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1 Introduction

Although the use of mathematical tools in modelling biological populations is quite

old, the golden age of population dynamics was the first half of the twentieth century.

The results of this period, the many classical models such as the Lotka-Volterra equa-

tions and the fundamental phenomena such as exponential growth, carrying capacity,

Allée-effect, competitive exclusion determined the evolution of this wide field of re-

search. Most of the basic models suppose some kind of homogeneity to avoid difficult

mathematical problems. In fact, the main characteristic of population biology is that

we only consider the dynamics at the population level not in the level of individuals.

For example if we suppose that our population lives in a closed habitat with no limit

of resources, and every member of the poulation has the same "fitness" namely fertil-

ity β and mortalityµ which are positive constants then the growth is governed by the

following equation
d
dt

P(t) = βP(t)−µP(t) = γP(t)

whereγ = β−µ.

The solution of this differential equation isP(t) = P(0)eγt , that is the population

survives ifγ≥ 0 and goes to extinction ifγ < 0.

Such a simple model does not distinguish, for example, young and old individuals

what is very unrealistic and that way we cannot expect any interesting and difficult be-

haviour, of course. Thus, after the first attempts the interest of applied mathematicians

focused on much more complicated models which may reproduce by greater certainty

the behaviours observed by biologists.

A significant class of population models, in which we are interested, are the struc-

tured models. They describe the distribution of individuals through different classes

determined by individual differences related to the decisive factors of the dynamics.

This structure can be based on age, size, life cycle stages, biomass, etc. and it can be

discrete or continuous. In the case of a discrete structuring variable we have to investi-

gate matrix population models, see [3] (such as the well-known Leslie-matrix model).

The advantage of discrete matrix models is that they are relatively easy to construct
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from life-cycle information about individuals. They are often used in the case if we

can differentiate easily the individuals in the population regarding to distinct stages

with respect to the structuring variable, e.g. in the case of several types of insects with

different life-cycle stages.

In the case of continuous structuring variables we get partial differential equations

which are more difficult to handle than matrix models but in many cases they reflect

biological phenomena in a more realistic way.

Structured models have many advantages. Making a connection between the indi-

vidual and the population level they can show such dynamical behaviour which other

models cannot. Furthermore the many important biological factors such as environ-

mental influences on individuals corresponding to different classes can act completely

differently.

Many different types of mathematical tools have been used to formulate and inves-

tigate deterministic structured population models.

Because we are interested in the continuous ones we mention here a few valuable

references which treat those structured models mainly: [8],[21],[28],[3],[17].

1.1 The linear McKendrick model

The types of models which we will treat have their roots in the so called McKendrick

equation, introduced in [24] to model mainly medical and demographical problems.

We can find a very good overview of the linear theory of age-structured models in [21]

Sect. 1-2.

The McKendrick equation is a linear PDE containing age dependent vital rate func-

tions. We denote the density of individuals of agea at timet by p(a, t) which means

that the total population quantity at timet is given by

P(t) =
∫ ∞

0
p(a, t)da=

∫ m

0
p(a, t)da. (1.1)

Heremdenotes the maximal age. Usually, in this type of models migration is excluded,

that is the density of individuals of agea at timet +dt is given by those of agea−dt

4



Linearized stability of structured population dynamical models PhD dissertation

who lived at timet minus those who died. If we denote the mortality at agea with µ(a)

we get the following equation

p(a, t +dt) = p(a−dt, t)−µ(a−dt)p(a−dt, t)dt. (1.2)

We can rewrite equation (1.2) as

p(a, t +dt)− p(a, t)+ p(a, t)− p(a−dt, t) =−µ(a−dt)p(a−dt, t)dt. (1.3)

Dividing by dt and taking into account thatda= dt we obtain

p(a, t +dt)− p(a, t)
dt

+
p(a, t)− p(a−da, t)

da
=−µ(a−dt)p(a−dt, t), (1.4)

if we take the limitda,dt→ 0 in (1.4) we arrive at

p′t(a, t)+ p′a(a, t) =−µ(a)p(a, t). (1.5)

If we denote the fertility of individuals of agea with β(a) then the number of

newborns is given by

p(0, t) =
∫ m

0
β(a)p(a, t)da. (1.6)

Further we have to prescribe an initial age distribution,p(a,0) =: p0(a), which has

to satisfy the compatibility condition

p0(0) = p(0,0) =
∫ m

0
β(a)p(a,0)da=

∫ m

0
β(a)p0(a)da.

From the vital rate functionsµ,β we may derive biologically meaningful quantities,

namely

π(a) = e−
∫ a

0 µ(s)ds

measures the probability for an individual to survive the agea.

Furthermore we introduce

R=
∫ m

0
β(a)π(a)da, (1.7)
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which is the expected number of newborns to be produced by an individual in his

reproductive lifetime and it is a crucial quantity as we will see.

With the method of the characteristics this linear model (1.5)-(1.6) can be reduced

to a Lotka integral equation which corresponds to the caset > a. For the casea≥ t we

have an explicit solution, as follows.

The ODE system of characteristics is

dt
dτ

= 1,
da
dτ

= 1,
dp
dτ

=−µ(a)p(a, t). (1.8)

For t = 0, a = a0 we havep(a0,0) = p0(a0) so we choose the initial conditions as

follows (t(0),a(0), p(0)) = (0,a0, p0(a0)). Thus the solution is

t = τ, a = τ+a0 = t +a0, p = p0(a0)e−
∫ t

0 µ(s+a0)ds. (1.9)

Finally substituting from the second equationa0 = a−t into the third one we obtain

the solution fora≥ t

p(a, t) = p0(a− t)e−
∫ t

0 µ(s+a−t)ds. (1.10)

To get a more meaningful formula rewrite (1.10) as

p0(a− t)e−
∫ t

0 µ(s+a−t)ds = p0(a− t)e−
∫ a

a−t µ(s)ds = p0(a− t)
e−

∫ a
0 µ(s)ds

e−
∫ a−t

0 µ(s)ds
=

= p0(a− t)
π(a)

π(a− t)
. (1.11)

We can see from (1.11) that the boundary condition (1.6) doesn’t play any role in

this case, of course.

For the caset > awe have to choose the initial values(t(0),a(0), p(a))= (t0,0, p(t0,a)).

This way we obtain the equations

t = τ+ t0, a = τ, p = p(0, t0)e−
∫ τ

0 µ(s)ds. (1.12)
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From (1.12) we get the solution

p(a, t) = p(0, t−a)e−
∫ a

0 µ(s)ds = p(0, t−a)π(a) = π(a)
∫ m

0
β(s)p(s, t−a)ds. (1.13)

As we can see the solution cannot be written more explicitly.

If we wish to get a rough picture of the phase space we can search for age distribu-

tions which are constant over time. Motivated from the classical theory of ODE’s first

we look for solutions of the formp(a, t) = p∗(a)eλt . Substituting this into (1.5) we get

the ODE

p′∗(a) =−(λ+µ(a))p∗(a), (1.14)

and from this we get easily the solution

p∗(a) = p∗(0)e−
∫ a

0 (λ+µ(s))ds = p∗(0)e−λaπ(a), (1.15)

and for the density of newborns we have

p∗(0) =
∫ m

0
β(a)p∗(a)da. (1.16)

Substituting the solution (1.15) into (1.16) and dividing byp∗(0) we get

1 =
∫ m

0
e−λaβ(a)π(a)da, (1.17)

which is the characteristic equation of the linear model (1.5)-(1.6). Comparing equa-

tion (1.17) with (1.7) we conclude that the population may survive at a constant level

if and only if R= 1, (Re(λ) = 0).

1.2 A linear model with constant death rate

Consider the following example containing vital rate functions with infinite life span

[15].

In the case of vital rate functions with infinite span the integration, for example, in

(1.17) goes from 0 to infinity, that is (1.17) becomes a Laplace transform.
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If we choose

β̂(a) := a6(40−a)2e−a, µ(a) := 0.2,

we getπ(a) = e−0.2a for the survival probability.

The constant mortality rate seems to be very unrealistic on the face of it. But think

about a population without any competition between the individuals for food and the

individuals are catched by any "predator" roughly with the same probability, e.g. a fast

growing fish population at a fishery.

In the case of the vital rates above the net reproduction rate becomes

R̂=
∫ ∞

0 β̂(a)π(a)da∼ 235544.910265203475.

In order to have 1 as the net reproduction rate we renorm the functionβ̂ as follows

β := β̂
R̂

. With this new fertility functionβ we get a continuum number of stationary

solutions of the linear model.

0
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a

Fig.1. β(a) := a6(40−a)2e−a

235544.91026520347508
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Fig.2. µ(a) := 0.2

The characteristic function (1.17) assumes the form

K(x)−1∼
∫ ∞

0
0.42454748815165876777·10−5e−xaa6(40−a)2e−ae−0.2ada−1∼

∼ 4.8907870635071090047
(x+1.2)7 − 1.7117754722274881516

(x+1.2)8 +
0.17117754722274881516

(x+1.2)9 −1.

(1.18)

The roots of (1.18) are approximately

x1,2 ∼−2.3769875708071973591±0.54573322061635669689i,

x3,4 ∼−1.5278878025666194594±1.2267171157973694549i,

x5,6 ∼−1.0250000479503587998±0.066144214038681117910i,

x7,8 ∼−0.47012457867582438167±0.98443820499399594419i,

x0 ∼ 0.27901552980952792594·10−21.

(Calculations were done by Maple 7.)

In the case of a linear model if there exists a non-trivial stationary solutionp∗(a)

then we get a whole classI of stationary solutions, namely for every positive constant

c we have a stationary solution as follows

p̂∗(a) := π(a), I = {c· p̂∗(a) | c∈ R+}.
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Fig.3. p̂∗(a) = π(a) = e−0.2a

1.3 Nonlinear models

The much more interesting nonlinear version of the McKendrick model was introduced

by Gurtin and MacCamy in 1974 (see [18]) where the vital rate functionsβ-fertility

andµ-mortality depend not only on the agea but on the total population quantityP,

or more generally on a finite number of such weighted population sizesSi . This new

model allowed to investigate a wide spectra of nonlinear biological phenomena.

Denote the density of individuals of agea at timet with p(a, t). Then the following

model can be derived similarly to the linear model (1.5)-(1.6).

p′t(a, t)+ p′a(a, t) =−µ(a,P(t))p(a, t), 0≤ a < m≤ ∞,

p(0, t) =
∫ m

0
β(a,P(t))p(a, t)da, t > 0, (1.19)

with initial conditionp(a,0)=: p0(a) and total population quantityP(t)=
∫ m

0 p(a, t)da.

The dynamics of the system depends on the vital ratesβ(a,P),µ(a,P) which are

supposed to satisfy the following assumptions, in general.

∀ P∈ [0,∞),∀a∈ [0,m] 0≤ β(a,P)≤ k < ∞, µ(a,P)≥ 0, (1.20)
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∀ P∈ [0,∞),
∫ m

0
µ(a,P)da= ∞, ∀P∈ [0,∞) ∀a∈ [0,m) µ(a,P) < ∞. (1.21)

m is the maximal age which can be infinite or finite. These two cases can be handled

in different ways but the case of the finite life span is more realistic in the biological

sense. We will treat mainly this case in the following.

Gurtin and MacCamy proved the existence and uniqueness of the solutions of the

system (1.19) under certain conditions. Moreover they investigated the asymptotic

behaviour of solutions through the existence and stability of stationary solutions. They

deduced a characteristic equation for the stability of the stationary solution (see the

next section), but they did not use it to prove stability results besides the following

very special example when the model can be reduced to a pair of ordinary differential

equations as follows [19].

Consider the following vital rate functions with infinite life span

µ(a,P) = µ(P), β(a,P) = β(P)e−αa,

with µ(P),β(P) > 0, α≥ 0.

First we need the following lemma.

Lemma[19] Let p(a, t) be a solution of (1.19), and letg be a (sufficiently smooth)

function of age with

g(a)p(a, t)→ 0, as a→ ∞.

Let

G(t) =
∫ ∞

0
g(a)p(a, t)da, H(t) =

∫ ∞

0
g′(a)p(a, t)da.

Then

Ġ+µ(P(t))G−g(0)B(P, t) = H(t). (1.22)

HereB(P, t) denotes the birth rate,B(P, t) =
∫ ∞

0 β(a,P(t))p(a, t)da.
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Proof.

Multiply the first equation in (1.19) byg and integrate froma = 0 to a = ∞, then

we arrive at

Ġ(t)+
∫ ∞

0
g(a)p′a(a, t)da+µ(P(t))G(t) = 0.

Finally integrating the second term by parts and making use of the condition

g(a)p(a, t)→ 0 we arrive at (1.22).�

From (1.22) with the choice ofg≡ 1 we get

Ṗ+µ(P)P−B = 0,

and withg(a) = e−αa we have

Ġ+µ(P)G−B+αG = 0,

where now

G(t) =
∫ ∞

0
e−αap(a, t)da=

B(t)
β(P(t))

.

Thus we get the pair of differential equations:

Ṗ =−µ(P)P+β(P)G, Ġ = (−µ(P)+β(P)−α)G. (1.23)

The relevant initial conditions are

P(0) =
∫ ∞

0
p0(a)da, G(0) =

∫ ∞

0
e−αap0(a)da.

The analysis of the system (1.23) leads to the necessary and sufficient condition

µ′(P∗) > β′(P∗) for the linearized stability of the stationary solutionp∗(a) with total

population quantityP∗ (see [18],[19],[16]).

As we mentioned we can get a more general model if we allow for the vital rate

functions to depend on a finite number of weighted size populations, namely if we re-

placeβ(a,P),µ(a,P) with β(a,S1, ...,Sn),µ(a,S1, ...,Sn), whereSi =
∫ m

0 γi(a)p(a, t)da,
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i = 1...n, where the weight functionsγi are positive. [21] mainly discusses these type

of models. In the more general class of models we can allow for the vital rates to

depend on any functional of the solutionp(a, t) ([25],[8],[6]).

In [26],[27] J. Prüss investigated ann species Gurtin-MacCamy type model, where

the vital ratesβ and µ depend on the age and on the standing populationp(a, t) =

(p1(a, t), ..., pn(a, t)). He proved the existence of nonzero equilibrium solutions under

very general assumptions. Analogously to the special example of Gurtin and Mac-

Camy he showed that for some very special kind of vital rates the n-dimensional PDE

system can asymptotically be described by means of an ODE system.

Another commonly used model is the size structured model, which we will treat in

section 4, where the variablea denotes the size of an individual. In this case a third

vital rate function occurs, namelyγ ≥ 0 which is the growth rate and depends ona

or in a more general setting it depends on the total population quantityP too. See

[25],[8],[6],[7].
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2 Characteristic equations for the age structured model

In this thesis we treat mainly the linearized stability of structured population models

according to the following definition.

Definition The stationary solutionp∗(a) is said to be stable if for everyε > 0 there

existsδ > 0 such that, ifp(0, .) satisfies|p(0, .)− p∗(.)|L1 ≤ δ then the solutionp(t,a)

satisfies|p(t, .)− p∗ (.)|L1 ≤ ε ∀ t ≥ 0. It is said to be asymptotically stable if it is

stable andδ can be chosen such that lim
t→∞

|p(t, .)− p∗(.)|L1 = 0.

The classical method of linearization can be described shortly by the following

way. First we introduce the variationu(a, t) = p(a, t)− p∗(a) and linearize the differ-

ential equation satisfied byu(a, t). Then we search for solutions in the formU(a)eλt .

If such a solution exists we can substitute it into the linearized differential equation

satisfied byu(a, t). From this we get an equation forλ which is the characteristic equa-

tion. If all the (complex) roots of the characteristic function are in the left half-plane

thenu(a, t) = U(a)eλt → 0 ast tends to infinity exponentially what means that the

stationary solution is stable. If the characteristic function has any roots in the right

half-plane then the stationary solution is unstable. In the case of pure imaginary roots

further analysis is needed to analyze the weakly nonlinear dynamics of the system.

We can find an approach for this in [2] where a parametrized class of systems for

which Re{λ} = 0 holds is studied in the special case when the vital rates assume the

form µ(a,P) = µ(P), β(a,P) = β(P)e−αa as in [18].

If the system (1.19) admits a stationary solutionp∗(a) (a solution which does not

depend on time) it has to satisfy the following equations

p′∗(a) =−µ(a,P∗)p∗(a), p∗(0) =
∫ m

0
β(a,P∗)p∗(a)da. (2.1)

From (2.1) we get easily the solution

p∗(a) = p∗(0)e−
∫ a

0 µ(s,P∗)ds. (2.2)

Substituting (2.2) into the boundary condition of (2.1) we get
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1 =
∫ m

0
β(a,P∗)e−

∫ a
0 µ(s,P∗)dsda=

∫ m

0
β(a,P∗)π(a,P∗)da= R(P∗). (2.3)

(Hereπ is the survival probability function andR is the net reproduction function

as in the linear case.) Thus (2.3) is a necessary condition for the existence of a station-

ary solution with population quantityP∗. We can solve equation (2.3) for the single

variableP and from the following equation we have the initial valuep∗(0)

P∗ =
∫ m

0
p∗(a) = p∗(0)

∫ m

0
π(a,P∗)da. (2.4)

Then we have the stationary solution asp∗(a) = p∗(0)π(a,P∗). Thus, we proved

the following

Theorem 2.1 (M.E.Gurtin-R.C.MacCamy[18]) Any stationary solutionp∗(a) of

the system is determined uniquely by the rootP∗ of the following equation

R(P) = 1.

Now recall the characteristic equation from [18]

1 =
∫ m

0
r(a)e−γada+gγ

(
κ
B0
−

∫ m

0
r(a) fγ(a)da

)
, (2.5)

wherer(a) = β0(a)π0(a),

κ = B0

∫ m

0
β′0(a)π0(a)da, fγ(a) =

∫ a

0
e−γ(a−α)λ′0(α)dα (2.6)

and

gγ =
B0

∫ m
0 e−γaπ0(a)da

1+B0
∫ m

0 π0(a) fγ(a)da
, B0 =

∫ m

0
β0(a)p0(a)da. (2.7)

With our notations

λ0(α) = µ(α,P∗), π0(a) = π(a,P∗), β0(a) = β(a,P∗), γ = λ.

The equations (2.5)-(2.7) seem to be extremely complicated and the analysis of the

characteristic equation was left as a question in [18], and as we know it was not used

to prove stability results.
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Some results about the characteristic equation was proved in [21] Ch. 4.4.

In [16] Miklós Farkas deduced a characteristic equation in a completely different

form.

K(λ) = A11(λ)A22(λ)−A12(λ)A21(λ)+A12(λ)+A21(λ) = 1, (2.8)

where

A11(λ) =
∫ m

0
e−λae−

∫ a
0 µ(s,P∗)dsda,

A12(λ) =−p∗(0)
∫ m

0
e−λae−

∫ a
0 µ(s,P∗)ds

∫ a

0
µ′P(s,P∗)eλsdsda,

A21(λ) =
∫ m

0
e−λaβ(a,P∗)e−

∫ a
0 µ(s,P∗)dsda,

A22(λ) = p∗(0)
∫ m

0
β′P(a,P∗)e−

∫ a
0 µ(s,P∗)dsda

−p∗(0)
∫ m

0

(
e−λaβ(a,P∗)e−

∫ a
0 µ(s,P∗)ds

∫ a

0
µ′P(s,P∗)ds

)
da

andP∗ =
∫ m

0 p∗(a)da is the total population quantity of the stationary solution.

At the first look we also cannot believe that this characteristic equation can be

handled more easily.

Remark that the coefficientsAi j (λ) become Laplace transforms in the case of vital

rates with infinite life span.

Let us now check the equivalence of the two mainly different forms of the charac-

teristic equation [15].

Substituting the expressions (2.6)-(2.7) into the equation (2.5), changing the nota-

tions and making use of the formulap∗(0) = P∗∫ m
0 π(a,P∗)da we arrive, after straightfor-

ward calculations, at the following equation:

1 =
∫ m

0
e−λaβ(a,P∗)π(a,P∗)da+
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+

 P∗∫ m
0 π(a,P∗)da

∫ m
0 e−λaπ(a,P∗)da

1+ P∗∫ m
0 π(a,P∗)da

∫ m
0 π(a,P∗)

∫ a
0 e−λ(a−s)µ′P(s,P∗)dsda

∫ m

0
β′P(a,P∗)π(a,P∗)da−

−

 P∗∫ m
0 π(a,P∗)da

∫ m
0 e−λaπ(a,P∗)da

1+ P∗∫ m
0 π(a,P∗)da

∫ m
0 π(a,P∗)

∫ a
0 e−λ(a−s)µ′P(s,P∗)dsda


·
∫ m

0
β(a,P∗)

∫ a

0
e−λ(a−s)µ′P(s,P∗)dsda. (2.9)

Now introducing the new coefficientsAi j (λ) we get

1 =

 p∗(0)A11(λ)

1+ p∗(0) A12(λ)
−p∗(0)

∫ m

0
β′P(a,P∗)π(a,P∗)da−

−

 p∗(0)A11(λ)

1+P∗(0) A12(λ)
−p∗(0)

∫ m

0
e−λaβ(a,P∗)π(a,P∗)

(∫ a

0
eλsµ′P(s,P∗)ds

)
da. (2.10)

From (2.10) we have

1 = A21(λ)+
(

p∗(0)A11(λ)
1−A12(λ)

)
A22(λ)
p∗(0)

, (2.11)

and a simple transformation leads to (2.8).

From [18] recall the stability criterion of the stationary solutionp∗(a) based on the

characteristic equation (2.5).

Theorem 2.2[18],[16] The stationary solution of the problem (1.19) is asymptoti-

cally stable if all the roots of equation (2.5) have negative real part. If (1.19) has a root

with positive real part then the stationary solution is unstable.
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3 Stability of the age structured model

In this section we investigate the asymptotic stability of stationary solutionsp∗(a)

of the Gurtin-MacCamy age structured model (1.19). Our results are based on the

localization of the roots of equation (2.8) and on Th.2.2. First we treat the case of

an age dependent mortality function and we suppose a factorization property for the

fertility function β, motivated from the special example of Gurtin and MacCamy. Then

we consider a general mortality functionµ(a,P) and suppose the factorization property

for the fertility β. In this section the maximal age is denoted byM.

3.1 µ does not depend onP

Now suppose thatµ(a,P) = m(a) andβ(a,P) = b(a) f (P) whereb(.),m(.), f (.) ∈C1.

Theorem 3.1[9] The characteristic functionK(λ)−1 for any stationary solution

p∗(a) is stable if and only ifR′(P∗) < 0.

Proof. Under the assumptions for the vital rates above the characteristic equation

(2.8) reduces to the following

∫ M

0
e−λaπ(a)β(a,P∗)da+

∫ M

0
e−λaπ(a)da

∫ M

0
β′P(a,P∗)p∗(0)π(a)da= 1, (3.1)

and obviously∫ M

0
β′P(a,P∗)p∗(0)π(a)da=

∫ M

0
f ′(P∗)p∗(0)b(a)π(a)da (3.2)

holds. Furthermore we have for any stationary solution

∫ M

0
β(a,P∗)π(a)da=

∫ M

0
f (P∗)b(a)π(a)da= 1, (3.3)

and with

p∗(0) =
P∗∫ M

0 π(a)da
(3.4)

we can rewrite equation (3.1) as follows

18
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K(λ) = 1 =
∫ M

0
e−λaπ(a)b(a) f (P∗)da+

∫ M

0
e−λaπ(a)da

(
P∗∫ M

0 π(a)da

f ′(P∗)
f (P∗)

)
.

(3.5)

Now suppose thatf ′(P∗) > 0 holds. Then it is easy to see that forK(λ) in (3.5) we

have

lim
λ→−∞

K(λ) = +∞ lim
λ→+∞

K(λ) = 0

andK(λ) is a strictly monotone decreasing function ofλ, so there exists exactly one

realλ for whichK(λ) = 1 holds. Now we are going to show thatλ > 0 holds. Contrary,

suppose thatλ≤ 0. Then for everya∈ [0,M] we havee−λa ≥ 1.

That is we have∫ M

0
e−λaπ(a)b(a) f (P∗)da≥

∫ M

0
π(a)b(a) f (P∗)da= 1,

and

∫ M

0
e−λaP∗

π(a)∫ M
0 π(a)da

f ′(P∗)
f (P∗)

da> 0.

This shows thatK(λ) > 1 for everyλ≤ 0.

On the other hand iff ′(P∗) < 0 then suppose that there exists a solutionλ = x+ iy

with x≥ 0. Then the characteristic equation assumes the form

1 = Re(K(λ)) =
∫ M

0
e−xacos(ya)π(a)b(a) f (P∗)da

+
∫ M

0
e−xacos(ya)π(a)da

(
P∗∫ M

0 π(a)da

f ′(P∗)
f (P∗)

)
,

Im(K(λ)) = 0.

If x≥ 0 thene−xa≤ 1 and|cos(ya)| ≤ 1, so that
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Re(K(λ))≤
∫ M

0
π(a)b(a) f (P∗)da+P∗

f ′(P∗)
f (P∗)

= 1+P∗
f ′(P∗)
f (P∗)

< 1,

a contradiction.

Finally observe thatR′(P∗) < 0 ⇐⇒ f ′(P∗) < 0 because in this special case of

vital ratesR(P) =
∫ M

0 b(a) f (P)π(a)daholds.�

This result is in accordance with the example of Gurtin and MacCamy (see [16],[18])

which we treated at the end of the first section, because nowm′(P)≡ 0 and−β′(P∗) >

0 ⇐⇒ f ′(P∗) < 0.

3.2 µ does depend onP

Now consider the following more general vital rates, both of them depending onP

β(a,P) = b(a) f (P), µ(a,P).

The characteristic equation is

K(λ) = A11(λ)A22(λ)−A12(λ)A21(λ)+A12(λ)+A21(λ) = 1,

where now

A11(λ) =
∫ M

0
e−λaπ(a,P∗)da,

A12(λ) =−p∗(0)
∫ M

0
e−λaπ(a,P∗)

∫ a

0
µ′P(s,P∗)eλsdsda,

A21(λ) =
∫ M

0
e−λab(a) f (P∗)π(a,P∗)da,

A22(λ) = p∗(0)
∫ M

0
b(a) f ′(P∗)π(a,P∗)da

−p∗(0)
∫ M

0
e−λab(a) f (P∗)

(∫ a

0
µ′P(s,P∗)eλsds

)
π(a,P∗)da.
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Theorem 3.2 [9] The stationary solutionp∗(a) corresponding to the population

quantityP∗ is asymptotically stable iff ′(P∗) < 0 andµ′P(.,P∗) > 0.

Remark. We are to prove that under the conditions above the characteristic equa-

tion cannot have roots with positive or zero real part, and we refer to [21] Th.I.5.1,

where it is proven that if there exists a root with positive real part then there exists a

real positive root, too. This means that there exists a dominant real root of the char-

acteristic equation (2.8). We only note here that these properties are often valid for

population dynamical models, and they are based on the theory of positive operators

and positive semigroups but these theories go beyond our goals in this thesis, for details

see [25].

Proof. We are going to prove that under the conditions for the vital rates for any

realλ≥ 0 we haveK(λ) < 1.

Observe thatA21(λ)≤ 1 ⇐⇒ λ≥ 0, so it is enough to prove

A11(λ)A22(λ)−A12(λ)A21(λ)+A12(λ) < 0

or

−A11(λ)A22(λ)−A12(λ) >−A12(λ)A21(λ). (3.6)

Simplifying the first term ofA22(λ) we get:

A22(λ) = p∗(0)
(

f ′(P∗)
f (P∗)

−
∫ M

0
e−λab(a) f (P∗)

(∫ a

0
eλsµ′P(s,P∗)ds

)
π(a,P∗)da

)
.

Now we are going to substitute theAi j (λ) into the inequality (3.6):

− f ′(P∗)
f (P∗)

p∗(0)
∫ M

0
e−λaπ(a,P∗)da+

+p∗(0)
∫ M

0
e−λaπ(a,P∗)da

(∫ M

0
e−λab(a) f (P∗)π(a,P∗)

(∫ a

0
eλsµ′P(s,P∗)ds

)
da

)
+
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+p∗(0)
∫ M

0
e−λaπ(a,P∗)

(∫ a

0
eλsµ′P(s,P∗)ds

)
da>

> p∗(0)
(∫ M

0
e−λaπ(a,P∗)

(∫ a

0
eλsµ′p(s,P∗)ds

)
da

)(∫ M

0
e−λaβ(a,P∗)π(a,P∗)da

)
.

(3.7)

Omitting the first term of the left-hand side and dividing byp∗(0) we get

(∫ M

0
e−λaπ(a,P∗)da

)(∫ M

0
e−λaβ(a,P∗)π(a,P∗)

(∫ a

0
eλsµ′P(s,P∗)ds

)
da

)
+

+
∫ M

0
e−λaπ(a,P∗)

(∫ a

0
eλsµ′P(s,P∗)ds

)
da>

>

(∫ M

0
e−λaπ(a,P∗)

(∫ a

0
eλsµ′P(s,P∗)ds

)
da

)(∫ M

0
e−λaβ(a,P∗)π(a,P∗)da

)
(3.8)

which implies (3.7).

Subtracting the second term of the left-hand side we get

(∫ M

0
e−λaπ(a,P∗)da

)(∫ M

0
e−λaβ(a,P∗)π(a,P∗)

(∫ a

0
eλsµ′P(s,P∗)ds

)
da

)
>

>

(∫ M

0
e−λaπ(a,P∗)

(∫ a

0
eλsµ′P(s,P∗)ds

)
da

)(∫ M

0
e−λaβ(a,P∗)π(a,P∗)da−1

)
.

(3.9)

Finally observe that forλ≥ 0 we havee−λa ≤ 1 so that

∫ M

0
e−λaβ(a,P∗)π(a,P∗)da−1≤ 0.

The first factor of the right-hand side of (3.9) is positive becauseµ′(.,P∗) > 0, thus

the right-hand side is negativ while the left-hand side is positive. This proves (3.8)

wich implies (3.7) which completes the proof.�
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The conditions on the vital rates in the theorem are very natural. They say that

if at the equilibrium population the growth of the population decreases the fertility

of individuals and increases the mortality in each class then the stationary solution is

asymptotically stable.

Remark. We can show easily that under the assumptions on the vital rates in the

theoremR′(P∗) < 0 holds.

From

R(P(t)) =
∫ M

0
β(a,P(t))π(a,P(t))da

we have

R′(P∗) =
∫ M

0
β′P(a,P∗)π(a,P∗)+β(a,P∗)π′P(a,P∗)da,

and with

π′P(a,P∗) =−
∫ a

0
µ′P(s,P∗)dse−

∫ a
0 µ(s,P∗)ds =−π(a,P∗)

∫ a

0
µ′p(s,P∗)ds

we obtain

R′(P∗) =
∫ M

0
β′P(a,P∗)π(a,P∗)da−

∫ M

0
β(a,P∗)π(a,P∗)

∫ a

0
µ′P(s,P∗)dsda.

If β′P(a,P∗) = b(a) f ′(P∗) < 0 andµ′P(a,P∗) > 0 for eacha ∈ [0,M] holds then

R′(P∗) < 0.
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4 The two species model

Let us consider the following two dimensional model introduced by Miklós Farkas in

[16]. Let p(a, t) andq(a, t) denote the density of the two species of agea at timet ≥ 0,

which means that the total population quantity at timet is given by

P(t) =
∫ M

0
p(a, t)da, Q(t) =

∫ M

0
q(a, t)da,

with maximal ageM for both species. This yields no restrictions in a biological sense

settingM arbitrary large but lets us avoid some mathematical problems. The intrinsic

mortality and fertility of the species is given bym(a,Q),bp(a) andn(a,P),bq(a) re-

spectively, where the mortality of speciesp depends on the total population quantity

of the other speciesq and vice-versa. The fertility function depends only on the agea

for both species.

For the vital rate functions we make the following general assumptions, similarly

to the case of a one species model:

∀a∈ [0,M] 0≤ bq(a),bp(a)≤ K < ∞,∀a∈ [0,M), x∈ [0,∞) m(a,x),n(a,x)≥ 0

∀x∈ [0,∞) :
∫ M

0
m(a,x)da=

∫ M

0
n(a,x)da= ∞, bq(.),bp(.),m(., .),n(., .) ∈C1.

With these notations the functionsp(a, t),q(a, t) have to satisfy the well-known

balance equations

p′a(a, t)+ p′t(a, t) =−m(a,Q(t))p(a, t),

q′a(a, t)+q′t(a, t) =−n(a,P(t))q(a, t). (4.1)

The number of newborns at timet is given by

p(0, t) =
∫ M

0
bp(a)p(a, t)da, q(0, t) =

∫ M

0
bq(a)q(a, t)da. (4.2)
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The initial age distributions are denoted byp0(a) := p(a,0), q0(a) := q(a,0) and

they have to satisfy the compatibility conditions

p0(0) =
∫ M

0
bp(a)p(a,0)da, q0(0) =

∫ M

0
bq(a)q(a,0)da. (4.3)

Every positive equilibrium of the system (4.1)-(4.3) is a stationary age distribution

denoted by(p∗(a),q∗(a)).

The asymptotic stability of stationary solutions of the two dimensional model above

is given by the following definition analogously as at the beginning of section 2.

Definition The stationary solution(p∗(a),q∗(a)) is said to be asymptotically stable

if for all ε > 0 there exists aδ > 0 such that whenever|p(.,0)− p∗(.)|L1 < δ, |q(.,0)−
q∗(.)|L1 < δ then |p(., t)− p∗(.)|L1 < ε and |q(., t)− q∗(.)|L1 < ε for all t ≥ 0 holds.

Moreoverδ can be chosen such that lim
t→∞

|p(., t)− p∗(.)|L1 = lim
t→∞

|q(., t)−q∗(.)|L1 = 0.

4.1 Stability by the characteristic equation

In [16] Miklós Farkas introduced this two species system and deduced a characteristic

equation corresponding to the stationary solution(p∗(a),q∗(a)) analogously to the one

dimensional case. In this case, after the linearization procedure, a four dimensional ho-

mogeneous system is obtained, with coefficientsAi j (λ), which are Laplace transforms

in the case of infinite maximal age.

Recall now the characteristic equation from [16]

(A11(λ)A34(λ)+A14(λ)A31(λ))(A22(λ)A43(λ)+A23(λ)A42(λ)) = A31(λ)A43(λ),

(4.4)

with the following notations

A11(λ) =
∫ M

0 e−λaπp(a,Q∗)da,

A23(λ) =
∫ M

0 e−λaπq(a,P∗)da,

A31(λ) = 1−
∫ M

0 e−λabp(a)πp(a,Q∗)da,

A43(λ) = 1−
∫ M

0 e−λabq(a)πq(a,P∗)da,

25



Linearized stability of structured population dynamical models PhD dissertation

A14(λ) = p∗(0)
∫ M

0 e−λaπp(a,Q∗)
∫ a

0 eλsm′
Q(s,Q∗)dsda,

A22(λ) = q∗(0)
∫ M

0 e−λaπq(a,P∗)
∫ a

0 eλsn′P(s,P∗)dsda,

A34(λ) = p∗(0)
∫ M

0 e−λaπp(a,Q∗)bp(a)
∫ a

0 eλsm′
Q(s,Q∗)dsda,

A42(λ) = q∗(0)
∫ M

0 e−λaπq(a,P∗)bq(a)
∫ a

0 eλsn′P(s,P∗)dsda.

Here

πp(a,Q) = e−
∫ a

0 m(s,Q)ds, πq(a,P) = e−
∫ a

0 n(s,P)ds,

denote the survival probability of speciesp andq, respectively, while the total popula-

tion quantities are denoted byP∗ =
∫ M

0 p∗(a)daandQ∗ =
∫ M

0 q∗(a)da.

Recall from [16]

Theorem 4.1If all the roots of the characteristic equation (4.4) have negative real

part then the stationary solution(p∗(a),q∗(a)) is asymptotically stable, if instead it

has a root with positive real part then (4.4) and consequently the stationary solution

(p∗(a),q∗(a)) is unstable.�

If the system (4.1)-(4.3) admits a stationary solution(p∗(a),q∗(a)) at total popula-

tion quantities(P∗,Q∗) 6= (0,0) it has to satisfy the following equations

p′∗(a) =−m(a,Q∗)p∗(a), q′∗(a) =−n(a,P∗)q∗(a), (4.5)

p∗(0) =
∫ M

0
bp(a)p∗(a)da, q∗(0) =

∫ M

0
bq(a)q∗(a)da. (4.6)

Substituting the solutions of (4.5) into (4.6) we obtain

1 = Rp(Q∗) =
∫ M

0
bp(a)πp(a,Q∗)da, 1 = Rq(P∗) =

∫ M

0
bq(a)πq(a,P∗)da. (4.7)

As earlierRp(Q),Rq(P) denote the inherent net reproduction number, the number

of offsprings expected to be produced by an individual in her lifetime.

If the vital rate functionsbp(a),bq(a),m(a,Q),n(a,P) are given we can solve equa-

tions (4.7) forP∗,Q∗ and determine the stationary solution(p∗(a),q∗(a)) as in [16].
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p∗(a) = p∗(0)πp(a,Q∗), q∗(a) = q∗(0)πq(a,P∗)

where

p∗(0) =
P∗∫ M

0 πp(a,Q∗)da
, q∗(0) =

Q∗∫ M
0 πq(a,P∗)da

,

respectively.

Similarily to the case of the single species model (as in [21]) first we consider the

stability of the trivial equilibrium of the system (4.1)-(4.3). The stability of the trivial

equilibrium is important, for example, in case we want to raise a population from a

small number of individuals.

Proposition 4.2[15] The trivial equilibrium(0,0) is asymptotically stable if

Rp(0),Rq(0) < 1, if insteadRp(0) > 1 orRq(0) > 1 holds then it is unstable.

Proof An easy computation shows that in the case of the trivial equilibrium our

characteristic equation reduces to the following:

0 =
(

1−
∫ M

0
e−λabp(a)πp(a,0)da

)(
1−

∫ M

0
e−λabq(a)πq(a,0)da

)
. (4.8)

From (4.8) settingλ = x+ iy we obtain the equations

1 =
∫ M

0
e−xacos(ya)bp(a)πp(a,0)da, 1 =

∫ M

0
e−xacos(ya)bq(a)πq(a,0)da. (4.9)

Becausecos(ya)≤ 1 ande−xa≤ 1 holds forx≥ 0, it is easy to see that if∫ M
0 bp(a)πp(a,0)da= Rp(0) < 1 and

∫ M
0 bq(a)πq(a,0) = Rq(0) < 1 hold, then the

characteristic equation (4.4) has no roots with positive or zero real part.

On the other hand ifRp(0) > 1 or Rq(0) > 1 holds then there exists a real root

x∗ > 0 by the Intermediate Value Theorem.�

Now suppose that there exists a stationary solution in the form(0, q̄∗(a)) of the

system (4.1)-(4.3). In this case our characteristic equation reduces to the following
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0 =
(

1−
∫ M

0
e−λabp(a)πp(a,Q̄∗)da

)(
1−

∫ M

0
e−λabq(a)πq(a,0)da

)
, (4.10)

whereQ̄∗ =
∫ M

0 q̄∗(a)da.

In this case the net reproduction number of speciesq equals one, that is

1 = Rq(0) =
∫ M

0
bq(a)πq(a,0)da,

which meansλ = 0 is always a root of (4.10), thus the linearization doesn’t decide the

stability.

As a consequence, similarly to the proof of the Proposition we obtain that if

Rp(Q̄∗) > 1 holds then the stationary solution(0, q̄∗(a)) is unstable if instead

Rp(Q̄∗) < 1 holds then every nonzero root of (4.8) must have negative real part and

the linearization does not decide the stability.

Remark In this caseRp(Q̄∗) is not necessarily equal to 1 because the speciesp is

not present so that its net reproduction number at the total populationQ̄ is arbitrary.

The same argument holds for the stationary solution in the form(p̄∗(a),0), of

course.

In the following we treat the stability of the stationary solution(p∗(a),q∗(a)) when

(P∗,Q∗) is lying in the interior of the positive orthant(P,Q), and we suppose that

R′p(Q∗),R′q(P∗) 6= 0.

Theorem 4.3[15] If sign(R′p(Q∗)) = sign(R′q(P∗)) holds then the stationary solu-

tion (p∗(a),q∗(a)) corresponding to the pair of population quantities(P∗,Q∗) is unsta-

ble.

Proof We are going to show that under the condition above the characteristic equa-

tion has a positive rootλ.

Simple computation shows that atλ = 0 the left-hand side of (4.4) equals

P∗Q∗R
′
p(Q∗)R′q(P∗). (4.11)

Because of the condition in the Theorem (4.11) is positive and the right-hand side

of (4.4) atλ = 0 equals 0.
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Observe that

lim
λ→∞

(A14(λ),A22(λ),A34(λ),A42(λ),A11(λ),A23(λ)) = (0,0,0,0,0,0),

that is for the left-hand side of (4.4) we have

lim
λ→∞

(A11(λ)A34(λ)+A14(λ)A31(λ))(A22(λ)A43(λ)+A23(λ)A42(λ)) = 0,

while for the right-hand side of (4.4) we find

lim
λ→∞

(A31(λ)A43(λ)) = 1.

Then by the Intermediate Value Theorem it follows that there exists a positive root

λ of (4.4).�

Remark

Note that ifsign(m′
Q) = sign(n′P) thensign(R′p(Q∗)) = sign(R′q(P∗)) because

R′p(Q∗) =−
∫ M

0
bp(a)πp(a,Q∗)

(∫ a

0
m′

Q(s,Q∗)ds

)
da,

and

R′q(P∗) =−
∫ M

0
bq(a)πq(a,P∗)

(∫ a

0
n′P(s,P∗)ds

)
da,

respectively. This means that in the case

m′
Q > 0,n′P > 0, resp. m′

Q < 0,n′P < 0 (4.12)

every stationary solution of the system is unstable, and the conditions in (4.12) mean

that the model is a competitive, resp. a cooperative one.

Finally we formulate the following

Conjecture 4.4[15] In the casesign(R′p(Q∗)) 6= sign(R′q(P∗)), the case of a predator-

prey model, every positive stationary solution(p∗(a),q∗(a)) with total population

quantity(P∗,Q∗) is asymptotically stable.
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5 The size structured model

In this section we treat a structured model, wherea denotes the size, weight or any

biologically important structuring variable of individuals (except the age) [3]. In this

case a third vital rate function occurs, which measures the growth ofa in time t. This

generalized McKendrick model can be derived as a continuity equation similarly to the

age structured model in Sect. 1.1. In our model the growth rateγ depends only on the

structuring variablea, but in a more general setting it may depend on any functional of

the distributionp(a, t), e.g. on the total population quantity ([25],[6]).

First we deduce a characteristic function for the stationary solutionp∗(a) of the

system, then based on the localization of the roots of this characteristic function we

prove stability (resp. instability) results in the case of very general vital rate functions.

5.1 The model equation

The model equation

p′t(a, t)+(γ(a)p(a, t))′a =−µ(a,P(t))p(a, t), 0≤ a < m< ∞,

γ(0)p(0, t) =
∫ m

0
β(a,P(t))p(a, t)da, t > 0, (5.1)

with the initial conditionp(a,0) := p0(a) describes the dynamics of a single species

population with structuring variablea which can be considered now as the measure of

an individual’s size.

The mortality and the fertility functionsµ,β depend on the sizea and on the total

population quantity

P(t) =
∫ m

0
p(a, t)da

at timet which makes the model a nonlinear one. We assume a finite maximal size

denoted bym and the size of any newborn is considered to be 0. As usually, we make

the following general assumptions on these vital rate functions:

∀x∈ [0,∞) β(.,x) ∈ L1(0,m), µ(.,x) ∈ L1
loc([0,m)) ,
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∀x∈ [0,∞) 0≤ β(a,x)≤ K < ∞, µ(a,x)≥ 0,
∫ m

0 µ(a,x)da= ∞.

The growth rateγ > 0 depends only on the sizea. Moreover we assume that all

the vital rate functionsµ,β,γ are inC1 class. This generalized model is equivalent to

the Gurtin-MacCamy (or McKendrick) nonlinear age structured model ifγ ≡ 1, (see

[18],[21],[3]). It is often used to model fish, coral or tree populations where the size is

a more relevant measure according to the dynamical behaviour of the system.

5.2 The characteristic equation

If the model (5.1) has a stationary solution denoted byp∗(a) then it has to satisfy the

following equations

γ′(a)p∗(a)+ γ(a)p′∗(a) =−µ(a,P∗)p∗(a), P∗ =
∫ m

0
p∗(a)da,

γ(0)p∗(0) =
∫ m

0
β(a,P∗)p∗(a)da. (5.2)

From (5.2) we have

p′∗(a) =
−µ(a,P∗)p∗(a)− γ′(a)p∗(a)

γ(a)
,

and we get easily the solution

p∗(a) = p∗(0)e−
∫ a

0
µ(s,P∗)+γ′(s)

γ(s) ds
. (5.3)

Substituting (5.3) into (5.2) we obtain

1 =
∫ m

0 β(a,P∗)e
−

∫ a
0

µ(s,P∗)+γ′(s)
γ(s) ds

da
γ(0)

=: Q(P∗), (5.4)

which quantity was known as the inherent net reproduction number in the age struc-

tured case (γ≡ 1).

We can solve equation (5.4) for the single variableP and from the equation

31



Linearized stability of structured population dynamical models PhD dissertation

P∗ =
∫ m

0
p∗(a) = p∗(0)

∫ m

0
e
−

∫ a
0

µ(s,P∗)+γ′(s)
γ(s) ds

da

we have the initial valuep∗(0), and the stationary solutionp∗(a)= p∗(0)e−
∫ a

0
µ(s,P∗)+γ′(s)

γ(s) ds.

This way we showed that for any solutionP∗ of (5.4) we have exactly one stationary

solutionp∗(a).

Now introducing the variation for an arbitrary stationary solutionp∗(a)

u(a, t) := p(a, t)− p∗(a),

u(a, t) has to satisfy the following equation

u′t(a, t)+(γ(a)u(a, t))′a = p′t(a, t)+(γ(a)p(a, t))′a− (γ(a)p∗(a))′a,

and with

p′t(a, t)+(γ(a)p(a, t))′a =−µ(a,P(t))p(a, t), (γ(a)p∗(a))′a =−µ(a,P∗)P∗(a),

we get

u′t(a, t)+(γ(a)u(a, t))′a =−µ(a,P)p(a, t)+µ(a,P∗)p∗(a).

Now expandingµ(a,P) into Taylor series inP at P∗ and omitting the nonlinear

terms, that is we use the approximationµ(a,P) ∼ µ(a,P∗) + µ′P(a,P∗)(P−P∗), we

arrive at

u′t(a, t)+(γ(a)u(a, t))′a =−µ(a,P∗)u(a, t)−µ′p(a,P∗)p∗(a)
∫ m

0
u(a, t)da, (5.5)

and for the initial condition

u(0, t) = p(0, t)− p∗(0) =
∫ m

0
β(a,P∗)u(a, t)da+

∫ m

0
β′P(a,P∗)p∗(a)da

∫ m

0
u(a, t)da.

(5.6)
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Now suppose that this linearized problem has solutions of the formu(a, t)= eλtU(a),

substituting this into (5.5) and (5.6) and applying the following notationŪ =
∫ m

0 U(a)da

we obtain the system

U ′(a) = U(a)
−γ′(a)−µ(a,P∗)−λ

γ(a)
−Ū

µ′P(a,P∗)p∗(a)
γ(a)

, (5.7)

U(0) =
∫ m

0
β(a,P∗)U(a)da+Ū

∫ m

0
β′P(a,P∗)p∗(a)da. (5.8)

The solution of the initial problem (5.7)-(5.8) is

U(a) =
(

U(0)−
∫ a

0

Ūµ′P(s,P∗)p∗(s)
γ(s)

e
∫ s

0
γ′(r)+µ(r,P∗)+λ

γ(r) dr
ds

)
e
−

∫ a
0

γ′(s)+µ(s,P∗)+λ
γ(s) ds

. (5.9)

Integrating (5.9) from 0 tom and using the formulap∗(s) = p∗(0)e−
∫ s

0
γ′(r)+µ(r,P∗)

γ(r) dr

we obtain

Ū = A11(λ)U(0)+A12(λ)Ū ,

whith

A11(λ) =
∫ m

0
e
−

∫ a
0

γ′(s)+µ(s,P∗)+λ
γ(s) ds

da,

and

A12(λ) =−p∗(0)
∫ m

0
e
−

∫ a
0

γ′(s)+µ(s,P∗)+λ
γ(s) ds

(∫ a

0

µ′P(s,P∗)
γ(s)

e
∫ s

0
λ

γ(r)dr
ds

)
da.

Substituting the solutionU(a) into the initial condition (5.8) we get

U(0) = U(0)A21(λ)+ŪA22(λ),

where

A21(λ) =
∫ m

0
β(a,P∗)e

−
∫ a

0
γ′(s)+µ(s,P∗)+λ

γ(s) ds
da,
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A22(λ) = p∗(0)
∫ m

0
e
−

∫ a
0

γ′(s)+µ(s,P∗)
γ(s) dsβ′P(a,P∗)da−

−p∗(0)
∫ m

0
e
−

∫ a
0

γ′(s)+µ(s,P∗)+λ
γ(s) dsβ(a,P∗)

(∫ a

0

µ′P(s,P∗)
γ(s)

e
∫ s

0
λ

γ(r)dr
ds

)
da.

Thus, we get the same linear system as in [16] forŪ ,U(0) but with more compli-

cated coefficients:

0 = A11(λ)U(0)+(A12(λ)−1)Ū , 0 = U(0)(A21(λ)−1)+ŪA22(λ). (5.10)

The homogenous system (5.10) has a non trivial solution if and only if the follow-

ing determinant is zero, ∣∣∣∣∣ A11(λ) A12(λ)−1

A12(λ)−1 A22(λ)

∣∣∣∣∣= 0.

Thus, we may formulate the following.

Theorem 5.1[11] The stationary solutionp∗(a) is asymptotically stable (resp. un-

stable) if all the roots of the following equation have negative real part (resp. it has a

root with positive real part).

A11(λ)A22(λ)−A12(λ)A21(λ)+A12(λ)+A21(λ) = 1 (5.11)

5.3 Stability of equilibria

Next we establish our stability results.

The proof of the following result mainly follows the idea of the proof of Th.1 in

[9].

Theorem 5.2[11] In the case of the following vital ratesµ(a,P) =: µ(a), β(a,P),

γ(0) = 1, the stationary solutionp∗(a) is asymptotically stable ifβ′P(.,P∗) < 0, if in-

steadβ′P(.,P∗) > 0 holds then it is unstable.

Proof
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Let us introduce the following notations:

T(a,P∗,λ) := e
−

∫ a
0

γ′(s)+µ(s,P∗)+λ
γ(s) ds

, T(a,P∗) := e
−

∫ a
0

γ′(s)+µ(s,P∗)
γ(s) ds

,

and

T(a,P∗,λ) = e
−

∫ a
0

γ′(s)+µ(s,P∗)
γ(s) ds

e
−λ

∫ a
0

1
γ(s)ds = T(a,P∗)e−λΓ(a),

where

Γ(a) =
∫ a

0

1
γ(s)

ds.

If the vital rates assume the form above then the characteristic equation can be

written the following way

K(λ) = 1 =

=
P∗∫ m

0 T(a,P∗)da

∫ m

0
T(a,P∗)e−λΓ(a)da

∫ m

0
T(a,P∗)β′P(a,P∗)da+

+
∫ m

0
β(a,P∗)T(a,P∗)e−λΓ(a)da.

Now suppose thatβ′P(.,P∗) > 0 holds. Then we are going to show that the charac-

teristic function has a positive rootλ.

The following inequality is true for allP∗ > 0

K(0) = P∗

∫ m

0
T(a,P∗)β′P(a,P∗)da+ γ(0) > 1

becauseγ(0) = 1 andβ′P(.,P∗) > 0 holds.

Additionally we have

lim
λ→∞

K(λ) = 0,

and the functionsµ,β,γ are nonnegative so thatK(λ) is a monotone decreasing function

of λ, which shows that there exists exactly one positiveλ for whichK(λ) = 1.
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On the other hand ifβ′P(.,P∗) < 0 holds, suppose that there exists a rootλ = x+ iy

such thatx≥ 0.

Then

1 = Re(K(λ)) =
P∗∫ m

0 T(a,P∗)da

∫ m

0
T(a,P∗)e−xΓ(a) cos(yΓ(a))da

·
∫ m

0
T(a,P∗)β′P(a,P∗)da+

∫ m

0
β(a,P∗)T(a,P∗)e−xΓ(a) cos(yΓ(a))da.

For x≥ 0, we havee−xΓ(a) ≤ 1 and cos(yΓ(a))≤ 1 obviously, so we have

Re(K(λ))≤

≤ P∗∫ m
0 T(a,P∗)da

∫ m

0
T(a,P∗)da

∫ m

0
T(a,P∗)β′P(a,P∗)da+

∫ m

0
β(a,P∗)T(a,P∗)da=

= P∗

∫ m

0
T(a,P∗)β′P(a,P∗)da+ γ(0) < 1,

a contradiction.

That is the characteristic equation does not have a root with positive or zero real

part if β′P(.,P∗) < 0 holds.�

Remark The stability condition for the fertility function seems to be very natural

in a biological sense, namely it says that if at the equilibrium the growth of the pop-

ulation decreases the fertility of individuals which in general decreases the number of

newborns as a compensation or balancing principle, then the equilibrium is stable. In

general, if the conditions for stability of equilibria arrived at by mathematical mod-

elling of biological phenomena are intuitively obvious then the mathematical model

may be relied upon perhaps by greater certainty.

The following theorem generalizes the second part of Th.5.2, that is we give a

condition which implies instability of the equilibrium for generalµ(a,P),β(a,P),γ(a).
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Theorem 5.3[11] Supposeγ(0) = 1, then ifQ′(P∗) > 0 holds then the stationary

solutionp∗(a) with total population quantityP∗ is unstable.

Proof With the notations above we have

A11(λ) =
∫ m

0
T(a,P∗,λ)da, A21(λ) =

∫ m

0
β(a,P∗)T(a,P∗,λ)da,

A12(λ) =− P∗∫ m
0 T(a,P∗)da

∫ m

0

(
T(a,P∗,λ)

∫ a

0
µ′P(s,P∗)

eλΓ(s)

γ(s)
ds

)
da,

A22(λ)=
P∗∫ m

0 T(a,P∗)da

∫ m

0
T(a,P∗)β′(a,P∗)−T(a,P∗,λ)β(a,P∗)

∫ a

0

µ′P(s,P∗)
γ(s)

eλΓ(s)dsda.

Substitutingλ = 0 into the characteristic equation (5.11) a basic calculation leads

to

K(0) = P∗

∫ m

0
T(a,P∗)β′P(a,P∗)da

−P∗

∫ m

0
T(a,P∗)β(a,P∗)

∫ a

0

µ′P(s,P∗)
γ(s)

dsda+
∫ m

0
β(a,P∗)T(a,P∗)da.

Now observe that

P∗

∫ m

0
T(a,P∗)β′P(a,P∗)−T(a,P∗)β(a,P∗)

(∫ a

0

µ′P(s,P∗)
γ(s)

ds

)
da= P∗Q

′(P∗),

so that we have

K(0) = P∗Q
′(P∗)+1 > 1.

Now we only have to show that lim
λ→∞

K(λ) = 0 which proves that there exists a real

positive rootλ.

For A11(λ),A21(λ) we have lim
λ→∞

A11(λ) = lim
λ→∞

A21(λ) = 0.
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For A12(λ) consider the function

e
−

∫ a
0

γ′(s)+µ(s,P∗)+λ
γ(s)

∫ a

0

µ′P(s,P∗)
γ(s)

eλΓ(s) = e
−

∫ a
0

γ′(s)+µ(s,P∗)
γ(s)

∫ a

0

µ′P(s,P∗)
γ(s)

eλ(Γ(s)−Γ(a)),

and we have∫ a
0

1
γ(u)du= Γ(a) > Γ(s) =

∫ s
0

1
γ(u)du for a > s, which proves lim

λ→∞
A12(λ) = 0. So

does the second term ofA22(λ), namely

lim
λ→∞

T(a,P∗,λ)β(a,P∗)
∫ a

0

µ′P(s,P∗)
γ(s)

eλΓ(s)ds= 0.

That is we have

lim
λ→∞

A22(λ) =
P∗∫ m

0 T(a,P∗)da

∫ m

0
T(a,P∗)β′(a,P∗)da= C

a constant, which completes the proof.�

Remark The conditionQ′(P∗) > 0 gets a natural meaning for the age structured

population model (the caseγ≡ 1) whenQ(P) = R(P) is the expected number of new-

borns for an individual. Then Th.5.3 states that for sufficiently closeP, P > P∗ the net

reproduction number is greater than 1, so that the stationary solution cannot be stable.

This is not a surprising behaviour again.
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6 The age structured model revisited

Based on the previous section in this part we revisit our results from section 3 according

to the age structured model. Because in the case ofγ≡ 1 the size structured model (5.1)

reduces to the age structured model (1.19) we have as an easy consequence of Th. 5.2

the following.

Corollary 6.1 In the case of the vital ratesµ(a,P) = m(a) andβ(a,P) general the

stationary solutionp∗(a) of the age structured system (1.19) is asymptotically stable if

β′P(.,P∗) < 0 holds, if insteadβ′P(.,P∗) > 0 holds then it is unstable.

Moreover in the case of fully general vital rates from Th.5.3 we obtain the follow-

ing.

Corollary 6.2 In the case of the most general vital rate functionsµ(a,P), β(a,P)

the stationary solutionp∗(a) of the model (1.19) with total population quantityP∗ =∫ m
0 p∗(a)da is unstable ifR′(P∗) > 0 holds.

At the end of section 3 we already pointed out that the conditions on the vital rates

in our Th.3.1 and Th.3.2 for the stability ofp∗(a) implies thatR′(P∗) < 0 holds.

We can check easily that in the case of the vital rates in Corollary 6.1 the same

holds. Namely, in the caseµ(a,P) = m(a) andβ(a,P) general we have

R′(P∗) =
∫ m

0
β′P(a,P∗)π(a)da< 0,

in the case of a stable stationary solutionp∗(a).

That is all of our stability criterions implyR′(P∗) < 0. Comparing this with Corol-

lary 6.2 one may guess that in the case ofR′(P∗) < 0 the stationary solution is linearly

stable, in general.

Note that this would be "the best and the most elegant" result which one may ex-

pect, because in the case ofR′(P∗) = 0 we can see from the proof of Th.5.3 thatλ = 0

is the only root of the characteristic equation with non-negative real part, so the lin-

earization does not decide the stability.

Actually, from the very special example of Gurtin and MacCamy from Sect.1 we

obtain a counterexample of this conjecture.
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Recall that in the following caseµ(a,P) = µ(P) and β(a,P) = e−αaβ(P), with

µ(P),β(P),α ≥ 0, the stationary solutionp∗(a) is asymptotically stable if and only

if µ′(P∗) > β′(P∗) holds.

In this case of vital rates we have

R(P) =
∫ m

0
β(P)e−αa−aµ(P)da,

and from this we obtain

R′(P∗) =
∫ m

0
β′(P∗)e−αa−aµ(P)−β(P∗)aµ′(P∗)e−aµ(P∗)da=

=
∫ m

0
e−αa−aµ(P∗)

(
β′(P∗)−µ′(P∗)aβ(P∗)

)
da. (6.1)

From (6.1) we see that it is possible in the case ofµ′(P∗) ≤ β′(P∗), when the sta-

tionary solution is unstable, that (6.1) becomes negative.
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7 The non-autonomous McKendrick type equation

7.1 Preliminaries

In this section we are going to investigate the asymptotic behaviour of solutions of the

following (linear non-autonomous) Gurtin-type model

p′t(a, t)+ p′a(a, t) =−µ(a, t)p(a, t), 0≤ a < m< ∞, t ≥ 0, (7.1)

p(0, t) =
∫ m

0
β(a, t)p(a, t)da, t > 0,

with the initial conditionp(a,0) =: p0(a), which satisfies the compatibility condition

p0(0) =
∫ m

0
β(a,0)p0(a)da.

This model can be derived similarly to the linear McKendrick model (1.5)-(1.6).

p(a, t) denotes the density of members of agea at timet ≥ 0 and as usually, we

assume finite life span denoted bym.

We believe that this linear but non-autonomous system is more useful modelling

some population dynamical phenomena for example in the case of time periodic vital

rate functions.

The dynamics of the system depends on the vital ratesβ(a, t),µ(a, t) for which we

make the following general assumptions, as in the previous sections

∀t ∈ [0,∞),∀a∈ [0,m] 0≤ β(a, t)≤ k < ∞, µ(a, t)≥ 0, (7.2)

∀ t ∈ [0,∞)
∫ m

0
µ(a, t)da= ∞, ∀t ∈ [0,∞) ∀a∈ [0,m) µ(a, t) < ∞. (7.3)

Later we will make other conditions on the vital rates.

Integrating along the characteristics the model (7.1) can be reduced to a Volterra

integral equation that corresponds to the caset ≥ a. Since we are investigating here

the asymptotic behaviour we consider only this caset > m≥ a.
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The ODE system of characteristics is

da
dτ

=
dt
dτ

= 1,
dp
dτ

=−µ(a, t)p(a, t). (7.4)

From (7.4) we have the following formula forp(a, t)

p(a, t) = ϕ(t−a)e−
∫ a

0 µ(s,t)ds, (7.5)

whereϕ is an arbitraryC1 function which has to satisfy the following equation

p(0, t) =
∫ m

0
β(x, t)p(x, t)dx= ϕ(t), (7.6)

and from (7.6) we obtain

p(a, t) = e−
∫ a

0 µ(s,t)ds
∫ m

0
β(x, t−a)p(x, t−a)dx, (7.7)

thus

p(a, t) = p(0, t−a)π(a, t), with π(a, t) = e−
∫ a

0 µ(s,t)ds. (7.8)

Hereπ(a, t) denotes the probability for an individual to survive the agea at timet.

Finally recall the net reproduction function

R(t) =
∫ m

0
β(a, t)e−

∫ a
0 µ(s,t)ds =

∫ m

0
β(a, t)π(a, t)da. (7.9)

7.2 Extinction

In [22] Iannelli et al. studied the global boundedness of solutions of a generalized

Gurtin-MacCamy system, where the vital rates depend on a weighted size of the pop-

ulation

S(t) =
∫ m

0
γ(a)p(a, t)da,

with γ(.)≥ 0.

Under some natural condition they proved boundedness for the total population

quantityP(t) =
∫ m

0 p(a, t)da.
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They investigated two cases. First, the fertility functionβ(a,S) is bounded by a

non-increasing functionφ(S) for which lim
S→∞

φ(S) = 0 holds.

Secondly they proved boundedness under conditions mainly for the mortality, namely

β(a,S)≤Cγ(a), µ(a,S)≥ µ0(a)+ω(S),

whereγ is the weight function,C a positive constant andω is a non-decreasing function

of the weighted population sizeS, lim
S→∞

ω(S) = ∞.

In this section we are going to apply some of the idea of their proof for the non-

autonomous system. That is, first we show that under similar conditions for the fertility

function the population goes to extinction. Which means in other words, that we give

conditions for the stability of the trivial solutionp(a, t)≡ 0. This can be very important

in ecological applications as we pointed out in the previous section.

Then we consider the connection between the mortality and the fertility function

and establish a result in which a condition for the net reproduction number function

R(t) is given.

Consider the following assumptions on the fertility functionβ(a, t)

β(a, t)≤ φ(t), ∀ t ≥ 0, ∃T ≥m : φ(T)≤ 1
2m

, (7.10)

whereφ(t) is a positive non-increasing function oft ∈ [0,∞).

Theorem 7.1[10] Let the conditions (7.10) be satisfied. For each nonnegative ini-

tial age distributionp(.,0) ∈ L1 we have
∫ m

0 p(a, t)da= P(t)→ 0 if t → ∞.

Proof From (7.7) we have

p(a, t) = p(0, t−a)π(a, t),

whereπ(a, t)≤ 1 for all a∈ [0,m], t ∈ [m,∞).

For the density of newborns at timet we have

p(0, t) =
∫ m

0
β(a, t)p(a, t)da≤ φ(t)P(t). (7.11)

That is, we have
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∫ m

0
p(a, t)da= P(t)≤

∫ m

0
p(0, t−a)da≤

∫ m

0
φ(t−a)P(t−a)da. (7.12)

Now let In := [(n−1)m,nm], (n = 2,3, ...) andPn = max
t∈In

P(t).

Then fort ∈ In+1 anda ∈ [0,m] we have(t−a) ∈ In∪ In+1 thus, from (7.12) we

obtain

Pn+1 ≤max{Pn,Pn+1} ·m·φ((n−1)m).

Let n∗ be sufficiently great to have(n∗−1)m≥ T. Then we have

Pn∗+1 ≤
max{Pn∗,Pn∗+1}

2
. (7.13)

Then it follows that forn≥ n∗ we havePn+1 ≤ Pn
2 .

That is we have

∫ m

0
p(a, t)da= P(t)→ 0, i f t → ∞.�

As we have mentioned the net reproduction rateR(t) is a key parameter to decide

stability of stationary solutions of the autonomous model.

Now suppose that there exists a nonnegativeφ function and some constantε > 0

such that

β(a, t)≤ φ(t), φ(t−a)≤ (1+ ε)β(a, t), a∈ [0,m], t > m. (7.14)

Moreover suppose that there exists a finiteT ≥ 0 such that

R(T)≤ 1
1+δ

f or δ > ε, (7.15)

andR(t) is non-increasing.

Theorem 7.2[10] With the conditions (7.14)-(7.15) for each nonnegative initial age

distributionp(a,0) ∈ L1,
∫ m

0 p(a, t)da= P(t)→ 0 if t → ∞.

Proof
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We have again

p(a, t) = p(0, t−a)π(a, t), t ∈ [m,∞)

and in the same way as in the proof of Th.1 we obtain

P(t)≤
∫ m

0
φ(t−a)P(t−a)π(a, t)da

From the conditions (7.14)-(7.15) we obtain

P(t)≤
∫ m

0
(1+ ε)β(a, t)π(a, t)P(t−a)da, (7.16)

and with the sameIn := [(n−1)m,nm],(n= 2,3, ...) andPn := max
t∈In

P(t), if t ∈ In+1, a∈

[0,m],(t−a) ∈ In∪ In+1 thus we obtain

Pn+1 ≤max{Pn,Pn+1}(1+ ε)
∫ m

0
β(a, t)π(a, t)da, (7.17)

and because
∫ m

0 β(a, t)π(a, t)da = R(t) ≤ 1
1+δ for t ≥ T, for sufficiently largen∗ we

have forn≥ n∗

Pn∗+1 ≤
1+ ε
1+δ

max{Pn∗,Pn∗+1}, (7.18)

from where follows thatPn+1 ≤ Pn
1+ε
1+δ < Pn, for n≥ n∗.

That isP(t)→ 0 if t → ∞.�

Remarks The conditions in Th.7.2 for the fertility function are quite technical.

The condition forR(t) is the essential one. Roughly speaking it means that if there

exists some finiteT ≥ 0 such thatR(t) is bounded by some1
1+δ < 1 for t ≥ T then the

population goes to extinction. In other words if the expected number of newborns at

timet is less than 1 fort ≥ T then the total population quantity tends to zero, of course.

7.3 Bounded survival

In the previous section we established conditions for the vital rates which guarantee

the extinction of the population. One may expect that if there exists some finiteT

such that fort ≥ T the inherent net reproduction numberR(t) is lower than 1, in other
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words, the number of per capita offspring is below 1 then the total population quantity

decreases and the population goes to extinction.

In this section we are going to formulate conditions for the boundedness of solu-

tions which guarantee the survival of the population at the same time. The conditions

are also in close relation with the net reproduction rateRas we will see.

Integrating both sides of the equation in (7.1) from 0 tom we have

Ṗ(t) =−
∫ m

0
µ(a, t)p(a, t)da−

∫ m

0
p′a(a, t)da= p(0, t)−

∫ m

0
µ(a, t)p(a, t)da=

=
∫ m

0
β(a, t)p(a, t)da−

∫ m

0
µ(a, t)p(a, t)da. (7.19)

The solution of the ODE (7.19) obtained easily

P(t) =
∫ t

0

∫ m

0
(p(a,s)β(a,s)− p(a,s)µ(a,s))dads+P(0), (7.20)

and we have

lim
t→∞

P(t)≤
∫ ∞

0

∫ m

0
(p(a,s)β(a,s)− p(a,s)µ(a,s))dads+P(0). (7.21)

Thus the question is when does the function

F(s) =
∫ m

0
(p(a,s)β(a,s)− p(a,s)µ(a,s))da (7.22)

belong toL1
[0,∞).

From (7.4) we havep(a,s) = p(0,s−a)π(a,s) for s≥ a, that is we have

F(s) =
∫ m

0
p(0,s−a)(β(a,s)π(a,s)−µ(a,s)π(a,s))da (7.23)

for s≥m, and clearly
∫ m

0 F(s)ds< ∞ holds.

If the density of newbornsp(0, t) is finite for everyt then there exists a functionC

which is also bounded, such thatp(0,s−a)≤C(s)p(0,s) for everya∈ [0,m], s≥ a.

That is, we have
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F(s)≤ p(0,s)C(s)|
∫ m

0
β(a,s)π(a,s)da−

∫ m

0
µ(a,s)π(a,s)da|. (7.24)

Now observe that
∫ m

0 β(a,s)π(a,s)da= R(s) by definition and
∫ m

0 µ(a,s)π(a,s)da=

1 becauseµ(a,s)π(a,s)da is the probability for an individual to survive the agea and

then die in[a,a+da].

That is, we have

lim
t→∞

P(t)≤
∫ ∞

0
p(0,s)C(s)|R(s)−1|ds+P(0). (7.25)

Note that if the net reproduction numberR is bounded by someM < ∞ for everys,

then the density of newbornsp(0,s) and the functionC is bounded for everys, too.

For example, if 0≤ (R(s)−1)≤ 1
s1+α for someα > 0, then the improper integral in

(7.25) is convergent. This means that the total population is bounded simultaneously

0 < P(0)≤ P(t)≤
∫ ∞

0
p(0,s)C(s)|R(s)−1|ds+P(0) < ∞.

ExampleConsider the following special vital rate functions with maximal life span

m= 100

β(a, t) = b(a) f (t) =
a4

C
(100−a)21.11−a(1+

1
t2 +1

), µ(a) =
1

100−a
,

with C =
∫ 100

0 a4(100−a)21.11−aπ(a)da∼ 0,4045064485·1010.
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Fig.1. b(a) = a4

C (100−a)21.11−a
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Fig.2. µ(a) = 1
100−a

It is easy to show that these functions satisfy the conditions (7.2)-(7.3).

With π(a) = 1− a
100
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Fig.3. π(a) = 1− a
100

we arrive at

R(t) =
∫ 100

0

a4

C
(100−a)21.11−a(1+

1
t2 +1

)(1− a
100

)da= 1+
1

1+ t2

ThusR(t) ≥ 1 for t ≥ 0, which means thatP is a non-decreasing function of time

t, andR(t)→ 1 in a sufficient order.

From (7.25)

lim
t→∞

P(t)≤
∫ ∞

0

p(0,s)C(s)
1+s2 ds+P(0), (7.26)

that is, for any given initial age distributionp0(a) which satisfies the compatibility

condition

p0(0) =
∫ 100

0
2p0(a)

a4

C
(100−a)21.11−ada

the solutionp(a, t) → p∗(a) if t → ∞ with some non-trivial age distributionp∗(a) in

the followingL1 norm:

|p(., t)|L1 :=
∫ m

0
|p(a, t)|da. (7.27)
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Remarks The example above is a very special one but shows the essential role of

the net reproduction functionR(t). Thus the general problem namely the formulation

of necessary or sufficient conditions for the convergence to a non-trivial age distribu-

tion seems to be still open. We are working now on the important special case in which

the vital rates are periodic functions of time.
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8 Bifurcations of equilibria

In this section we consider a one parameter class of systems and investigate how equi-

libria arise by varying a biologically important parameter. We apply our Th.3.1 to

determine the stability of the equilibria.

Recall the following theorem from [21] which characterises the stability of the

trivial equilibrium of the age structured system (1.19).

Theorem 8.1(M. Iannelli[21]) If R(0) < 1 then the trivial equilibriump1(a)≡ 0 is

asymptotically stable, if insteadR(0) > 1 then it is unstable.

In section 3 we have proved results about the stability of stationary solutions of the

age structured model. One of them characterizes the stability in a case when the vital

rates assume a special form, namely

µ(a,P(t)) =: µ(a), β(a,P(t)) = b(a) f (P(t)), (8.1)

a factorization property forβ.

Now consider a family of systems with the following vital rates

µ(a,P) = µ(a), βc(a,P) = b(a) fc(P), fc(P) =
1

P+1
+cP

with bifurcation parameterc > 0, µ,βc ∈C1.

SettingK =
∫ m

0 b(a)π(a)da, we get the following equation

K fc(P)−1 =
cKP2 +cKP+1

P+1
−1 = 0

for the population quantityP.

Observe that nowR(0) = K holds.

From the equation

cKP2 +(cK−1)P+K−1 = 0

we get the solutions

P1,2
1 =

(1−cK)±
√

c2K2−4cK2 +2cK+1
2cK

, (8.2)
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and we search for a positive equilibrium.

8.1 The case K>1

In (8.2)

c2K2−4cK2 +2cK+1 > 0,

holds if

0 < c < 2− 1
K
−2

√
1− 1

K

or

c > 2− 1
K

+2

√
1− 1

K
.

First consider the interval 0< c < 2− 1
K −2

√
1− 1

K , and because of1K > 2− 1
K −

2
√

1− 1
K now 1− cK > 0 holds. The inequality 1− cK >

√
c2K2−4cK2 +2cK+1

shows that in this interval of parameter valuec there exist exactly two nontrivial equi-

libria.

At the parameter valuec = 2− 1
K −2

√
1− 1

K we havec2K2−4cK2+2cK+1 = 0

and 1−cK > 0 so at this value ofc there exists only one positive equilibrium with total

population quantityP1 =
1−K+K

√
1− 1

K

2K−1−2K
√

1− 1
K

.

For 2− 1
K − 2

√
1− 1

K < c < 2− 1
K + 2

√
1− 1

K there aren’t any positive equi-

libria, and this holds forc > 2− 1
K + 2

√
1− 1

K because 1− cK < 0 andcK− 1 >
√

c2K2−4cK2 +2cK+1.

Now we are going to determine the stability of the equilibria.

First consider the positive equilibrium at the parameter valuec= 2− 1
K −2

√
1− 1

K

with total population quantityP1 = 1−cK
2cK =

1−K+K
√

1− 1
K

2K−1+2K
√

1− 1
K

.

We have
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f ′c(P) = c− 1
P2 +2P+1

,

and a simple calculation leads to

f ′c(P1) = 0.

It is easy to show that forP> P1 we havef ′c(P) > 0 and forP< P1 we getf ′c(P) < 0.

Applying Theorem 3.1 we get that one of the positive equilibria is asymptotically stable

and the other one is unstable at the parameter interval 0< c < 2− 1
K −2

√
1− 1

K . The

trivial equilibrium is unstable by Theorem 8.1 becauseR(0) = K > 1. As a summary

we have the following

Theorem 8.2(Saddle-node bifurcation)Forc > 2− 1
K −2

√
1− 1

K there is no pos-

itive equilibrium, forc0 = 2− 1
K − 2

√
1− 1

K we have one positive equilibrium. For

c < c0 there are two curves of positive equilibria in a neighbourhood of

(P,c) =

 1−K +K
√

1− 1
K

2K−1−2K
√

1− 1
K

,c0

 .

The upper equilibria are unstable and the lower equilibria are asymptotically stable.

8.2 The case K<1

Now c2K2−4cK2+2cK+1> 0 for everyc> 0. If 0 < c< 1
K then 1−cK > 0 and be-

cause of 1−cK <
√

c2K2−4cK2 +2cK+1 we get one positive nontrivial equilibrium

with total population quantity

P1 =
1−cK+

√
c2K2−4cK2 +2cK+1

2cK
.

For c≥ 1
K we have 1− cK ≤ 0 and 1− cK +

√
c2K2−4cK2 +2cK+1≤ 0 so there

aren’t any positive equilibria.

The positive equilibrium above tends to zero ifc tends to1
K and tends to infinity if

c tends to 0. For this positive equilibrium

f ′c(P1) = c− 1

P2
1 +2P1 +1

> 0

53



Linearized stability of structured population dynamical models PhD dissertation

so it is unstable.

The trivial equilibrium is asymptotically stable becauseR(0) = K < 1.

Theorem 8.3(Transcritical bifurcation)There are no positive equilibria forc≥ 1
K

and forc < 1
K there is a curve of equilibria which are unstable and the trivial equilib-

rium is stable.

8.3 The case K=1

Now we have

P1,2
1 =

(1−c)±
√

c2−2c+1
2c

from which we obtainP1
1 = 0 and there exists a nontrivial equilibrium forc < 1,

namelyP2
1 = 1

c−1.

For this positive equilibriumP2
1 we have

f ′c(P
2) = c− 1

(1−c
c )2 +21−c

c +1
= c−c2 > 0,

which means that this positive equilibriumP2 is unstable.

For the trivial equilibriumP1
1 we haveR(0) = K = 1, but f ′c(0) = c−1 means that

for small P we haveR(P) > 1 if c > 1 andR(P) < 1 for c < 1. This means that the

trivial equilibrium is stable forc < 1 and it is unstable forc > 1.

Theorem 8.4(Transcritical bifurcation)Forc≥ 1 we have only the trivial equilib-

rium, for c < 1 a curve of positive unstable equilibria emerges.

8.4 Discussion

In the present section we have considered the well-known age-structured model of

Gurtin and MacCamy (1.19), in a special case when the mortality of the individuals is

only age-dependent and the fertility function is separable in the variablesa of age and

P of total population quantity. In that case Th.3.1 shows the stability of the positive

equilibrium, while the stability of the trivial equilibrium depends on the constant
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K =
∫ m

0
b(a)e−

∫ a
0 m(s)dsda= R(0)

in Th.8.1. We showed that a degenerate transcritical bifurcation occurs, that is for,

K ≤ 1, a curve of positive unstable equilibria bifurcates from the trivial one at the

critical parameter valuec0 = 1
K and asc tends to 0 the total population quantity at

the equilibrium tends to the infinity. ForK > 1 we have showed that a saddle-node

bifurcation occurs at the critical parameter valuec0 = 2− 1
K −2

√
1− 1

K . For c < c0

two curves of positive equilibria appear from which one contains unstable equilibrium

points with total population quantity tending to infinity, and the other curve consists of

positive stable equilibrium points.
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9 Conclusions

In this dissertation we mainly investigated the stability of structured population dy-

namical models. Our main tool the characteristic equation, deduced in [16] for the

age-structured model and deduced in [11] for the more general size-structured model

similarly, enabled us to prove stability results under very general conditions on the

vital rate functions. Although our techniques are not new, as we believe, the results

which we obtained and they biological interpretation show a significant step toward

the understanding of long-time behaviour of such structured models.

As we mentioned earlier there is a good number of interesting open problems,

which may describe the directions of the future work. One of the most interesting is

the case of a size-structured model with density dependent growth rate, on which other

researchers are working heavily as we know. Based on section 5 we strongly believe

that in this more general case the linearization procedure can be handled and stability

results can be proven with similar methods.

Recently O. Diekmann et al. working with modern functional analytical tools

[8],[7],[6] formulate succesfully a very general theory for these types of determin-

istic structured population models. The advantage of they work is the generality, to

handle a wide class of models at the same time.

Based on the good number of positive feedback and interest of other researchers

working in a similar field we believe that our attempts may represent a reasonable

direction of research.
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