . . , n}, otherwise, when ` = 1;
{1, 2, . . . , n}, otherwise (when ` > 1).

To summarize the results of this subsection we have

Theorem 6.1.8. The minimal generating set of the lex initial ideal of I(F)
is

{xM : M ∈ L1 ∪ L2} ∪ {x2
j : j ∈ L3}.

6.1.2 A Gröbner basis

From now on we suppose that p is a prime, q is a power of p and that F is
a field of characteristic p. The ideal I(F) of F will be understood in F [x]
accordingly. We will construct polynomials f(x) ∈ F [x] for all M ∈ L1 ∪ L2

such that f ∈ I(F) and lm (f) = xM . Theorem 6.1.8 and the fact that
x2

i−xi ∈ I(F) will then imply that we have a lex Gröbner basis of I(F)EF [x].
We show that it is a Gröbner basis for other orderings as well.

Let M ∈ L1, M = {m1, . . . ,mk} and m1 < · · · < mk. Put mk+i = mk + i
for 0 ≤ i ≤ n − mk = n − 2k + ` and set

M ′ = {m1, . . . ,mn−k+`} = {m1, . . . ,mk,mk + 1,mk + 2, . . . , n}.
The complement U = [n] \ M ′ then has k − ` elements, say u0 > u1 > · · · >
uk−`−1.

Let t = (k − q + 1)+ (where a+ = a if a ≥ 0 and 0 otherwise), and define

sM(x) =
n−k+`∑

i=t+1

xmi
.
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Let us first define gM as a polynomial with rational coefficients. We will
shortly see that in fact gM ∈ Z[x], thus we may consider gM as a polynomial
with coefficients in F as well.

gM(x) =

(
t∏

i=1

(
xmi

− xut−i

)(sM(x) − d − ` + k

k − t

))
reduced by x2

j − xj.

Reduction here simply means that we replace xw
j by xj for all j ∈ [n] and

w ≥ 2. As a result gM is multilinear. If t = 0 then the empty product is
defined to be 1. The definition of gM makes sense, as if 1 ≤ i ≤ t, then
0 ≤ t − i ≤ t − 1 = k − q < k − ` gives that ut−i ∈ U is defined.

The next lemma assures that gM ∈ Z[x].

Lemma 6.1.9. Let g(x) ∈ Q[x] be a polynomial and suppose that g(v) ∈ Z
for all v ∈ {0, 1}n. Reduce g(x) by x2

j − xj for all j ∈ [n] to get ĝ(x). Then
ĝ(x) has integer coefficients.

Proof. Clearly ĝ(x) is squarefree, thus it is the linear combination of mono-
mials of the form xF (F ⊆ [n]). Suppose by contradiction that for some
F ⊆ [n], the coefficient of xF is not an integer. Assume furthermore that F
is a minimal such set. The value of g on any v ∈ {0, 1}n is not changed by
the reduction, since x2

j − xj vanishes on all such v, that is ĝ(v) ∈ Z. On the
other hand, ĝ(vF ) is exactly the sum of the coefficients of the monomials xF ′

in ĝ(x) for all F ′ ⊆ F . By the minimality of F , these are all integers, except
the coefficient of xF . This is a contradiction, therefore ĝ ∈ Z[x] holds.

Now suppose that min{d+`−1, n−d} = d+`−1, that is d ≤ n−`+1
2

. Let
M = {m1, . . . ,md+`} be an element of L2 with m1 < · · · < md+`. Set U =
[n] \ M = {u0, u1, . . . , un−d−`−1} and assume that u0 > u1 > · · · > un−d−`−1.
Finally set t = (n − d − q + 1)+. The polynomial in I(F) with leading term
xM will be

hM(x) =
t∏

i=1

(
xmi

− xut−i

) d+∏̀

i=t+1

xmi
.

We see that if 1 ≤ i ≤ t then 0 ≤ t− i ≤ t− 1 = n− d− q < n− d− `. This
means that ut−i ∈ U as we anticipated.

In the other case, where min{d + ` − 1, n − d} = n − d we have M =
{m1, . . . ,mn−d+1} ∈ L2, m1 < · · · < mn−d+1, and the complement U =
[n] \ M = {u0, u1, . . . , ud−2} with u0 > u1 > · · · > ud−2. The right choice
here is t = (d + ` − q)+ and

hM(x) =
t∏

i=1

(
xmi

− xut−i

) n−d+1∏

i=t+1

(xmi
− 1).
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Again, ` < q gives that t − i is in the appropriate range.

We shall prove that our polynomials form a Gröbner basis of I(F) through
some lemmas.

Lemma 6.1.10. If f ≡ f ′ (mod q) and 0 ≤ m < q is an integer then(
f
m

)
≡
(

f ′

m

)
(mod p).

Proof. It is enough to show that
(

q+f
m

)
≡
(

f
m

)
(mod p). This holds since

(
q + f

m

)
=

m∑

j=0

(
q

j

)
·
(

f

m − j

)
≡
(

f

m

)
(mod p),

where we used the fact that
(

q
j

)
≡ 0 (mod p) if 0 < j < q.

Lemma 6.1.11. If M ∈ L1, then gM ∈ I(F).

Proof. We show that if vF is the characteristic vector of an F ∈ F then
gM(vF ) (as an integer) is divisible with p. We shall use again that the value
of gM on any v ∈ {0, 1}n is not changed by the reduction modulo x2

j − xj.
Because of the definition of t, we need to consider the cases t = 0 and

t ≥ 1 separately. Suppose first that t = 0, that is k ≤ q− 1. Then sM(vF ) =
|F ∩ M ′|, and hence

gM(vF ) =

(|F ∩ M ′| − d − ` + k

k

)
.

Let z ∈ Z such that qz+d ≤ |F | < qz+d+`. Now |F ∩ M ′| ≤ |F | < qz+d+`
and |F ∩ M ′| = |F \ U | ≥ |F | − |U | ≥ qz + d + ` − k gives

0 ≤ |F ∩ M ′| − d − ` + k − qz < k < q.

By Lemma 6.1.10 we have
(
|F∩M ′|−d−`+k

k

)
≡
(
|F∩M ′|−d−`+k−qz

k

)
= 0 (mod p)

showing that gM(vF ) vanishes modulo p.
Suppose that t ≥ 1. If sM(vF ) = |F ∩ {mt+1, . . . ,mn−k+`}| 6≡ d+`−k−1

(mod q), then sM(vF )−d− `+k is congruent to an integer f between 0 and
q − 2, so by Lemma 6.1.10

(
sM(vF ) − d − ` + k

k − t

)
=

(
sM(vF ) − d − ` + k

q − 1

)
≡
(

f

q − 1

)
= 0 (mod p).

We may therefore assume that |F ∩ {mt+1, . . . ,mn−k+`}| ≡ d + ` − k − 1
(mod q).
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We claim then that
t∏

i=1

(
xmi

− xut−i

)
vanishes on vF . If it does not, then

|F ∩ {mi, ut−i}| = 1 for all 1 ≤ i ≤ t, thus |F ∩ {m1, . . . ,mt, u0, . . . , ut−1}| =
t. To sum up

|F | = |F ∩ {m1, . . . ,mt, u0, . . . , ut−1}| + |F ∩ {mt+1, . . . ,mn−k+`}|+
|F ∩ {ut, . . . , uk−`−1}| ≡ t + d + ` − k − 1 + |F ∩ {ut, . . . , uk−`−1}| ≡

d + ` + |F ∩ {ut, . . . , uk−`−1}| (mod q),

that is,
|F | ≡ d + ` + |F ∩ {ut, . . . , uk−`−1}| (mod q).

This is a contradiction since 0 ≤ |F ∩ {ut, . . . , uk−`−1}| ≤ k−`− t = q−1−`
shows that |F | is congruent to an integer in the interval [d+ `, d+ q− 1].

Lemma 6.1.12. If M ∈ L2, then hM ∈ I(F).

Proof. We will verify the stronger statement that (as an integer) hM(vF ) = 0
for all F ∈ F . The proof is quite similar to that of the previous lemma.

Let us assume first that min{d + ` − 1, n − d} = d + ` − 1. Suppose
by contradiction that M = {m1, . . . ,md+`} ∈ L2 and F ∈ F such that

hM(vF ) 6= 0. By the nonvanishing of the product
t∏

i=1

(
xmi

− xut−i

)
we have

|F ∩ {m1, . . . ,mt, u0, . . . , ut−1}| = t and from the other factor of hM we infer
that {mt+1, . . . ,md+`} ⊆ F . Thus

|F | = |F ∩ {m1, . . . ,mt, u0, . . . , ut−1}| + |F ∩ {mt+1, . . . ,md+`}|+
|F ∩ {ut, . . . , un−d−`−1}| = t + (d + ` − t) + |F ∩ {ut, . . . , un−d−`−1}| ,

(6.10)

which means

d+ ` ≤ |F | ≤ d+ `+(n− d− `− t) = n− t ≤ n− (n− d− q +1) = d+ q− 1,

which is in contradiction to the definition of F .
If min{d+ `−1, n−d} = n−d is the case with M = {m1, . . . ,mn−d+1} ∈

L2, and F ∈ F was the counterexample for the statement, then again

|F ∩ {m1, . . . ,mt, u0, . . . , ut−1}| = t. From the product
n−d+1∏
i=t+1

(xmi
− 1) we

get |F ∩ {mt+1, . . . ,mn−d+1}| = 0. Similarly to the disjoint decomposition
(6.10) we obtain

|F | = t + |F ∩ {ut, . . . , ud−2}|
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and hence
d + ` − q ≤ t ≤ |F | ≤ t + (d − 1 − t) = d − 1,

which contradicts the fact that F ∈ F .

Lemma 6.1.13. If M ∈ L1, and ≺ is a term order such that xn ≺ · · · ≺ x1,
then lm (gM) = xM .

Proof. Observe that in the definition of L1 we saw that mk = 2k − `, from
which we obtain k = mk − k + ` ≤ n− k + `. It follows that sM(x) contains
the variables xmt+1 , . . . , xmk

, therefore the monomial xmt+1 . . . xmk
appears in

(
sM(x) − d − ` + k

k − t

)
=

1

(k − t)!

−d−`+k∏

i=−d−`+t+1

(sM(x) + i)

and its coefficient is 1. Obviously, this is the greatest multilinear monomial
of the above product.

We claim that xmt+1 . . . xmk
is also the leading term of

(
sM(x) − d − ` + k

k − t

)
reduced by x2

j − xj.

Indeed, any other monomial of the reduced polynomial is of the form xN

for some N ⊆ {mt+1, . . . ,mn−k+`}, |N | ≤ k − t. Then clearly for the ith
greatest element ni of N it holds that mt+i ≤ ni, thus xmt+i

º xni
which

implies xmt+1 . . . xmk
º xN . On the other hand, the coefficient of xmt+1 . . . xmk

remains 1, as the reduction of a monomial by some polynomial x2
j−xj reduces

its degree.

We turn now to the leading term of
t∏

i=1

(
xmi

− xut−i

)
. The set of variables

of this part and of the one we have already considered are disjoint, hence we
will need no more reduction by x2

j−xj. Therefore we can use the fact that the
greatest term of a product is the product of the leading monomials, and so

it is enough to show, that the leading term of
t∏

i=1

(
xmi

− xut−i

)
is xm1 . . . xmt

.

Applying again the rule for the leading monomials of products it suffices to
verify that mi < ut−i.

Suppose for contradiction that mi ≥ ut−i (in fact this means that mi >
ut−i since M and U are disjoint), and that i ≥ 1 is minimal satisfying this
property. Note that the existence of such a 1 ≤ i ≤ t implies that 1 ≤ t, that
is t = k − q + 1. Consider the set

N = {m1,m2 . . . ,mi−1, ut−i, ut−i+1, . . . , uk−`−1} .
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By the minimality of i we have mi−1 < ut−(i−1) < ut−i < mi, thus intersecting
the equality [n] = U ∪ M with [ut−i] we get [ut−i] = N . (This is also true
if i = 1, one may check it directly.) We conclude that mi > ut−i = |N | =
i− 1 + (k − `− t + i) = 2i− ` + q − 2 a contradiction to mi < 2i− ` + q − 1
in the definition of L1.

Lemma 6.1.14. If M ∈ L2, and ≺ is a term order such that xn ≺ · · · ≺ x1,
then lm (hM) = xM .

Proof. The argument is very much similar to the previous one. In the first
case, where min{d + ` − 1, n − d} = d + ` − 1, it is clearly enough to show
that mi < ut−i. If there was a counterexample, then let i be the minimal
one, such that mi > ut−i. Then

{m1,m2 . . . ,mi−1, ut−i, ut−i+1 . . . , un−d−`−1} = {1, 2, . . . , ut−i},

thus mi > ut−i = i − 1 + (n − d − ` − t + i) = 2i − ` + q − 2. Every set in
L2 has the property that mi < 2i − ` + q − 1, hence the above inequality is
impossible.

If min{d+ `− 1, n− d} = n− d, then the minimal counterexample would
yield

{m1,m2, . . . ,mi−1, ut−i, ut−i+1 . . . , ud−2} = {1, 2, . . . , ut−i},

and so mi > ut−i = i−1+(d−1−t+i) = 2i−`+q−2 again a contradiction. In

this case we also have to note that the leading monomial of
n−d+1∏
i=t+1

(xmi
− 1) is

the product of the leading terms of the xmi
− 1, that is xmt+1 . . . xmn−d+1

.

We have almost proven the main theorem of the present subsection.

Theorem 6.1.15. Let L1, L2 and L3 be as in Definition 6.1.7, gM , hM

the above defined polynomials. Suppose that ≺ is a term order such that
xn ≺ · · · ≺ x1, F is a field of characteristic p and q is a power of p. Then

G = {gM : M ∈ L1} ∪ {hM : M ∈ L2} ∪ {x2
j − xj : j ∈ L3}

is a Gröbner basis with respect to ≺ of the ideal I(F) E F [x]. In particular
Sm≺ (I(F)) = Smlex (I(F)).

Proof. We first suppose that we work with the lex order.
By Theorem 6.1.8, Lemma 6.1.13 and Lemma 6.1.14 we have that

{lm (gM) : M ∈ L1} ∪ {lm (hM) : M ∈ L2} ∪
{
lm
(
x2

j − xj

)
: j ∈ L3

}
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is the set of the minimal elements of Lmlex (I(F)). Lemmas 6.1.11 and 6.1.12
imply that G ⊆ I(F). These together yield that G is a lex Gröbner basis.

Assume now that ≺ is an arbitrary term order, which, when restricted to
the variables, coincides with lex. In Lemmas 6.1.13 and 6.1.14 we proved that
the leading monomials of gM and hM with respect to ≺ are the same as for
the lexicographic ordering, hence we have that Sm≺ (I(F)) ⊆ Smlex (I(F)).
But |Sm≺ (I(F))| = |F| = |Smlex (I(F))|, thus Sm≺ (I(F)) = Smlex (I(F)) =
Smlex (G) = Sm≺ (G).

Remark 6.1.16. An explicit form of gM can be given by a formula involving
elementary symmetric polynomials σN,i(x) =

∑
N ′⊆N
|N ′|=i

xN ′ as follows.

((
sM(x) + c

m

)
reduced by x2

j − xj

)
=

m∑

i=0

(−1)i

(
i − c − 1

i

)
σM ′,m−i(x)

is valid for every c ∈ Z and m ∈ N.

Proof. By a well-known identity of binomial coefficients we have

(
sM(x) + c

m

)
=

m∑

i=0

(−1)i

(
i − c − 1

i

)(
sM(x)

m − i

)
.

The multilinear monomials form an F-linear basis of the space of functions
from {0, 1}n to F. In our case

(
sM (v)
m−i

)
= σM ′,m−i(v) for all v ∈ {0, 1}n, and

both polynomials
((

sM (x)
m−i

)
reduced by x2

j − xj

)
and σM ′,m−i(x) contain only

squarefree monomials. They must be equal.

One might ask how far G is from the unique reduced Gröbner basis of
I(F). Concerning this, we claim the following.

Remark 6.1.17. The leading coefficients of gM , hM and x2
j − xj are 1.

The leading monomials of G minimally generate the initial ideal of I(F).
If xN 6∈ Sm≺ (I(F)) is a monomial of gM − lm (gM) or of hM − lm (hM)
with nonzero coefficient, then xN is a minimal leading monomial of the same
degree as xM , that is N ∈ L1 ∪ L2 and |N | = |M |.

Proof. The first statement is immediate from the definitions. The second
was verified in the proof of Theorem 6.1.15

For the last one, we intend to show that the lattice path M̂ separates
the lines L− and X = min{d + ` − 1, n − d} from N̂ in a ’week’ sense, that
is N̂ cannot cross M̂ . It would yield that N̂ can reach the lines L− and



CHAPTER 6. APPLICATIONS TO EXTREMAL COMBINATORICS 84

X = min{d + `− 1, n− d} only at those points where M̂ does, which proves
our claim.

To this end, we show that N̂ goes above and left of M̂ , or—to make it
more precise—we show that the X coordinate of the intersection of N̂ and
X + Y = j is less than or equal to the X coordinate of the intersection of M̂
and X + Y = j for all j ∈ [n]. In other words we need |N ∩ [j]| ≤ |M ∩ [j]|.

To prove this, let us fix a j ∈ [n] and let i be maximal such that mi ≤ j.
If m|M | ≤ j (that is i ≥ |M |), then

|N ∩ [j]| ≤ |N | ≤ |M | = |M ∩ [j]| .

Here we used that the leading monomial xM has the highest degree in our
polynomials.

Hence we may suppose that j < m|M |, that is i < |M |. Therefore
|M ∩ [j]| = |{m1, . . . ,mi}| = i. By the definition of gM and hM we have

N ⊆ {m1, . . . ,mt, u0, . . . , ut−1} ∪ {mt+1,mt+2, . . . }

and |N ∩ {mi′ , ut−i′}| = 1 for i′ = 1, . . . , t. If i ≥ t, then these imply

|N ∩ [j]| ≤ |N ∩ {m1, . . . ,mt, u0, . . . , ut−1}| + |N ∩ {mt+1, . . . ,mi}| ≤ i,

and we are done. Otherwise, if i < t, then applying mi+1 < ut−(i+1), that we
have learned from the proof of Lemma 6.1.13 and Lemma 6.1.14, we have

N ∩ [j] ⊆ {m1, . . . ,mi, ut−i, . . . , ut−1},

and so |N ∩ [j]| ≤ i by |N ∩ {mi′ , ut−i′}| = 1.

The following example shows that in general G is not the reduced Gröbner
basis.

Example 6.1.18. Put p = q = 5, ` = 1, d = 5, n = 10 and M = {2, 4, 6, 8, 9}.
Then M ∈ L1, sM(x) = x4 + x6 + x8 + x9 + x10, and

gM(x) =

(
(x2 − x7)

(
sM(x) − 1

4

))
reduced by x2

j − xj.

As the coefficient of x4x6x8x9 in
(

sM (x)−1
4

)
is 1, we have that x4x6x7x8x9

appears in gM with coefficient -1. But x4x6x7x8x9 is a leading monomial of
I(F). Let N be the corresponding set {4, 6, 7, 8, 9} ∈ L1. One can easily
check (the proof of our previous remark helps), that gN − lm (gN) is a linear
combination of standard monomials. Then it is not hard to see that gM + gN

is in the reduced Gröbner basis as well.
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6.1.3 The Hilbert function

To compute the Hilbert function of F , applying Corollary 2.1.21, we will
count the number of standard monomials of a given degree with respect to
a degree compatible ordering. Theorem 6.1.15 tells us that we can use the
description of the standard monomials by lattice paths given in Theorem
6.1.4. Thus we proceed by counting cardinalities of certain sets of lattice
paths.

Number of lattice paths between two lines

Let s, t > 0 be integers. We temporarily replace our previous notation L+

and L− to make the statements clearer. We will have two boundary lines
L+ : Y = X + s and L− : Y = X − t. Let us fix a point P = (nX , nY ) as the
endpoint of our lattice paths. We assume that nX , nY ≥ 0 and n = nX +nY .

Denote by A1 the set of lattice paths that end in P and reach the line
L+. Let A2 be the set of paths that end in P , reach L+ and later sometimes
touch L−. In general let us denote by Ai the set of paths reaching L+, L−,
L+, . . . (i times) in this specified order and ending in P . The definition of
Ai does not exclude those paths which have even more intersections with the
given lines. In particular A0 stands for all the lattice paths from the origin
to the point P . Note that A0 ⊇ A1 ⊇ A2 ⊇ . . . .

Similarly, let Bi be the set of paths reaching L−, L+, L−, . . . (i times) in
this specified order, B0 = A0.

We can obtain the cardinality of Ai and Bi by applying the reflection
principle i times as follows.

Lemma 6.1.19. If nY ≥ nX − t (that is if the origin and P are on the same
side of L−), then

|A2i| =

(
n

nX − i(t + s)

)
, and |B2i+1| =

(
n

nX − i(t + s) − t

)
.

If nY ≤ nX + s (that is if the origin and P are on the same side of L+), then

|A2i+1| =

(
n

nX + i(t + s) + s

)
, and |B2i| =

(
n

nX + i(t + s)

)
.

Proof. For the proof we indicate the dependence of Ai from (nX , nY ) by
writing Ai(nX , nY ).

We prove the claim by induction on the subscript of A. Clearly we have
|A0(nX , nY )| =

(
n

nX

)
. Suppose that i ≥ 0 and the statement is true for

2i. Let M̂ ∈ A2i+1(nX , nY ) be a lattice path and suppose that its last
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intersection with L+ is (v1, v2). Reflecting the section of M̂ from (v1, v2) to
(nX , nY ) with respect to the line L+, we get an element of A2i(nY −s, nX +s).
Since (nY − s, nX + s) and the origin are on different sides of L+, it is easy
to see that this is a one-to-one correspondence between A2i+1(nX , nY ) and
A2i(nY − s, nX + s). We also have nX + s ≥ nY ≥ (nY − s) − t, therefore
the induction hypothesis applies: |A2i+1(nX , nY )| = |A2i(nY − s, nX + s)| =(

n
nY −s−i(t+s)

)
=
(

n
nX+i(t+s)+s

)
.

If i ≥ 1 and the statement is true for 2i− 1, then a similar reflection over
L− gives a one-to-one correspondence between A2i(nX , nY ) and A2i−1(nY +
t, nX−t), hence |A2i(nX , nY )| = |A2i−1(nY + t, nX − t)| =

(
n

nY +t+(i−1)(t+s)+s

)
.

Note that we implicitly gave a one-to-one correspondence between A2i

(respectively A2i+1) and the lattice paths from the origin to (nX − i(s +
t), nY + i(s + t)) (respectively (nY − i(s + t) − s, nX + i(s + t) + s)).

Finally, to verify the formulae for |Bi| we can simply switch the role of s
and t and reflect every lattice path over the line Y = X.

We denote by C the set of those lattice paths, which join the origin with
the point P without reaching any of the two lines L+ and L−.

Proposition 6.1.20. If nX − t ≤ nY ≤ nX + s (P is between L+ and L−),
then

|C| =
∞∑

i=−∞

((
n

nX − i(t + s)

)
−
(

n

nX − i(t + s) − t

))
.

Proof. Note that C = A0 \ (A1 ∪ B1). It is easy to see that Ai ∩ Bi =
Ai+1 ∪ Bi+1, thus |Ai ∪ Bi| = |Ai| + |Bi| − |Ai+1 ∪ Bi+1|. Applying this
repeatedly we get

|C| = |A0| − |A1 ∪ B1| = |A0| +
∞∑

i=1

(−1)i(|Ai| + |Bi|).

Here we used also that Ai = Bi = ∅ for i large enough.
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Substituting the binomial coefficients from Lemma 6.1.19, we have

|C| =

(
n

nX

)
−
(

n

nX + s

)
−
(

n

nX − t

)
+

∞∑

i=1

((
n

nX − i(t + s)

)
+

(
n

nX + i(t + s)

)
−
(

n

nX + i(t + s) + s

)
−
(

n

nX − i(t + s) − t

))
=

∞∑

i=−∞

((
n

nX − i(t + s)

)
−
(

n

nX − i(t + s) − t

))
+

∞∑

i=1

(
n

nX + i(t + s) − t

)
−

∞∑

i=0

(
n

nX + i(t + s) + s

)
=

∞∑

i=−∞

((
n

nX − i(t + s)

)
−
(

n

nX − i(t + s) − t

))
.

Our last set of lattice paths D to examine consists of all the paths from
the origin to P which do not reach L− before reaching L+ (it may reach
neither).

Proposition 6.1.21. If nY ≥ nX − t (P is above L−), then

|D| =
∞∑

i=0

((
n

nX − i(t + s)

)
−
(

n

nX − i(t + s) − t

))
.

If nY ≤ nX − t (P is below L−), then

|D| =
∞∑

i=1

((
n

nX + i(t + s) − t

)
−
(

n

nX + i(t + s)

))
.

Proof. We have a disjoint union decomposition D =
∞∪
i=0

(A2i \ B2i+1). Indeed,

A2i \ B2i+1 contains a lattice path M̂ if and only if the maximal sequence of
intersections of M̂ with L+ and L− which alternates is either L+, L−, . . . ,
L+, L− (2i lines) or L+, L−, . . . , L+, L−, L+ (2i + 1 lines). The union of
these give D.

Since A2i ⊇ B2i+1, Lemma 6.1.19 immediately proves the first statement.
Note that if P is below L−, then by definitions A0 = B1, A2i = A2i−1 (for

i ≥ 1) and B2i+1 = B2i (for i ≥ 0). The origin and P are on the same side
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of L+, and so Lemma 6.1.19 yields formulae for A2i−1 and B2i. Therefore

|D| =
∞∑

i=0

(|A2i| − |B2i+1|) =
∞∑

i=1

(|A2i−1| − |B2i|) =

∞∑

i=1

((
n

nX + i(t + s) − t

)
−
(

n

nX + i(t + s)

))
.

The Hilbert function of F
To obtain the Hilbert function HF(m), it remains to put together what we
know about lattice paths and standard monomials of I(F), where F is a
modulo q complete `-wide family of sets.

Theorem 6.1.22. Let r = min{d + `− 1, n− d}, suppose that the base field
F is of characteristic p and q is a power of p.
If 0 ≤ m ≤ r, then

HF(m) =
∞∑

i=0

`−1∑

k=0

(
n

m − iq − k

)
,

if m > r, then

HF(m) =
∞∑

i=−∞

`−1∑

k=0

(
n

r + iq − k

)
−

∞∑

i=1

`−1∑

k=0

(
n

m + iq − k

)
.

Proof. Instead of writing merely C and D, in this proof we again indicate
their dependence on the endpoint (nX , nY ) of the lattice paths, while we leave
F from the subscript of HF . We intend to apply the computations of the
previous subsection with s = q− ` and t = `. By Theorem 6.1.15 and Corol-
lary 2.1.21 we know that H(m) is the number of elements of Smlex (I(F))
of degree at most m, thus we can use the description of the lex standard
monomials of Theorem 6.1.4.

Hence if m ≤ r then the set of lattice paths corresponding to standard
monomials of degree at most m is

m⋃

nX=0

D(nX , n − nX).
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Its cardinality is then given by the first case of Proposition 6.1.21:

H(m) =

m∑

nX=0

∞∑

i=0

((
n

nX − iq

)
−
(

n

nX − iq − `

))
=

∞∑

i=0

`−1∑

k=0

(
n

m − iq − k

)
, (6.11)

as we claimed.
Suppose now that r < m < n+`

2
. The second inequality means exactly

that the point (m,n − m) is above L−. In this case, the set of lattice paths
we need is
(

r⋃

nX=0

D(nX , n − nX)

)
∪
(

m⋃

nX=r+1

(D(nX , n − nX) \ C(nX , n − nX))

)

according to Theorem 6.1.4. We use Propositions 6.1.20 and 6.1.21 to get

H(m) = H(r) +
m∑

nX=r+1

(
∞∑

i=0

((
n

nX − iq

)
−
(

n

nX − iq − `

))
−

∞∑

i=−∞

((
n

nX − iq

)
−
(

n

nX − iq − `

)))
= H(r)−

∞∑

i=1

m∑

nX=r+1

((
n

nX + iq

)
−

(
n

nX + iq − `

))
= H(r) −

∞∑

i=1

`−1∑

k=0

((
n

m + iq − k

)
−
(

n

r + iq − k

))
.

Applying the formula for H(r) we have already obtained, we have

H(m) =
∞∑

i=0

`−1∑

k=0

(
n

r − iq − k

)
+

∞∑

i=1

`−1∑

k=0

((
n

r + iq − k

)
−
(

n

m + iq − k

))

=
∞∑

i=−∞

`−1∑

k=0

(
n

r + iq − k

)
−

∞∑

i=1

`−1∑

k=0

(
n

m + iq − k

)
,

which was to be proved.
Finally, if n+`

2
≤ m, then let r′ =

⌊
n+`−1

2

⌋
. The number of standard

monomials of degree nX between r′ + 1 and m are given by the lattice paths
in

m⋃

nX=r′+1

D(nX , n − nX).
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Therefore by the second part of Proposition 6.1.21

H(m) = H(r′) +
m∑

nX=r′+1

∞∑

i=1

((
n

nX + iq − `

)
−
(

n

nX + iq

))
= H(r′)+

∞∑

i=1

`−1∑

k=0

((
n

r′ + iq − k

)
−
(

n

m + iq − k

))
=

∞∑

i=−∞

`−1∑

k=0

(
n

r + iq − k

)
−

∞∑

i=1

`−1∑

k=0

(
n

r′ + iq − k

)
+

∞∑

i=1

`−1∑

k=0

((
n

r′ + iq − k

)
−
(

n

m + iq − k

))
=

∞∑

i=−∞

`−1∑

k=0

(
n

r + iq − k

)
−

∞∑

i=1

`−1∑

k=0

(
n

m + iq − k

)
,

where we also used the just computed formula for H(r′).

It is easy to see that in the case m > r, the first sum is precisely the
cardinality of F . Note that the second sum is 0 when m > n + ` − q − 1.
Therefore for such an m, HF(m) = |F|.

In the combinatorial applications, we benefit from the next corollary.

Corollary 6.1.23. If 0 ≤ m ≤ n+`
2

, then

HF(m) ≤
∞∑

i=0

`−1∑

k=0

(
n

m − iq − k

)
.

Proof. If m ≤ r = min{d+ `−1, n−d} then we are done by Theorem 6.1.22.
Otherwise, suppose that r < m ≤ n+`

2
. We have to show that

∞∑

i=−∞

`−1∑

k=0

(
n

r + iq − k

)
−

∞∑

i=1

`−1∑

k=0

(
n

m + iq − k

)
≤

∞∑

i=0

`−1∑

k=0

(
n

m − iq − k

)
.

Instead of a direct calculation, let us recall a few details from the proof of
Theorem 6.1.22.

The left hand side is the number of standard monomials of I(F) of degree
at most m. The corresponding lattice paths have the property, that they do
not reach L− before touching L+ and that they end in (nX , n−nX) for some
nX ≤ m, that is they all belong to the set

m⋃

nX=0

D(nX , n − nX).

In the proof (equation (6.11)), we have seen that the right hand side is exactly
the number of such lattice paths. (Note that the condition m ≤ n+`

2
means

that the point (m,n − m) is above L−.)
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6.2 Maximal cardinality of L-avoiding L-in-

tersecting families

Definition 6.2.1. Let L be a subset of integers and G be a system of sets.
Then G is modulo q L-avoiding if G ∈ G and f ∈ L implies |G| 6≡ f (mod q).
We call G L-intersecting if for any two distinct sets G1, G2 ∈ G the congruence
|G1 ∩ G2| ≡ f (mod q) holds for some f ∈ L.

The maximum number of sets a modulo q L-avoiding set family can con-
tain has been studied extensively. Frankl and Wilson [24] proved that if q = p
a prime and G is a modulo p L-intersecting uniform (all sets have the same
size) set system, then |G| ≤

(
n
|L|

)
. If we replace the uniformity hypothesis to

modulo p uniformity, such that F is L-avoiding, then we have |G| ≤
|L|∑
k=0

(
n
k

)
,

as it was proven by Deza, Frankl and Singhi [17].
Ten years later Alon, Babai and Suzuki [4] could prove that the uniformity

hypothesis is not needed: if F is modulo p L-intersecting and L-avoiding,

then |G| ≤
|L|∑

k=2|L|−p+1

(
n
k

)
, provided that some condition on L holds. Also Qian

and Ray-Chaudhuri [36] established the same upper bound under different
assumptions on L.

These bounds are no longer true for composite numbers in the place of
p. The interested reader may find results in this direction in the paper [8],
which is also a good survey of the topic.

Babai and Frankl posed the question [7, p. 115] if in the case |L| = q − 1
the binomial coefficient

(
n

q−1

)
was an upper bound of the size of a modulo q

L-intersecting L-avoiding family. Recently Hegedűs and Rónyai [32] proved
the affirmative answer. Our result generalizes this bound to a much greater
class of sets L.

Definition 6.2.2. We call a set L ⊆ {0, . . . , q − 1} a modulo q interval if it
is either an interval of integers or a union of two intervals L1 and L2, such
that 0 ∈ L1 and q − 1 ∈ L2.

Theorem 6.2.3. Let q be a power of a prime, L be a modulo q interval
and G ⊆ 2[n] be a modulo q L-avoiding, L-intersecting family of sets. If
|L| ≤ n − q + 2, then

|G| ≤
q−1∑

k=|L|

(
n

k

)
.
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Proof. Put ` = q−|L|. If L is an interval of integers, then set d = max L+1,
otherwise, when L is the union of two (separated) intervals L1, L2 and 0 ∈ L1,
set d = max L1 + 1. Denote by F the modulo q complete `-wide family with
this parameter d. Then by the definitions G ⊆ F .

For any G ∈ G we define the polynomial f̂G(x) ∈ Q[x] to be

f̂G(x) =




q−1∑

k=0
k 6∈L

(
x · vG − k − 1

q − 1

)

 reduced by x2

j − xj,

where x · v =
n∑

j=1

xjvj is the scalar product. We see from Lemma 6.1.9 that

f̂G ∈ Z[x].
Let G′ ∈ G be a set from the set system. Then

f̂G(vG′) =

q−1∑

k=0
k 6∈L

(|G′ ∩ G| − k − 1

q − 1

)
. (6.12)

If G′ 6= G, then, as G is modulo q L-intersecting, |G′ ∩ G| − k cannot be
congruent to 0 modulo q for k 6∈ L. Note that it follows from Lemma 6.1.10
that (

f − 1

q − 1

)
≡
{

0 (mod p), if f 6≡ 0 (mod q)
1 (mod p), if f ≡ 0 (mod q).

That is, if G′ 6= G, then all terms of the sum in (6.12) are zero modulo p.
If G′ = G, then using that G is modulo q L-avoiding we have exactly one
nonzero term modulo p, which is actually congruent to 1.

Let Fp denote the field of p elements, where q is a power of p. Then

we write fG for the polynomial in Fp [x] we obtain from f̂G by reducing its
integer coefficients modulo p. The above argument yields

fG(vG′) =

{
0 if G 6= G′

1 if G = G′.

Since the degree of f̂G is at most q − 1, the same is true for fG as well.
Using our earlier notation, it means that fG ∈ Fp [x]≤q−1. We claim that the

cosets fG + I(F)≤q−1 in the quotient space Fp [x]≤q−1

/
I(F)≤q−1 are linearly

independent over Fp. Indeed, suppose that

∑

G∈G

αGfG ∈ I(F)≤q−1 (6.13)
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for some αG ∈ Fp. Substitution of a characteristic vector vG of a set G ∈
G ⊆ F to (6.13) gives αG = 0 immediately.

To conclude, note that the number of the fG is bounded by the dimension
of Fp [x]≤q−1

/
I(F)≤q−1, that is

|G| ≤ dim
(
Fp [x]≤q−1

/
I(F)≤q−1

)
= HF(q − 1) ≤
∞∑

i=0

`−1∑

k=0

(
n

q − 1 − iq − k

)
=

q−1∑

k=|L|

(
n

k

)
.

by Corollary 6.1.23 (which we are allowed to use as |L| ≤ n − q + 2 implies
the assumption q − 1 ≤ n+`

2
of the corollary).

6.3 Families that do not shatter large sets

Definition 6.3.1. Consider a family G of subsets of [n]. We say that G
shatters M ⊆ [n] if

{G ∩ M : G ∈ G} = 2M .

Definition 6.3.2. The system of sets G is an `-antichain if it does not
contain ` + 1 distinct sets G0, . . . , Gn, such that G0 ( G1 ( · · · ( G`.

Frankl [23] conjectured that if an `-antichain G shatters no set of size

m + 1 for some integer 0 ≤ m ≤ n+`
2

− 1, then |G| ≤
`−1∑
k=0

(
n

m−k

)
must hold.

An `-wide family (which of course can be understood as a modulo q `-
wide family for some q large enough) is an `-antichain. In their manuscript
[25], Friedl, Hegedűs and Rónyai showed that the upper bound is valid for
`-wide families. Our theorem is a generalization of that result, the special
case follows by choosing q > n.

Theorem 6.3.3. Let G ⊆ 2[n] be a modulo q `-wide family of sets, where
q is a prime power. If G shatters no set of size m + 1 for some integer
0 ≤ m ≤ n+`

2
, then

|G| ≤
∞∑

i=0

`−1∑

k=0

(
n

m − iq − k

)
.
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Proof. We first prove that if xM is a standard monomial of any set system
G, then G shatters M . Suppose that N ⊆ M , but N 6∈ {G ∩ M : G ∈ G}.
Let v = vN be the characteristic vector of N . Then the polynomial

∏

i∈M

(xi + vi − 1)

vanishes on VG and its leading monomial is xM , thus xM ∈ Lm (I(G)). We
conclude that xM ∈ Sm (I(G)) implies |M | ≤ m for a family G which does
not shatter any set of size m + 1.

Recall that G ⊆ F , where F is a modulo q complete `-wide family. This
gives Sm (I(G)) ⊆ Sm (I(F)), and so we can bound the cardinality of the
standard monomials of G with the number of standard monomials of F of
degree at most m. This latter is exactly HF(m).

Therefore
|G| = |Sm (I(G))| ≤ HF(m),

and hence Corollary 6.1.23 gives the desired bound.

The inequality in Theorem 6.3.3 is sharp. Choose d = m − ` + 1 for a
modulo q complete `-wide family F , and put G = F ∩

(
[n]
≤m

)
. Then the fact

that G does not contain any set of size m + 1 implies that it cannot shatter

any set of size m + 1. The size of G is precisely
∞∑
i=0

`−1∑
k=0

(
n

m−iq−k

)
.
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Appendix A

Singular code of the algorithm

///////////////////////////////////////////////////////////////////////////////

version="$Id: lexsm.lib,v 1.1 2005/11/11 Singular Exp $";

category="Miscellaneous";

info="

LIBRARY: lexsm.lib Computes the lexicographic standard monomials

AUTHOR: B. Felszeghy, e-mail: fbalint@math.bme.hu

KEYWORDS: standard monomials, vanishing ideal

PROCEDURES:

LexSm(V) standard monomials of a finite set of points V

BuildTrie(V) builds the reverse trie T of a set of points V

BuildSmTrie(T) from T builds the trie U encoding the standard monomials of V

SmListFromTrie(U) the list of standard monomials from the trie U

InsertToTrie inserts a point to a trie

";

///////////////////////////////////////////////////////////////////////////////

proc LexSm(list V)

"PURPOSE: Given V a finite set of points (ie integer vectors of the same length)

it computes the lexicographic standard monomials of the vanishing

ideal I(V).

USAGE: LexSm(V); V list

THEORY: See the paper at http://www.math.bme.hu/~fbalint/pub.html/lexgame.pdf

ASSUME: V is a list of intvecs of the same length. This length has to be the

same as the number of variables in the active ring.

NOTE: Although the function works under the above assumptions, the result

is not understood in general in the active ring.

It does give the right answer if the active ring

is a field F and if for any two points V[i] is not equal to V[j] then

they are also different considered as elements of an affine space over F.

The ordering of the active ring does not play a role.

RETURN: The list of standard monomials.

EXAMPLE: example LexSm; shows an example

SEE ALSO: BuildTrie, BuildSmTrie, SmListFromTrie"

{

return(SmListFromTrie(BuildSmTrie(BuildTrie(V))));

};

example{

"EXAMPLE:"; echo = 2;

intvec po(1) = 1,1,3;

intvec po(2) = 4,1,1;

intvec po(3) = 3,1,3;

intvec po(4) = 2,1,1;
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intvec po(5) = 4,2,1;

intvec po(6) = 3,1,1;

list V = po(1..6);

ring R = 0,x(1..3),lp;

LexSm(V);

};

///////////////////////////////////////////////////////////////////////////////

static proc InitLibrary

"PURPOSE: Sets up constants used by all procedures in this library.

USAGE: if(!defined(Parent)){InitLibrary();};"

{

int Parent = 1; export(Parent);

int Children = 2; export(Children);

int Value = 3; export(Value);

int Nextnode = 4; export(Nextnode);

int Firstleaf = 5; export(Firstleaf);

int Lastleaf = 6; export(Lastleaf);

int Depth = 1; export(Depth);

int Root = 2; export(Root);

int Null = -1; export(Null);

};

static proc Node(int parent, list children, int value, int nextnode,

int firstleaf, int lastleaf)

"PURPOSE: Constructor function of a node object.

USAGE: Node(parent, children, value, nextnode); parent int, children list,

value int, nextnode int, firstleaf int, lastleaf int

RETURN: A node object with the respective members.

NOTE: A node is a vertex of a trie. A node can have a pointer to its parent,

a list of pointers to its children, a value (that is the integer on

the edge between the node and its parent), a pointer to a node on the

same level of the trie, and pointers to two of the leafs which are

descendants of the node. For a node node one can get them by

node[Parent], node[Children], node[Value], node[Nextnode], node[Firstleaf]

and node[Lastleaf] respectively.

SEE ALSO: SmNode"

{

list newnode;

newnode[Parent] = parent;

newnode[Children] = children;

newnode[Value] = value;

newnode[Nextnode] = nextnode;

newnode[Firstleaf] = firstleaf;

newnode[Lastleaf] = lastleaf;

return(newnode);

};

///////////////////////////////////////////////////////////////////////////////

static proc SmNode(int parent)

"PURPOSE: Another constructor function of a node object.

USAGE: Node(parent); parent int

RETURN: A node object with parent parent and an empty list of children.

SEE ALSO: Node"

{

list newnode;

newnode[Parent] = parent;

newnode[Children] = list();



APPENDIX A. SINGULAR CODE OF THE ALGORITHM 98

return(newnode);

};

///////////////////////////////////////////////////////////////////////////////

static proc InitTrie(intvec point)

"PURPOSE: Initializes a trie consisting of a single path. The values on

the edges are the integers from intvec point, the first element

of point belongs to the only leaf, the last is below the root.

USAGE: InitTrie(point); point intvec

RETURN: The reverse trie of point."

{

if(!defined(Parent)){InitLibrary();};

list newtrie;

int n = size(point);

newtrie[Depth] = n;

list children = Root+1;

newtrie[Root] = Node(Null,children,Null,Null,Root+n,Root+n);

for(int i=1; i<n; i++){

children = Root+i+1;

newtrie[Root+i] = Node(Root+i-1,children,point[n+1-i],Null,

Root+n,Root+n);

};

newtrie[Root+n] = Node(Root+n-1,list(),point[1],Null,Root+n,Root+n);

return(newtrie);

};

///////////////////////////////////////////////////////////////////////////////

proc InsertToTrie(intvec point, list trie)

"PURPOSE: Inserts a new point to the trie.

USAGE: InsertToTrie(point, trie); point intvec trie list

ASSUME: trie is a nonempty trie of points of the same length. Also point is of

this length.

RETURN: A trie with the new point inserted.

EXAMPLE: example InsertToTrie; shows an example

SEE ALSO: BuildTrie"

{

int n = trie[Depth];

if( size(point) != n){

ERROR("size(point_to_insert) not equals to trie[Depth]");

};

int current_node_index = Root;

int new, childrensize,i;

list children;

for (int level=0;level<=n;level++){

new = 1;

children = trie[current_node_index][Children];

childrensize = size(children);

for (i=1;i<=childrensize;i++){

if (trie[children[i]][Value]==point[n-level]){

new = 0;

break;

};

};

if(!new){

current_node_index=children[i];

}else{

break;

};

};

if(level != n){
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int branching_level = level;

int branching_node_index = current_node_index;

int triesize = size(trie);

int last_new_node_index = triesize+n-branching_level;

int last_node_index = children[childrensize];

trie[branching_node_index][Children][childrensize+1] = triesize+1;

children = list();

for (level=branching_level+1;level<n;level++){

triesize++;

children = triesize+1;

trie[triesize] = Node(current_node_index,children,point[n-level+1],

trie[last_node_index][Nextnode],

last_new_node_index,last_new_node_index);

trie[last_node_index][Nextnode] = triesize;

children = trie[last_node_index][Children];

last_node_index = children[size(children)];

current_node_index=triesize;

};

trie[last_new_node_index] = Node(current_node_index,list(),point[1],

trie[last_node_index][Nextnode],

last_new_node_index,last_new_node_index);

trie[last_node_index][Nextnode] = last_new_node_index;

current_node_index = branching_node_index;

while(trie[current_node_index][Lastleaf] == last_node_index){

trie[current_node_index][Lastleaf] = last_new_node_index;

current_node_index = trie[current_node_index][Parent];

if (current_node_index == Null){break;};

};

};

return(trie);

};

example{

"EXAMPLE:"; echo = 2;

intvec po(1) = 0,0,0;

intvec po(2) = 0,0,0;

list tree = BuildTrie(po(1));

InsertToTrie(po(2),tree);

};

///////////////////////////////////////////////////////////////////////////////

proc BuildTrie(list points)

"PURPOSE: Creates the reverse trie of the points listed in points. A point

can only have integer coordinates. It also builds the pointers

needed for the standard monomial computation, that is for any node

pointers to its first and last leaf and a pointer to its right

neighbour node on the same level.

USAGE: BuildTrie(points); points list

ASSUME: points is a list of intvecs, each of the same length.

RETURN: The reverse trie of points.

NOTE: This function works by calling InsertToTrie subsequently.

EXAMPLE: example BuildTrie; shows an example

SEE ALSO: InsertToTrie"

{

dbprint(1,"Starting BuildTrie...");

list trie = InitTrie(points[1]);

int m = size(points);

for(int i=2;i<=m;i++){

trie = InsertToTrie(points[i],trie);

};

dbprint(1,"BuildTrie is ready.");

return(trie);
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};

example{

"EXAMPLE:";

echo = 2;

intvec po(1) = 2,1,1;

intvec po(2) = 3,1,1;

intvec po(3) = 4,1,3;

intvec po(4) = 4,2,1;

intvec po(5) = 1,1,3;

intvec po(6) = 3,1,3;

list V = po(1..6);

BuildTrie(V);

};

///////////////////////////////////////////////////////////////////////////////

proc BuildSmTrie(list trie)

"PURPOSE: Creates the trie encoding the lexicographic standard monomials

of the points which belong to the argument trie.

USAGE: BuildSmTrie(points); points list

ASSUME: trie is a reverse trie, that is it was created by BuildTrie (or

at least looks as if it was created that way).

RETURN: The trie of standard monomials.

EXAMPLE: example BuildSmTrie; shows an example

SEE ALSO: BuildTrie, SmListFromTrie, LexSm"

{

dbprint(1,"Starting BuildSmTrie...");

if(!defined(Parent)){InitLibrary();};

list smtrie,A,b,newnode;

int n = trie[Depth];

smtrie[Depth] = n;

smtrie[Root] = SmNode(Null);

int current_leaf_index = trie[Root][Firstleaf];

while(current_leaf_index != Null){

A[current_leaf_index] = Root;

current_leaf_index = trie[current_leaf_index][Nextnode];

};

int current_node_index,current_sm_node_index;

int childrensize,smtriesize,last_leaf_index;

for(int i=1;i<=n;i++){

if(i==n){current_node_index = Root;}

else{current_node_index = Root+n-i;};

while(current_node_index != Null){

current_leaf_index = trie[current_node_index][Firstleaf];

last_leaf_index = trie[current_node_index][Lastleaf];

while(1){

b[A[current_leaf_index]]=0;

if(current_leaf_index == last_leaf_index){break;}

else{current_leaf_index = trie[current_leaf_index][Nextnode];};

};

current_leaf_index = trie[current_node_index][Firstleaf];

while(1){

current_sm_node_index = A[current_leaf_index];

b[current_sm_node_index]=b[current_sm_node_index]+1;

childrensize = size(smtrie[current_sm_node_index][Children]);

if(childrensize < b[current_sm_node_index]){

newnode = SmNode(current_sm_node_index);

smtriesize = size(smtrie);

smtrie[smtriesize+1] = newnode;

smtrie[current_sm_node_index][Children][childrensize+1] = smtriesize+1;

};

A[current_leaf_index] =

smtrie[current_sm_node_index][Children][b[current_sm_node_index]];
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if(current_leaf_index == last_leaf_index){break;}

else{current_leaf_index = trie[current_leaf_index][Nextnode];};

};

current_node_index = trie[current_node_index][Nextnode];

};

};

dbprint(1,"BuildSmTrie is ready.");

return(smtrie);

};

example{

"EXAMPLE:"; echo = 2;

intvec po(1) = 1,1,3;

intvec po(2) = 4,1,1;

intvec po(3) = 3,1,3;

intvec po(4) = 2,1,1;

intvec po(5) = 4,2,1;

intvec po(6) = 3,1,1;

list V = po(1..6);

list tree = BuildTrie(V);

BuildSmTrie(tree);

};

///////////////////////////////////////////////////////////////////////////////

proc SmListFromTrie(list smtrie)

"PURPOSE: Creates the list of standard monomials from the trie

of standard monomials.

USAGE: SmListFromTrie(smtrie); smtrie list

ASSUME: smtrie is a rooted tree, and looks like a trie returned by

BuildSmTrie.

RETURN: The list of standard monomials.

EXAMPLE: example SmListFromTrie; shows an example

SEE ALSO: BuildSmTrie, LexSm"

{

dbprint(1,"Starting SmListFromTrie...");

if(!defined(Parent)){InitLibrary();};

int n = smtrie[Depth];

if(!defined(basering)){

string error_msg = "Set an active ring by typeing ’ring R = 0,(x(1..";

error_msg = error_msg+string(n);

error_msg = error_msg+")),lp;’";

ERROR(error_msg);

};

if(nvars(basering)!=n){

ERROR("The number of variables in ring is not equal to smtrie[Depth].");

};

if(!defined(exported_smtrie)){

list exported_smtrie;

export(exported_smtrie);

};

exported_smtrie = smtrie;

list smlist = SmListFromTrieRec(1,Root,1);

dbprint(1,"SmListFromTrie is Ready.");

return(smlist);

};

example{

"EXAMPLE:"; echo = 2;

intvec po(1) = 1,1,3;

intvec po(2) = 4,1,1;

intvec po(3) = 3,1,3;

intvec po(4) = 2,1,1;

intvec po(5) = 4,2,1;

intvec po(6) = 3,1,1;
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list V = po(1..6);

ring R = 0,x(1..3),lp;

list smtree = BuildSmTrie(BuildTrie(V));

SmListFromTrie(smtree);

};

///////////////////////////////////////////////////////////////////////////////

static proc SmListFromTrieRec(poly product,int node_index, int depth){

list mons;

int current_node_index;

list children = exported_smtrie[node_index][Children];

int childrensize = size(children);

if(childrensize == 0){

mons = product;

} else {

for(int i=0;i<childrensize;i++){

current_node_index = children[i+1];

mons = mons+SmListFromTrieRec(var(depth)^i*product,current_node_index,depth+1);

};

};

return(mons);

};

///////////////////////////////////////////////////////////////////////////////
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approach to commutative algebra, Springer-Verlag, Berlin, Heidelberg,
1993.

[10] B. Buchberger Ein Algorithmus zum Auffinden der Basiselemente
des Restklassenringes nach einem nulldimensionalen Polynomideal, PhD
Thesis, Univ. of Innsbruck, Austria, 1965.



BIBLIOGRAPHY 104

[11] B. Buchberger, Ein algorithmisches Kriterium für die Lösbarkeit
eines algebraischen Gleischungssystem, Aequationes Mathematicae, 4
(1970), 374–383.
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