
Degree-Based Spanning Tree Optimization

PhD Thesis

Gábor Salamon

Department of Computer Science and Information Theory
Budapest University of Technology and Economics

Supervisor: András Recski

2010

ii

Aluĺırott Salamon Gábor kijelentem, hogy ezt a doktori értekezést magam ké-
sźıtettem, és abban csak a megadott forrásokat használtam fel. Minden olyan
részt, amelyet szó szerint, vagy azonos tartalomban, de átfogalmazva más forrásból
átvettem, egyértelműen, a forrás megadásával megjelöltem.

Aluĺırott Salamon Gábor hozzájárulok a doktori értekezésem interneten történő
korlátozás nélküli nyilvánosságra hozatalához.

....................................
Salamon Gábor

iii

iv

Contents

1 Introduction 1

1.1 Motivation and Research Goals . 1

1.1.1 Connection routing in DWDM networks 2

1.1.2 Generalizations of the Hamiltonian Path problem 5

1.1.3 Research goals . 6

1.2 Problem Statement . 7

1.3 Overview of Results . 9

2 Preliminaries 12

2.1 Notation, Definitions, Properties of Trees 12

2.2 Traversal Algorithms . 14

2.3 Optimization and Approximation . 18

2.4 Linear Programming . 20

3 Minimizing the Number of Branchings 21

3.1 Related Results . 21

3.2 A Negative Approximability Result 22

3.3 Approximation in Evenly Dense Graphs 25

4 Spanning Tree Leaves and Vulnerability 31

4.1 Scattering Number and the Minimum
Number of Leaves . 32

4.2 Basic Properties of Minimum Leaf Spanning Trees 36

4.3 Cut-Asymmetry and the Maximum Number of Independent Leaves . 36

4.3.1 Basic properties of cut-asymmetry 37

4.3.2 Cut-asymmetry of trees . 40

4.3.3 Leaf-independence . 41

4.3.4 Putting things together . 46

v

5 Maximizing the Number of Internal Vertices 47
5.1 Related Results . 48
5.2 A 2-approximation Algorithm . 50

5.2.1 Proof 1: via vulnerability parameters 51
5.2.2 Proof 2: the direct way . 51
5.2.3 Proof 3: via linear programming 52
5.2.4 Algorithm ILST in regular graphs 54

5.3 More About Traversals . 55
5.4 Claw-Free and Cubic Graphs . 56
5.5 A 7/4-approximation Algorithm . 61

5.5.1 Local improvement rules . 62
5.5.2 Locally optimal spanning trees, The algorithm 64
5.5.3 Proof of the approximation factor with a primal-dual technique 66
5.5.4 Running time analysis . 70
5.5.5 Pendant vertices . 73

5.6 Vertex-Weighted Case . 74
5.6.1 General graphs . 75
5.6.2 Claw-free graphs . 77
5.6.3 Running time analysis of Algorithms WLOST and RWLOST . 79

5.7 Spanning Many Vertices with a q-Leaf Tree 80
5.8 Dense Claw-Free Graphs . 83
5.9 Experimental Analysis . 87

6 Conclusion and Future Work 91

A Tables of Experimental Results 96

B Summary of Notation 100

vi

Chapter 1
Introduction

1.1 Motivation and Research Goals

Design process, operation and maintenance of telecommunication networks are dy-
namically developing research areas. Graphs are often used as mathematical models
of these networks giving a special importance to the research of effective graph al-
gorithms. In most cases, the obtained mathematical models are too complex to be
solved optimally, thus the aim is to find a “good enough” solution in an accept-
able time limit. Unfortunately, “good enough” can be interpreted in many ways.
Computer engineers build heuristic algorithms and examine them experimentally,
in many cases without any mathematical foundation. On the other hand, math-
ematicians use a different approach, they try to prove theoretical limits on the
performance of the algorithms. However, these limits may not necessarily guarantee
that the algorithms work efficiently in practice.

The main goal of our work is to combine these approaches in order to obtain
algorithms that perform well enough both in theory and in practice. We consider a
design problem from the world of optical telecommunication networks, and we model
it with the help of graph theory (or more precisely with spanning tree optimization
problems). Finally, we present a collection of algorithms and analyze them from
both the theoretical and empirical points of view.

Our mathematical analysis has direct connection to the hamiltonicity theory,
therefore, beside algorithmic aspects, our results have their own theoretical impor-
tance as well.

In the next subsections, we introduce the network design problem under investi-
gation, then we describe the considered mathematical model and the corresponding
combinatorial optimization problems.

1

2 CHAPTER 1. INTRODUCTION

1.1.1 Connection routing in DWDM networks

In this subsection we present the telecommunication network design problem which
inspired us to deal with degree-based spanning tree optimization problems.

Dense Wavelength Division Multiplexing (DWDM) is a technology widely used
in optical networks in order to increase the available bandwidth. The basic idea is
to use different light wavelengths within a single optical fiber enabling multiple data
connections at the same time. Switch devices in a DWDM network must be able to
deal with wavelength multiplexing in order to correctly route data connections. To
explain how this capability can be implemented, we first give a brief and simplified
insight to the layers of a DWDM network. For a comprehensive monograph about
the DWDM networks the reader is referred to [63].

Let us have two applications which want to communicate to each other over
our DWDM network. Their co-operation must be independent of the details of the
underlying network protocols and technologies. Therefore, they are using an appli-
cation layer to communicate. This application layer is built on the top of and is
served by a logical network layer which is responsible for building up and managing
the connection and for accessing the layers of physical transport. Logical network
layer sends the data to be transferred to the electronic (physical) layer which con-
verts it to an electronic signal. This signal now can be transported without dealing
with its logical meaning. Up to this point, we have the layers of a classical network.
However, optical networks transfer optical signals in optical fibers, thus they need an
additional layer under the above mentioned ones: the optical (physical) layer. When
the sender application generates a new connection demand, the electronic physical
layer creates an electronic signal to be sent through the network. This electronic
signal must be converted to an optical signal at the entry terminal of the DWDM
network. Thus the physical transfer itself happens in the optical layer. Similarly,
when the optical signal arrives to its destination, the end terminal converts it back
to an electronic signal and passes it to the electronic layer which forwards it to the
application. Figure 1.1 shows this layering concept whose biggest advantage is its
transparency. Each layer has its own responsibility. Its functionality can be imple-
mented without any knowledge on the details of other layers [18, 20]. (Obviously,
we still need well-defined interfaces between layers.)

In transparent DWDM networks, the whole connection forwarding and routing is
handled by full optical devices: optical repeaters and optical cross connects (OXC’s).
Repeaters only forward the data stream without changing it. OXC’s, in contrast,
can route the connections and can execute wavelength multiplexing, demultiplex-
ing, and conversions. However, the elevated price of OXC’s makes their mass use
inefficient. Therefore, network designers tend to use cheaper devices for the same
task. These devices, called electronic cross connects (EXC’s), execute the routing
and wavelength manipulation functionalities in the electronic layer. They convert
the incoming optical signals to electronic ones, route connections, and then convert
back the electronic signals to optical ones. Though their cost is significantly lower,

1.1. MOTIVATION AND RESEARCH GOALS 3

00111
10101

application
layer

logical network
layer

electronic physical
layer

optical physical
layer

optical repeater

EXC

Figure 1.1: Layers of an opaque DWDM network

they slow down the connection routing process and lose the transparency of the
optical layer.

DWDM networks using EXC’s for routing are called opaque DWDM networks.
In these networks, the data is transferred in the form of optical signals using optical
repeaters. However, all routing functionality is implemented in the electronic layer
with the help of EXC’s. In the example of Figure 1.1, the first two and the forth
internal nodes of the connection path contain optical repeaters forwarding connec-
tion only in the optical layer. In contrast, the third one uses an EXC to implement
routing functionality. This device converts the signal to the electronic layer and
then back to the optical one.

We have to mention here another advantage of EXC’s. They are indeed able
to use traffic grooming. This is basically a Time Division Multiplexing (TDM)
technique which uses the same wavelength of the same fiber to transfer multiple
connections. This can be done by defining time-slots and assign one of them to each
connection. Though the bandwidth can be highly increased by the use of grooming,
this technology is currently available only in the electronic layer, no OXC’s are
grooming capable.

To summarize, OXC’s are faster and they preserve transparency, but their price
is much higher than that of EXC’s. In contrast, EXC’s are cheaper, but they slow
down connection routing and lose transparency. As a compromise, we want to build
opaque networks where the routing is fully implemented by EXC’s, but at the same
time we want to use as few of these devices as possible.

The design problem considered is the following. We have an existing infrastruc-
ture composed of network nodes connected by optical fibers. Some of these nodes
have a special role: they are connection terminals, that is, they input and output
user requests to and from the network. We also have a traffic matrix which shows the

4 CHAPTER 1. INTRODUCTION

estimated amount of data to be transferred between each pair of terminals. We have
to place EXC’s to the nodes and route all connections such that the estimated traffic
can be sent through the network without major congestion. One can come up with
different cost functions including the cost of devices and network links used, routing
delays, loss of transparency, etc. If a combination of these cost functions is present,
exact mathematical discussion becomes hardly possible though soft-computing tech-
niques can still perform well. In [1] we present a genetic algorithm based approach
which deals with many of these cost functions at a time.

In this work, we use a single cost function, that is, we want to minimize the
number of EXC’s used. Several simplifications will be applied to our model. For
example, we suppose that EXC’s can handle an infinite number of connections on
their ports. The case when the traffic hits the limits of their throughput capacities
would need a more sophisticated model and is out of the scope of this work. As
per our model we want to build a network where every node can communicate to
every other node and there is no need to build protection paths to handle network
failures. This means that we must ensure the existence of a single path between
each terminal pair.

Our mathematical model is based on graphs. Network nodes are represented
by the vertices of a graph G. The existing optical fiber links between nodes give
the edges of G. The requirement that each terminal pair must be connected is
satisfied by looking for a spanning tree T of G. We can suppose that we need
routing functionality and wavelength manipulation only in the network nodes which
communicate to at least three adjacent nodes. Therefore we have to put costly
switch devices only to these nodes. For our model, this means that our aim is to
minimize the number of at-least-3-degree vertices of T [2, 4]. Figure 1.2 shows an
example how to decrease the number of EXC’s needed in a communication network.
According to our assumption, EXC’s must be placed exactly to those nodes of whom
at least three links are used for communication. To all other nodes, optical repeaters
can be installed to forward connections only in the optical layer.

As a result, we are faced to the following combinatorial optimization problem:
given a graph G, find a spanning tree of G with a minimum number of branchings
(vertices of degree at least 3). This is the Minimum Branching Spanning Tree

problem which will be discussed in details in Chapter 3. We mention here, that
this problem is a degree-based spanning tree optimization problem, as the measure
function is based on the degree distribution of the resulting spanning tree. We
will give a formal definition of such problems in Section 1.2. Beside Minimum

Branching Spanning Tree , this work discusses a set of closely related degree-
based spanning tree optimization problems, too, as they help us to build efficient
heuristics for the Minimum Branching Spanning Tree problem. Moreover,
as shown in the next subsection, these problems, being the generalizations of the
Hamiltonian Path problem, are interesting also from the theoretical point of
view.

1.1. MOTIVATION AND RESEARCH GOALS 5

(a) (b) (c)

Figure 1.2: Eliminating EXC’s by connection redesign

1.1.2 Generalizations of the Hamiltonian Path problem

Does a given graph have a simple path containing each vertex exactly once? Though
this question is easy to formulate, the answer is hard to give. Indeed, Hamiltonian

Path problem, the corresponding decision problem turned out to be NP-complete.

Following a theoretical approach, many necessary or sufficient conditions of
hamiltonicity were set up. Most of them are based on structural properties of
graphs. We mention a few of these conditions in Chapter 4, where we also present
new sufficient conditions of hamiltonicity as part of our theoretical investigation.

Another way to deal with hamiltonicity is to transform the original decision
problem to a (necessarily NP-hard) optimization problem. For such a generalization
of the Hamiltonian Path problem one can construct approximation algorithms
and use them in real-world applications. In this work, we use this approach and
consider several spanning tree optimization problems which are all generalizations
of the Hamiltonian Path problem. Moreover, we restrict ourselves to so called
degree-based spanning tree optimization problems, that is, we have an input graph G
and we aim to construct a spanning tree T of G such that T optimizes (minimizes
or maximizes) a measure function which depends only on the degree distribution of
T .

As a first example, we mention the Minimum Degree Spanning Tree prob-
lem, where the cost of a solution T equals to the highest vertex degree of T . This
problem clearly generalizes the Hamiltonian Path problem, as Hamiltonian paths
(if exist) are the only spanning trees with a maximum degree of 2. The Minimum

Degree Spanning Tree problem is easy to approximate. Indeed, Fürer and
Raghavachari [29] gave a local improvement based approximation algorithm which
finds a spanning tree whose maximum degree is at most one higher than the opti-
mum solution. This result gave us the idea to use local improvement techniques for
degree-based spanning tree optimization (see Section 5.5).

The Minimum Branching Spanning Tree problem was first considered by
Gargano et al. [33]. In this case, the aim is to find a spanning tree T with a minimum
number of branchings (vertices of degree at least 3). Clearly, this is a generalization
of the Hamiltonian Path problem, as Hamiltonian paths (if exist) are the only

6 CHAPTER 1. INTRODUCTION

spanning trees with no branchings. In Chapter 3, we deal with this problem.

Another way of generalizing the Hamiltonian Path problem is to look for a
spanning tree with a minimum number of leaves (1-degree vertices). Clearly, ev-
ery spanning tree must have at least 2 leaves, and Hamiltonian paths (if exist) are
the only ones with exactly 2 leaves. This problem, called Minimum Leaf Span-

ning Tree problem, turned out to be hard to approximate: Lu and Ravi [54]
showed that it has no constant factor approximation algorithm, unless P=NP. How-
ever, if we complement the measure function and we count the non-leaves (internal
vertices) instead of the leaves then the situation is better. The obtained Maxi-

mum Internal Spanning Tree problem is trivially equivalent to the Minimum

Leaf Spanning Tree problem as long as we focus on the set of optimal solu-
tions. From an approximation point of view, however, the two problems behave
differently. Indeed, the Maximum Internal Spanning Tree problem can be
constant approximated. In Chapter 5, we present a linear-time 2-approximation and
a O(n4)-time 7/4-approximation algorithm for this problem. This latter factor is
guaranteed only in graphs with no 1-degree vertices. These algorithms result in a
small number of leaves and therefore they can be used as heuristics for the Minimum

Leaf Spanning Tree problem.
Clearly, not all degree-based spanning tree optimization problems are generaliza-

tions of the Hamiltonian Path problem. As an example, the Maximum Leaf

Spanning Tree problem aims to maximize the number of leaves (so it has the
same measure function as the Minimum Leaf Spanning Tree problem, but to
be maximized instead of minimized). For this problem Lu and Ravi [54, 55] gave
the first constant factor approximation followed by a 2-approximation algorithm of
Solis-Oba [64].

1.1.3 Research goals

As mentioned in the above subsections, our research is motivated both by telecom-
munication network design applications and by theoretical combinatorics. Our goal
is to obtain results which can be used in both areas: to build algorithms based on
simple steps and then to prove theoretical bounds on their goodness. Beside a math-
ematical analysis, we also aim to implement some of our algorithms to investigate
their behavior on randomly generated inputs.

A part of our research is devoted to graph vulnerability parameters and their
connection to spanning tree leaves. This direction relates our work to vulnerability
and hamiltonicity theories and becomes a useful tool for proving approximation
ratios of our algorithms.

Firstly, we deal with the Minimum Branching Spanning Tree problem
(Chapter 3). As we will see (Section 3.2), there is no efficient approximation algo-
rithm for this problem in general graphs. Thus we aim to give an approximation for
a subclass of input graphs, namely for evenly dense graphs (Section 3.3), and also
to find good heuristics for general graphs. These heuristics are based on the idea of

1.2. PROBLEM STATEMENT 7

looking for a spanning tree with only a few 1-degree vertices. Though the number
of 1-degree vertices does not determine the number of branchings, decreasing their
number helps, in most cases, decreasing the number of branchings, too.

Therefore, our second goal is to deal with degree based spanning tree optimiza-
tion problems in a bit more general way. We consider the Minimum Leaf Span-

ning Tree problem (Chapter 5), where the task is to find a spanning tree with
a minimum number of leaves. We remark that, behind the scenes, our algorithms
(Sections 5.2 and 5.5) will perform the best when they can find a spanning tree with
many 2-degree vertices.

Our third goal is to obtain results in the field of vulnerability theory (Chapter 4).
Vulnerability parameters measure how much damage can be caused to a graph by
removing some of its “important” parts. These parameters have strong connection
to hamiltonicity theory and, as we will show, to the number of leaves of spanning
trees. Some of our results on the Maximum Internal Spanning Tree problem
in Chapter 5 are based on the theory we present in Chapter 4.

1.2 Problem Statement

In this section, we give the formal definition of the general degree-based spanning
tree optimization problem and its special cases which are investigated in this work.
First we define what we consider to be an optimization problem.

Definition 1.2.1 An optimization problem P is characterized by the following
quadruple of objects (IP , SOLP , mP , goalP), where:

1. IP is the set of instances of P;

2. SOLP is a function that associates to any input instance x ∈ IP the set of
feasible solutions of x;

3. mP is the measure function, defined for pairs (x, y) such that x ∈ IP and
y ∈ SOLP(x). For every such pair (x, y), mP(x, y) provides a value in Q
which is the value of the feasible solution y. This value is also called cost in
minimization problems and utility in maximization problems;

4. goalP ∈ {MIN, MAX} specifies whether P is a minimization or a maximization
problem.

A spanning tree optimization problem is to find a spanning tree T of a given
undirected connected graph G which, depending on the problem, minimizes or max-
imizes a measure function m(.). To be more general we allow weights to be put on
the vertices and/or on the edges of G. If such weights are present, they can be taken
into consideration when calculating m(T). Examples for the spanning tree optimiza-
tion problems are the Minimum Weight Spanning Tree problem [17, 50, 59],

8 CHAPTER 1. INTRODUCTION

or the Minimum Diameter Spanning Tree problem [39, 40]. For a good survey
on spanning tree optimization problems, the reader is referred to [72].

A spanning tree optimization problem is degree-based if m(T) depends only on
the vertex-degree distribution of T . If G has weights on its vertices then m(T) can
also depend on these weights. More precisely, if dT (v) is the degree of a vertex v in T
and c(v) is the weight of vertex v then m(T) is determined by the pairs (dT (v); c(v)).
In this thesis, we restrict ourselves to the special case where m(T) can be written
in the form of

m(T) =
n−1
∑

i=1

fi

∑

{c(v) : dT (v) = i} , (1.1)

for some fi, with c(v) ≡ 1 used for the unweighted case.
The Maximum Leaf Spanning Tree problem [21, 28, 53, 54, 55, 64] is to

find a spanning tree with a maximum number of 1-degree vertices, that is, m(T) =
|{v : dT (v) = 1}|. The Minimum Degree Spanning Tree problem [29] is to find
a spanning tree whose maximum degree is as small as possible, that is, m(T) =
minv∈T dT (v). We will see further examples in this section but first let us formalize
our above definitions.

Definition 1.2.2 A spanning tree optimization problem P is an optimization prob-
lem (IP , SOLP , mP , goalP), where:

1. IP is the set of undirected connected (possibly vertex-/edge-weighted) graphs;

2. SOLP maps any input graph G to the set of its spanning trees;

3. mP is the measure function that maps a rational number to each solution
spanning tree;

4. goalP ∈ {MIN, MAX} specifies whether mP is to be minimized (representing
cost) or to be maximized (representing utility).

The spanning tree optimization problem P is degree-based if for any solution T ,
mP(T) is fully determined by {(dT (v); c(v)) : v ∈ V (T)}, where dT (v) is the degree
of a vertex v in T and c(v) is the weight of v.

In what follows we define the degree-based spanning tree optimization problems
to be investigated. Their measure function is in the form of (1.1).

Problem 1: Minimum Leaf Spanning Tree

Input: An undirected connected graph G.
Goal: Find a spanning tree T of G with a minimum number of 1-degree vertices
(leaves), that is, minimize m(T) = |{v : dT (v) = 1}|.

Throughout this thesis, we denote by ml(G) the value of the optimum solution
of the Minimum Leaf Spanning Tree problem.

1.3. OVERVIEW OF RESULTS 9

Problem 2: Maximum Forwarding Spanning Tree

Input: An undirected connected graph G.
Goal: Find a spanning tree T of G with a maximum number of 2-degree vertices
(forwarding vertices), that is, maximize m(T) = |{v : dT (v) = 2}|.

Problem 3: Minimum Branching Spanning Tree

Input: An undirected connected graph G.
Goal: Find a spanning tree T of G with a minimum number of (≥ 3)-degree
vertices (branchings), that is, minimize m(T) = |{v : dT (v) ≥ 3}|.

Problem 4: Maximum Internal Spanning Tree

Input: An undirected connected graph G.

Goal: Find a spanning tree T of G with a maximum number of (≥ 2)-degree
vertices (internal vertices), that is, maximize m(T) = |{v : dT (v) ≥ 2}|.

Problem 5: Maximum Weighted Internal Spanning Tree

Input: An undirected connected graph G with a measure function c : V (G) � Q
on its vertices.
Goal: Find a spanning tree T of G with a maximum total weight of (≥ 2)-degree
vertices (internal vertices), that is, maximize m(T) =

∑

{c(v) : dT (v) ≥ 2}.

As we have already mentioned in Subsection 1.1.2, all of these problems can be
viewed as a generalization of the Hamiltonian Path problem, and therefore are
NP-hard.

1.3 Overview of Results

The rest of the thesis is organized as follows.

Chapter 2 introduces our notation, gives some basic definitions and summarizes
the mathematical background we use throughout the thesis.

Chapter 3 deals with the Minimum Branching Spanning Tree problem.
We obtain both positive and negative approximability results. Namely, on one
hand we present Algorithm MinBST which yields a spanning tree having at most

3
⌈

log 1
1−c

n
⌉

+ 1 branchings for evenly dense graphs (of which every vertex has a

degree of at least cn), see Theorem 3.3.1. On the other hand, we show that this
approximation ratio is very likely the best possible. We give an approximation ratio
preserving reduction from the Minimum Set Cover problem to the Minimum

Branching Spanning Tree problem thus proving that any ratio better than
Ω(log n) implies P=NP, see Theorem 3.2.3. Our results discussed in Chapter 3 have
originally been published in [2].

10 CHAPTER 1. INTRODUCTION

Chapter 4 is focusing on our work on the connection of spanning tree leaves and
two graph vulnerability parameters: scattering number [44, 74], and cut-asymmetry
(Definition 4.3.1). Some of these results are then used in Chapter 5 to build our
approximation algorithms for the Maximum Internal Spanning Tree problem.
In Section 4.1 we generalize the well-known necessary condition of traceability by
proving that every spanning tree of a graph G has at least one more leaf than its
scattering number sc(G) (Theorem 4.1.5). If the graph itself is a tree, its scattering
number can be used to upper bound the number of leaves (Theorem 4.1.7). In
Section 4.3 we first provide some basic properties of cut-asymmetry ca(G) of a graph
G. Namely, we show that ca(G) = 0 if and only if G is either a complete graph or a
cycle (Theorem 4.3.2). We also prove that ca(G) ≤ 1 is a sufficient condition for the
existence of a Hamiltonian path in G (Theorem 4.3.6). Unfortunately, even a graph
with a Hamiltonian path can have a big cut-asymmetry, as shown in Theorem 4.3.7.
Later in Section 4.3, we define leaf-independence li(G) as the maximum number of
independent leaves in a spanning tree of G. It turns out that this measure can be
considered as an equivalent definition of cut-asymmetry, since li(G) = ca(G) + 1
always holds (Theorem 4.3.10). Corollary 4.3.13 shows that leaf-independence and
the cardinality of a minimum connected vertex cover sums up to n and thus proves
that both cut-asymmetry and leaf-independence are NP-hard to compute (Theorem
4.3.14). Our results presented in Chapter 4 have originally been published in [6], in
[7], and in [8].

Chapter 5 is about the Maximum Internal Spanning Tree problem. First
we present Algorithm ILST that yields a spanning tree with independent leaves,
and then we prove that such a spanning tree always forms a 2-approximation for
the Maximum Internal Spanning Tree problem (Theorem 5.2.2). In Section
5.2 we provide three different proofs for this fact, one direct proof, one based on the
results of Chapter 4, and one based on primal-dual linear programming techniques.
Algorithm RDFS, a refined version of Algorithm ILST, has even better approxima-
tion properties when applied on special graph classes. It is a 3/2-approximation for
claw-free graphs (Theorem 5.4.2) and a 6/5-approximation for cubic graphs (The-
orem 5.4.4). In Section 5.5, we develop Algorithm LOST, and using an improved
version of the above mentioned linear programming approach, we prove that it is
a 7/4-approximation for the Maximum Internal Spanning Tree problem for
graphs with no pendant vertices (Theorem 5.5.2). Section 5.6 deals with the case
when vertices are weighted and we have to minimize the weighted sum of the branch-
ings of the obtained spanning tree (Maximum Weighted Internal Spanning

Tree problem). To solve this problem (for graphs with no pendant vertices), we
present Algorithm WLOST which yields a (2∆−3)-approximation (Theorem 5.6.2).
We then further improve this algorithm obtaining Algorithm RWLOST which is a
2-approximation if the input graph is claw-free (Theorem 5.6.6). In Section 5.7 we
consider the Maximum Internal Spanning Tree problem from another point
of view: instead of looking for a spanning tree with few leaves, we try to cover as

1.3. OVERVIEW OF RESULTS 11

many vertices as possible with a ≤ q-leaf subtree. This approach is a generalization
of searching for a long path in graphs, see Theorem 5.7.4. In Section 5.8, we show
that if any (q+1)-element independent set of a claw-free graph (on n vertices) has a
degree-sum of at least n−q, then the graph has a spanning tree with at most q leaves
(Theorem 5.8.1). Finally, in Section 5.9, we present the results of our experimental
analysis on our algorithms paying a particular attention to compare the traversals
mentioned in Section 2.2. Our results discussed in Chapter 5 have originally been
published in [2], in [3], in [5], in [6], and in [8].

Chapter 2
Preliminaries

In this chapter we first introduce our notation and provide definitions for the notions
used throughout the thesis. A summary of our notation can be found in Appendix
B on page 100. In Section 2.2 we mention a few algorithms (such as Depth First
Search) for traversing graphs. These traversals form the basis of our approximation
algorithms. Finally, in Sections 2.3 and 2.4 we summarize a few elementary results
from the field of approximation theory and linear programming, respectively.

2.1 Notation, Definitions, Properties of Trees

If X is a set and x is an element then |X| stands for the number of elements in X,
and X + x and X − x abbreviates X ∪ {x} and X \ {x}, respectively.

By a graph G = (V, E) we mean an undirected simple graph on vertex set
V (G) = V and edge set E(G) = E. We use n = |V (G)| to denote the number of
vertices and m = |E(G)| to denote the number of edges of G. Every graph in this
thesis is supposed to be connected unless explicitly stated otherwise.

A spanning tree T of a graph G is an acyclic connected subgraph of G containing
all of its vertices. Edges of G are called G-edges, edges of T are called T -edges or
tree-edges, elements of E(G) \ E(T) are called non-tree edges. Vertices u and v are
G-neighbors if they are adjacent in G, that is, (u, v) ∈ E(G), and T -neighbors if
they are adjacent in T , that is, (u, v) ∈ E(T). We denote by NG(v) and NT (v) the
G-neighbors and the T -neighbors of v, respectively. The G-degree (T -degree) of a
vertex v is the number of its G-neighbors (T -neighbors) and is denoted by dG(v)
(dT (v)). When it causes no confusion, we might leave the G out from these notions
to abbreviate G-neighbors of v as neighbors of v, or N(v), and G-degree of v as
degree of v, or d(v). For some X ⊆ V the notation dG(X) stands for

∑

v∈X dG(v).
A vertex v is called pendant if dG(v) = 1. The degree of the highest G-degree vertex
is denoted by ∆(G), or simply by ∆. For a vertex v, δG(v), or simply δ(v) stands
for the set of G-edges incident to v. The graph G is d-regular if all of its vertices
have G-degree d. A 3-regular graph is also called cubic.

12

2.1. NOTATION, DEFINITIONS, PROPERTIES OF TREES 13

This thesis deals with spanning tree optimization problems where the measure
to be optimized depends on the degree-distribution of the solution spanning tree.
Therefore, the sets of vertices with some special T -degrees play an important role
throughout this work. Vertices whose T -degree is exactly i (at least i) form the set
Vi(T) (V≥i(T)). A vertex v is a leaf, a forwarding vertex, or a branching of T , if its
T -degree is 1, 2, or at least 3, respectively. Equivalently, elements of V1(T) are the
leaves, elements of V2(T) are the forwarding vertices, and elements of V≥3(T) are
the branchings of T . Forwarding vertices and branchings are called internal vertices,
that is, internal vertices are the elements of V≥2(T). We also use L(T) and I(T) to
denote the set of leaves and internal vertices of T , respectively. As T has no isolated

vertices, V (T) = L(T)
◦
∪ I(T), where

◦
∪ denotes disjoint union.

If u and v are vertices of a spanning tree T then PT (u, v) is the unique (u, v)
path in T . We denote by u�v the vertex succeeding u on the path PT (u, v).

For the definitions in this paragraph we assume that T is not a Hamiltonian
path and that l is a leaf of T . Then the branching of l, denoted by b(l), is the
branching of T being closest to l. In other words, b(l) is the branching for which all
but the end vertices of PT (l, b(l)) are internal vertices of T . The path PT (l, b(l))
itself is called the branch of l, and the set of its vertices is denoted by br(l). The
vertex preceding b(l) along path PT (l, b(l)) is denoted by b−(l). This is a simplified
notation for b(l)�l. Notice that the branch of some leaf l might have no internal
vertex, in which case br(l) = {l, b(l)}, and b−(l) = l. The vertices which are neither
leaves nor internal vertices of a branch are called trunk vertices of T . The tree-edges
they span are the trunk-edges. These trunk-edges form the trunk of T .

A vertex set is said to be G-independent (or independent) if it spans no G-edges.
Similarly, a vertex set X is T -independent if it spans no T -edges. Note that in this
latter case X is still allowed to span non-tree edges. The size of the highest cardi-
nality G-independent set is denoted by α(G). The spanning tree T of G is called an
independence tree if its leaves are G-independent. The notion of independence tree
is crucial as it is used throughout the thesis to establish approximation algorithms.

Let X and Y be subsets of V (G). Then G[X] is the subgraph of G spanned by
X, compG(X) or simply comp(X) is the number of components of G[X], eG(X) is
the number of G-edges of G[X], and eG(X, Y) is the number of G-edges between X
and Y . As a special case, eG(v, X) stands for the number of G-edges between X
and a vertex v ∈ V (G).

A Hamiltonian path of a graph is a simple path containing all vertices of the graph
and a Hamiltonian cycle is a cycle with the same property. If G has a Hamiltonian
path, it is called traceable. Kn is a complete graph and Cn is a cycle on n vertices,
while Kn1,n2 is the complete bipartite graph with color classes of size n1 and n2.
Particularly, K1,3 is called a claw. A graph is claw-free if it does not contain a K1,3

as an induced subgraph.
At last, we remind the reader to some basic properties of trees.

Claim 2.1.1 For any tree T we have |V1(T)| ≥ |V≥3(T)|+ 2.

14 CHAPTER 2. PRELIMINARIES

Proof: On one hand, as T has |V (T)| − 1 edges, the total degree of vertices
is D = 2|V (T)| − 2 = 2|V1(T)| + 2|V2(T)| + 2|V≥3(T)| − 2. On the other hand,
D ≥ |V1(T)|+2|V2(T)|+3|V≥3(T)|. Putting these together, the claim is immediate.
�

Claim 2.1.2 For any tree T with a maximum degree ∆ it holds that |V1(T)| − 2 ≤
(∆− 2)|V≥3(T)|.

Proof: For the total degree of vertices, we have

D = 2|V (T)| − 2 = 2|V1(T)|+ 2|V2(T)|+ 2|V≥3(T)| − 2,

and also
D ≤ |V1(T)|+ 2|V2(T)|+ ∆|V≥3(T)|.

Putting these together immediately yields the claim. �

Claim 2.1.3 For any tree T we have |V≥3(T)| ≤ |V (T)|−2
2

.

Proof: We have |V≥3(T)| ≤ |V (T)| − |V1(T)| ≤ |V (T)| − |V≥3(T)| − 2, where the
second inequality comes from Claim 2.1.1 thus finishing the proof. �

2.2 Traversal Algorithms

Traversal algorithms visit the vertices of a given graph one by one and yield a rooted
spanning tree whose edges are the ones used for the traversal itself. The two best
known such traversal algorithms are Depth First Search (DFS) (see for example [67,
p. 538]) and Breadth First Search [67, p. 539]. They both build a spanning tree of
the input graph in linear time in the number of edges. In Chapter 5 we use both a
generalized and a specialized version of the DFS algorithm in order to build up our
approximations for the Maximum Internal Spanning Tree problem. In this
section we summarize the traversal algorithms used throughout the thesis.

First, we introduce the most general one: the greedy traversal. In order to build
up a spanning tree this algorithm starts from a root vertex and visits vertices one
by one. The only rule is that if the current vertex has some unvisited neighbors
then the next vertex to be visited must be one of these, no backtracking is allowed
in such situations. Greedy traversal has a non-deterministic behavior. Indeed, there
is no rule to specify which unvisited neighbor of the current vertex must be visited
next (see Step (∗) of Algorithm Greedy Traversal). Also there is no rule to decide
where to step back from the current vertex when it has no more unvisited neighbors.
Indeed, Algorithm Greedy Traversal uses an edge repository to store some edges that
are candidates for becoming the next spanning tree edge. However, the way how it
chooses the next edge from the candidates is not specified. Both Algorithm DFS

2.2. TRAVERSAL ALGORITHMS 15

and Algorithm FIFO-DFS overcome this non-determinism by using their own data
structure to implement this edge repository. Algorithm DFS uses a stack (a LIFO
store), that is, the elements are fetched from the repository in the reverse order
of their insertion. On the contrary, Algorithm FIFO-DFS implements the edge
repository with the use of a queue (a FIFO store), that is, elements are fetched
in the order of their insertion. Notice that FIFO-DFS differs from the well-known
BFS traversal algorithm which is also implemented using a queue. Though these
algorithms are more specific than the general Greedy Traversal, they still contain
some non-determinism as they do not specify which unvisited neighbor of the current
vertex should be chosen next. Algorithm RDFS in Section 5.4 partially solves this
problem by giving some rules to support this decision.

More specifically, Algorithm Greedy Traversal works as follows. The input is
a simple connected graph G. We begin with an empty graph T on V (G). As we
traverse G, we add more and more G-edges to T , until T becomes a spanning tree.
For each vertex v, we maintain its rank in the order of visiting (arriving first time
to the vertex) in the variable VisitingRank[v]. This rank is initialized to and remains
0 until v gets visited. Variable EdgeRepository is used for storing the edges being
candidates to be processed next. The traversal starts by visiting an arbitrarily chosen
root vertex r. When a vertex v is visited (function VisitVertex), we check whether
v has unvisited neighbors. If this is the case, we choose one of them as the next
vertex to visit and add the corresponding edge to T . Otherwise, we cannot continue
the traversal from v, we step back, that is, we pick an element from EdgeRepository

and add it to T if no circle arises. Note that in the general Greedy Traversal, this
“pick” operation gives an arbitrary element of EdgeRepository, while in Algorithm
DFS and Algorithm FIFO-DFS, the operation is deterministic. Before finishing the
visiting of v, we add to EdgeRepository all those G-edges incident to v which lead to
an unvisited vertex.

Let us give some basic traversal related definitions. As we mentioned earlier,
the output of the traversal algorithms is a spanning tree T rooted at vertex r.
Each vertex v 6= r has a unique parent which is the vertex preceding v along path
PT (r, v). If w is the parent of v then v is called a child of w. Based on these one-level
descendant relations, we straightforwardly define the descendents and ancestors of
a vertex. More precisely, descendents of a vertex w are all the vertices (excluding w
itself) in the subtree of w. Ancestors of v 6= r are all the vertices (excluding v itself)
of the path PT (r, v). A vertex with no child is called a d-leaf of T . It is important
to see the difference between the d-leaves of a spanning tree T rooted in vertex r,
and the leaves of its non-rooted version T ′. All d-leaves of the rooted tree T are
leaves of the non-rooted tree T ′ as their T ′-degree is 1. However, if dT (r) = 1, that
is, the root has a single child in T , then r is a leaf of T ′ without being a d-leaf of T .
We will have to pay attention to this difference in Section 5.2 when using Algorithm
DFS to build up an algorithm which creates an independence tree (see Algorithm
ILST).

16 CHAPTER 2. PRELIMINARIES

Algorithm Greedy Traversal
Input: A simple connected graph G
Output: A rooted spanning tree T of G (called greedy traversal tree)
begin

T ← (V, ∅)
foreach v ∈ V (G) do

VisitingRank[v]← 0

NextVisitingRank← 1
EdgeRepository← ∅
r ← an arbitrary vertex of G
VisitVertex(r)
return T

end

// Traversal from a vertex v
function VisitVertex(v)
begin

VisitingRank[v]← NextVisitingRank

NextVisitingRank← NextVisitingRank + 1
∗ if v has a neighbor w such that VisitingRank[w] = 0 then

x← v; y ← w
else

if EdgeRepository is not empty then
(x, y)← the “first” element of EdgeRepository such that
NextVisitingRank[y] = 0

else
return

Add (x, y) to T
foreach neighbor w of x such that w 6= y and NextVisitingRank[w] = 0 do

Put (x, w) to EdgeRepository

VisitVertex(y)
end

Algorithm DFS (Depth First Search)
Input: A simple connected graph G
Output: A rooted spanning tree T of G (called DFS-tree)
begin

Run Algorithm Greedy Traversal using a stack (LIFO store) as
EdgeRepository.

end

2.2. TRAVERSAL ALGORITHMS 17

Algorithm FIFO-DFS (First In First Out DFS)
Input: A simple connected graph G
Output: A rooted spanning tree T of G (called FIFO-DFS-tree)
begin

Run Algorithm Greedy Traversal using a queue (FIFO store) as
EdgeRepository.

end

Claim 2.2.1 Let T be a greedy traversal tree of graph G. Then the d-leaves of T
form a G-independent set.

Proof: Suppose for a contradiction that there are two d-leaves l1 and l2 of T which
are G-neighbors. Let l1 be the one first visited by the traversal. As l1 is a d-leaf
we had to step back after visiting it. We step back from a vertex only if it has
no unvisited neighbors (see function VisitVertex of Algorithm Greedy Traversal).
However, at the moment when we step back from l1 its neighbor l2 is still unvisited.
This forms a contradiction. �

Now let us recall another basic property of Depth First Search. Note that this
is not true for all greedy traversal trees in general.

Claim 2.2.2 Let T be a spanning tree of an undirected graph G output by Algorithm
DFS. Then each G-edge connects two vertices of which one is an ancestor of the other
in T .

Proof: Suppose for a contradiction that G has an edge (u, v) such that neither u
nor v is an ancestor of the other. Without loss of generality we can say that u was
visited before v. Among the common ancestors of u and v there is a unique one which
is a descendant of all others. Let us denote this vertex by x. As EdgeRepository is
a stack, we have to finish the traversal of u before stepping back to x and continue
our traversal towards v. This means that v is still unvisited when we step back from
u. This, however, forms a contradiction as u cannot have more unvisited neighbors
at that moment. �

Observe that Algorithm Greedy Traversal uses a general EdgeRepository which
does not guarantee that the traversal of u is finished before stepping back to v. It
might happen that u still has unvisited neighbors (v among others) when we step
back to x and reach v from that alternative direction.

The traversal algorithms mentioned in this section can all be used in Algorithm
LOST (see Section 5.5) as a building block for finding an initial spanning tree. As
part of our research, we have done an experimental analysis to demonstrate how the
choice of the traversal influences the number of leaves of the output spanning tree.
The results of this analysis is discussed in Section 5.9.

18 CHAPTER 2. PRELIMINARIES

2.3 Optimization and Approximation

In this section, we summarize the concepts of approximation algorithms, approxi-
mation ratios and approximation ratio preserving reductions. For further details on
approximation theory, the reader is referred to monographs [10] and [68]. We follow
the notation of the former one.

It is worth mentioning here that our negative approximability results are based
on the assumption that P 6= NP.

Now recall Definition 1.2.1. An optimization problem P is characterized by the
set of input instances, the corresponding set of solutions, and the measure function
to be minimized or maximized. According to our notation, P is a quadruple of
objects (IP , SOLP , mP , goalP).

Given an input instance x, we denote by SOL∗
P(x) the set of optimal solutions

of x, that is, the set of solutions whose value is optimal (minimum or maximum
depending on whether goalP = MIN or goalP = MAX). More formally, for every
y∗(x) such that y∗(x) ∈ SOL∗

P(x):

mP (x, y∗(x)) = goalP {v : v = mP(x, z) ∧ z ∈ SOLP(x)} .

The value of an optimal solution y∗(x) of x is denoted by m∗
P(x).

Once we have an optimal solution we can compare any other solution y against
it in order to set up a performance ratio for y. This ratio shows how good solution
y is.

Definition 2.3.1 Given an optimization problem P, for any instance x of P and
for any feasible solution y of x, the performance ratio of y with respect to x is defined
as

R(x, y) =
m(x, y)

m∗(x)

for minimization problems, and as

R(x, y) =
m∗(x)

m(x, y)

for maximization problems.

Using this, we can now define the approximation ratio of an algorithm.

Definition 2.3.2 Given an optimization problem P = (IP , SOLP , mP , goalP), an
algorithm AP for P returns a feasible solution AP(x) ∈ SOLP(x) for any given
instance x ∈ IP . We say that AP is an f(x)-approximation algorithm for P if,
given any input instance x of P

1. R (x,AP(x)) ≤ f(x), and

2. AP runs in polynomial time (in the size of x).

2.3. OPTIMIZATION AND APPROXIMATION 19

Such an f(x) is also called a performance ratio, or an approximation ratio of AP .
If f(x) is constant it is called an approximation factor of AP.

A whole hierarchy of approximability classes is built up similarly to those of
complexity classes [10, 68]. These classes can be used to obtain limits for approx-
imability of optimization problems. In this thesis, we use only one of these classes:
APX, the class of constant factor approximable problems.

Definition 2.3.3 APX is the class of all NP optimization problems P such that for
some constant r ≥ 1, there exists an r-approximation algorithm for P.

In order to give negative approximability results, we need a reduction, analogous
to Karp-reduction [30], which preserves the approximability properties.

Definition 2.3.4 Let P1 and P2 be two NP optimization problems. P1 is said to be
AP-reducible to P2 if there exist two functions f , g and a constant κ ≥ 1 such that:

1. For any instance x ∈ IP1 and for any rational number r > 1, f(x, r) ∈ IP2 ;

2. For any instance x ∈ IP1 and for any rational number r > 1, if SOLP1(x) 6= ∅
then SOLP2 (f(x, r)) 6= ∅;

3. For any instance x ∈ IP1, for any rational number r > 1 and for any y ∈
SOLP2 (f (x, r)) it holds that g(x, y, r) ∈ SOLP1(x);

4. f and g are computable by algorithms whose running time is polynomial for
any fixed r;

5. For any instance x ∈ IP1 and for any rational number r > 1, and for any
y ∈ SOLP2 (f(x, r)),

RP2 (f(x, r), y) ≤ r implies RP1 (x, g(x, y, r)) ≤ 1 + κ(r − 1).

The triple (f, g, κ) is said to be an AP-reduction from P1 to P2.

The acronym stands for approximation preserving and is justified by the following
result showing how to use AP-reducibility to prove that an approximability problem
is in APX.

Theorem 2.3.5 [10] If P1 is AP-reducible to P2 and P2 ∈ APX then P1 ∈ APX.

We use this result in Section 3.2 to prove a negative approximability result,
namely that the Minimum Branching Spanning Tree problem is not in APX.
For this purpose, we give an AP-reduction to it from the Minimum Set Cover

problem.

20 CHAPTER 2. PRELIMINARIES

2.4 Linear Programming

In this section we remind the reader a basic result of linear programming which we
use in Chapter 5 in order to prove approximation ratios.

Let x0 ∈ Rk0 , x1 ∈ Rk1 , y0 ∈ Rl0 , and y1 ∈ Rl1 be variable vectors, b0 ∈ Rl0 ,
b1 ∈ Rl1, c0 ∈ Rk0 , and c1 ∈ Rk1 constant vectors. Furthermore let us have matrices
A ∈ Rl0×k0 , B ∈ Rl0×k1, C ∈ Rl1×k0 , and D ∈ Rl1×k1 . We consider the set of solutions
of two linear inequality systems:

P = {(x0, x1) : Ax0 + Bx1 = b0, Cx0 + Dx1 ≤ b1, x1 ≥ 0} ,

and

D = {(y0, y1) : y0A + y1C = c0, y0B + y1D ≥ c1, y1 ≥ 0} .

The solution sets P and D are called polyhedra. Based on them we define two
linear programming problems. The so-called primal problem is in the form of

valp = max {(c0x0 + c1x1) : (x0, x1) ∈ P} . (2.1)

The dual problem is

vald = min {(b0y0 + b1y1) : (y0, y1) ∈ D} . (2.2)

It might happen that either of these problems have no solution, that is, either
polyhedron P or polyhedron D is empty. The following theorem (the Duality The-
orem of linear programming) claims that if neither of the two polyhedra is empty
then the optimum solutions of the primal and the dual programs are exactly the
same.

Theorem 2.4.1 (Duality Theorem of linear programming [61, p. 90]) Let
us have the above defined non-empty polyhedra P and D. Then the maximum defined
in (2.1) and the minimum defined in (2.2) are equal, that is valp = vald.

Subsection 5.2.3 shows how to apply this theorem to build proofs for approxi-
mation ratios. In fact, we only use that every primal solution is upper bounded by
any dual solution. See [36, 42, 65] for proofs of approximation ratios using a similar
technique. In Section 5.5 we build a 7/4-approximation algorithm for Maximum

Internal Spanning Tree problem for graphs with no pendant vertices and prove
its approximation ratio using this primal-dual method.

Chapter 3
Minimizing the Number of Branchings

In this chapter we investigate the Minimum Branching Spanning Tree problem
which aims to find a spanning tree T of a given input graph G such that T has a
minimum number of branchings among all spanning trees of G. As spanning trees
with no branchings are exactly the Hamiltonian paths of G, we cannot expect exact
polynomial-time solution for this problem. Instead, we deal with approximation
algorithms. Unfortunately, as we show in Section 3.2, the Minimum Branching

Spanning Tree problem is hard even to approximate. An approximation ratio
preserving reduction from the Minimum Set Cover problem proves that any
approximation ratio better than Ω(log n) would imply P=NP. In Section 3.3 we
achieve the approximation ratio of O(log n) for a special class of input graphs, the
evenly dense non-traceable graphs. A greedy strategy yields a spanning tree with
at most O(log n) branchings whenever each vertex has a degree of Ω(n).

The chapter is organized as follows: in Section 3.1 we summarize the known
results on the Minimum Branching Spanning Tree problem; in Section 3.2
we present our negative approximability result; finally in Section 3.3 we give an
approximation algorithm for evenly dense non-traceable graphs.

3.1 Related Results

The Minimum Branching Spanning Tree problem was first considered by
Gargano et al. [33] as a degree-based generalization of the Hamiltonian Path

problem. They have proved that it is NP-complete to decide whether a spanning
tree with at most k branchings exists (for any fixed k). They have also given an
algorithm [32] that finds a single-branching spanning tree (a so called spanning
spider) if each 3-element independent set of the input graph G has a degree sum
of at least |V (G)| − 1. The case when the input graph is bipartite is discussed in
[31]. Flandrin et al. [27] considered the problem of finding a spanning spider having
its branching fixed in advance. They proved that a graph G has a spanning spider
whenever the sum of its minimum and maximum vertex degree is at least |V (G)|.

21

22 CHAPTER 3. MINIMIZING THE NUMBER OF BRANCHINGS

We have to mention here the Minimum Connected Dominating Set prob-
lem where, given an input graph G = (V, E), the aim is to find a minimum cardi-
nality subset S of V such that each vertex is either in S or it has a neighbor in S,
and that S spans a connected subgraph of G [30]. From a connected dominating
set S, we can always build a spanning tree with at most |S| branchings. Indeed,
we start with a spanning tree of G[S] and join all vertices of V \ S to it. All these
vertices will be leaves of our spanning tree, as implied by the fact that S is a con-
nected dominating set. However, if we have a spanning tree with |V≥3| branchings,
we cannot always bound the cardinality of a minimum connected dominating set by
the means of |V≥3|. For the Minimum Connected Dominating Set problem
Guha and Khuller gave an approximation algorithm with an approximation ratio of
O(log n) [37, 38]. Our algorithm shows some similarity to, and is inspired by, their
result. However, there are many differences to be emphasized including the problem
formulation and the objective function itself. While Guha and Khuller use their algo-
rithm to prove a multiplicative approximation ratio on the cardinality of a connected
dominating set, we always find a spanning tree with at most O(log n) branchings in
evenly dense graphs. Both our algorithm and that of Guha and Khuller build the
solution iteratively, by adding new vertices to the spanning tree / dominating set
under construction. However, our proof of the approximation ratio is new, as that
of Guha and Khuller for the Minimum Connected Dominating Set problem
cannot be adapted to the Minimum Branching Spanning Tree problem.

3.2 A Negative Approximability Result

In this section we present our main negative approximability result on the Minimum

Branching Spanning Tree problem by giving an approximation ratio preserving
reduction from the Minimum Set Cover problem. Recall the following definition
[43]:

Problem 6: Minimum Set Cover

Input: A ground set S and a set Σ = {Sj}
s

j=1 of its subsets.

Goal: Find a minimum number of subsets of Σ whose union contains each
element of S.

Regarding this problem, Alon et al. [9] proved the following:

Theorem 3.2.1 The Minimum Set Cover problem is not approximable better
than a multiplicative ratio of Ω (log |S|), unless P=NP, that is, the Minimum Set

Cover problem is not in APX.

In what follows we construct the AP-reduction (f, g, κ) from the Minimum Set

Cover problem to the Minimum Branching Spanning Tree problem. For
this purpose we define f , g, and κ, and prove that they satisfy the five criteria of
AP-reducibility, see p. 19 for the notation.

3.2. A NEGATIVE APPROXIMABILITY RESULT 23

v1 v2 v3 v4 v5 v6

u5

s5

u4

s4

z2z
z1

s3
s2s1

u1 u2 u3

Figure 3.1: Reduction of the Minimum Set Cover problem to the Min-

imum Branching Spanning Tree problem. The graph derived from set
S = {1, 2, 3, 4, 5, 6}, and subsets Σ = {{1, 2, 3}, {1, 3, 4}, {2, 5}, {3, 4, 6}, {1, 3, 5, 6}}

Given an instance x = (S, Σ) of the Minimum Set Cover problem, we con-
struct the graph f(x, r) = f(x) = G as follows (Fig. 3.1).

For each element ei of S we take a vertex vi. For each subset Sj in Σ we take
a vertex sj. We connect sj and vi by an edge if and only if ei ∈ Sj. We also take
additional vertices {uj : j = 1, . . . , |Σ|}, z, z1, and z2. Then we add an edge between
each uj and its sj pair. Furthermore, we add an edge between z and each sj . Finally
we add edges (z1, z) and (z2, z).

Criterion 1 of the AP-reducibility is satisfied by this construction, as G is an
instance of the Minimum Branching Spanning Tree problem. Also, Criterion
2 is held, since G is connected (and so has a spanning tree) if the original instance
x had a solution. Moreover, we show now how the value of solutions of the two
problems are related.

Let us suppose that a cover M of S contains k elements Sj1, Sj2, . . . Sjk
of Σ.

We construct a spanning tree T of G having k + 1 branchings (solution y of the
Minimum Branching Spanning Tree instance f(x)). For this aim, we add to
T every G-edge incident to sj1 , sj2, . . . , or sjk

. As M is a cover of S, now we have
dT (vi) ≥ 1 for every i. We then drop some of these edges from T , if necessary, in
order to set the degree of each vertex vi to exactly 1. Finally, we add to T each
G-edge incident to z, and also edges (sj, uj) for every j. T is now a spanning tree
of G.

This construction ensures that all vertices vi, uj, z1, and z2 are leaves of T while
z is a branching of T . The most interesting part is the T -degree of vertices sj . For
each vertex sj we have dT (sj) = 2 if and only if Sj is not used in the set cover M .
Otherwise, sj is a branching of T . As a result, T has exactly k + 1 branchings.

Now to see the other direction, let us have a spanning tree T of G with b branch-
ings. Vertex z must be a branching of T as removing it splits G to at least 3
components. Each vertex sj has an edge to uj. This implies that each vertex vi

must have at least one branching neighbor (among sj’s). Otherwise vi and z would

24 CHAPTER 3. MINIMIZING THE NUMBER OF BRANCHINGS

be in separate components of T , which would give a contradiction as T is a span-
ning tree. As a result, the set M of sets Sj1, Sj2, . . . Sjp

corresponding to branchings
sj1, sj2, . . . sjp

of T is a set cover of S. Since z is a branching we have a set cover
of size p ≤ b − 1. This mapping from the solutions of the Minimum Branching

Spanning Tree problem on G to the solutions of the Minimum Set Cover

problem is the function g of our AP-reduction. Clearly, Criterion 3 is satisfied by
the construction.

Observe that applying the two aforementioned mappings on optimum solutions
shows that the value of the optimum solution for instance x (of the Minimum Set

Cover problem) is exactly one less than the value of the optimum solution for
instance G = f(x) (of the Minimum Branching Spanning Tree problem).

To check Criterion 4 of AP-reducibility, we have to observe that the construction
of G needs only polynomial time (in size of x). The polynomial-time computability
of g is trivial.

To prove that Criterion 5 is satisfied, let m∗ (f(x, r)) denote the value of the
optimum solution of instance f(x, r), and m (f(x, r), y) denote the value of solu-
tion y. Also let m∗(x) be the value of the optimum solution for instance x, and
m (x, g(x, y, r)) be the value of solution g(x, y, r).

Then suppose

r ≥ RMinimum Branching Spanning Tree (f(x, r), y) =
m (f(x, r), y)

m∗ (f(x, r))
(3.1)

for some r > 1 and fixed κ = 2.
We have to show that

1 + 2(r − 1) ≥ RMinimum Set Cover (x, g(x, y, r)) =
m (x, g(x, y, r))

m∗(x)
.

The above mappings between the solutions yield that m∗(x) = m∗(f(x, r)) − 1
and that m (x, g(x, y, r)) = m (f(x, r), y)− 1. Using this, we are to show that

1 + 2(r − 1) ≥
m (f(x, r), y)− 1

m∗ (f(x, r))− 1
,

or equivalently

2rm∗ (f(x, r))−m∗ (f(x, r))− 2(r − 1) ≥ m (f(x, r), y) .

Using Inequality (3.1), it is enough to show that

rm∗ (f(x, r))−m∗ (f(x, r))− 2(r − 1) ≥ 0,

that is,

(r − 1)(m∗ (f(x, r))− 2) ≥ 0.

3.3. APPROXIMATION IN EVENLY DENSE GRAPHS 25

This inequality is true for all r > 1, since every spanning tree of G has at least
two branchings (z and at least one of si’s).

Thus, we conclude that the above defined (f, g, 2) is an AP-reduction from Min-

imum Set Cover problem to Minimum Branching Spanning Tree problem.
Now Theorem 3.2.1 and Theorem 2.3.5 imply:

Theorem 3.2.2 The Minimum Branching Spanning Tree problem is not in
APX.

Moreover, if we set r = Ω (log |V (G)|) in the above calculations then using
Theorem 3.2.1 we get

Theorem 3.2.3 The Minimum Branching Spanning Tree problem is not ap-
proximable better than a multiplicative ratio of Ω (log |V (G)|), unless P=NP.

3.3 Approximation in Evenly Dense Graphs

We have seen in the last section that the Minimum Branching Spanning Tree

problem very unlikely has an approximation algorithm with a ratio better than
Ω(log n). In this section we present the first approximation algorithm which achieves
this approximation ratio whenever the input graph is non-traceable and evenly dense,
that is, all of its vertices have a degree of Ω(n). More precisely, in evenly dense graphs
our algorithm produces a spanning tree with O(log n) branchings.

Given an input graph G, our approximation algorithm starts with an empty
graph H = (V, ∅). Then it subsequently adds G-edges to H , until H becomes a
spanning forest without isolated vertices. In each iteration of this spanning forest
building process, we greedily select a vertex v such that there is a maximum number
of isolated vertices of H among the G-neighbors of v. Then we add to H all G-edges
which connects v to an isolated vertex of H . When H has no more isolated vertices,
some additional G-edges are used to connect the components of H forming the
output spanning tree.

During the spanning forest building process we maintain three disjoint vertex-
sets. C contains the vertices which have already been selected, B contains those
G-neighbors of vertices in C that are not in C, that is, B = NG(C) \ C, and
A = V \ (C ∪ B) contains all other vertices of G. At the beginning, every vertex is
in A. At each iteration one vertex moves to C from A or B and some vertices may
move from A to B. The algorithm guarantees that elements of A are exactly the
isolated vertices of H . Thus the first phase runs as long as A has some elements.

In the description of Algorithm MinBST, we use a subscript i to denote the value
of a variable before iteration i. This means that during iteration i the algorithm
selects vertex vi from Ai∪Bi and moves it to Ci+1, thus Ci+1 = Ci+vi. All neighbors
of vi being in Ai are moved to Bi+1, thus Bi+1 = Bi − vi ∪ (N(vi) ∩ Ai). Finally,

26 CHAPTER 3. MINIMIZING THE NUMBER OF BRANCHINGS

Ai+1 = Ai \ (vi + N(vi)). Iteration i also adds some edges to the current spanning
forest Hi yielding a new forest Hi+1.

In iteration i our algorithm selects a vertex vi which maximizes eG(vi, Ai) among
all vertices of Ai ∪ Bi. Particularly, the first vertex v1 to be selected is a highest
degree vertex of G. After selecting vi, we add to Hi all G-edges connecting vi to
Ai. In the implementation of Algorithm MinBST we use array ADegree to ease
the calculation of eG(v, Ai). Namely, during the ith iteration ADegree[v] is equal to
eG(v, Ai). It is initialized to eG(v, A1) = dG(v), and is updated after each iteration.

Algorithm MinBST (Minimum Branching Spanning Tree)
Input: A simple connected graph G
Output: A spanning tree T of G
Initialization:
begin

H1 ← (V, ∅)
A1 ← V
B1 ← ∅
C1 ← ∅
foreach v ∈ V (G) do ADegree[v]← dG(v)
i← 1

end
First phase: building a forest
begin

while Ai 6= ∅ do
vi ← the vertex v ∈ Ai ∪Bi which maximizes eG(v, Ai)
Ci+1 ← Ci + vi

Bi+1 ← Bi − vi ∪ (NG(vi) ∩Ai)
Ai+1 ← V \ (Bi+1 ∪ Ci+1)
E ′ ← δG[Ai+vi](vi)
Hi+1 ← Hi + E ′

foreach v ∈ Ai \ Ai+1 do
foreach w ∈ N(v) ∩ (Ai+1 ∪Bi+1) do

ADegree[w]← ADegree[w]− 1

i← i + 1

end
Second phase: connecting the components
begin

// Add edges from G to Hi to obtain a spanning tree

JoinTrees(G, Hi)
end

The second phase runs a traversal on G using the already existing components

3.3. APPROXIMATION IN EVENLY DENSE GRAPHS 27

of the forest H . Whenever a G-edge e connects two different components, we add
it to H .

Second phase of Algorithm MinBST: connecting components
function JoinTrees(G, H)

Input: A simple connected graph G and its subforest H
Output: A spanning tree T of G
begin

foreach v ∈ V (G) do Marked[v]← 0
S ← ∅
Choose an arbitrary vertex v0

Run a traversal on the component of v0 in H
when visiting a vertex x set Marked[x]← 1 and put x into S
while S 6= ∅ do

Let v be any element of S
Remove v from S
if v has a G-neighbor w such that Marked[w] = 0 then

Add (v, w) to H
Run a traversal on the component of w in H
when visiting vertex x set Marked[x]← 1 and put x into S

end

Theorem 3.3.1 is the main result of this chapter. It states that Algorithm
MinBST always finds a spanning tree with O(log n) branchings in evenly dense
graphs. O(log n) is a valid approximation ratio only if the input graph is not trace-
able as otherwise the value of the optimum solution is 0. First we prove the bound
on the number of branchings then we analyze the time complexity of the algorithm.

Theorem 3.3.1 Let G be a connected graph on n vertices and m edges. If the G-
degree of each vertex is at least cn (for some number c ∈ R) then Algorithm MinBST

yields a spanning tree with at most 3
⌈

log 1
1−c

n
⌉

+ 1 branchings in O (m + n log n)

time.

Let p denote the number of iterations executed in the first phase. At first, we
show a few basic properties of the sets Ai, Bi, and Ci.

Claim 3.3.2 For the sets Ai, Bi, and Ci (for 2 ≤ i ≤ p) of Algorithm MinBST,
followings are trivially true:

1. Ai is an Hi-independent set;

2. Bi is an Hi-independent set;

3. there is no G-edge between Ai and Ci;

28 CHAPTER 3. MINIMIZING THE NUMBER OF BRANCHINGS

4. |Ci| = i;

5. compHi
(Bi ∪ Ci) ≤ i;

6. for all v ∈ Bi we have dHi
(v) = 1.

We decompose the proof of Theorem 3.3.1 to several lemmas.

Lemma 3.3.3 For all 1 ≤ i ≤ p we have eG(vi, Ai) ≥ c|Ai|.

Proof: Let

ki =
|Ai|nc

n− i
.

Suppose for a contradiction that

ki > eG(vi, Ai).

Then we obtain

ki|Ai|
1
>

∑

w∈Ai

eG(w, Ai)
2
=

∑

w∈Ai

d(w)−
∑

w∈Ai

eG(w, Bi)
3

≥

|Ai|nc−
∑

w∈Ai

eG(w, Bi)
4
= |Ai|nc−

∑

v∈Bi

eG(v, Ai)
5
> |Ai|nc− |Bi|ki.

Here we have used the fact that vi maximizes eG(v, Ai) for Inequalities 1 and 5;
Claim 3.3.2/3 for Equality 2; the fact that every vertex has a G-degree of at least nc
for Inequality 3; and a double counting of the edges between Ai and Bi for Equality
4.

Thus

|Ai|nc < (|Ai|+ |Bi|) ki = (|V | − |Ci|) ki = (n− i)ki = |Ai|nc

gives a contradiction, and so proves the lemma as

eG(vi, Ai) ≥ ki =
|Ai|nc

n− i
≥ c|Ai|.

�

Lemma 3.3.4 For all 2 ≤ i ≤ p we have |Ai| ≤ (1− c)i−2(n−∆− 1).

Proof: We use induction to prove the lemma. Recall that A1 = V . Clearly, one of
the highest G-degree vertices is selected to be v1 and so

|A2| = |V | − eG(v1, A1)− 1 = n−∆− 1.

Observe that if vi ∈ Bi then |Ai+1| = |Ai| − eG(vi, Ai), and if vi ∈ Ai then
|Ai+1| = |Ai| − eG(vi, Ai)− 1. Hence, for 1 ≤ i ≤ p− 1, we have

|Ai+1| ≤ |Ai| − eG(vi, Ai) ≤ |Ai|(1− c),

by Lemma 3.3.3. This directly proves the lemma. �

3.3. APPROXIMATION IN EVENLY DENSE GRAPHS 29

Lemma 3.3.5 The first phase of Algorithm MinBST consists p ≤
⌈

log 1
1−c

n
⌉

+ 1

iterations.

Proof: By Lemma 3.3.4, we have a sufficient condition for Hi being a suitable
spanning forest (or equivalently, for Ci being a dominating set of V). Indeed, Hi is
a spanning forest with no isolated vertices if Ai is empty, which is always the case
whenever

1 > (n−∆− 1)(1− c)i−2,

or equivalently

i ≥
⌈

log 1
1−c

(n−∆− 1)
⌉

+ 2.

Therefore we never need more than
⌈

log 1
1−c

(n−∆− 1)
⌉

+ 2

iterations, that is, using ∆ ≥ nc,

p ≤
⌈

log 1
1−c

(n−∆− 1)
⌉

+ 2 ≤
⌈

log 1
1−c

n(1− c)
⌉

+ 2 =
⌈

log 1
1−c

n
⌉

+ 1.

This concludes the proof of the lemma. �

We now turn to the counting of the branchings in the obtained spanning forest.
First observe that, by Claim 3.3.2/6, Bp has no branchings. Now let b1 denote the
number of branchings in Cp. Then b1 ≤ |Cp| = p.

If Hp is connected then we set H = Hp and in this case H is a spanning tree
with b = b1 branchings. If Hp has more than one components then they must be
connected by adding compHp

(Bp ∪Cp)− 1 pieces of G-edges (say E ′′) to Hp. These
extra edges, added by the second phase of the algorithm, produce

b2 ≤ 2|E ′′| = 2
[

compHp
(Bp ∪ Cp)− 1

]

new branchings. In this case, we set H = Hp + E ′′, that is, we add edges in E ′′ to
Hp. Then H has b = b1 + b2 branchings.

In both cases, the number of branchings is

b ≤ b1 + b2 ≤ p + 2 compHp
(Bp ∪ Cp)− 2 ≤ 3p− 2 ≤ 3

⌈

log 1
1−c

n
⌉

+ 1,

as stated by Theorem 3.3.1.
Now we consider the running time of Algorithm MinBST. According to Lemma

3.3.5, during the first phase, there are O(log n) iterations. The ith iteration is
composed of the following steps. We search for the vertex v ∈ Ai ∪ Bi maximizing
eG(v, Ai). This requires O(n) time. Then we move vi to C and its neighbors being
in Ai to B. Finally we update ADegree[w] for all w ∈ (Ai+1 ∪Bi+1) ∩N(Ai \Ai+1).
Observe that such updates are done at most twice for each G-edge, namely, when one

30 CHAPTER 3. MINIMIZING THE NUMBER OF BRANCHINGS

of its ends is removed from A. Therefore, the cumulated number of such updates is
O(m). As a result, the first phase needs O(n log n+m) time in total. In the second
phase, we consider each edge a constant number of times: at most once when its
component is traversed, and once for each of its end vertices when they get removed
from S. Thus we need O(m) time to create a spanning tree from H in the second
phase. Therefore, the total running time of the algorithm is O (m + n log n). This
finishes the proof of Theorem 3.3.1.

Chapter 4
Spanning Tree Leaves and Vulnerability

This chapter focuses on graph vulnerability parameters. They are used to measure
how much structural damage can be caused in a graph by removing some “important
parts” of it [11, 12, 34, 35, 74]. Both hamiltonicity theory and network design
applications widely use these parameters to describe the structure of graphs. Our
work fits into both of these categories. We first prove some theoretical results on the
connection between the number of spanning tree leaves and vulnerability parameters.
Then, in Chapter 5, we use these results to build an approximation algorithm for the
Maximum Internal Spanning Tree problem. Besides, our framework yields
a new proof for the fact that the internal vertices of any independence tree give a
2-approximation for the Minimum Connected Vertex Cover problem [60].

The first connection between hamiltonicity and vulnerability was given in a well-
known theorem of basic graph theory:

Theorem 4.0.6 [46, p. 30] If a graph is traceable then it cannot be split to more
than k + 1 components by removing at most k of its vertices.

This theorem gives only a necessary condition of traceability. Observe that
this condition is founded on a vulnerability property of the graph. Therefore, it is
worth investigating how vulnerability parameters can provide sufficient conditions of
traceability. A considerable amount of research followed this approach, for a survey
on them, the reader is referred to [12].

In this chapter, we use two closely related vulnerability parameters: scattering
number and cut-asymmetry. Scattering number shows how many components we
can get by removing a few vertices [44, 47, 74]. Cut-asymmetry does the same
when a few connected subgraphs are removed [6, 8]. We use scattering number
to lower bound the number of leaves in a spanning tree, and cut-asymmetry to
upper bound the number of G-independent leaves of a spanning tree. By means of
scattering number we can restate Theorem 4.0.6 as follows: if a graph is traceable
then its scattering number is at most one, that is, the scattering number provides a
necessary condition of traceability. We show that cut-asymmetry gives a sufficient

31

32 CHAPTER 4. SPANNING TREE LEAVES AND VULNERABILITY

condition, namely if its value is at most one then the graph is traceable. This is our
main hamiltonicity related result.

The rest of this chapter is organized as follows. In Section 4.1 we investigate
scattering number and the minimum number of spanning tree leaves. In Section 4.2
we give two basic properties of minimum leaf spanning trees. Finally, Section 4.3
introduces cut-asymmetry, gives a set of its basic properties and shows a connection
to the maximum number of independent spanning tree leaves.

4.1 Scattering Number and the Minimum

Number of Leaves

Jung defined the scattering number as follows:

Definition 4.1.1 [44] The scattering number of a non-complete graph G = (V, E)
is

sc(G) = max
X⊂V,X 6=∅

{comp(G[V \X])− |X| : comp(G[V \X]) ≥ 2} .

By definition, the scattering number of the complete graph Kn is sc(Kn) = −∞.

Using this notion, Theorem 4.0.6 can be rewritten in the form of

Theorem 4.1.2 If G is a traceable graph then sc(G) ≤ 1.

Recall that ml(G) is the minimum number of leaves in the spanning trees of G. An
observation based on Theorem 4.1.2 is

Theorem 4.1.3 If G is a traceable graph then ml(G) ≥ sc(G) + 1.

Theorem 4.1.2 gives a connection between scattering number and the minimum
number of spanning tree leaves whenever this latter equals to 2. In this section we
show that Theorem 4.1.3 holds for any graph, namely that every spanning tree of
an arbitrary graph G has at least sc(G) + 1 leaves.

As a first step, we prove this statement for trees.

Lemma 4.1.4 Let T be a tree with q leaves. Then q ≥ sc(T) + 1.

Proof: To prove the upper bound let X = {x1, x2, . . . , xk} be the vertex-set pro-
viding the maximum in Definition 4.1.1. If several such sets exist, let us choose one
of minimum cardinality. Thus, by definition, sc(T) = comp(T [V \X])− |X|. More-
over, each vertex xj ∈ X is a branching of T , that is, d(xj) ≥ 3 (for j = 1, 2, . . . , k).
Otherwise, if some xj ∈ X had degree less than 3 then for X ′ = X − xj we would
have comp(T [V \ X ′]) ≥ comp(T [V \ X]) − 1, and so we should have chosen X ′

instead of X.

4.1. SCATTERING NUMBER AND THE MINIMUM

NUMBER OF LEAVES 33

Now let X0 = ∅ and let Xj = Xj−1 + xj (for j = 1, 2, . . . , k). Furthermore let
Tj = T [V \ Xj] (for j = 0, 1, . . . , k). That is, Tj is the forest obtained from T by
removing the vertices of Xj. Then comp(Tj) ≤ comp(Tj−1) + d(xj)− 1, and hence

comp(Tk) = comp(T [V \X]) ≤ 1 +
∑

xj∈X

d(xj)− |X|. (4.1)

On the other hand, let Y denote the set of branchings not in X, namely Y =
V≥3(T) \X. Then counting the vertices of T according to their degree we obtain:

|V (T)| = q + |V2(T)|+ |X|+ |Y |

= q + |V2(T)|+
∑

i≥3

|Vi(T) ∩X|+
∑

i≥3

|Vi(T) ∩ Y |. (4.2)

Counting the total degree of vertices in T we have:

2|V (T)| − 2 = q + 2|V2(T)|+
∑

i≥3

i|Vi(T) ∩X|+
∑

i≥3

i|Vi(T) ∩ Y |, (4.3)

Equations (4.2) and (4.3) yield

∑

xj∈X

d(xj) =
∑

i≥3

i|Vi(T) ∩X| =
∑

i≥3

(i− 2)|Vi(T) ∩X|+ 2|X| =

q − 2−
∑

i≥3

(i− 2)|Vi(T) ∩ Y |+ 2|X| ≤ q − 2 + 2|X|.

Using (4.1), this implies

sc(T) = comp(T [V \X])− |X| ≤ q − 1

proving the upper bound on the scattering number. �

Now we generalize this for arbitrary graphs.

Theorem 4.1.5 For any graph G we have ml(G) ≥ sc(G) + 1.

Proof: Let T be a minimum leaf spanning tree of G, that is, |V1(T)| = ml(G),
and let X be a set maximizing comp(G[V \X])− |X|. Then as comp(G[V \X]) ≤
comp(T [V \X]), by Lemma 4.1.4 we have:

sc(G) = comp(G[V \X])− |X| ≤ comp(T [V \X])− |X| ≤

sc(T) ≤ |V1(T)| − 1 = ml(G)− 1.

�

Notice that the bounds of Lemma 4.1.4 and Theorem 4.1.5 are both tight. Indeed,
let T be a spanning tree with a single branching and q leaves. Then removing the
branching we obtain q components and so sc(T) ≥ q − 1 = |V (T)| − 1.

34 CHAPTER 4. SPANNING TREE LEAVES AND VULNERABILITY

Theorem 4.1.5 provides a simple lower bound on the minimum number of span-
ning tree leaves by means of the scattering number. Unfortunately, the scattering
number can be negative even for non-traceable graphs. Therefore, it cannot be used
for upper bounding the minimum number of spanning tree leaves. To see this, let
us mention here toughness, another vulnerability parameter whose connection to
Hamiltonicity is under an intensive research [11, 12, 49].

Definition 4.1.6 [23] The toughness of a non-complete graph G = (V, E) is

τ(G) = min
X⊂V,X 6=∅

{

|X|

comp(G[V \X])
: comp(G[V \X]) ≥ 2

}

.

By definition, the toughness of the complete graph Kn is τ(Kn) =∞.

This definition immediately implies that τ(G) > 1 if and only if sc(G) < 0.
Chvatal conjectured [23] that there is a minimum value of toughness implying trace-
ability. For a long period, τ(G) = 2 was believed to be this limit. However, Bauer
et al. showed non-traceable 2-tough graphs [13]. This means that there are graphs
with negative scattering number even among non-traceable graphs.

We are in a better situation if we restrict ourselves for trees. In this case, Theo-
rem 4.1.7 gives an upper bound for the number of leaves in terms of the scattering
number.

Theorem 4.1.7 Let T be a q-leaf tree on at least 3 vertices. Then q ≤ 2 sc(T).

Proof: We construct a subset X of internal vertices of T such that each component
of T [V \ X] contains at most one leaf of T implying comp(T [V \ X]) ≥ q. Then
we prove that |X| ≤ q/2. Combining these with the definition of scattering number
directly yields the theorem.

Recall that a spider is a tree that has at most one branching vertex. We build a
sequence {T1 = T, T2, . . . , Tk} of trees such that Tk is a spider. If, for some i, Ti is
not a spider we construct Ti+1 as follows: let xi be a branching of Ti with exactly
one trunk-edge (xi, yi) incident to it (such an xi exists if Ti is not a spider). Let T ′

i

be the component of Ti[V (Ti)− xi] that contains yi. If yi is not a leaf of T ′
i then let

Ti+1 = T ′
i . Otherwise, Ti+1 is obtained by deleting the branch of yi from T ′

i (Fig.
4.1). Observe that the leaves of Ti+1 form a subset of leaves of Ti, and that a leaf l
is in V1(Ti) \ V1(Ti+1) if and only if b(l) = xi.

If Ti is a spider (thus i = k) then we define xk to be the branching of the
spider. If Tk is a path then xk is chosen to be any internal vertex of Tk. Let
X = {x1, x2, . . . , xk}. Observe that this construction ensures that each leaf of T is
in a different component of T [V \X], thus q ≤ comp(T [V \X]).

To see that q ≥ 2|X| let bi denote the number of those branches of Ti that end
in xi. Then bi = dTi

(xi)− 1 and bi ≥ 2 for 1 ≤ i ≤ k − 1. This implies that

k
∑

i=1

bi ≥ 2k − 1.

4.1. SCATTERING NUMBER AND THE MINIMUM

NUMBER OF LEAVES 35

l

xi = b(l)

yi

TiTi+1

Figure 4.1: Constructing Ti+1 from Ti by removing the branching xi

v1v1

u1

w1

u2

v2

w2 wk

vk

uk

Figure 4.2: A graph proving that the bound of Theorem 4.1.7 is tight.

As xi cuts down exactly bi leaves from Ti, and as Tk is a spider with bk +1 leaves
we have |V1(Ti+1)| = |V1(Ti)| − bi, and |V1(Tk)| = bk + 1. Putting these together
gives

q =

k
∑

i=1

bi + 1 ≥ 2k = 2|X|.

As a result

sc(T) ≥ comp(T [V \X])− |X| ≥ q −
q

2
=

q

2
,

which finishes the proof. �

Again, we have a tight bound in Theorem 4.1.7. Indeed, let T be a tree on
vertices V (T) = {v1, v2, . . . , vk, u1, u2, . . . , uk, w1, w2, . . . , wk} having edges

E(T) = {(vi, vi+1)}i=1,2,...,k−1 ∪ {(vi, ui)}i=1,2,...,k ∪ {(vi, wi)}i=1,2,...,k ,

(see Fig. 4.2). Then it is easy to see that sc(T) = k = |V1(T)|
2

, and so the bound is
tight.

We have seen that a difference of factor 2 can arise between the number of leaves
and the scattering number of trees. In Section 4.3 we present cut-asymmetry as a
new vulnerability parameter which exactly determines the number of leaves when

36 CHAPTER 4. SPANNING TREE LEAVES AND VULNERABILITY

applied on a tree. Cut-asymmetry is then used (together with the results of this
section) to prove the approximation ratio of our algorithm in Section 5.5.

4.2 Basic Properties of Minimum Leaf Spanning

Trees

In this section we give two basic properties of minimum leaf spanning trees. We
remind the reader that if l is a leaf of tree T then b(l) denotes the branching closest
to l, b−(l) stands for the neighbor of b(l) in the branch of l, and x�l is the successor
of vertex x on the path PT (x, l).

Lemma 4.2.1 If T is a minimum leaf spanning tree of G then T is either a Hamil-
tonian path or an independence tree.

Proof: Suppose for a contradiction that T is not a Hamiltonian path and there
exist two leaves l1, l2 of T such that (l1, l2) ∈ E(G). Then the spanning tree T ′ with
edge-set E(T ′) = E(T) + (l1, l2)− (b(l1), b

−(l1)) has less leaves than T contradicting
the minimality of T (Fig. 4.3(a)). �

Lemma 4.2.2 Let G be a non-traceable graph, and T be a minimum leaf spanning
tree of G. Let l1 be an arbitrary leaf of T , and (l1, x) ∈ E(G) \ E(T) be a non-tree
edge. Then dT (x�l1) = 2 and if l2 6= l1 is a leaf of T then (x�l1 , l2) 6∈ E(G).

Proof: Let us consider the spanning tree T ′ with edge-set E(T ′) = E(T)+(l1, x)−
(x�l1 , x). Vertex x�l1 must be a forwarding vertex of T . Indeed, if dT (x�l1) > 2
then V1(T

′) = V1(T)− l1 and so T ′ has less leaves than T , a contradiction (see Fig.
4.3(b)). If dT (x�l1) = 2 then V1(T

′) = V1(T)− l1 + x�l1 , that is, T and T ′ has the
same number of leaves. However, if (x�l1 , l2) was a G-edge, it would connect two
leaves of T ′ and thus, by Lemma 4.2.1, neither T ′ nor T would be a minimum leaf
spanning tree (see Fig. 4.3(c)). �

We have the following trivial corollary of Lemma 4.2.1:

Corollary 4.2.3 If G is a non-complete connected graph then ml(G) ≤ α(G).

4.3 Cut-Asymmetry and the Maximum Number

of Independent Leaves

In Section 4.1 we have seen that scattering number provides both lower and upper
bounds on the number of leaves of a tree. In this section we use another vulnerability
measure, namely cut-asymmetry, for obtaining better bounds. Recall that scatter-
ing number shows how much structural damage can be caused by removing some
individual vertices from the graph. We define cut-asymmetry in a similar way but

4.3. CUT-ASYMMETRY AND THE MAXIMUM NUMBER OF INDEPENDENT LEAVES 37

b−(l1)

l1 l2

b(l1)

(a)

x�l1

x

l1

(b)

l1

x

x�l1

l2

(c)

Figure 4.3: Decreasing the number of leaves by local improvements

we count the connected subgraphs (instead of individual vertices) to be removed.
As an example, let us consider graph G of Figure 4.4, a K8 with a triangle joint
to each vertex. If we remove k (1 ≤ k ≤ 7) vertices of the complete K8 subgraph,
we obtain k + 1 components. Thus, sc(G) ≥ k + 1 − k = 1. Contrary, removing
the whole K8 (a single connected subgraph), we get 8 components. Therefore, the
cut-asymmetry ca(G) ≥ 8− 1 = 7. In fact, one can easily check that sc(G) = 1 and
ca(G) = 7.

In Subsection 4.3.2 we prove that cut-asymmetry of a tree exactly characterizes
the number of its leaves. In Subsection 4.3.3 we use cut-asymmetry to determine the
maximum number of independent leaves of a spanning tree of an arbitrary graph.
This puts cut-asymmetry in the context of research on independence trees [16, 19].
Besides, in Subsection 4.3.3, we point out a connection between cut-asymmetry and
the minimum size of a connected vertex cover.

First, we define cut-asymmetry as follows.

Definition 4.3.1 [8] The cut-asymmetry of a graph G = (V, E) is

ca(G) = max
X⊂V,X 6=∅

{comp(G[V \X])− comp(G[X])} .

Observe that this definition takes the maximum over all non-trivial cuts of G.
Cut-asymmetry counts how much the two sides of a cut can differ in terms of the
number of components.

4.3.1 Basic properties of cut-asymmetry

This definition immediately implies that ca(G) ≥ max {sc(G), 0}, and that ca(G) ≤
|V |−2, where equality holds if and only if G is a star. We mention here some further

38 CHAPTER 4. SPANNING TREE LEAVES AND VULNERABILITY

Figure 4.4: Difference between sc(G) and ca(G)

properties of cut-asymmetry.
The following theorem is a consequence of Theorems 4.3.10 and 4.3.22, however

a direct proof is also given below.

Theorem 4.3.2 ca(G) = 0 if and only if G is either a complete graph or a cycle.

Proof: If G is complete or a cycle then its cut-asymmetry is trivially 0. To
see the other direction let G be a non-complete graph such that ca(G) = 0. Let
Z = {z1, z2, . . . , zk} be an arbitrary independent set. As ca(G) = 0 the graph
G[V \Z] has k components C1, C2, . . . , Ck. Let us contract each component Ci to a
single vertex ci. By this transformation we obtain the connected bipartite graph G′

with vertex classes Z and C = {c1, c2, . . . , ck}.

Claim 4.3.3 G′ is an even cycle.

Proof: For every 1 ≤ j ≤ k we have dG′(zj) = 2. Otherwise if dG′(zj) = 1
for some j then comp(G[Z − zj]) = k − 1 and comp(G[V \ (Z − zj)]) = k would
imply ca(G) ≥ 1. If dG′(zj) ≥ 3 for some j then comp(G[Z − zj]) = k − 1 and
comp(G[V \ (Z − zj)]) ≤ k − 2 would imply ca(G) ≥ 1. A similar reasoning shows
that dG′(cj) = 2 for all 1 ≤ j ≤ k. As a result G′ is a 2-regular connected bipartite
graph, that is, an even cycle. �

Claim 4.3.4 If some vertex v is in the component Ci, for some i, such that 2 ≤
|V (Ci)| then v has at most one G-neighbor in Z.

Proof: Suppose that zj1 ∈ Z and zj2 ∈ Z are both G-neighbors of v. Then
comp(G[Z + v]) = k − 1 and comp(G[V \ (Z + v)]) = k imply ca(G) ≥ 1, a
contradiction. �

4.3. CUT-ASYMMETRY AND THE MAXIMUM NUMBER OF INDEPENDENT LEAVES 39

x4

x2kx1

x2

xn

Figure 4.5: A graph on n vertices with ca(G) = k

Claim 4.3.5 There is at most one edge in G between vertex zj ∈ Z and component
Ci for all i and j.

Proof: Suppose that there exist two vertices u, v ∈ Ci and a vertex zj ∈ Z (for
some i and j) such that both (u, zj) and (v, zj) are edges of G. Then, by Claim
4.3.4, comp(G[Z − zj + u]) = k as u has no other neighbors in Z. We also have
comp(G[V \ (Z − zj + u)]) = k − 1 as zj is neighboring to some other component
Ci′ . This implies ca(G) ≥ 1, a contradiction. �

As a result of Claims 4.3.3 and 4.3.5 we obtain that exactly two edges of G
leave each component Ci. For a fixed i let these edges be (zj1, ui) and (zj2 , vi),
where ui, vi ∈ V (Ci). Note that ui = vi if and only if Ci has a single vertex.
Suppose that Ci has a vertex xi such that Ci − xi has a ui − vi path. In this case
comp(G[Z−zj1 +xi]) = k, using Claim 4.3.3, and comp(G[V \(Z−zj1 +xi)]) = k−1
implying ca(G) ≥ 1, a contradiction. We conclude that component Ci is either a
single vertex or a simple path connecting ui and vi. This, together with Claim 4.3.3,
proves the theorem. �

Let us recall that sc(G) ≤ 1 is a necessary condition for the existence of a Hamil-
tonian path. The following theorem shows a sufficient condition for traceability by
the means of cut-asymmetry. We do not prove this theorem directly. It is a corollary
of the later discussed Theorems 4.3.10 and 4.3.22.

Theorem 4.3.6 If ca(G) ≤ 1 then G has a Hamiltonian path, that is, G is traceable.

Unfortunately the traceability of G does not imply a low value of ca(G) as shown
by the following theorem.

Theorem 4.3.7 If G = (V, E) is a traceable graph on n vertices then ca(G) ≤
⌊n−1

2
⌋. Moreover, if k is an arbitrary integer such that 0 ≤ k ≤ ⌊n−1

2
⌋ then there

exists a traceable graph G on n vertices for which ca(G) = k.

Proof: Theorem 4.1.3 implies that sc(G) ≤ 1, that is, for any proper subset
X ⊂ V we have comp(G[V \X]) ≤ |X|+1. As comp(G[V \X]) ≤ n−|X| we obtain
comp(G[V \X]) ≤ ⌊n+1

2
⌋. Thus ca(G) ≤ ⌊n−1

2
⌋.

To see the second part let us fix k ≤ ⌊n−1
2
⌋. A graph on n vertices whose

cut-asymmetry is exactly k is constructed as follows. If k = 0 then according to

40 CHAPTER 4. SPANNING TREE LEAVES AND VULNERABILITY

Theorem 4.3.2 the graph G = Kn is a good example. So we suppose that k ≥ 1.
Let P = x1, x2, . . . , xn be a path of length n. Now we obtain G by adding the edges
of the complete graph on x2, x4, . . . , x2k to P (see Figure 4.5). It is easy to check
that ca(G) = k. �

After discussing the basic properties of cut-asymmetry, we now turn to its ap-
plications.

4.3.2 Cut-asymmetry of trees

In this subsection we prove that unlike scattering number, cut-asymmetry fully
determines the number of leaves of a tree.

Let us emphasize that the original proof of Lemma 4.3.8 is entirely due to Gábor
Wiener and the only reason for giving it here is to make the section self-containing.
For the used notation, the reader is referred to Section 2.1.

Lemma 4.3.8 [8] If T is a tree then |V1(T)| = ca(T) + 1.

Proof: First observe that

comp(T [V1(T)])− comp(T [V \ V1(T)]) = |V1(T)| − 1,

since V1(T) is an independent set and V \ V1(T) spans a subtree. This implies
ca(T) ≥ |V1(T)| − 1.

In order to show that ca(T) ≤ |V1(T)| − 1 let us have a set X ⊂ V of vertices
for which ca(T) = compT (X) − compT (V \ X). For the sake of convenience let
x = compT (X) and x = compT (V \X). Then eT (X) = |X| − x, and eT (V \X) =
n− |X| − x, thus the total degree of vertices in X is

dT (X) = 2eT (X) + eT (X, V \X) = 2eT (X) + n− 1− (eT (X) + eT (V \X))

= 2(|X| − x) + x + x− 1 = 2|X| − x + x− 1.

If some v ∈ X is not a leaf of T then it increases this total degree by at least 2.
Therefore the number of leaves of T is

|V1(T)| ≥ |V1(T) ∩X| ≥ 2|X| − dT (X) ≥ x− x + 1 = ca(T) + 1,

as requested. �

Thus for any tree T , using Lemma 4.1.4 and Theorem 4.1.7, we obtain

sc(T) + 1 ≤ |V1(T)| = ca(T) + 1 ≤ 2 sc(T).

For a connected graph G we have proved so far

sc(G) + 1 ≤ min {ml(G), ca(G) + 1} .

In what follows we prove that ml(G) ≤ ca(G) + 1 holds for all graphs but the
complete graph Kn and the cycle Cn. For this purpose we introduce a new parameter
called leaf-independence.

4.3. CUT-ASYMMETRY AND THE MAXIMUM NUMBER OF INDEPENDENT LEAVES 41

4.3.3 Leaf-independence

Definition 4.3.9 Let G be any connected graph and T be a spanning tree of G. The
leaf-independence of T in G, denoted by liG(T), is the cardinality of a maximum G-
independent subset of V1(T). The leaf independence li(G) of the graph G is the
maximum of liG(T) over all spanning trees of G.

It is important to point out that a spanning tree T can have more than liG(T)
leaves. Indeed, liG(T) = |V1(T)| if and only if T is an independence tree. Note
that li(G) is defined for all connected graphs, however, not all connected graphs
have an independence tree. Böhme et al. [16] characterized the graphs that have
no independence trees. (These graphs are the complete graph, the cycle and the
complete bipartite graph Kn,n, see Theorem 4.3.15) If an independence tree with αt

leaves exists then obviously li(G) ≥ αt.
Notice that li(G) can be strictly greater than αt(G) as shown by the graph G

obtained from K4,4 removing one of its edges. It is easy to see that li(G) = 3, and
αt(G) = 2.

Let us refer here to the recently published work of Levit and Mandrescu [52]
dealing with the connection between the leaves and the intersection of all inde-
pendent sets of a tree. The authors show that in an arbitrary tree T satisfying
α(T) > |V (T)|/2 there exist at least two pendant vertices an even distance apart
belonging to all independent sets of T .

Now observe that the definition of leaf-independence directly yields li(G) ≤ α(G)
and also implies that the leaf-independence of a tree T having at least 3 vertices is
equal to the number of its leaves. Thus, by Lemma 4.3.8, ca(T) = |V1(T)| − 1 =
li(T) − 1. The following theorem states that this equality between cut-asymmetry
and leaf-independence holds for every graph.

Theorem 4.3.10 Let G be a connected graph. Then ca(G) = li(G)− 1.

Proof: Let T be a spanning tree of G such that liG(T) = li(G). Let Z be a
maximum independent set of V1(T), and let X = V \ Z. Then, on one hand,

comp(G[V \X]) = |V \X| = li(G),

and on the other hand

1 ≤ comp(G[X]) ≤ comp(T [X]) = 1.

Therefore
ca(G) ≥ comp(G[V \X])− comp(G[X]) = li(G)− 1.

To prove the reverse direction let us choose X∗ to be the set giving the maximum
in Definition 4.3.1. If several such sets exist we take one of maximum cardinality.
First we show that in this case V \ X∗ is an independent set of G. Suppose the

42 CHAPTER 4. SPANNING TREE LEAVES AND VULNERABILITY

contrary, namely that there is an edge (u, v) in G[V \X∗]. Then considering X ′ =
X∗ + u we have

comp(G[X ′]) ≤ comp(G[X∗]),

and
comp(G[V \X ′]) ≥ comp(G[V \X∗]).

This forms a contradiction as

comp(G[V \X ′])− comp(G[X ′]) ≥ comp(G[V \X∗])− comp(G[X∗]),

and |X ′| > |X∗|.
In what follows we show that X∗ spans a connected subgraph of G. Suppose

for a contradiction that G[X∗] has more than one components. Then, since V \X∗

is an independent set, there must exist two components C1 and C2 of G[X∗], and
a vertex u ∈ V \ X∗ such that G[V (C1) ∪ V (C2) + u] is connected. Hence for the
independent set V \X ′ = (V \X∗)− u we have:

comp(G[V \X ′]) = |V \X ′| = |V \X∗| − 1 = comp(G[V \X∗])− 1,

and
comp(G[X ′]) ≤ comp(G[X∗])− 1.

Thus

comp(G[V \X ′])− comp(G[X ′]) ≥ comp(G[V \X∗])− comp(G[X∗]),

a contradiction as |X ′| > |X∗|.
To finish the proof let T ∗ be a spanning tree of G[X∗]. We then connect each

vertex of V \X∗ to T ∗. Thus we obtain a spanning tree of G in which all vertices
of V \X∗ are leaves. Thus

li(G) ≥ |V \X∗| = comp(G[V \X∗])− comp(G[X∗]) + 1 = ca(G) + 1,

using that V \X∗ is independent and that X∗ spans a connected subgraph of G. �

In the proof of Theorem 4.3.10 we have seen that there exists an independent set
Z∗ = V \X∗ such that G[V \Z∗] is connected and that comp(G[Z∗])− comp(G[V \
Z∗]) = ca(G). This yields us an alternative definition of cut-asymmetry, that is

Corollary 4.3.11 Let Z be a maximum size independent set of V for which G[V \Z]
is connected. Then ca(G) = |Z| − 1.

Now we examine the computational complexity of calculating ca(G), or equiv-
alently li(G). To this aim we first point out a connection between cut-asymmetry
and connected vertex covers.

Recall that a connected vertex cover of G is a vertex-set that spans a connected
subgraph and that meets all edges of G. Let us denote by cvc(G) the size of a

4.3. CUT-ASYMMETRY AND THE MAXIMUM NUMBER OF INDEPENDENT LEAVES 43

minimum cardinality connected vertex cover of G. To find out the size of a minimum
connected vertex cover is one of the first problems turned out to be NP-hard [30].

Observe that the set Z∗ = V \X∗ of the above proof is a maximum-size indepen-
dent vertex-set whose complement X∗ spans a connected subgraph. The following
claim directly shows this connection.

Claim 4.3.12 For any connected graph G we have

li(G) = max {|X| : X is independent, V \X is connected } .

Proof: On one hand, let X be a set providing the maximum on the right hand
side. Let us take a spanning tree of G[V \X] and connect each vertex of X to it by
a single edge. Thus we obtain a spanning tree T of G. Every vertex of X is a leaf
of T thus we have li(G) ≥ |X|. On the other hand, let T be a spanning tree with
li(G) independent leaves forming the set X. Then G[V \X] is connected and so the
maximum on the right hand side is at least |X| = li(G). �

This immediately proves the following connection between li(G) and cvc(G), the
size of a minimum-size connected vertex cover of G:

Corollary 4.3.13 For any connected graph G on n vertices li(G) + cvc(G) = n.

Note that the above arguments also show that the complement of a minimum
connected vertex cover is always a maximum size independent subset of leaves of a
spanning tree.

Thus Corollary 4.3.13 and Theorem 4.3.10 imply:

Theorem 4.3.14 Cut-asymmetry and leaf-independence of a graph are NP-hard to
compute.

Notice that it is also NP-hard to calculate the scattering number of a graph [73].

In what follows we show that leaf-independence provides an upper bound on the
minimum number of leaves in almost all graphs. By Lemma 4.2.1 we obtain that if
G has no Hamiltonian path then the leaves of any minimum leaf spanning tree of
G are independent. In this case ml(G) ≤ li(G) is straightforward. If G is traceable
then ml(G) = 2 and so ml(G) ≤ li(G) is true if and only if G has a spanning tree
with at least two independent leaves. We use a result of Böhme et al. to show that
this condition is satisfied whenever G is neither the complete graph Kn nor the cycle
Cn.

Theorem 4.3.15 [16] If G is traceable and each Hamiltonian path of G is the part
of a Hamiltonian cycle then G is either the complete graph Kn or the cycle Cn or
the complete bipartite graph Kn,n.

44 CHAPTER 4. SPANNING TREE LEAVES AND VULNERABILITY

For the sake of completeness, we give here our own proof for this theorem.

Let G be a graph satisfying the conditions of Theorem 4.3.15, and C be a Hamil-
tonian cycle of G. Let the vertices of G be numbered according to their order in C,
that is, v0, v1, . . . , vn−1, vn = v0. First we prove some technical claims. Note that
in these claims the subscripts of vertices of C are always considered modulo n. A
G-edge (vi, vi+k), for 2 ≤ k ≤

⌊

n
2

⌋

, is called a chord of length k.

Claim 4.3.16 If G contains a chord of length k then it contains all possible chords
of length k.

Proof: Let (vi, vi+k) be a G-edge. Suppose that (vi+1, vi+k+1) is not a G-edge.
Then the path vi+1, vi+2, . . . , vi+k, vi, vi−1, vi−2, . . . , vi+k+1 is a Hamiltonian path with
independent end-vertices, a contradiction. (Fig. 4.6(a)) Thus (vi+1, vi+k+1) is a chord
of C. Then the claim follows by induction. �

Claim 4.3.17 If G has a chord of length k, for some 2 ≤ k ≤
⌊

n
2

⌋

− 2, then G has
a chord of length k + 2.

Proof: Let (vi, vi+k) be a G-edge. Using Claim 4.3.16 we obtain that both
(vi−1, vi+k−1) and (vi+1, vi+k+1) are G-edges. Suppose that (vi, vk+2) is not a G-
edge. Then the path vi, vi+k, vi+k+1, vi+1, vi+2, . . . , vi+k−1, vi−1, vi−2, . . . , vi+k+2 is a
Hamiltonian path with independent end-vertices, a contradiction. (Fig. 4.6(b)) �

Claim 4.3.18 If G has a chord of length k, for some 4 ≤ k ≤
⌊

n
2

⌋

, then G has a
chord of length k − 2.

Proof: Let (vi, vi+k) be a G-edge. Using Claim 4.3.16 we obtain that both
(vi−1, vi+k−1) and (vi+1, vi+k+1) are G-edges. Suppose that (vi, vk−2) is not a G-
edge. Then the path vi, vi+k, vi+k−1, vi−1, vi−2, . . . , vi+k+1, vi+1, vi+2, . . . , vi+k−2 is a
Hamiltonian path with independent end-vertices, a contradiction (Fig. 4.6(c)). �

Claim 4.3.19 If n is odd and G contains a chord of length 2
⌊

n−3
4

⌋

+1 then G also
contains a chord of length 2

⌊

n−1
4

⌋

.

Proof: Let k = 2
⌊

n−3
4

⌋

+ 1, and (vi, vi+k) be a G-edge. Using Claim 4.3.16 we
obtain that both (vi−1, vi+k−1) and (vi+1, vi+k+1) are G-edges. Suppose that (vi, vk+2)
is not a G-edge. Then the path vi, vi+k, vi+k+1, vi+1, vi+2, . . . , vi+k−1, vi−1, vi−2, . . . ,
vi+k+2 is a Hamiltonian path with independent end-vertices, a contradiction. (Fig.
4.6(d)) This proves the claim as the length of the chord (vi, vk+2) is 2

⌊

n−1
4

⌋

. �

Claim 4.3.20 If G has a chord of length 2 then G is the complete graph Kn.

4.3. CUT-ASYMMETRY AND THE MAXIMUM NUMBER OF INDEPENDENT LEAVES 45

vi

vi+1

vi+k+1

vi+k

(a) Claim 4.3.16

vi

vi+1

vi+k+1

vi+k

vi+k+2

vi+k−1

vi−1

(b) Claim 4.3.17

vi

vi+1

vi+k

vi+k−1

vi+k+1

vi+k−2

vi−1

(c) Claim 4.3.18

vi

vi+1

vi+kvi+k+1

vi−1

vi+k−1
vi+k+2

(d) Claim 4.3.19

vi

vi+1

vi+kvi+k+1

vi−1

(e) Claim 4.3.20

Figure 4.6: Dashed edges must be chords of G as no Hamiltonian path has indepen-
dent ends

Proof: Claim 4.3.16 implies that G contains all chords of length 2. Let (vi, vi+k)
be a G-edge (2 ≤ k ≤

⌊

n
2

⌋

− 1). We prove that in this case (vi, vi+k+1) is also a
G-edge. This by induction on chord length and by Claim 4.3.16 proves the claim.

Suppose that (vi, vi+k+1) is not a G-edge. Then the path vi, vi+k, vi+k−1, . . . , vi+1,
vi−1, vi−2, . . . , vi+k+1 is a Hamiltonian path with independent end-vertices, a contra-
diction (Fig. 4.6(e)). �

Claim 4.3.21 If G is neither bipartite nor an odd cycle then it contains an even-
length chord.

Proof: If G is a cycle there is nothing to prove. Otherwise if n is odd let G contain
a chord (vi, vi+k). If k is even we are done. If k is odd then, by Claim 4.3.17, the
chord 2

⌊

n−3
4

⌋

+ 1 is in G and so, by Claim 4.3.19, G has a chord of length 2
⌊

n−1
4

⌋

.
Suppose now that n is even. Let Codd = w0, w1, . . . , ws = w0 be an odd cycle

in G. As s is odd, at least one chord (wi, wi+1) of C must have even length. This
proves the claim. �

46 CHAPTER 4. SPANNING TREE LEAVES AND VULNERABILITY

Now we can use the above claims to prove the theorem.

Proof of Theorem 4.3.15: If G = Cn we are done. If G has an odd-length chord
then, by Claims 4.3.17, 4.3.18, and 4.3.16, G must have Kn,n as a subgraph. Hence
either G = Kn,n or G has an odd cycle. In this latter case, by Claim 4.3.21, G must
have an even-length chord and, by Claims 4.3.18, and 4.3.20, G is a complete graph.
�

This theorem immediately implies that li(G) ≥ 2 if G is not isomorphic to Kn,
Cn or Kn,n. It is easy to see that for these special graphs we have li(Kn) = li(Cn) = 1
and li(Kn,n) = n− 1. Thus we obtain the following theorem.

Theorem 4.3.22 Let G be any connected graph but the complete graph Kn and the
cycle Cn. Then ml(G) ≤ li(G).

4.3.4 Putting things together

The results of this chapter are used for proving approximation ratios in Chapter 5.
To achieve this, we need one more claim.

Claim 4.3.23 If G is a graph on n vertices then 2(n− α(G)) ≥ n− sc(G).

Proof: Let X be an independent set of size α(G). Then

sc(G) ≥ comp(G[X])− |V \X| = α(G)− (n− α(G)).

Subtracting both sides from n yields the claim. �

Summarizing the results of the chapter, Theorem 4.1.5, Theorem 4.3.22, Theorem
4.3.10, and Definition 4.3.9 imply

Corollary 4.3.24 For any connected graph G but Kn and Cn:

sc(G) + 1 ≤ ml(G) ≤ li(G) = ca(G) + 1 ≤ α(G).

Subtracting each measure from n and using Claim 4.3.23 we conclude:

Corollary 4.3.25 For any connected graph G but Kn and Cn:

n− sc(G)−1 ≥ n−ml(G) ≥ n− li(G) = n− ca(G)−1 ≥ n−α(G) ≥
1

2
(n− sc(G)).

Observe that there is a difference of factor 2 between the two ends of this series of
inequalities. This fact forms the basis of our approximation ratio proofs in Chapter 5.
Using Corollary 4.3.13, it also shows that the internal vertices of any independence
tree provide a 2-approximation for the Minimum Connected Vertex Cover

problem. The original proof of this latter statement is due to Savage [60].

Chapter 5
Maximizing the Number of Internal

Vertices

In this chapter we deal with the Maximum Internal Spanning Tree problem:
given an undirected connected graph G we aim to find a spanning tree of G which
maximizes the number of internal vertices. Clearly, this degree-based spanning tree
optimization problem is a generalization of the Hamiltonian Path problem, since
Hamiltonian paths (if exist) are exactly those spanning trees which have |V (G)| − 2
internal vertices. (As a tree always has at least 2 leaves, the number of its internal
vertices can be at most |V (G)| − 2.)

In Section 5.2, we first present Algorithm ILST, an improvement of Algorithm
DFS which yields a spanning tree with independent leaves. Then we prove in three
different ways that Algorithm ILST provides a linear-time 2-approximation for the
Maximum Internal Spanning Tree problem. The first proof shows that this
approximation factor is a straightforward consequence of the results of Chapter 4.
The second proof is a compact and self-contained one (having been our original proof
for the approximation factor). The third proof uses a primal-dual linear program-
ming approach which is further refined in Section 5.5 to prove that Algorithm LOST
is a 7/4-approximation for the Maximum Internal Spanning Tree problem for
graphs with no pendant vertices.

In Section 5.4, we consider two special classes of input graphs: claw-free graphs
(graphs not containing K1,3 as an induced subgraph) and cubic graphs (3-regular
graphs). We introduce Algorithm RDFS, which is a refined version of Algorithm
DFS, and which ensures an approximation factor of 3/2 if the input graph is claw-
free, and a factor of 6/5 if the input graph is cubic. The running time of Algorithm
RDFS is O(∆(G)|V (G)|).

In Section 5.5, we present Algorithm LOST which provides a 7/4-approximation
for the Maximum Internal Spanning Tree problem, in O(|V (G)|4) time, for
input graphs with no pendant vertices. This algorithm is based on the successive
execution of local improvement steps. Local improvement techniques have already

47

48 CHAPTER 5. MAXIMIZING THE NUMBER OF INTERNAL VERTICES

been applied for many NP-hard spanning tree optimization problems [29, 53, 54, 64].
To prove the approximation ratio, we use a linear-programming formulation and a
primal-dual technique, the basic idea of which is introduced in Section 5.2.

Section 5.6 considers the vertex-weighted case: the Maximum Weighted In-

ternal Spanning Tree problem. Here, the total weight of internal vertices
is to be maximized. We present Algorithm WLOST, another local improvement
based method, which provides a (2∆(G) − 3)-approximation in O(|V (G)|4)-time.
A slight modification of this algorithm (called Algorithm RWLOST) ensures an
O(|V (G)|4)-time 2-approximation whenever the input graph is claw-free. Both of
these approximation factors are guaranteed only if the input graph has no pendant
vertex.

Section 5.7 considers the Maximum Internal Spanning Tree problem from
an opposite point of view. Instead of looking for a spanning tree with as many
internal vertices (or equivalently as few leaves) as possible, we upper bound the
number of leaves at a number q and search for an ≤ q-leaf subtree spanning as many
vertices as possible. For this aim, we use a density condition on the input graph.
In Section 5.8, we examine how density conditions can guarantee the existence of a
q-leaf spanning tree in claw-free graphs.

In Section 5.9 we present the results of our experimental analysis on the Maxi-

mum Internal Spanning Tree problem.

In what follows we give some basic definitions and introduce the notation used
throughout this chapter. Let T be a spanning tree of G and l be a leaf of T . The
branch of l is short if b−(l) = l, that is, there is no forwarding vertex in br(l).
Otherwise the branch is called long. The leaf l itself is referred as short (long) if
its branch is short (long). Ls(T) stands for the set of short leaves of T and Lg(T)
for the set of long leaves of T . A leaf l is called (x-)supported if there is a non-tree
edge (l, x) with x 6∈ br(l). If l is a long leaf and there exists a non-tree edge (l, z)
such that z ∈ br(l) then z�l is called an l-leafish vertex. In this case, the vertex z is
called the base of z�l. The set of l-leafish vertices is denoted by F (l). Observe that
not every long leaf has a leafish vertex in its branch. We denote by Lp(T) the set of
long leaves of T having no leafish vertex in their branch. We recall that I(T) and
L(T) denote the internal vertices and the leaves of tree T , respectively.

5.1 Related Results

The Maximum Internal Spanning Tree problem was already considered in the
literature from different points of view. Fernau et al. [25, 26] gave exponential-time
exact algorithms to solve it. The running time they achieve is O∗(cn) for some c ≤ 3
for general graphs, and O∗(1.8916n) for the case when the input graph has ∆ ≤ 3.
Here we use the notation O∗(t(n)) to denote the time complexity of O(t(n) poly(n)).
Prieto and Sloper proved that the Maximum Internal Spanning Tree problem
is fixed parameter tractable [57, 58], that is, a spanning tree with at least k internal

5.1. RELATED RESULTS 49

vertices can be found in f(k)O(nc) = O∗(f(k)) time if it exists. The exact running
time of their algoritm is O∗(23.5k log k).

In the rest of this section, we recall a few optimization problems related to the
Maximum Internal Spanning Tree problem. We also mention some problems
where the methods we are using (local improvement, primal-dual LP-optimization)
have been successfully applied to obtain approximability results.

The Minimum Leaf Spanning Tree problem consists of finding a spanning
tree with a minimum number of leaves. This degree-based spanning tree optimiza-
tion problem is clearly NP-hard, being a generalization of the Hamiltonian Path

problem. Moreover, it is even hard to approximate: using a result of Karger et al.
[45] on the Longest Path problem, Lu and Ravi [54] showed that no constant-
factor approximation exists for it, unless P=NP. Observe that from an optimization
point of view, the Minimum Leaf Spanning Tree problem is equivalent to the
Maximum Internal Spanning Tree problem. The set of optimum solutions
is the same for both problems, only the measure function is complemented yielding
different approximability properties, as shown by the results of this chapter.

We describe our 7/4-approximation algorithm for the Maximum Internal

Spanning Tree problem (for graphs with no pendant vertices) in Section 5.5.
It applies local improvement rules in order to decrease the number of leaves. The
idea of using local improvement to achieve a global result is quite common within the
field of combinatorial optimization. Particularly, it was successfully used for many
degree-based spanning tree optimization problems [29, 53, 54, 64]. One of them is
the Minimum Degree Spanning Tree problem, which is to find a spanning tree
T where the maximum T -degree is minimized. For this problem, the local improve-
ment based algorithm of Fürer and Raghavachari [29] is the best possible (unless
P=NP) as it finds a spanning tree whose maximum degree is at most one more
than the optimum solution. Our second example is the Maximum Leaf Span-

ning Tree problem which is to find a spanning tree with a maximum number
of leaves. Lu and Ravi have used the local improvement technique on a pre-built
spanning tree to give an O(n7)-time 3-approximation for this problem. Later, they
have proposed the idea of manipulating the local structure of the underlying graph
[55] and so they have reduced the running time to be almost linear, at the same time
preserving the approximation factor of 3. The currently known best approximation
factor is 2: the algorithm of Solis-Oba [64] is based on the local improvement idea
presented in [55].

Finally we mention that the proof of the approximation factor in Section 5.5
is based on a linear programming formulation of the Maximum Internal Span-

ning Tree problem, and on a primal-dual bounding approach. The main idea
of this proof was inspired by the framework of Goemans and Williamson [36] who
have successfully applied primal-dual approximation for a general spanning forest
optimization problem.

50 CHAPTER 5. MAXIMIZING THE NUMBER OF INTERNAL VERTICES

5.2 A 2-approximation Algorithm

In this section we provide a linear-time 2-approximation algorithm for the Maximum

Internal Spanning Tree problem. Given a graph G, our algorithm creates
either a Hamiltonian path or an independence tree of the input graph G. The
algorithm itself is based on Algorithm DFS.

Recall that a DFS-tree T is a spanning tree of G rooted at some vertex r.
According to Claim 2.2.1, the d-leaves of T are G-independent. However, this does
not guarantee that the leaves of T form a G-independent set if we consider T as a
non-rooted spanning tree. It might happen that r is a leaf of T and is adjacent to
some d-leaves. In this case, an additional replacement step is executed to make the
leaves independent. Note that this step decreases the number of leaves by one. Thus
the resulting spanning tree has at most as many leaves as the number of d-leaves of
T .

Algorithm ILST (Independent Leaves Spanning Tree)

Input: An undirected graph G = (V, E)
Output: A Hamiltonian path or an independence tree of G
T ← DFSTraversal(G) ; // an arbitrary DFS-tree of G
r ← the root of T
if T is not a Hamiltonian path and dT (r) = 1 and there exists a d-leaf l such
that (r, l) ∈ E(G) then

// r is a leaf and is adjacent to another leaf l
Add edge (l, r) to T
Delete edge (b(l), b−(l)) from T

return T

Algorithm ILST produces a spanning tree. Indeed, the replacement step first
creates a unique cycle by adding an edge to the tree and then removes an edge from
this cycle. If the replacement step is executed then l and r become internal vertices
and b−(l) becomes a leaf. Since b−(l) is not an ancestor of any other leaves, it is
G-independent from them, see Claim 2.2.2, and so the obtained spanning tree T is
an independence tree. The initial DFS-tree can be found in linear time. If we check
(r, l) ∈ E(G) for each d-leaf l during the traversal then the evaluation of the ”if”
condition needs only constant extra time. Once l is found, finding b(l) and b−(l)
and executing the replacement step needs linear time.

Thus we have proved

Claim 5.2.1 Algorithm ILST gives either a Hamiltonian path or an independence
tree of G in O(m) time. �

In what follows we prove that Algorithm ILST is a 2-approximation algorithm for
the Maximum Internal Spanning Tree problem. We provide three different

5.2. A 2-APPROXIMATION ALGORITHM 51

proofs for the approximation ratio. The first one is based on vulnerability parameters
and uses the results of Chapter 4. The second one is a direct proof, while the third
one is a linear programming based approach which is further enhanced in Section
5.5 where we give a 7/4-approximation algorithm for the Maximum Internal

Spanning Tree problem for graphs with no pendant vertices.

Theorem 5.2.2 Algorithm ILST is a linear-time 2-approximation algorithm for the
Maximum Internal Spanning Tree problem.

Note that the running time is already proved in Claim 5.2.1, we only have to
show that any independence tree ensures the required approximation ratio, that is,

Claim 5.2.3 If T is an independence tree of G, and T ∗ is an optimum solution of
the Maximum Internal Spanning Tree problem in G then |I(T ∗)| ≤ 2|I(T)|.

We prove this claim in three different ways in the next three subsections.

5.2.1 Proof 1: via vulnerability parameters

Let T be the independence tree of G that Algorithm ILST outputs. Then we have
ml(G) ≤ |V1(T)| ≤ li(G). Thus using Corollary 4.3.25 we have

|I(T ∗)|

|I(T)|
=

n−ml(G)

n− |V1(T)|
≤

n−ml(G)

n− li(G)
≤

2(n− α(G))

n− α(G)
= 2.

We can conclude that the approximation ratio is a trivial consequence of the
results of Chapter 4.

5.2.2 Proof 2: the direct way

Let the spanning tree T be the output of Algorithm ILST, and T ∗ be an optimum
solution of the Maximum Internal Spanning Tree problem in G.

If |V1(T)| ≤ n/2 then we are done, as in this case

|I(T)| = n− |V1(T)| ≥ n/2 > |I(T ∗)|/2.

Thus, we can suppose that |V1(T)| = n/2 + k, for some k > 0, and so we have
|I(T)| = n/2 − k. Now we count those edges of T ∗ that are between V1(T) and
I(T). To this aim, let S = eT ∗ (V1(T), I(T)) denote the set of these edges. Observe
that an arbitrary vertex v ∈ V1(T) is either a leaf or an internal vertex of T ∗. In
the former case, there is a single edge in S which is incident to v, in the latter case
there are at least two of them. (Here we use the fact that V1(T) is a G-independent
set by the construction of Algorithm ILST.) Hence we have

n− 1 ≥ |S| ≥ |V1(T)|+ |V1(T) ∩ I(T ∗)|.

52 CHAPTER 5. MAXIMIZING THE NUMBER OF INTERNAL VERTICES

We can reformulate this as

|V1(T) ∩ I(T ∗)| ≤ n− |V1(T)| = n/2− k.

This implies that

|I(T ∗)| = |I(T ∗) ∩ V1(T)|+ |I(T ∗) ∩ I(T)| ≤ n/2− k + n/2− k = 2|I(T)|,

yielding the approximation factor of 2.

5.2.3 Proof 3: via linear programming

To prove the approximation ratio we construct a linear programming formulation
of the problem such that each spanning tree T ′ of G defines a feasible solution with
a value of |I(T ′)|. Especially, the solution corresponding to the optimal tree T ∗

has a value of |I(T ∗)|. Our goal is to establish an approximation factor β, that is,
to prove that for a spanning tree T created by some polynomial-time algorithm,
we have β|I(T)| ≥ |I(T ∗)|. For this aim we use a primal-dual LP-approach. It is
enough to give a particular dual solution with a value of β|I(T)|, as in this case

|I(T ∗)| ≤ LP-optimum ≤ β|I(T)|

ensures the approximation factor.
In this section, we provide an LP-description of both the primal and the dual

problems. Based on the spanning tree T , we give a simple primal and a simple dual
solution. As a result, we obtain β = 2 for Algorithm ILST. In Section 5.5, when
analyzing Algorithm LOST, we will use the same problem formulations, and the
same primal solution. However, by giving two more complex dual solutions, we will
achieve β = 7/4 for graphs with no pendant vertices.

Let us recall a formulation of the spanning tree polyhedron [62]:

SP(G) = {x | ∀S ⊆ V : x(S) ≤ |S| − 1,−x(V) ≤ −(|V | − 1), ∀e ∈ E : 0 ≤ x(e)} ,

where x(S) =
∑

e∈E(G[S]) x(e) is the sum of x over all edges spanned by S.

Let us consider the following linear program (called primal problem):

maximize
∑

v∈V

z(v)

subject to x ∈ SP(G)

−
∑

e∈δ(v)

x(e) + z(v) ≤ −1 for all v ∈ V (5.1)

0 ≤ z(v) ≤ 1 for all v ∈ V

Notice that each integer solution of this program is composed of the characteristic
vector of edges (x) and internal vertices (z) of a spanning tree. We use this fact

5.2. A 2-APPROXIMATION ALGORITHM 53

to create a feasible primal LP-solution P based on an optimum solution T ∗ of the
Maximum Internal Spanning Tree problem.

We set x(e) = 1 when e is an edge of T ∗, and z(v) = 1 when v is an internal
vertex of T ∗. All other variables are set to 0. Since T ∗ is a spanning tree, it
is easy to see that this solution is feasible and has a value of val(P) = |I(T ∗)|.
Indeed, the characteristic vector of the T ∗-edges is by definition in the spanning tree
polyhedron SP(G), so we only have to check (5.1). By the choice of x(e), we know
that

∑

e∈δ(v) x(e) is exactly the T ∗-degree of v, and so (5.1) requires z(v) to be at

most dT ∗(v)− 1, which is true by its definition.

If P∗ is the optimum solution of the primal LP-problem itself then we obtain

|I(T ∗)| = val(P) ≤ val(P∗). (5.2)

The dual of the above program is:

minimize
∑

S⊆V

(|S| − 1)y(S)− (|V | − 1)t−
∑

v∈V

w(v) +
∑

v∈V

r(v)

subject to
∑

e∈E(G[S])

y(S)− t−
∑

e∈δ(v)

w(v) ≥ 0 for all e ∈ E (5.3)

w(v) + r(v) ≥ 1 for all v ∈ V

y(S), t, w(v), r(v) ≥ 0 for all S ⊆ V, v ∈ V

Based on the spanning tree T , we construct a dual solution D as follows. Let
y(V) = 1, w(v) = 1 for each v ∈ L(T), and r(v) = 1 for each v ∈ V \ (L(T)). All
other variables are set to 0.

To see the feasibility of this solution, it is enough to check (5.3) for all G-edges.
If (u, v) is such an edge that w(u) = 0 or w(v) = 0 then (5.3) is satisfied due to
y(V) = 1. Thus only the edges with w(u) = w(v) = 1, that is, the edges of G[L(T)]
could violate the inequality. However, as T is an independence tree, there is no such
G-edge, the leaves of T form a G-independent set. As a result, the dual solution D
is feasible. Its value is

val(D) = n− 1− |L(T)|+ n− |L(T)| = 2(n− |L(T)|)− 1 = 2|I(T)| − 1.

Using the duality theorem of linear programming we obtain

|I∗(T)| = val(P) ≤ val(P∗) ≤ val(D) ≤ 2|I(T)|,

and thus
|I(T ∗)|

|I(T)|
≤ 2,

proving the approximation ratio of 2.

54 CHAPTER 5. MAXIMIZING THE NUMBER OF INTERNAL VERTICES

5.2.4 Algorithm ILST in regular graphs

This approximation ratio of 2 can be further improved if the input graph is cubic
or 4-regular. In this case, we have

Theorem 5.2.4 Algorithm ILST provides an r+1
3

-approximation for the r-regular
graphs. In particular, the approximation factor is 4/3 for cubic graphs and 5/3 for
4-regular graphs.

Proof: Let T be a spanning tree of G provided by Algorithm ILST. We double
count the non-tree edges between L(T) and I(T). On one hand, due to the r-
regularity, (r − 1)|L(T)| non-tree edges leave L(T). On the other hand, at most
(r − 2)|V2(T)| + (r − 3)|V≥3(T)| non-tree edges can enter into I(T). Thus, using
Claim 2.1.1, we have

(r−1)|L(T)| ≤ (r−2)|V2(T)|+(r−3)|V≥3(T)| ≤ (r−2)|V2(T)|+(r−3)(|L(T)|−2),

or equivalently

|V2(T)| ≥
2

r − 2
|L(T)|+

2(r − 3)

r − 2
. (5.4)

By Claim 2.1.2, we have

|L(T)| = n− |V2(T)| − |V≥3(T)| ≤ n− |V2(T)| −
1

r − 2
|L(T)|+

2

r − 2
.

Hence
(

1 +
1

r − 2

)

|L(T)| ≤ n− |V2(T)|+
2

r − 2
,

and so

|I(T)| = n− |L(T)| ≥
1

r − 1
(n + (r − 2)|V2(T)| − 2).

Substituting (5.4) we get

|I(T)| ≥
1

r − 1
(n + 2(n− |I(T)|) + 2(r − 4)),

which yields

|I(T)| ≥
3n + 2r − 8

r + 1
>

3

r + 1
(n− 2),

proving the theorem. �

In Section 5.4, we present Algorithm RDFS which improves the approximation
ratio for cubic graphs from 4/3 to 6/5.

5.3. MORE ABOUT TRAVERSALS 55

(a) (b)

Figure 5.1: A graph where no run of Algorithm DFS can find an optimum solution

5.3 More About Traversals

In this section, we focus on traversal algorithms discussed in Section 2.2 and com-
pare them from the point of view of the Maximum Internal Spanning Tree

problem. As mentioned earlier, Algorithm DFS and Algorithm FIFO-DFS are both
specializations of Algorithm Greedy Traversal. The difference is in the mechanism
how we get the next edge to traverse after stepping back from a vertex with no un-
visited neighbors. This edge comes from the EdgeRepository which has deterministic
behavior in the two specialized algorithms and indeterministic in the more general
one.

We have seen in Section 5.2 that slightly modifying Algorithm DFS we obtain a 2-
approximation algorithm for the Maximum Internal Spanning Tree problem.
Now let us consider the graph on 3k+1 vertices shown in Figure 5.1(a). It is easy to
check that Algorithm ILST can lead to k+1, k+2, or k+3 internal vertices depending
on the traversing order. This shows two things. First, the fact that the bound for
the approximation ratio is tight. Indeed, Figure 5.1(b) shows an optimum solution
having 2k + 1 internal vertices. Second, there exists a graph where the optimum
solution of the Maximum Internal Spanning Tree problem cannot be obtained
by using Algorithm DFS as the main building block of Algorithm ILST. Notice that
if we change the traversal algorithm used in Algorithm ILST to Algorithm FIFO-
DFS, we can achieve the optimum spanning tree of this graph. However, it is still
not known, if this is the case for every graph.

In the rest of this section we prove that an optimum solution can always be
obtained by an appropriate run of Algorithm Greedy Traversal. Obviously, this
does not imply that the problem itself is optimally solvable in polynomial time,
since the algorithm is non-deterministic.

Theorem 5.3.1 There exists an optimum solution T of the Maximum Internal

Spanning Tree problem which can be obtained as the output of a run of Algorithm
Greedy Traversal.

Proof: Let T be an optimum solution of the Maximum Internal Spanning

Tree problem, and let us choose a vertex r to be the root of T . Let hT (l) denote
the number of edges of PT (l, r) for a leaf l. Subject to the optimality of T , we choose
T and r such that

∑

l∈L(T) |hT (l)|2 is maximized.

56 CHAPTER 5. MAXIMIZING THE NUMBER OF INTERNAL VERTICES

We can suppose that the d-leaves of T are sorted in the non-increasing order of
their distance from r, namely we have |hT (l1)| ≥ |hT (l2)| ≥ · · · ≥ |hT (lk)|. Now we
traverse T from r by visiting the unvisited part of each path PT (r, li) starting with
i = 1 up to i = k. We now show that this traversal is a greedy one, or equivalently,
that we never step back from a vertex which has unvisited G-neighbors. As we step
back only from the d-leaves, it is enough to show that all G-neighbors of a d-leaf li
are in V (∪i

j=1PT (r, lj)).

Suppose that li has a G-neighbor x 6∈ V (∪i
j=1PT (r, lj)). Let us create the tree

T ′ = T + (li, x) − (x, x�r). If dT (x�r) > 2 then T ′ has less leaves than T , which
is a contradiction. Thus x�r is a leaf of T ′ with hT ′(x�r) < hT (li). Moreover, all
leaves which are descendents of x are farther from r in T ′ than in T . Therefore
∑

l∈L(T ′) |hT ′(l)|2 >
∑

l∈L(T) |hT (l)|2, which is a contradiction. �

Suppose that we know how to resolve the non-determinism occurring in our
traversal algorithms when looking for an optimum solution of the Maximum In-

ternal Spanning Tree problem. As we have seen, in this case, the general
Algorithm Greedy Traversal can always find an optimum solution, while all run of
Algorithm DFS might provide a spanning tree being equally far from the optimum.
We conclude this section by an open question asking how well Algorithm FIFO-DFS
works from this point of view. The experimental behavior of the aforementioned
specializations of Algorithm Greedy Traversal is analyzed in Section 5.9.

5.4 Claw-Free and Cubic Graphs

In this section we consider two special classes of input graphs, claw-free graphs
(graphs not containing K1,3 as an induced subgraph) and cubic graphs (3-regular
graphs). We can make use of the special structure of such graphs in order to improve
our approximation algorithm and so the approximation ratio for the Maximum

Internal Spanning Tree problem. More precisely, we present Algorithm RDFS,
a refined version of Algorithm DFS and then we prove that it approximates the
Maximum Internal Spanning Tree problem within a factor of 3/2 for claw-
free graphs and within a factor of 6/5 for cubic graphs. This latter factor improves
that of 4/3 presented in Subsection 5.2.4.

The research leading to the results of this section is joint work with Gábor
Wiener. In particular, the RDFS-rule of Algorithm RDFS (see below) was originally
his idea.

Algorithm RDFS is a depth first search in which we specify how to choose the
next vertex of the traversal in the cases when Algorithm DFS itself would choose
arbitrarily from several candidates. The main idea is to select the vertex that has
the minimum number of non-visited neighbors. For this purpose, we use the array
ActDeg to maintain the number of non-visited neighbors of each vertex.

Algorithm RDFS differs from Algorithm DFS only at line (∗) where Algorithm
DFS would choose a non-visited neighbor of v arbitrarily while Algorithm RDFS

5.4. CLAW-FREE AND CUBIC GRAPHS 57

Algorithm RDFS (Refined Depth First Search)
Input: A simple connected graph G
Output: A rooted spanning tree T of G (called RDFS-tree)
begin

T ← (V, ∅)
foreach v ∈ V (G) do

VisitingRank[v]← 0
ActDeg[v]← dG(v)

NextVisitingRank← 1
EdgeStack← ∅
r ← an arbitrary vertex of G
VisitVertex(r)
return T

end

// Traversing from a vertex v
function VisitVertex(v)
begin

VisitingRank[v]← NextVisitingRank

foreach neighbor z of v do
ActDeg[z]← ActDeg[z]− 1

NextVisitingRank← NextVisitingRank + 1
if v has a neighbor w such that VisitingRank[w] = 0 then

∗ from all such w’s, choose the one minimizing ActDeg[.]
x← v; y ← w

else
if EdgeStack is not empty then

(x, y)← the “first” element of EdgeStack such that
NextVisitingRank[y] = 0

else
return

Add (x, y) to T
foreach neighbor w of x such that w 6= y and NextVisitingRank[w] = 0 do

Add (x, w) to EdgeStack

VisitVertex(y)
end

58 CHAPTER 5. MAXIMIZING THE NUMBER OF INTERNAL VERTICES

uses its own selection rule, the so called RDFS-rule. Regarding the running times,
recall that Algorithm DFS runs in linear time. At line (∗) of Algorithm RDFS, we
make at most ∆ steps to find the minimum and this line is executed at most once
for each edge of T . Thus the total running time of Algorithm RDFS is O(∆n).

A tree produced by Algorithm RDFS is called an RDFS-tree. As Algorithm
RDFS is a special version of Algorithm DFS, Claim 2.2.2 can be applied to RDFS-
trees. That is, each G-edge connects two vertices of which one is the ancestor of the
other in the RDFS-tree.

We use the following notation. Let T be an RDFS-tree, and let l be a d-leaf of
T such that dG(l) ≥ 2. (If T has no such l then T is a minimum leaf spanning tree.)
Let c(l) stand for the neighbor of l having the highest VisitingRank value such that
(l, c(l)) is in E(G) \ E(T). Since dG(l) ≥ 2, such c(l) must exist. Let g(l) = c(l)�l

denote the neighbor of c(l) along the path PT (c(l), l). Claim 2.2.2 implies that c(l)
must be an ancestor of l and so g(l) is a child of c(l).

Now we prove a useful lemma about the T -degree of g(l).

Lemma 5.4.1 Let T be an RDFS-tree and let l be a d-leaf of T . Then dT (g(l)) = 2.

Proof: For a given vertex v, let us denote by Yv the set of vertices having Visiting-

Rank greater than or equal to VisitingRank[v]. It is obvious that l ∈ Yc(l), and also
l ∈ Yg(l).

Consider now the step of Algorithm RDFS when we choose g(l) to be the next
visited vertex. By the RDFS-rule,

dG[Yg(l)](g(l)) ≤ dG[Yg(l)](l).

By the definition of c(l) and g(l), there is no non-tree edge incident to l in G[Yg(l)],
and thus

dG[Yg(l)](l) = 1,

implying
dG[Yg(l)](g(l)) = 1,

since dG[Yg(l)](g(l)) ≥ 1 is obvious. Therefore g(l) has only one child, and one parent,
namely c(l), and so

dT (g(l)) = 2.

�

Now we prove the approximation ratio for claw-free graphs.

Theorem 5.4.2 Algorithm RDFS is an O(∆n)-time 3/2-approximation algorithm
for the Maximum Internal Spanning Tree problem for claw-free graphs.

Proof: We have already seen the running time, so we only have to check the
approximation ratio. Let G be an arbitrary connected claw-free graph on n vertices
and let T be an RDFS-tree of G. First notice that dT (v) ≤ 3 for any v ∈ V (T).

5.4. CLAW-FREE AND CUBIC GRAPHS 59

Otherwise, v and three of its children would induce a subgraph K1,3 in G because
of Claim 2.2.2. Thus our aim is to show that

|V2(T)|+ |V≥3(T)| ≥
2

3
|I(T ∗)|,

where T ∗ is an optimal spanning tree. Since T is a tree (having a total vertex degree
of 2n− 2), and dT (v) ≤ 3 for any v ∈ V (T), we have

|V1(T)| = |V≥3(T)|+ 2.

Now we would like to find many vertices of T -degree 2 in order to show that the
number of internal vertices is large. For this aim, we use Lemma 5.4.1. The problem
is that the vertices g(l), having T -degree 2, are not necessarily distinct for every d-
leaf of T with G-degree ≥ 2. However, we show that they are all distinct in claw-free
graphs.

Lemma 5.4.3 Let T be an RDFS-tree of G and let l and l′ be d-leaves of T such
that dG(l) ≥ 2 and dG(l′) ≥ 2. Then g(l) 6= g(l′).

Proof: Suppose to the contrary that g(l) = g(l′). This implies c(l) = c(l′) as c(l) is
the parent of g(l) and c′(l) is the parent of g′(l). Now consider the induced subgraph
S = G[{c(l), l, l′, g(l)}]. On one hand, the vertices l, l′ and g(l) are all G-neighbors
of c(l). On the other hand, l and l′ are d-leaves of T , thus they cannot be adjacent
in G. Moreover, g(l) can be adjacent neither to l nor to l′ in G \ T , because of
the selection of c(l) as clearly VisitingRank[g(l)] > VisitingRank[c(l) = c(l′)]. Since
(l, g(l)) and (l′, g(l)) are not T -edges either (otherwise g(l) could not be a common
ancestor of l and l′), the induced subgraph S is isomorphic to K1,3, a contradiction.
�

So we have found as many vertices of T -degree 2 as the number of those d-leaves
that have a G-degree of at least 2. Let us denote by p the number of pendant vertices
of G. These vertices are clearly leaves of any spanning tree of G, so the optimum
spanning tree has at most min(n− p, n− 2) internal vertices.

We consider two cases.

Case 1: p = 0. Now every d-leaf has a G-degree of at least 2, thus

|V2(T)| ≥ |V1(T)| − 1.

Since
|V1(T)| = |V≥3(T)|+ 2

and
n = |V1(T)|+ |V2(T)|+ |V≥3(T)|,

after some elementary computation we obtain

|V2(T)|+ |V≥3(T)| ≥
2

3
(n− 2) ≥

2

3
|I(T ∗)|.

60 CHAPTER 5. MAXIMIZING THE NUMBER OF INTERNAL VERTICES

Case 2: p ≥ 1. It suffices to show that

|V2(T)|+ |V≥3(T)| ≥
2

3
(|V1(T)|+ |V2(T)|+ |V≥3(T)| − p).

Since the G-degree of the root of the RDFS-tree T is minimum, the root is a pendant
vertex of G. Thus by Lemma 5.4.3 we have

|V2(T)| ≥ |V1(T)| − p,

so it suffices to show that

|V2(T)|+ |V≥3(T)| ≥
2

3
(2|V2(T)|+ |V≥3(T)|),

which is equivalent to
|V≥3(T)| ≥ |V2(T)|,

and to
|V1(T)| − 2 ≥ |V2(T)|.

If this inequality holds then we are done. Otherwise

|V2(T)| ≥ |V1(T)| − 1.

From here

|V2(T)|+ |V≥3(T)| ≥
2

3
(n− 2) ≥

2

3
|I(T ∗)|

follows just like in Case 1. �

Now we turn to cubic input graphs and prove that Algorithm RDFS guarantees
an even better approximation factor for them.

Theorem 5.4.4 Algorithm RDFS is a linear time 6/5-approximation algorithm for
the Maximum Internal Spanning Tree problem for cubic graphs.

Proof: We have seen that the running time is O(n∆), which is linear for cubic
graphs where ∆ = 3. Now we check the approximation ratio. Let G be an arbitrary
connected cubic graph on n vertices and let T be an RDFS-tree of G.

Let l be a d-leaf of T . Now l has 2 neighbors in G \ T , one of them is c(l), call
the other one c′(l). It is obvious that dT (c(l)) = 2 and also dT (c′(l)) = 2 if c′(l) is
not the root. Furthermore, dT (g(l)) = 2 by Lemma 5.4.1. Now let h(l) be the only
neighbor of g(l) in G\T . As a consequence of Claim 2.2.2 we obtain that one of g(l)
and h(l) is an ancestor of the other. Now, h(l) must be an ancestor of g(l). Indeed,
consider the moment when we visit c(l) and choose the next vertex to be visited
according to the RDFS-rule. At that moment, l has a single unvisited neighbor, and
so the fact that g(l) is chosen implies that it has a single unvisited neighbor, too,
that is, h(l) must have already been visited before g(l). This yields that either h(l)
is the root or dT (h(l)) = 2.

5.5. A 7/4-APPROXIMATION ALGORITHM 61

We conclude that vertices c(l), c′(l), g(l), h(l) are all distinct and have a T -degree
of 2 with the only possible exception of c′(l) = h(l) being the root of T and having
T -degree of 1. If we take another d-leaf l′ of T , we find that c(l) 6= c(l′), c′(l) 6= c′(l′)
if c′(l) is not the root, g(l) 6= g(l′), and h(l) 6= h(l′) if h(l) is not the root. The first
two of these are due to the fact that the graph is cubic, the third is an implication
of the first, and the fourth is implied by the third. Based on this, it is easy to
check that if l and l′ are two distinct d-leaves then the sets {c(l), c′(l), g(l), h(l)} and
{c(l′), c′(l′), g(l′), h(l′)} can only have the root of T as a common element.

This way we associate 4 vertices (namely c(l), c′(l), g(l), and h(l)) to each and
every d-leaf l. Among these vertices only the root can show up more than once and
all the other vertices have degree 2. Since the root can occur at most twice (because
of 3-regularity) and the number of d-leaves is at least |V1(T)| − 1, we have found
4(|V1(T)| − 1)− 2 distinct vertices of degree 2, that is,

|V2(T)| ≥ 4|V1(T)| − 6. (5.5)

On the other hand, dT (v) ≤ 3 for any v ∈ V (T) = V (G), thus, as the total
T -degree of the vertices is 2n− 2, we have

|V1(T)| = |V≥3(T)|+ 2. (5.6)

Using (5.5) and (5.6) we obtain

n = |V1(T)|+ |V2(T)|+ |V≥3(T)| ≥ |V1(T)|+4|V1(T)|−6+ |V1(T)|−2 = 6|V1(T)|−8,

and so

|V1(T)| ≤
n

6
+

4

3
.

Therefore

|I(T)| = n− |V1(T)| ≥
5

6
n−

4

3
≥

5

6
(n− 2) ≥

5

6
|I(T ∗)|,

as the optimum tree T ∗ can have at most (n− 2) internal vertices. �

5.5 A 7/4-approximation Algorithm

In this section we give an approximation algorithm for the Maximum Internal

Spanning Tree problem which improves the approximation ratio of 2 to 7/4
whenever the input graph has no pendant vertices.

Our algorithm is based on the technique of local improvement rules. It starts
by building a spanning tree then it successively executes local changes (defined by
improvement rules) as far as possible. When no more rule can be executed we obtain
a locally optimal spanning tree (LOST). A LOST has some specific properties which
can be used to prove the approximation ratio.

62 CHAPTER 5. MAXIMIZING THE NUMBER OF INTERNAL VERTICES

The proof of the approximation ratio is based on a primal-dual technique of
linear programming which has already been presented in Subsection 5.2.3. Recall
that the main idea is to build a primal program such that each of its integer so-
lutions is composed of the characteristic vector of a spanning tree and its internal
vertices. Thus, an optimum solution T ∗ of the Maximum Internal Spanning

Tree problem defines a feasible integer primal solution with a value of |I(T ∗)|.
Then we use dual solutions to upper bound this quantity by means of |I(T)|, where
T is the LOST that our algorithm outputs. Finally, the upper bounds are used to
prove the approximation ratio.

The primal and dual problem formulations, and the primal solution used in
this section are identical to those of Subsection 5.2.3. However, in this section we
construct two more complex dual solutions in order to enhance the upper bound
on |I(T ∗)| and so the approximation ratio itself. The first dual solution bounds the
approximation factor if T has many short branches, the second one does this job if
T has many long branches. Both dual solutions are based on a set S of forwarding
vertices of T that are G-independent from the leaves.

5.5.1 Local improvement rules

The structure of the improvement rules is as follows. A precondition part determines
when the particular rule can be executed. An action part gives the replacement of
some (1 or 2) edges of T by non-tree edges and it might execute another (embedded)
rule, too. The execution of a rule yields a new spanning tree T ′. In the case of Rules
1–13 the tree T ′ has less leaves than T had, while in the case of Rules 14–15 trees
T ′ and T have the same number of leaves.

We define a LOST to be a spanning tree T in which none of these improvement
rules can be executed, that is, the preconditions of the rules are not satisfied. If
T has many short branches then the violated preconditions of Rules 1–7, while if
T has many long branches then the violated preconditions of Rules 1, 2 and 8–15
ensure a set S which is G-independent from the leaves and whose size is big enough
to yield the approximation ratio via a suitable solution of the dual LP-problem. We
now turn to give the local improvement rules. Notice that Rules 2–4 have already
been used in Section 4.2 to show some basic properties of a minimum leaf spanning
tree.

For the definitions and the used notation, see pp. 12–13 and p. 48.
Rule 1. Precondition: T has two leaves l1 and l2 such that (l1, l2) ∈ E(G)

and that PT (l1, l2) has two neighboring branchings x, y. Action: Let E(T ′) =
E(T) + (l1, l2)− (x, y). (See Fig. 5.2(a)).

Rule 2. Precondition: T has two leaves l1 and l2 such that (l1, l2) ∈ E(G).
Action: Let E(T ′) = E(T) + (l1, l2)− (b(l1), b

−(l1)). (See Fig. 5.2(b)).
Rule 3. Precondition: T has an x-supported leaf l1 such that dT (x�l1) > 2.

Action: Let E(T ′) = E(T) + (l1, x)− (x, x�l1). (See Fig. 5.2(c)).
Rule 4. Precondition: T has an x-supported leaf l1 and a leaf l2 such that

5.5. A 7/4-APPROXIMATION ALGORITHM 63

dT (x�l1) = 2, and that (l2, x
�l1) is a non-tree edge. Action: Let E(T ′) = E(T) +

(l1, x)−(x, x�l1). Then execute Rule 1 or Rule 2 on leaves l2, x�l1 . (See Fig. 5.2(d)).
Rule 5. Precondition: T has an x-supported leaf l such that dT (b(l)�x) > 2.

Action: Let E(T ′) = E(T) + (l, x)− (b(l), b(l)�x). (See Fig. 5.2(e)).
Rule 6. Precondition: T has an x-supported leaf l1 and a leaf l2 such that

dT (b(l1)
�x) = 2, and that (l2, b(l1)

�x) is a non-tree edge. Action: Let E(T ′) =
E(T) + (l1, x)− (b(l1), b(l1)

�x). Then execute Rule 1 or Rule 2 on leaves l2, b(l1)
�x.

(See Fig. 5.2(f)).
Rule 7. Precondition: T has a short leaf l, and an edge (x, y) such that (l, x)

and (l, y) are both non-tree edges. Action: Let E(T ′) = E(T) + (l, x) + (l, y) −
(x, y)− (l, b(l)). (See Fig. 5.2(g)).

Rule 8. Precondition: T has a long leaf l1 and a leaf l2 such that (b−(l1), l2)
∈ E(G). Action: Let E(T ′) = E(T)+(b−(l1), l2)−(b−(l1), b(l1)). (See Fig. 5.2(h)).

Rule 9. Precondition: T has an x-supported long leaf l1 and a long leaf l2
such that x 6∈ br(l2)− b(l2), b(l1) 6= b(l2), and (b−(l1), b

−(l2)) ∈ E(G). Action: Let
E(T ′) = E(T) + (l1, x) + (b−(l1), b

−(l2)) − (b(l1), b
−(l1)) − (b(l2), b

−(l2)). (See Fig.
5.2(i)).

Rule 10. Precondition: T has an x-supported long leaf l1 and a long leaf l2
with b(l1) = b(l2) such that dT (b(l1)) ≥ 4, x 6∈ br(l2), and (b−(l1), b

−(l2)) ∈ E(G).
Action: Let E(T ′) = E(T)+(l1, x)+(b−(l1), b

−(l2))−(b(l1), b
−(l1))−(b(l2), b

−(l2)).
(See Fig. 5.2(j)).

The following rule differs from the above ones as, while executed on the long
branch of a leaf l, it changes neither the trunk nor any other branch of T . Only
the branch of l is modified such that one of its leafish vertices becomes leaf and l
becomes an internal vertex. This rule is not used in its own but as a building block
of Rules 11–13 which can decrease the number of leaves using a leafish vertex.

Rule A. Precondition: T has a leaf l and an l-leafish vertex x�l with base x.
Action: Let E(T ′) = E(T) + (l, x)− (x, x�l). (See Fig. 5.2(k)).

We can use Rule A to decrease the number of leaves as follows.
Rule 11. Precondition: T has two leaves l1 and l2, and an l1-leafish vertex u

such that (u, l2) is a non-tree edge. Action: Execute Rule A on u to make it a leaf
and l1 an internal vertex. Then execute Rule 1 or Rule 2 on leaves l2, u.

Rule 12. Precondition: T has two leaves l1 and l2, an l1-leafish vertex u, and
an l2-leafish vertex v such that (u, v) is a non-tree edge. Action: Execute Rule A
on u and on v to make both of them a leaf while l1 and l2 an internal vertex. Then
execute Rule 1 or Rule 2 on leaves u, v.

Rule 13. Precondition: T has two leaves l1 and l2, and an l1-leafish vertex u
such that (u, b−(l2)) is a non-tree edge. Action: Execute Rule A on u to make it
a leaf and l1 an internal vertex. Then execute Rule 8 on leaves u, l2.

Rules 14 and 15 can be executed only on pairs of branches that contain no leafish
vertices. Although the number of leaves does not change when executing them, the
sum

∑

l∈Lp
|br(l)| is always decreased. This is a crucial point of our running time

analysis that can be found in Subsection 5.5.4.

64 CHAPTER 5. MAXIMIZING THE NUMBER OF INTERNAL VERTICES

Rule 14. Precondition: T has two leaves l1, l2 ∈ Lp(T) and two non-tree
edges (l1, x) and (l2, y) such that x ∈ br(l2) and y ∈ br(l1). Action: Let E(T ′) =
E(T) + (l1, x)− (x, x�(l1)). (See Fig. 5.2(l)).

Rule 15. Precondition: T has at least four leaves, and there exist l1, l2 ∈
Lp(T) such that b(l1) = b(l2), dT (b(l1)) = 3 and (b−(l1), b

−(l2)) is a non-tree edge.
Action: Let E(T ′) = E(T) + (b−(l1), b

−(l2))− (b(l2), b
−(l2)). (See Fig. 5.2(m)).

5.5.2 Locally optimal spanning trees, The algorithm

Definition 5.5.1 A spanning tree T is a locally optimal spanning tree (LOST) if
none of Rules 1–15 can be executed on it.

Now the approximation algorithm for the Maximum Internal Spanning

Tree problem is straightforward using the above improvement rules.

Algorithm LOST (Locally Optimal Spanning Tree)
Input: A simple connected graph G
Output: A locally optimal spanning tree (LOST) T of G
begin

Run Algorithm Greedy Traversal to obtain an initial spanning tree T
Execute Rules 1–15 as long as possible. If several rules can be executed,
choose the one with the lowest number

end

Now we can state the main theorem of this section.

Theorem 5.5.2 Algorithm LOST is an O(|V |4)-time 7/4-approximation for the
Maximum Internal Spanning Tree problem for graphs that have no pendant
vertices.

The proof of the running time is postponed to Subsection 5.5.4. The approxi-
mation ratio is established by the following lemma.

Lemma 5.5.3 Let T be a LOST of a graph G that has no pendant vertices, and let
T ∗ be a spanning tree of G with a maximum number of internal vertices. Then

|I(T ∗)|

|I(T)|
≤ 7/4.

First observe some basic properties of T which are immediate consequences of
the definition of a LOST.

Property 1. L(T) forms a G-independent set. (As Rules 1 and 2 are no more
applicable in T .)

5.5. A 7/4-APPROXIMATION ALGORITHM 65

l1 l2

x y

(a) Rule 1

b−(l1)

l1 l2

b(l1)

(b) Rule 2

x�l1

x

l1

(c) Rule 3

l1

x

x�l1

l2

(d) Rule 4

l

x
b(l)�x

b(l)

(e) Rule 5

l1

x
b(l1)

�x

l2

b(l1)

(f) Rule 6

x y

l

b(l)

(g) Rule 7

l1 l2

b−(l1)

b(l1)

(h) Rule 8

l2l1

b−(l2)

b(l1) b(l2)

b−(l1)

x

(i) Rule 9

l2l1

b−(l2)

x b(l1) = b(l2)

b−(l1)

(j) Rule 10

b(l)

x

x�l

l

(k) Rule A

b(l1)

l2

b(l2)

l1

y x
x�l1

(l) Rule 14

l1

b(l1) = b(l2)

b−(l1)

l2

b−(l2)

(m) Rule 15

Figure 5.2: Local improvement steps for creating a LOST (squares represent leaves,
circles represent internal vertices)

66 CHAPTER 5. MAXIMIZING THE NUMBER OF INTERNAL VERTICES

Property 2. Let l be an x-supported leaf. Then dT (x�l) = dT (b(l)�x) = 2.
Furthermore, both x�l and b(l)�x are G-independent from the set L(T) − l. (As
Rules 3–6 are no more applicable in T .)

Property 3. Let l be a short leaf. Then no two G-neighbors of l are T -neighbors.
(As Rule 7 is no more applicable in T .)

Property 4. Let l1 be a long leaf. Then no leaf l2 6= l1 is a G-neighbor of b−(l1).
(As Rule 8 is no more applicable in T .)

Property 5. Let l1 and l2 be leaves. Then l2 is G-independent from the set of
l1-leafish vertices. (As Rule 11 is no more applicable in T .)

Property 6. Let l1 and l2 be leaves. Then each l1-leafish vertex is G-independent
from the set of l2-leafish vertices. (As Rule 12 is no more applicable in T .)

Property 7. Let l1 and l2 be leaves. Then b−(l2) is G-independent from the set
of l1-leafish vertices. (As Rule 13 is no more applicable in T .)

Observe that minimum leaf spanning trees must have Properties 1–7, as the rules
which decrease the number of leaves cannot be applied on them.

Property 8. Let l1 and l2 be long leaves such that their branches do not
contain leafish vertices, and (b−(l1), b

−(l2)) is a non-tree edge. Then b(l1) = b(l2)
and dT (b(l1)) = 3. (As Rules 9, 10, and 14 are no more applicable in T .) Moreover,
since Rule 15 is no more applicable, T must have exactly 3 leaves. From this
point we suppose that T has at least 4 leaves. As a result, l1, l2 ∈ Lp(T) implies
(b−(l1), b

−(l2)) 6∈ E(G).
If the LOST T has only 3 leaves then it is trivially a 7/4-approximation for the

Maximum Internal Spanning Tree problem. Indeed, n−2
n−3

< 7
4

holds for n > 4,
and if n ≤ 4 then T is a LOST only if it is an optimum tree.

5.5.3 Proof of the approximation factor with a primal-dual
technique

Though we have already given the description of our primal and dual programs in
Subsection 5.2.3, we repeat them here for the sake of readability.

The spanning tree polyhedron [62] is defined as:

SP(G) = {x | ∀S ⊆ V : x(S) ≤ |S| − 1,−x(V) ≤ −(|V | − 1), ∀e ∈ E : 0 ≤ x(e)} ,

where x(S) =
∑

e∈E(G[S]) x(e) is the sum of x over all edges spanned by S.
The primal linear program is:

maximize
∑

v∈V

z(v)

subject to x ∈ SP(G)

−
∑

e∈δ(v)

x(e) + z(v) ≤ −1 for all v ∈ V

0 ≤ z(v) ≤ 1 for all v ∈ V

5.5. A 7/4-APPROXIMATION ALGORITHM 67

As we have seen in Subsection 5.2.3, this has a solution P with value val(P) =
|I(T ∗)|, where T ∗ is an optimum solution of the Maximum Internal Spanning

Tree problem. Therefore we have

|I(T ∗)| = val(P) ≤ val(P∗), (5.7)

where P ∗ is an optimum solution of the primal LP-problem itself.
We have also seen that the dual of the above program is:

minimize
∑

S⊆V

(|S| − 1)y(S)− (|V | − 1)t−
∑

v∈V

w(v) +
∑

v∈V

r(v)

subject to
∑

e∈E(G[S])

y(S)− t−
∑

e∈δ(v)

w(v) ≥ 0 for all e ∈ E (5.8)

w(v) + r(v) ≥ 1 for all v ∈ V

y(S), t, w(v), r(v) ≥ 0 for all S ⊆ V, v ∈ V

Now let T be the tree created by Algorithm LOST. We consider two different
dual solutions corresponding to T . The first one is used when T has many short
branches, and the second one is used when T has many long branches. At first, let
us assume that T has both short and long branches. Later, we will examine how to
modify the proof when this assumption fails.

Let l be a short leaf. We define the set

Q(l) =
{

x�l | (l, x) ∈ E(G) \ E(T)
}

∪ {b(l)�x | (l, x) ∈ E(G) \ E(T)} .

Note that Q(l) 6= ∅, since dG(l) ≥ 2. Let

Q = ∪l∈Ls(T)Q(l).

The first dual solution D1 is constructed as follows. Let y(V) = 1, y(Q) = 1,
w(v) = 1 for each v ∈ L(T)∪Q, and r(v) = 1 for each v ∈ V \ (L(T)∪Q). All other
variables are set to 0. Figure 5.3(a) shows the way how vertices with w(.) = 1 are
determined.

To see the feasibility of this solution, it is enough to check (5.8) for all edges of
G. Since y(V) = 1, only the edges of G[L(T) ∪ Q] could violate the inequality as
they are the only edges with w = 1 on both ends. However, by Property 1, there
is no edge spanned by L(T), and by Properties 2 and 3, there is no edge between
L(T) and Q. Thus we only have to cover the edges inside Q by a set with y = 1.
We choose Q itself for this role, that is, y(Q) = 1 ensures the feasibility.

Let us define

c1 =
|Q|

|I(T)|
.

The value of the first dual solution is

val(D1) = |V | − 1 + |Q| − 1− |L(T)| − |Q|+ |V | − |L(T)| − |Q|

= 2(|I(T)| − 1)− |Q| < (2− c1)|I(T)|.

68 CHAPTER 5. MAXIMIZING THE NUMBER OF INTERNAL VERTICES

b(ls)
�x x�ls

lg

ls

(a)

lp

b−(lp)

lg

f

ls

(b)

Figure 5.3: Construction of the dual solutions; Squares represent leaves, triangles
represent other vertices with w(.) = 1

To construct the second dual solution D2 we denote the set of l-leafish vertices
by F (l), and define the set of leafish vertices to be

F = ∪l∈Lg(T)F (l).

Recall that Lp(T) denotes the set of long leaves having no leafish vertex in their
branch. We use B−

p to denote the set ∪l∈Lp(T)b
−(l). We immediately obtain |B−

p | =
|Lp(T)|.

Dual variables are set as: y(V) = 1, y(F (l) + l) = 1 for each l ∈ Lg(T) \ Lp(T),
y({l, b−(l)}) = 1 for each l ∈ Lp(T), w(v) = 1 for each v ∈ (L(T)∪F ∪B−

p), r(v) = 1
for each v ∈ V \ (L(T) ∪ F ∪ B−

p). All other variables are set to 0. Figure 5.3(a)
shows the way how vertices with w(.) = 1 are determined.

To see the feasibility of this solution, it is enough to check (5.8) for all edges of
G. As y(V) = 1, only the edges of G[(L(T) ∪ F ∪B−

p)] could violate the inequality.
However, by Properties 1 and 4–8, the graph G[(L(T)∪F∪B−

p)] has no edge between
different branches of T . On the other hand, the edges of G[(L(T)∪F ∪B−

p)] within
a single branch of T are also covered by some set having y = 1.

Now let us define

c2 =
|V | − |Ls(T)|

|I(T)|
.

Since |I(T)| = |V | − |Ls(T)| − |Lg(T)| we obtain |Lg(T)| = (c2 − 1)|I(T)|.

5.5. A 7/4-APPROXIMATION ALGORITHM 69

The value of the solution is

val(D2) = |V | − 1 + |F |+ |Lp(T)| − |L(T)| − |F | − |Lp(T)|

+ |V | − |L(T)| − |F | − |Lp(T)| < 2|I(T)| − |F | − |Lp(T)|

≤ 2|I(T)| − |Lg(T)| = (3− c2)|I(T)|.

Here we have used that |Lg(T)| ≤ |F |+ |Lp(T)|. The duality theorem of linear
programming yields

val(P∗) ≤ min (val(D1), val(D2)) .

Then (5.2) implies that

|I(T ∗)| ≤ min (val(D1), val(D2)) .

As a result we have
|I(T ∗)|

|I(T)|
≤ min (2− c1, 3− c2) . (5.9)

Now let N(Ls(T)) be the set of G-neighbors of short leaves. Observe that by
the definition of Q, each element of N(Ls(T)) has a T -neighbor in Q. Moreover, by
Property 2, all vertices of Q are forwarding vertices of T . Thus

|N(Ls(T))| ≤ 2|Q| = 2c1|I(T)|. (5.10)

Let us emphasize here that the condition dG(l) ≥ 2 is used to ensure that the
set Q(l) is not empty, for each leaf l. This latter fact is necessary to upper bound
|N(Ls(T))| by a function of |Q|.

Theorem 4.1.5 can be formulated to our case as

|I(T ∗)| ≤ |V | − sc(G)− 1. (5.11)

As the short leaves of T are G-independent, G[V −N(Ls(T))] has at least |Ls(T)|
components implying that sc(G) ≥ |Ls(T)| − |N(Ls(T))|.

Thus, by (5.10), Definition 4.1.1 and (5.11), we have

|I(T ∗)| < |V | − sc(G) ≤ |V | − |Ls(T)|+ |N(Ls(T))| ≤ (c2 + 2c1)|I(T)|. (5.12)

If c1 ≥ 1/4 or c2 ≥ 5/4 then by (5.9), otherwise by (5.12), we obtain |I(T ∗)|
|I(T)|

≤ 7/4.
In order to finish the proof we have to consider the cases when T has only short

or only long branches.
If all branches of T are short then the first dual solution still shows

|I∗(T)|

|I(T)|
≤ 2− c1. (5.13)

However, the second dual solution is not defined as it is based on long leaves of T .
Also, Inequality (5.12) must be reformulated to

|I(T ∗)| < |V | − sc(G) ≤ |V | − |Ls(T)|+ |N(Ls(T))|

= |I(T)|+ |N(Ls(T))| ≤ (1 + 2c1)|I(T)|. (5.14)

70 CHAPTER 5. MAXIMIZING THE NUMBER OF INTERNAL VERTICES

Now, if c1 ≥ 1/3 then Inequality (5.13), otherwise Inequality (5.14) yields |I∗(T)|
|I(T)|

≤

5/3 < 7/4.
If T has only long branches then both the first dual solution, and the consider-

ations leading to Inequality (5.12) are pointless. However, the upper bound

|I∗(T)|

|I(T)|
≤ 3− c2 (5.15)

is still valid with c2 = |V |
|I(T)|

, as Ls(T) = ∅. Now, if c2 ≥ 3/2 then |I∗(T)|
|I(T)|

≤ 3/2 < 7/4

and we are done. If c2 ≤ 3/2 then |I(T)| ≥ 2/3|V | ≥ 2/3|I∗(T)|, that is, again
|I∗(T)|
|I(T)|

≤ 3/2 < 7/4.

5.5.4 Running time analysis

In this section we give some implementation details and a brief running time analysis
of Algorithm LOST. We suppose that graph G is given by its adjacency matrix. For
all of our algorithms, we maintain some additional data structures representing the
spanning tree T under construction. The purpose of these data structures is to ease
the precondition-checking, and to find the next rule to execute. The data structures
are updated after each rule execution step.

Beside the adjacency matrix of G we use the following data structures while
running our algorithms.

1. We maintain the edge-list of the current spanning tree T . This represents the
solution to be constructed. This list is built in O(|V |2)-time during the initial
traversal. As each rule adds and removes only a constant number of edges,
the list can be updated in O(|V |) time after each rule execution step.

2. We have a list of leaves of T and in addition for each leaf l we store:

(a) b(l)

(b) the vertex x�l for every vertex x

(c) the vertex b(l)�x for every vertex x

This leaf-information structure is a navigation tool which is useful when an
improvement step is based on a non-tree edge incident to a leaf. The construc-
tion of this structure can be done by running a traversal from each leaf. This
must be done both initially and after each rule execution and needs O(|V |2)
time per run. The maintenance of the leaf-list itself needs only constant time
after each rule execution.

3. For each forwarding vertex v, we store the leaf whose branch contains v. A
special indicator is used instead when v is a trunk-vertex. This structure is
created and maintained together with the leaf-information structure without
any extra time need.

5.5. A 7/4-APPROXIMATION ALGORITHM 71

As a consequence, we obtain that the update of the used data structures needs
O(|V |2) time after each rule execution.

Some of the preconditions need to determine the list of short (or long) leaves.
This can be done in O(|V |) time by iterating through the list of leaves and checking
for each leaf l whether b−(l) = l. If yes then l is short otherwise l is long. Note
that b−(l) can be determined in constant time using the leaf-information structure
as b−(l) = b(l)�l.

Leafish vertices play an important role in Algorithm LOST. Their list can be
built in O(|V |) time. To this aim, firstly we check for each long leaf l whether
(l, b(l)) ∈ E(G). If yes then we add b−(l) to the list of leafish vertices. Secondly,
for each forwarding vertex x we determine the branch that contains x. If x ∈ br(l)
for some l and (x, l) ∈ E(G) then we add x�l to the list of leafish vertices. When
building the list of leafish vertices, we can also create a list to represent the leaves
in Lp(T). Initially this list contains all leaves of T . Then when a vertex x ∈ br(l)
is found to be leafish then l is removed from the list. As a result, we can build the
list representing Lp(T) in O(|V |) time.

The precondition part of each rule is tested as follows.

Rule 1: We consult the leaf-list and for every pair l1, l2 of leaves we check in the
adjacency matrix whether (l1, l2) ∈ E(G). Then using the leaf-information structure,
we walk through path PT (l1, l2) and look for a neighboring pair of branchings on it.
The total time requirement is O(|V |2).

Rule 2: We consult the leaf-list and for every pair l1, l2 of leaves we check in
the adjacency matrix whether (l1, l2) ∈ E(G). This needs O(|V |2) time.

Rule 3: For each leaf l we get the list of non-tree edges from the adjacency
matrix. Then for each non-tree edge (l, x), we check x 6∈ br(l) and dT (x�l) > 2. We
use the leaf-information structure to get x�l from x. The degree is checked in the
edge-list of T . Thus we need constant time for a given (l, x) pair, and O(|V |2) time
in total.

Rule 4: For each leaf l1 we get the list of non-tree edges from the adjacency
matrix. Then for each non-tree edge (l1, x), we check x 6∈ br(l) and dT (x�l1) = 2.
Unfortunately, if we directly check the adjacency between x�l1 and each leaf l2 then
we need O(|V |3) time in total. Therefore instead of doing this, we build a list from
vertices x�l1 . This can be done in O(|V |2) time. Note that each vertex is contained
at most once in this list. The rule can be executed if there is a leaf l2 and an element
v of the list such that (l2, v) ∈ E(G). This check can be done in O(|V |2) time which
is also the total time requirement for this rule.

Rule 5: For every leaf l, and for every non-tree edge (l, x) we check x 6∈ br(l)
then determine b(l)�x and check dT (b(l)�x) > 2 in constant time using the leaf-
information structure. The total time needed is O(|V |2).

Rule 6: For every leaf l1, and for every non-tree edge (l1, x) we check x 6∈ br(l1)
then determine b(l1)

�x and check dT (b(l1)
�x) = 2 in constant time using the leaf-

information structure. Then, analogously to the case of Rule 4, we use an extra data

72 CHAPTER 5. MAXIMIZING THE NUMBER OF INTERNAL VERTICES

structure to find a leaf l2 which is neighboring to b(l1)
�x. The total time requirement

is O(|V |2).
Rule 7: For every tree edge (x, y), and for every short leaf l, we check whether

both (x, l), and (y, l) are edges of G. This needs O(|V |2) time.

Rule 8: For every pair of long leaves l1, l2 we check whether (l1, b
−(l2)) ∈ E(G).

This needs O(|V |2) time.
Rule 9: We need some extra consideration at this rule to avoid the unnecessary

increase of time-complexity. First we build a |Lg(T)|× |Lg(T)|-matrix M to indicate
the pairs of long leaves for which the rule is possibly applicable. M(l1, l2) is set to 1
whenever (b−(l1), b

−(l2)) ∈ E(G) and b(l1) 6= b(l2). All other elements of M are 0.
This can be done in O(|V |2) time. Then for each leaf l1 we consider each non-tree
edge (l1, x) for which x 6∈ br(l1). There are three cases: (i) there is a non-tree edge
(l1, x) with x being a trunk-vertex; (ii) there are two non-tree edges (l1, x) and (l1, y)
with x and y in different branches; (iii) all non-tree edges (l1, x) end in the same
branch of l2. In the first two cases, the rule can be executed to l1 and any other
leaf. In the third case we set M(l1, l2) to 0 indicating that l1 and l2 cannot be used
together to execute the rule. This checking process needs O(|V |2) time. Finally, we
look for a pair (l1, l2) with M(l1, l2) = 1, and execute the rule on them. The total
time requirement is O(|V |2).

Rule 10: We apply the idea of Rule 9. The only difference is in the initial con-
struction of matrix M. Here, we set M(l1, l2) = 1 if dT (b(l1)) ≥ 4, (b−(l1), b

−(l2)) ∈
E(G) and b(l1) = b(l2). The total time requirement is again O(|V |2).

Rule 11: For each leaf l and leafish vertex u we check whether (l, u) ∈ E(G).
This needs O(|V |2) time. The total time requirement after the implied execution of
Rule 1 or Rule 2 remains O(|V |2).

Rule 12: For every pair u, v of leafish vertices we check that u and v are in
different branches and that (u, v) ∈ E(G). This is done in O(|V |2) time. The
implied execution of Rule 1 or Rule 2 does not increase this time need.

Rule 13: For each leaf l and for each leafish vertex u we check u 6∈ br(l) and
(u, b−(l)) ∈ E(G). This needs O(|V |2) time. This time complexity is not increased
by the implied execution of Rule 8.

Rule 14: Firstly we create an |Lp(T)| × |Lp(T)| matrix M and for each leaf
l1 ∈ Lp(T) we set M(l1, l2) to 1 if there is a non-tree edge (l1, x) such that x ∈ br(l2).
All other elements of M are 0. This is done in O(|V |2) time. Then we check whether
there exist two leaves l1, l2 ∈ Lp(T) such that M(l1, l2) = M(l2, l1) = 1. If yes then
the rule can be executed to l1 and l2. The total time requirement is O(|V |2).

Rule 15: For each pair of leaves l1, l2 ∈ Lp(T) we check in constant time the
followings: b(l1) = b(l2), dT (b(l1)) = 3 and (b−(l1), b

−(l2)) ∈ E(G). The total time
requirement is O(|V |2).

As a result we can conclude that the precondition of every single rule can be
checked in O(|V |2) time. After each rule execution data structures can be updated
in O(|V |2) time. Thus, to establish the time requirement of O(|V |4) for Algorithm
LOST, it is enough to see that at most O(|V |2) rules are executed before the algo-

5.5. A 7/4-APPROXIMATION ALGORITHM 73

v1 v2

v3

Figure 5.4: Pendant branches

rithm stops and a LOST is found. Clearly, all of Rules 1–13 decrease the number of
leaves as a result of their execution. Therefore, the total number of their executions
is O(|V |). Rules 14 and 15 do not change the number of leaves. They strictly de-
crease, however, the sum

∑

l∈Lp
|br(l)|, that is, the total length of branches having no

leafish vertices. Without changing the number of leaves, this sum can be decreased
O(|V |) times. (It can happen that the execution of one of Rules 1–13 increases this
sum, but in this case the number of leaves is decreased.) We conclude that there
can be O(|V |2) rule execution steps and so the running time of Algorithm LOST is
O(|V |4).

5.5.5 Pendant vertices

The analysis of the approximation ratio for the Algorithm LOST of Subsection 5.5.2
works only if the graph has no pendant vertices. In this subsection we refine this
condition. To this aim, we recursively define pendant branches of a graph G as
follows. Let P0 be the set of pendant vertices of G. For i = 1, 2, . . . , let P ′

i be the
pendant vertices of G[V − Pi−1] and let Pi = P ′

i ∪ Pi−1. As G is not a tree, there is
a smallest k for which Pk = Pk−1. Let C1, C2, . . . , Cr be the components of G[Pk].
Each Cj has a unique neighbor in G[V − Pk], say vf(j). Then the pendant branches
of G are Cj + vf(j) for j = 1, 2, . . . , r. A pendant branch is long if it has at least
three vertices. Figure 5.4 shows a graph and its pendant branches of which two are
long. Notice that several pendant branches contain vertex v3.

We build a graph G′ from G as follows: first we remove all vertices of
⋃r

j=1 Cj .
Then for each vertex vf(j) ∈ R we add two vertices xf(j) and yf(j), and three edges
(vf(j), xf(j)), (vf(j), yf(j)) and (xf(j), yf(j)). If G is the graph of Figure 5.4, we obtain
G′ as shown in Figure 5.5(a). We run Algorithm LOST on G′ instead of G obtaining
a spanning tree T ′. Since G′ has no pendant vertices the approximation ratio of 7/4
applies to it. Let the spanning tree T of G be the union of the pendant branches of
G and the restriction of T ′ to V (G). Figure 5.5(b) shows the spanning tree yielded
from the graph of Figure 5.4.

74 CHAPTER 5. MAXIMIZING THE NUMBER OF INTERNAL VERTICES

v1 v3v2

y1 x2 x3 y3

x1

y2

(a) (b)

Figure 5.5: Running Algorithm LOST for graphs with pendant vertices

Now let p be the total number of internal vertices of the long pendant branches
of T . We show that this algorithm provides a 7/4-approximation for the Maximum

Internal Spanning Tree problem whenever p ≥ r.

By Lemma 5.5.3, we have |I(T ′∗)|
|I(T ′)|

≤ 7/4 as G′ has no pendant vertices. Here,

I(T ′∗) is an optimum solution of the Maximum Internal Spanning Tree prob-
lem in G′.

Observe that, for all j, vertex vj is an internal vertex of T as a pendant branch
is attached to it, and is an internal vertex of T ′ due to the above construction. Also,
for each j, one of xj , yj is a leaf, the other is an internal vertex of T ′. Using the
definition of p we obtain |I(T)| = |I(T ′)| − r + p, and |I(T ∗)| = |I(T ′∗)| − r + p, and

so |I(T ∗)|
|I(T)|

≤ |I(T ′∗)|
|I(T ′)|

≤ 7/4 as p ≥ r.

5.6 Vertex-Weighted Case

Let G = (V, E) be a graph without pendant vertices and with a positive weight-
function c : V −→ Q+ on its vertices. The Maximum Weighted Internal

Spanning Tree problem aims to find a spanning tree T of G that maximizes
the weight-sum of internal vertices, that is, c(I(T)) =

∑

v∈I(T) c(v). Obviously,
this problem is NP-hard, as it contains the unweighted version, the Maximum

Internal Spanning Tree problem, as a special case. In this section we present
a (2∆−3)-approximation algorithm for general graphs which is further refined to get
a 2-approximation algorithm for claw-free graphs. The main idea of the algorithms
is similar to the one we have seen in the unweighted case. We use local improvement
steps to obtain a locally optimal tree. Then we prove that certain properties of such
a tree guarantee the desired approximation ratio. The proof is, however, different
from that of Section 5.5. Instead of using linear programming, it is based on mapping
every leaf of the spanning tree into an internal vertex with larger weight.

5.6. VERTEX-WEIGHTED CASE 75

l

x�l

x

(a) Rule 16

l

x�l

x

(b) Rule 17

x

l

b(l)

b−(l)

(c) Rule 18

l1 = b−(l1) l2

b(l1)

(d) Rule 19

Figure 5.6: Local improvement rules for creating a WLOST (squares represent
leaves, circles represent internal vertices)

5.6.1 General graphs

Let us consider an arbitrary spanning tree T of G. In order to get a good approx-
imation we execute local improvement rules as long as possible. Each such rule
either turns a leaf into an internal vertex or it replaces a leaf with another one of
smaller weight. The weighted sum of leaves decreases in both cases. Similarly to
the unweighted case, each of the following rules has a precondition and an action
part of the same semantics. For the definitions and the used notation, see pp. 12–13
and p. 48.

Rule 16. Precondition: T has an x-supported leaf l such that dT (x�l) > 2.
Action: Let E(T ′) = E(T) + (l, x)− (x, x�l) (Fig. 5.6(a)).

Rule 17. Precondition: T has a leaf l, and a non-tree edge (l, x) such that
dT (x�l) = 2, and c(x�l) < c(l). Action: Let E(T ′) = E(T) + (l, x)− (x, x�l) (Fig.
5.6(b)).

Rule 18. Precondition: T has an x-supported leaf l such that c(b−(l)) < c(l)
Action: Let E(T ′) = E(T) + (l, x)− (b(l), b−(l)) (Fig. 5.6(c)).

Rule 19. Precondition: T has a short leaf l1 and a leaf l2 such that (l1, l2) ∈
E(G). Action: Let E(T ′) = E(T) + (l1, l2)− (b(l1), b

−(l1)) (Fig. 5.6(d)).
We can construct an approximation algorithm for the Maximum Weighted

Internal Spanning Tree problem using the above rules. First we have a defi-
nition.

Definition 5.6.1 A spanning tree T is a weighted locally optimal spanning tree
(WLOST) if none of Rules 16–19 can be executed on it.

76 CHAPTER 5. MAXIMIZING THE NUMBER OF INTERNAL VERTICES

Algorithm WLOST (Weighted Locally Optimal Spanning Tree)
Input: A simple connected vertex weighted graph G
Output: A weighted locally optimal spanning tree (WLOST) T of G
begin

Run Algorithm Greedy Traversal to obtain an initial spanning tree T
Execute Rules 16–19 as long as possible. If several rules can be executed,
choose the one with the lowest number

end

Theorem 5.6.2 Algorithm WLOST is an O(|V |4)-time (2∆−3)-approximation for
the Maximum Weighted Internal Spanning Tree problem for graphs with
no pendant vertices.

The proof of the running time is postponed to Subsection 5.6.3. The following
lemma establishes the approximation ratio.

Lemma 5.6.3 Let T be a WLOST of a vertex-weighted graph G = (V, E, c) that
has no pendant vertices. Then (2∆− 3)c(I(T)) ≥ c(V).

Proof: First, observe some basic properties of T that are immediate consequences
of the definition of a WLOST.

Property 9. If l is a leaf of T and (l, x) is a non-tree edge then dT (x�l) = 2
and c(x�l) ≥ c(l). (As Rules 16 and 17 are no more applicable in T .)

Property 10. If l is a supported leaf of T then c(b−(l)) ≥ c(l). (As Rule 18 is
no more applicable in T .)

Property 11. If l is a short leaf of T then l is G-independent from the set L(T).
(As Rule 19 is no more applicable in T .)

We define a mapping f : L(T) −→ I(T) as follows. For a leaf l, let x be the
vertex such that (l, x) is a non-tree edge and the length of path PT (l, x) is the
maximum possible. Such an x always exists as dG(l) ≥ 2. If br(l) is a short branch
or x ∈ br(l) then let f(l) = x�l. Otherwise, let f(l) = b−(l). This means that each
long leaf l is mapped to an internal vertex of its own branch br(l). Thus the images
of long leaves are disjoint. By the above properties, it is easy to see that for every
leaf l, we have c(f(l)) ≥ c(l), and dT (f(l)) = 2.

The mapping f can be used to establish the approximation ratio. Unfortunately,
several short leaves can be mapped to the same vertex y. The following claim is
used to upper bound the number of such leaves.

Claim 5.6.4 For any vertex y ∈ V , we have |{l : y = f(l)}| ≤ 2(∆− 2).

Proof: Let l1, l2, . . . , lr be leaves of T with f(li) = y (1 ≤ i ≤ r). As shown above,
dT (y) = 2. Let y1 and y2 be the T -neighbors of y. Recall that a long leaf is mapped
to a vertex of its own branch. This implies that neither y1 nor y2 is a leaf of T .
Suppose the contrary, namely e.g. dT (y1) = 1. Then y must be in the long branch

5.6. VERTEX-WEIGHTED CASE 77

of y1 and at least r − 1 of the branches br(li) (1 ≤ i ≤ r) must be short. Moreover,
by the definition of the mapping f , the graph G must have edges (li, y1) which is
a contradiction to Property 11. Hence, at least 2 edges incident to y1 (and y2) are
tree edges, and so at most ∆− 2 are non-tree edges. This shows that r ≤ 2(∆− 2),
yielding the claim. �

Using Claim 5.6.4, and the fact that the images of long leaves are G-independent,
we obtain

∑

v∈L(T)

c(v) =
∑

l∈Lg(T)

c(l) +
∑

l∈Ls(T)

c(l)

≤
∑

l∈Lg(T)

c(f(l)) +
∑

l∈Ls(T)

c(f(l)) ≤ 2(∆− 2)
∑

v∈I(T)

c(v). (5.16)

Hence adding
∑

v∈I(T) c(v) to both sides we obtain

∑

v∈V

c(v) ≤ (2∆− 3)
∑

v∈I(T)

c(v)

which proves the approximation ratio. �

5.6.2 Claw-free graphs

In this subsection we extend Algorithm WLOST by an additional improvement
step in order to get a 2-approximation algorithm for the Maximum Weighted

Internal Spanning Tree problem for claw-free graphs, that is, graphs without
induced K1,3. Observe that (5.16) would guarantee an approximation ratio of 2 if
we could find a WLOST without short branches. The new improvement rule does
exactly this job, namely it converts short branches to long ones. Throughout this
subsection, G is supposed to be claw-free. First we point out a property of WLOST’s
of claw-free graphs.

Let T be a WLOST of G, and l be a short leaf of T . Furthermore, let the T -
neighbors of b(l) be l, x1, x2, . . . , xk. Then by Property 9, none of x1, x2, . . . , xk is
a G-neighbor of l. Thus, vertices x1, x2, . . . , xk must span a complete subgraph of
G, since otherwise b(l), l, xi, xj would induce a K1,3 for some i, j. As a result, by
Property 9, all the vertices xi are internal vertices of T , for i ≥ 1. Thus we have

Property 12. If l is a short leaf of T and the T -neighbors of b(l) are l, x1, . . . , xk,
then x1, x2, . . . , xk are all internal vertices of T and they induce a complete subgraph
of G.

Using this property, we can now give an additional improvement rule to decrease
the number of short branches while not changing the set of leaves.

Rule 20. Precondition: T has a short leaf l, and the T -neighbors of b(l)
are l, x1, . . . , xk such that for some 1 ≤ i ≤ k the vertex xi is a branching, or xi

has a T -neighbor vi 6= b(l) which is an internal vertex. Action: Let E(T ′) =
E(T) \ {(b(l), xj)}j=1..k,j 6=i

∪ {(xi, xj)}j=1..k,j 6=i
.

78 CHAPTER 5. MAXIMIZING THE NUMBER OF INTERNAL VERTICES

Definition 5.6.5 A WLOST is called a Refined WLOST (RWLOST) if Rule 20
cannot be executed on it.

Using Rule 20, we can improve Algorithm WLOST to obtain a better approximation
ratio for claw-free graphs.

Algorithm RWLOST (Refined Weighted Locally Optimal Spanning Tree)
Input: A simple connected vertex-weighted graph G
Output: A weighted locally optimal spanning tree (RWLOST) T of G
begin

Run Algorithm Greedy Traversal to obtain an initial spanning tree T
Execute Rules 16–19 and Rule 20 as long as possible. If several rules can
be executed, choose the one with the lowest number

end

Theorem 5.6.6 Algorithm RWLOST is an O(|V |4)-time 2-approximation for the
Maximum Weighted Internal Spanning Tree problem for claw-free graphs
that have no pendant vertices.

Proof: Let T be an RWLOST of a claw-free graph G = (V, E, c) that has no
pendant vertices. We prove that in this case c(I(T)) ≥ 1

2
c(V). This yields the

approximation ratio of 2. At first, we show that T has no short branches. Suppose
the contrary, namely let l be a short leaf. Let l, x1, . . . , xk be the T -neighbors of b(l).
As T is an RWLOST, Rule 20 cannot be executed in it. Hence, each vertex xi is a
forwarding vertex with T -neighbors b(l) and vi, where vi is a leaf of T (for 1 ≤ i ≤ k).
As a result, G has only 2k + 2 vertices (l, b(l), xi’s, and vi’s). Then Property 9 and
Property 11 imply that l is not a G-neighbor of xi’s or vi’s, respectively. This gives
dG(l) = 1, a contradiction. Therefore all branches of T are long. Now recall (5.16)
and reformulate it for a WLOST without short branches.

∑

v∈L(T)

c(v) =
∑

l∈Lg(T)

c(l) ≤
∑

l∈Lg(T)

c(f(l)) ≤
∑

v∈I(T)

c(v).

Again, adding
∑

v∈I(T) c(v) to both sides we conclude that

∑

v∈V

c(v) ≤ 2
∑

v∈I(T)

c(v).

�

5.6. VERTEX-WEIGHTED CASE 79

5.6.3 Running time analysis of Algorithms WLOST and
RWLOST

The data structures used to execute Algorithm WLOST and Algorithm RWLOST
are the same as the ones used for Algorithm LOST. Using them, the precondition
part of each individual rule can be tested as follows.

Rule 16: This rule is the same as Rule 3 of Algorithm LOST. Checking its
precondition needs O(|V |2) time.

Rule 17: For every leaf l and for every non-tree edge (l, x) we check whether
c(x�l) < c(l). This requires O(|V |2) time.

Rule 18: For every leaf l we check whether c(b−(l)) < c(l) and we look for a
non-tree edge (l, x) such that x 6∈ br(l). This needs O(|V |2) time.

Rule 19: For every short leaf l1 and for every leaf l2 we check whether (l1, l2) ∈
E(G). This requires O(|V |2) time.

Rule 20 (only for Algorithm RWLOST): For every short leaf l it is enough to
check the local neighborhood of b(l). This can be done in O(|V |2) time.

As a result, the precondition part of each particular rule can be checked in
O(|V |2) time. It remains to show that there are at most O(|V |2) rule execution
steps before the algorithms stop.

For this purpose, let the vertices of G be sorted in descending order of their
weights, that is, c(v1) ≥ c(v2) ≥ · · · ≥ c(vn) ≥ 0. Let T be the initial spanning tree
that we have before rule executions. Let us use |L(T)| pieces of markers to select
the leaves of T from v1, v2, . . . , vn. When an improvement rule is executed in the
current spanning tree, we change the position of the appropriate markers such that
they always point to the leaves. The execution of Rules 16 and 19 turns a leaf l
into an internal vertex, that is, the marker of l is completely removed and is not
used anymore. The execution of Rules 17 and 18 changes a leaf l1 to another leaf l2
such that c(l2) < c(l1). This results that the marker of l1 is moved to a higher rank
element (l2) of the sequence v1, v2, . . . , vn. Observe that such a way, every marker is
moved at most n times. Thus, at most O(|V |2) rule execution steps are enough to
obtain a WLOST.

In Algorithm RWLOST, we alternate the execution of Rule 20 and Rules 16–19.
We use the above method to mark the leaves of the current spanning tree. Rule
20 does not change the set of leaves, and so the position of markers. However, it
decreases the number of short branches. It is easy to see that Rules 16 and 19 do
not increase the number of short branches, while Rules 17 and 18 increase it by at
most one. Putting these facts together we conclude that Rule 16 is executed at most
|Ls(T)|+r times, where r is the total number of executions of Rules 17 and 18, that
is, r = O(|V |2). This proves that after O(|V |2) improvement steps we obtain an
RWLOST.

As a result, we conclude that both algorithms use O(|V |2) time for a single rule
execution, and thus run in O(|V |4) time.

80 CHAPTER 5. MAXIMIZING THE NUMBER OF INTERNAL VERTICES

5.7 Spanning Many Vertices with a q-Leaf Tree

Up to now we were focusing on spanning trees with few leaves. In this section we
do the contrary, we fix the number of leaves to q and examine how many vertices
can be spanned by an ≤ q-leaf subtree. This approach is a generalization of finding
a longest path in a graph, as a path is just a 2-leaf subtree. Let σq(G) denote the
minimum degree-sum of a q-element independent subset of V (G), that is,

σq(G) = min
X⊆V (G)

{

∑

v∈X

d(v) : |X| = q, X is G-independent

}

.

Let us recall Ore’s theorem:

Theorem 5.7.1 [56] Let G be a graph on n vertices. If σ2(G) ≥ n then G has a
Hamiltonian path.

Notice that the original version of this theorem states the existence of a Hamil-
tonian cycle supposing the same sufficient condition. However, in this thesis, we
only need the path version of which Bermond proved the following generalization
for 2-connected graphs:

Theorem 5.7.2 [15] Let G be a 2-connected graph on n vertices. Then G has a
path of length min {n, σ2(G)}.

Broersma and Tuinstra used a different point of view to generalize Ore’s result.
They examined the existence of q-leaf spanning trees and obtained the following:

Theorem 5.7.3 [19] Let G be a graph on n vertices. If σ2(G) ≥ n − q + 1, for
some integer 2 ≤ q ≤ n− 1, then G has a q-leaf spanning tree.

In what follows we give a common generalization of the above results. We give
a sufficient condition on the existence of a q-leaf subtree that spans many vertices.

To formulate our statement on subtrees we use the following notation. Let Sq

be a q-element independent set and let k ≤ q be an integer. Furthermore, let
Xk(Sq) be the set of the k highest degree vertices of Sq. Then we denote by ρq,k(G)
the minimum minSq

∑

x∈Xk(Sq) d(x), where the minimum is taken over all q-element

independent sets. Clearly σq(G) = ρq,q(G) and σq(G)
q
≤

ρq,k(G)

k
holds for k ≤ q.

The main result of this section is the algorithmic proof of the following theorem:

Theorem 5.7.4 Let G = (V, E) be a connected graph and let 2 ≤ q < α(G)
be an integer. Then G has a subtree with at most q leaves that spans at least
min {ρq,2(G) + q − 1, n} vertices of G.

5.7. SPANNING MANY VERTICES WITH A Q-LEAF TREE 81

Proof: Let T be a maximum cardinality subtree of G with at most q leaves. If T
spans G then we are done. Otherwise let R = V (G) \ V (T) 6= ∅. As T is maximal,
none of its leaves is adjacent to R and thus for each leaf l we have dG[V (T)](l) = dG(l).
Moreover, T must be a minimum leaf spanning tree of G[V (T)]. Suppose that this
is not the case and there exists a tree T ′ spanning V (T) with less than q leaves.
Let e be an edge between V (T) and R. Then T ′ + e is a tree with at most q leaves
that spans more vertices than T . Observe that G[V (T)] has no Hamiltonian cycle.
Otherwise we could form a Hamiltonian path of G[V (T)] with one of its leaves
adjacent to R.

Therefore, T must have all properties of a minimum leaf spanning tree, and
it has exactly q leaves. The set L of leaves of T is G-independent by Lemma
4.2.1 if T is not a Hamiltonian path of G[V (T)], and by the fact that there is
no Hamiltonian cycle in G[V (T)] otherwise. Let l1 and l2 be the first and the
second highest G-degree vertex in L, respectively. For the leaf l2 we define the set
S =

{

v : ∃u ∈ V (T) s.t. (l2, u) ∈ E(G) \ E(T), v = u�l2
}

. If T is not a Hamiltonian
path, and so G[V (T)] is non-traceable, then by Lemma 4.2.2 we obtain that the
vertices of S are forwarding vertices of T and so by the definition of S we have
|S| = dG(l2)− 1. Moreover, in this case Lemma 4.2.2 also shows that the vertices of
S are not adjacent to l1, that is, S and NG(l1) are disjoint. If T is a Hamiltonian
path then the vertices of S are trivially forwarding vertices and disjoint from NG(l1),
as otherwise V [G(T)] has a Hamiltonian cycle.

Thus

|V (T)| ≥ |V1(T)|+ |S|+ |NG(l1)| = q + dG(l2)− 1 + dG(l1) ≥ ρq,2(G) + q − 1,

using the fact that the leaves of T form a q-size independent set. �

The above bound is strict as shown by the complete bipartite graph G = (A ∪
B, E) = Kσ,n−σ (for any σ < n/2). To see this, let T be any non-spanning subtree
of G having exactly q leaves and t = |V (T)| vertices.

If the leaves (being independent in G) are all in B then |E(T)| = t − 1 =
eT (A, B) = eT (A, B ∩ V≥2(T)) + q, and each internal vertex of B has at least 2
neighbors in A, so we have 2|B ∩ V≥2(T)| ≤ eT (A, B ∩ V≥2(T)) = t − q − 1. This,

combined with t ≤ q + |B ∩ V≥2(T)|+ σ results t ≤ 2σ + q − 1 = 2σq(G)

q
+ q − 1. If

the leaves are all in A then we take G′ = G− V1(T) and a subtree T ′ = T − V1(T).
It is easy to see that T ′ has all of its q′ ≤ q leaves in B and following to the above
argument we have |V (T ′)| ≤ 2(σ− q) + q′− 1 ≤ 2σ− q− 1 and so t = |V (T ′)|+ q ≤
2σ − 1.

As a result, at most 2σq(G)
q

+ q−1 ≤ ρq,2(G)+ q−1 vertices of G can be spanned
by a subtree of at most q leaves.

Putting together Corollary 4.2.3 and Theorem 5.7.4 yields the following:

Corollary 5.7.5 Let G = (V, E) be a connected graph and q ≥ 2 be an integer. If
q ≥ α(G) or ρq,2(G) ≥ n− q + 1 then G has a spanning tree with at most q leaves.

82 CHAPTER 5. MAXIMIZING THE NUMBER OF INTERNAL VERTICES

This is a generalization of the result of Broersma and Tuinstra [19] as ρq,2(G), if
defined, is an upper bound on σ2(G).

In the rest of this section we mention some further results related to the topic of
density conditions and q-leaf spanning trees.

Win considered the case of k-connected graphs and proved the following:

Theorem 5.7.6 [71] Let q ≥ 2 and G be a k-connected graph. If α(G) ≤ q +k−1
then G has a spanning tree with at most q leaves.

Tsugaki and Yamashita proved a common generalization of Theorems 5.7.3 and
5.7.6:

Theorem 5.7.7 [66] Let q ≥ 2 and G be a k-connected graph on n vertices. If
q +k ≥ α(G) or ρq+k,2 ≥ n− q +1 then G has a spanning tree with at most q leaves.

Observe that this theorem, published independently of our work, also generalizes
Corollary 5.7.5 for k connected graphs.

Instead of dealing with the degree sum of independent vertices, one can consider
their neighborhood unions. If we have a vertex set S ⊂ V (G), its neighborhood
union is N(S) =

⋃

v∈S N(v), that is, the set of vertices having a neighbor in S. Let
us denote by Nq the minimum of |N(S)| among all q-element independent sets of
V (G). Then N2 ≥

2
3
(n − 2) is a sufficient condition for traceability [14, 24, 27].

Based on this result, Flandrin et al. proved a neighborhood union based sufficient
condition for the existence of a (≤ q)-leaf spanning tree:

Theorem 5.7.8 [27] Let q ≥ 2 and G be a connected graph on n vertices. If
Nq > q

q+1
(n− q) then G has a spanning tree with at most q leaves.

We finish this section by a theorem which shows how to construct maximum
size q-leaf subtrees from an approximate solution T of the Maximum Internal

Spanning Tree problem (q = 2, 3, . . . , |V1(T)|). Indeed, it is enough to find
a maximum length path (2-leaf subtree) of T and then subsequently add q − 2
longest paths to it. Notice that this construction provides no approximation ratio
guarantee for the number of vertices spanned by a q-leaf subtree. It only shows how
an algorithm designed for the Maximum Internal Spanning Tree problem can
be used as a heuristic for finding a maximum size q-leaf subtree.

Theorem 5.7.9 Let T be a tree having more than q leaves. Let Tq be a maximum
size q-leaf subtree of T . Then there exists a (q + 1)-leaf subtree Tq+1 of T such
that Tq is a subtree of Tq+1, and Tq+1 has a maximum number of vertices among all
(q + 1)-leaf subtrees of T . Moreover, Tq+1 can be obtained by adding to Tq a longest
path of E(T)− E(Tq) that has one of its ends in Tq.

Proof: Observe that, for 2 ≤ i ≤ |V1(T)|, each leaf of a maximum cardinality i-leaf
tree is a leaf of T , and that such a subtree is fully determined by enumerating its
leaves.

5.8. DENSE CLAW-FREE GRAPHS 83

Let us given Tq, a maximum size q-leaf subtree of T , and let P (u, v) be a longest
path of E(T) − E(Tq) so that u ∈ V (Tq). Then P and Tq has a single vertex in
common, namely, V (P)∩ V (Tq) = {u}. We construct Tq+1 by adding path P to Tq,
that is, Tq+1 = Tq ∪ P . Clearly, due to the maximality of Tq, the vertex u cannot
be its leaf, and so Tq+1 has q + 1 leaves: V1(Tq+1) = V1(Tq) + v. It remains to prove
that Tq+1 has maximum cardinality among all subtrees of T having q + 1 leaves.

Suppose for a contradiction that there exists a (q+1)-leaf subtree T̂q+1 of T which
has more vertices than Tq+1. The maximality of Tq implies that Tq+1 = Tq∪P1, where

P1 is the shortest branch of Tq+1. Similarly, let P̂1 be the shortest branch of T̂q+1

and let T̂q be the q-leaf subtree with edge set E(T̂q+1)\E(P). As |V (Tq)| ≥ |V (T̂q)|,

according to our assumption |V (P1)| < |V (P̂1)|, that is, the shortest branch of Tq+1

is shorter than that of T̂q+1. Now we consider two cases.

Case 1. The trees Tq and T̂q are disjoint. In this case, let Q be the path of T

connecting Tq and T̂q, and let l be a leaf of T̂q such that Q contains no forwarding

vertices of the branch of l in T̂q+1. Note that V (brTq+1(l)) ⊆ V (brTq
(l)). Let R be

the path connecting l to Tq. Now observe that R contains br(l), a branch of T̂q, and

so |V (R)| ≥ |V (P̂1)|. Thus we have

|V (Tq+1)| ≥ |V (Tq)|+ |V (R)| − 1 > |V (T̂q)|+ |V (P̂1)| − 1 = |V (T̂q+1)|,

contradicting to our assumption.

Case 2. The trees Tq and T̂q intersect. In this case the maximality of Tq implies

that for each leaf l of T̂q and its branch, the intersection V (Tq)∩V (brT̂q
(l)) is either

the whole branch V (brT̂q
(l)), or only the branching bT̂q

(l), or the empty set. Now,

let R be the longest branch of T̂q \ Tq. Then clearly, by the minimality of P̂1, we

have |R| ≥ |P̂1| and so

|V (Tq+1)| ≥ |V (Tq)|+ |V (R)| − 1 ≥ |V (T̂q)|+ |V (P̂1)| − 1 = |V (T̂q+1)|,

forming a contradiction to our assumption. �

5.8 Dense Claw-Free Graphs

Now recall Theorem 5.7.3 which states that if the density condition σ2(G) ≥ n−q+1
holds then G has a q-leaf spanning tree. In what follows, we give an algorithmic
proof to a stronger version of this theorem for claw-free graphs.

Theorem 5.8.1 Let G be a connected claw-free graph on n vertices. For any integer
2 ≤ q, if σq+1(G) ≥ n− q then G has a spanning tree with at most q leaves.

84 CHAPTER 5. MAXIMIZING THE NUMBER OF INTERNAL VERTICES

The proof of this theorem is analogous to that of Gargano et al. [32] giving a
similar condition to the existence of a k-branching spanning tree:

Theorem 5.8.2 [32] Given a connected claw-free graph G. For any integer k, if
σk+3(G) ≥ n− k − 2 then G has a spanning tree with at most k branchings.

Proof of Theorem 5.8.1: Let T be a subtree of G with at most q leaves such
that

(i) T spans a maximum number of vertices;

(ii) with respect to (i), T minimizes
∑

l∈L(T) |br(l)|, that is, the total length of
branches;

(iii) with respect to (i) and (ii), T maximizes
∑

l∈L(T) |br(l)|
2, that is, the square

sum of branch lengths.

Clearly, (i) implies that T is either a spanning tree or a subtree with exactly q
leaves. If T is a spanning tree then we are done. Thus, from now on we suppose that
|V (T)| < |V (G)| and |L(T)| = q. We show that this contradicts to the condition
σq+1(G) ≥ n− q, proving that T is a spanning tree.

Let R = V (G) \ V (T) be the set of vertices not spanned by T . Observe that T
must be a minimum leaf spanning tree of G[V (T)]. Suppose the contrary and let T ′

be a minimum leaf spanning tree of G[V (T)]. By its definition, T ′ has less than q
leaves, therefore we can add an edge e ∈ eG(R, V (T)) to T ′ thus obtaining a subtree
T ′′ of G with |L(T ′′)| ≤ q. As T ′′ spans more vertices than T , we get a contradiction
to (i).

Since T is a minimum leaf spanning tree of G[V (T)], it has Properties 1–7 of
LOST’s, though T might not be a LOST by itself. We rephrase here some of these
properties and give some extra ones that T also has.

Property 13. L(T) forms a G-independent set. This is a trivial consequence of
Property 1 of LOST’s.

Property 14. Let l1 and l2 be leaves of T . Then l2 and b−(l1) are not G-
neighbors. This is a trivial consequence of Property 4 of LOST’s if l1 is long and of
Property 13 if l1 is short.

Property 15. Let l1 and l2 be leaves of T . Then l2 is G-independent from the
set of l1-leafish vertices. This is a trivial consequence of Property 5 of LOST’s.

In addition to these, (i)–(iii) also imply the following properties of T :
Property 16. Let l be a leaf and (x, y) be a trunk-edge of T . Then x and y

cannot be both G-neighbors of l.
Otherwise, if both (l, x) and (l, y) are non-tree edges then we have a spanning

tree T ′ of G[V (T)] with edge set E(T ′) = E(T)− (x, y)− (l, z)+(l, x)+(l, y), where
z is the only T -neighbor of l. If l is a short leaf of T then T ′ has less leaves which
contradicts the fact that T is a minimum leaf spanning tree of G[V (T)]. If l is a
long leaf of T then both T and T ′ have q leaves. However, as we cut l down from

5.8. DENSE CLAW-FREE GRAPHS 85

its branch, the total branch length
∑

v∈L(T ′) |br(v)| in T ′ is less than
∑

v∈L(T) |br(v)|

in T contradicting (ii).

Property 17. Let l1 and l2 be leaves of T such that |br(l1)| ≥ |br(l2)|. Then l1
is not a G-neighbor of any vertex in br(l2)− b(l2).

Otherwise, if G has a non-tree edge (l1, x) where x ∈ br(l2)− b(l2) then we have
a spanning tree T ′ of G[V (T)] with edge set E(T ′) = E(T) + (l1, x) − (x, x�b(l2)).
Then Property 13 implies x 6= l2 and so l2 is a long leaf. If x�b(l2) = b(l2) then T ′

has less leaves than T had, contradicting Property 13. Thus we can suppose that
dT (x�b(l2)) = 2. In this case, T and T ′ have the same number of leaves and the same
total length of branches. However, the square sum

∑

l∈L(T ′) |br(l)|
2 in T ′ is strictly

greater than
∑

l∈L(T) |br(l)|
2 in T . This contradicts to (iii).

Property 18. Let l1 and l2 be leaves of T such that |br(l1)| < |br(l2)|. Then
there are no vertices x, y ∈ br(l2) − b(l2) such that (x, y) is a tree-edge and both
(l1, x) and (l1, y) are non-tree edges.

Otherwise, if G has such edges then we have a spanning tree T ′ of G[V (T)] with
edge set E(T ′) = E(T) + (l1, x) + (l1, y) − (x, y) − (l1, z), where z is the only T -
neighbor of l1. Then Property 13 implies x 6= l2 and y 6= l2. If l1 is a short leaf then
|L(T ′)| < |L(T)|, contradicting the fact that T is a minimum leaf spanning tree of
G[V (T)]. Therefore l1 must be a long leaf. The number of leaves and the total length
of branches is the same in T and in T ′. However, the square sum

∑

l∈L(T ′) |br(l)|
2 in

T ′ is strictly greater than
∑

l∈L(T) |br(l)|
2 in T . This contradicts to (iii).

Property 19. G has no edge between R and L(T).

Otherwise, if such an edge (r, l) exists (r ∈ R, l ∈ L(T)) then the tree T ′ obtained
by adding edge (r, l) to T has the same number of leaves as T . Since T ′ spans more
vertices than T , this is a contradiction.

Property 20. Let (x, y) be an edge of T . Then there is no vertex r ∈ R being
G-neighbor of both x and y.

Otherwise, the tree T ′ with V (T ′) = V (T) + r and E(T ′) = E(T) + (r, x) +
(r, y)− (x, y) has the same number of leaves as T and it spans more vertices. This,
again, forms a contradiction.

Property 21. Let l be a leaf of T and v be an l-leafish vertex of br(l). Then
there is no vertex r ∈ R being G-neighbor of x.

Recall Rule A of Algorithm LOST. It can be used to turn v into a leaf and l
to an internal vertex. Suppose for a contradiction that Property 21 is not satisfied,
that is, (r, v) ∈ E(G). If we apply Rule A on T and add the non-tree edge (r, v) to
it then we obtain a tree T ′ which has |L(T ′)| = |L(T)| leaves and which spans more
vertices than T . This is a contradiction.

Using these properties, we can now give a few claims on T .

Claim 5.8.3 For each vertex r ∈ R, the set L(T) + r is G-independent.

This is an immediate consequence of Properties 13 and 19.

86 CHAPTER 5. MAXIMIZING THE NUMBER OF INTERNAL VERTICES

Claim 5.8.4 Let l1 and l2 be leaves of T . Then there is no vertex x such that both
l1 and l2 are G-neighbors of x.

Indeed, let us suppose that (l1, x) ∈ E(G) and (l2, x) ∈ E(G), and let r be an
arbitrary vertex in R. First notice that Property 19 implies that there is no edge
between l1 and r or l2 and r. We consider five cases.

1. If x is a leaf then the contradiction is immediate as shown by Property 13.

2. If x is a trunk vertex and there is a trunk-edge (x, y) incident to it then by
Property 16 neither (l1, y) nor (l2, y) is a G-edge. As l1 and l2 are not adjacent,
vertices l1, l2, x, y span a claw, which is a contradiction.

3. If x is a trunk vertex but there is no trunk edge incident to it then T is a spider
which has a third leaf l3. As x is the only branching of T we have b(l3) = x.
By Property 14, leaves l1 or l2 are not G-neighbors of b−(l3). Therefore l1, l2,
x and b−(l3) form a claw, a contradiction.

4. If x is an internal vertex of br(l2) then, by Property 17, we have |br(l1)| <
|br(l2)|. Moreover, by Property 14, x 6= b−(l2). Let y abbreviate x�b(l2). By
Property 18, y is not a G-neighbor of l1 and, by Property 15, y is not a G-
neighbor of l2. Therefore, l1, l2, x and y form a claw which is a contradiction.

5. If x is an internal vertex of br(l3), where l3 is a leaf different from l1 and
l2, then, by Property 17, we have |br(l1)| < |br(l3)| and |br(l2)| < |br(l3)|.
Property 14 implies x 6= b−(l3) and hence y = x�b(l3) is an internal vertex of
br(l3). This yields that l1, l2, x, y form a claw as, by Property 18, neither l1
nor l2 is a G-neighbor of y. This is a contradiction.

Claim 5.8.5 Let l be a leaf of T and r ∈ R be a vertex of G not spanned by T .
Then there is no vertex x of T such that x is a G-neighbor of both l and r.

The proof of this claim is similar to that of Claim 5.8.4 and is done by contra-
diction. Let us suppose that (l, x) ∈ E(G) and (r, x) ∈ E(G). Again, we consider
five cases.

1. If x is a leaf then the contradiction is immediate as shown by Property 13.

2. If x is a trunk vertex and there is a trunk-edge (x, y) incident to it then, by
Properties 16 and 20, neither (l, y) nor (r, y) is a G-edge. Thus vertices l, r,
x, y span a claw, which is a contradiction.

3. If x is a trunk vertex but there is no trunk edge incident to it then T is a
spider. Let l2 6= l be a leaf of T . As x is the only branching of T we have
b(l2) = x. By Property 14, the leaf l is not a G-neighbor of b−(l2). Property
20 implies that r and b−(l2) are not G-neighbors. Therefore l, r, x and b−(l2)
form a claw, a contradiction.

5.9. EXPERIMENTAL ANALYSIS 87

4. If x is an internal vertex of br(l) then it is different from b−(l) by Property
14. Let y abbreviate x�b(l). As (x, r) ∈ E(G), by Property 21, x cannot
be l-leafish. Hence, y and l are not G-neighbors. Property 20 shows that
(y, r) 6∈ E(G). Therefore, l, r, x and y form a claw which is a contradiction.

5. If x is an internal vertex of br(l2) where l2 is a leaf different from l then let
us denote x�b(l2) by y. Property 20 shows that (y, r) 6∈ E(G). As l is a G-
neighbor of x, Property 17 gives |br(l)| < |br(l2)|. Then, by Property 18, l
is not a G-neighbor of y. This yields that l, r, x, y form a claw. This is a
contradiction.

Claim 5.8.6 Let r ∈ R be a vertex of G not spanned by T and let x be an arbitrary
vertex of G. Then x has at most one G-neighbor in L(T) + r.

If x ∈ R then, by Property 19, x has no G-neighbor in L(T). If x ∈ V (T) then
Claim 5.8.4 implies that x can have at most one neighbor in L(T). In this case,
Claim 5.8.5 shows that if (r, x) ∈ E(G) then x has no G-neighbor in L(T).

Now we can turn to finish the proof of Theorem 5.8.1 using the above claims.

Recall that we supposed V (T) ⊂ V (G). This implies |L(T)| = q and that there
exists a vertex r ∈ V (G) \ V (T). Let X = V (G) \ (L(T) + r). By Claim 5.8.6, each
vertex of X has at most one G-neighbor in L(T) + r. Therefore eG(X, L(T) + r) ≤
|X| = n− (q + 1). As L(T) + r is a G-independent set, we have

∑

v∈L(T)+r dG(v) ≤

n − q − 1. Therefore, by its definition, σq+1(G) ≤ n − q − 1. This concludes the
proof. �

5.9 Experimental Analysis

In this section we present the results of our experimental analysis on the Maximum

Internal Spanning Tree problem. Our aim is to compare the performance of
the different traversal algorithms used for obtaining the initial spanning tree, and
to measure the approximation. We consider four algorithms. Each starts with the
construction of an initial spanning tree and then applies Rules 1–3 of Algorithm
LOST as long as possible. The difference among the four algorithms is the way of
finding the initial spanning tree:

• Algorithm 1 creates a random spanning tree;

• Algorithm 2 creates a DFS-tree;

• Algorithm 3 creates a FIFO-DFS-tree;

• Algorithm 4 creates an RDFS-tree.

88 CHAPTER 5. MAXIMIZING THE NUMBER OF INTERNAL VERTICES

To create the set of input graphs, we use two different graph generation methods.
Both of these methods start with the creation of a simple path P = v1v2 . . . vn.
As a result, we can test our algorithms on traceable graphs where the value of the
optimum solution is known to be n − 2. Next, both methods randomly add some
other edges to the graph. The two methods differ in the way how these random
edges are selected.

Method 1 considers one by one all pairs of vertices (vi, vj) for i < j − 1. For
each such pair, the edge (vi, vj) is added to the input graph with a probability of p.
Observe that in this case the creation of a new edge is independent of the current
structure of the graph.

Method 2, in contrast, uses an approach which prefers higher degree vertices to
lower degree ones when it has to choose the end vertices of a new edge. This method
considers vertices vi one by one for i = 3, 4, . . . , n. For vertex vi, it generates a
random number r according to the (i−2, p)-parameter Binomial distribution. Then
it chooses r vertices among v1, v2, . . . , vi−2 and connects each of them to vi by a new
edge. When choosing these r vertices, each of v1, v2, . . . , vi−2 is considered with a
probability proportional to its current degree.

Notice that both methods result to the same expected number of edges. Namely,
on one hand, Method 1 yields an expected number of edges of

E(|E(G)|) = n− 1 + p

[(

n

2

)

− (n− 1)

]

= n− 1 + p

(

n− 1

2

)

.

On the other hand, Method 2 provides an expected number of edges of

E(|E(G)|) = n− 1 +
n

∑

i=3

p(i− 2) = n− 1 + p
n−2
∑

i=1

i = n− 1 + p

(

n− 1

2

)

.

Using both methods, we build graphs of 100, 300, and 500 vertices having dif-
ferent edge densities. We create 10 random graphs for each (M, n, p) triplet, where
M is the method used for generating the input graph. Then we run every algorithm
10 times on each of these input graphs. As a result each (M, n, p) triplet is repre-
sented by 100 runs of each algorithm. Tables A.1, A.2, and A.3 in Appendix A show
the experimental results for graphs of n = 100, 300, 500 vertices, respectively. Let
A denote the algorithm used to solve the Maximum Internal Spanning Tree

problem. Then for each tuple (M, n, p,A) we have two numbers in the tables. The
one in the column labelled by |L|1 corresponds to the phase when the algorithm
has just found the initial spanning tree but has not applied any local improvement
rule yet. The number in the column labelled by |L|2, in contrast, corresponds to
the final phase, namely when local improvement Rules 1–3 of Algorithm LOST have
already been applied on the initial spanning tree. Both of these numbers show the

5.9. EXPERIMENTAL ANALYSIS 89

average number of leaves based on the 100 runs corresponding to the given tuple
(M, n, p,A).

In what follows we make some observations based on Tables A.1–A.3.

1. There is a strong connection between the average degree of the input graph
and the average number of leaves of the output spanning tree. Our algorithms
performs the best on dense graphs. This is somewhat we expect, as in these
graphs the traversals themselves need to step back much more rarely and the
local improvement rules can be executed for more subgraphs. On the other
hand, if the average degree of the input graph is very close to 2 then we find
a good enough solution with high probability since the number of edges and
so the number of spanning trees is low. The most interesting part is when the
average degree is between these two extremities. Observe that even in this
range, there is no significant difference in the results obtained using the two
different input graph generation methods.

2. The algorithm using Algorithm RDFS for finding the initial spanning tree
overperforms the others for every input graph. Moreover, not considering
the small and sparse graphs, this is true even if we do not execute any local
improvement rule on the initial RDFS-tree. This surprising fact shows that
in many situations we can gain more by the appropriate choice of the initial
traversal than by the application of the more and more sophisticated local
improvements. Algorithm RDFS provides a good approximation factor for
claw-free and cubic graphs. As our experiments show, it can be used effectively
for general graphs, as well.

3. The ranking of the four algorithms based on their average performance is the
same for almost all considered input graphs. If we compare the number of
leaves after the local improvement steps (columns labelled by |L|2) then we
find the RDFS-tree approach being the best choice, followed by random tree,
FIFO-DFS-tree, and DFS-tree approaches, respectively. The fact that the
random-based approach yields better results than the DFS-tree and the FIFO-
DFS-tree ones shows the power of the applied local improvement technique.
It is important to see that the theoretical approximation factor of 7/4 for the
Maximum Internal Spanning Tree problem is highly overperformed in
terms of the average behavior of our algorithms for the input graphs considered
in this section.

4. Algorithm RDFS has the weakest performance for input graphs with an aver-
age degree of about 3.5–4, while this measure is about 4–4.5 for the other 3
algorithms. Algorithm RDFS gives a solution being close to the optimum for
most of the cases where this average degree is at least 10. From this point of
view, it is much better than the other 3 algorithms: the random tree approach
usually gives a close-to-optimum tree when the average degree of the input

90 CHAPTER 5. MAXIMIZING THE NUMBER OF INTERNAL VERTICES

graph is at least n/5, and the FIFO-DFS- and DFS-tree approaches give such
a tree when the average degree is at least n/3.

Chapter 6
Conclusion and Future Work

In this thesis, we considered some degree-based spanning tree optimization problems.
One common point of these problems is the special property of the measure function,
namely, that it depends only on the degree distribution of the obtained spanning
tree. More particularly, we dealt with problems which are generalizations of the
Hamiltonian Path problem, immediately yielding that our optimization problems
are all NP-hard.

The first of them, the Minimum Branching Spanning Tree problem was
originally inspired by a design problem of DWDM networks: electronic cross con-
nect devices have to be placed to nodes of a communication network such that all
possible demands be satisfied with the lowest cost. For the Minimum Branching

Spanning Tree problem, we gave both negative and positive approximability re-
sults. We proved that Ω(log n) is the best possible approximation ratio (Theorem
3.2.3), and gave Algorithm MinBST which achieves this ratio whenever the input
graph is evenly dense (Theorem 3.3.1). Further work can be done in order to find
approximation algorithms for general graphs.

Then we investigated the Maximum Internal Spanning Tree problem.
Firstly, we presented Algorithm ILST which yields an independence tree of the
input graph. We proved that such a tree always provides a 2-approximation for
general graphs (Theorem 5.2.2), a 4/3-approximation for cubic graphs and a 5/3-
approximation for 4-regular graphs (Theorem 5.2.4). Our main result for the Maxi-

mum Internal Spanning Tree problem is a local improvement based algorithm
which ensures an approximation factor of 7/4 for graphs without pendant vertices
(Theorem 5.5.2). Moreover, we gave a traversal algorithm which has an approxi-
mation factor of 6/5 for cubic graphs (Theorem 5.4.4), and 3/2 for claw-free graphs
(Theorem 5.4.2). For the weighted version, we showed a (2∆−3)-approximation for
general graphs (Theorem 5.6.2), and a 2-approximation for claw-free graphs (Theo-
rem 5.6.6). We also considered the Maximum Internal Spanning Tree problem
from another point of view: instead of looking for a spanning tree with few leaves, we
searched for a q-leaf subtree covering as many vertices as possible (Theorem 5.7.4).

91

92 CHAPTER 6. CONCLUSION AND FUTURE WORK

This approach is a generalization of the Longest Path problem.

Further research can be done in several directions. Approximation ratios can
be improved for general graphs or for special graph classes. Knauer and Spoerhase
[48] have recently further developed our local improvement based algorithms. Based
on our work, they provided a 5/3-approximation algorithm for the Maximum In-

ternal Spanning Tree problem and a (3 + ε)-approximation algorithm for the
Maximum Weighted Internal Spanning Tree problem, for any ε > 0.

Keeping in mind that our research is motivated by a network design applica-
tion, we can consider the case when only a few dedicated network nodes must be
connected. This can be modelled by the Steiner-tree version of our problems where
only a predefined set T ⊂ V (G) must be spanned by a tree which possibly uses some
vertices from V (G) − T , as well. All degree-based spanning tree problems can be
generalized this way.

If we want our networks to be protected against failures, we can create multiple
paths between its nodes. In order to model this case, we can search for a k-(edge)-
connected subgraph rather than a spanning tree (which is the k = 1 case). The
same degree-based cost functions can be applied to these problems, too.

A more theoretic open question is whether there always exists an optimum so-
lution which can arise as the output of a run of Algorithm FIFO-DFS. We know
that the answer for the same question is yes for the more general Algorithm Greedy
Traversal (Theorem 5.3.1), and no for Algorithm DFS. We also examined how the
choice of the embedded graph traversal algorithm influence the performance of Al-
gorithm LOST. We found that the local improvement rules are more effective when
applied on a random spanning tree than in the cases where we choose Algorithm
DFS or Algorithm FIFO-DFS to be the initial traversal. The best behavior was
experienced using Algorithm RDFS.

Let us briefly summarize here the results on a set of degree based spanning
tree optimization problems being the generalizations of the Hamiltonian Path

problem. We have already mentioned the Minimum Branching Spanning Tree

problem, and the Maximum Internal Spanning Tree problem. From an op-
timization point of view, the former one is equivalent to the so called Maximum

Non-Branching Spanning Tree problem (where the aim is to maximize the to-
tal number of leaves and forwarding vertices), and the latter one is to the Minimum

Leaf Spanning Tree problem. We have seen that the Minimum Leaf Spanning

Tree problem is NP-hard to approximate within a constant factor [53], however, its
complement, the Maximum Internal Spanning Tree problem has much better
approximation properties. Concerning the Minimum Branching Spanning Tree

problem, we found that it is very unlikely that an approximation algorithm exists
with a ratio better than Ω(log n). For the Maximum Non-Branching Spanning

Tree problem, however, we can find a trivial 2-approximation. Indeed, any span-
ning tree achieves this ratio, since, by Claim 2.1.3, the number of non-branchings
is always larger than n/2. We have a third self-complement pair of problems to
mention here. The Maximum Forwarding Spanning Tree problem aims to

93

find a spanning tree with as many forwarding vertices as possible, while the Mini-

mum Non-Forwarding Spanning Tree problem is about to minimize the total
number of leaves and branchings. It is still an open question whether the Maximum

Forwarding Spanning Tree problem can be constant-factor approximated. On
the other hand, the following explanation shows that for its complement, the Min-

imum Non-Forwarding Spanning Tree problem, we very unlikely have such
an algorithm.

Indeed, the following reduction from the NP-hard (u, v)-Hamiltonian Path

problem shows that, for any fixed k, the existence of a k-approximation algorithm
for the Minimum Non-Forwarding Spanning Tree problem implies P=NP.
Let us have a graph G and two distinguished vertices u, v ∈ V (G). We create k
copies of G and connect them by adding edges (vi, ui+1) for i ∈ 1, 2, . . . , k − 1,
that is, between the neighboring copies of u and v. We denote the obtained graph
by H . Now, if G has a Hamiltonian path between end vertices u and v then H
has a Hamiltonian path, too. Therefore, the value of the optimum solution for the
Minimum Non-Forwarding Spanning Tree problem in H is 2. If G has no
Hamiltonian path, then any spanning tree of H has at least one branching and one
leaf in each Gi in addition to the above 2 leaves, and so the optimum solution has a
value of at least 2k+2. As a consequence, we can use our k-approximation algorithm
on H to decide the traceability of G. This shows that there is no constant factor
approximation for the Minimum Non-Forwarding Spanning Tree problem,
unless P=NP.

Table 6.1 summarizes all of the positive and negative approximability results just
mentioned.

We mention here another possible direction of further research. There is a
connection between the Maximum Internal Spanning Tree problem and
the problem of finding a minimum size 2-connected or 2-edge-connected subgraph
[22, 41, 51, 69]. 2-connected and 2-edge-connected graphs can be characterized
by two slightly different versions of an ear-decomposition method [70]. Indeed,
these graphs can be built from a cycle by successively adding “ears”, that is, edges
(trivial ears) and simple paths (non-trivial ears) whose both ends are already ex-
isting vertices. The total number of ears, including the initial cycle, is always
|E(G)| − |V (G)|+ 1. If we choose the decomposition which has a minimum number
of non-trivial ears, we get a minimum size 2-(edge)-connected subgraph. In addi-
tion, if we have an arbitrary ear-decomposition of a 2-(edge)-connected graph and
we remove the last edge of each ear, we get a spanning tree whose number of leaves
is exactly the number of non-trivial ears.

Beside the algorithmic aspects of degree-based optimization, we also dealt with
the connection among vulnerability parameters, Hamiltonicity and spanning tree
leaves. On one hand, we proved that the scattering number of a graph is always
a lower bound on the number of spanning tree leaves (Theorem 4.1.5). On the
other hand, we defined a new vulnerability measure, cut-asymmetry (Definition
4.3.1), and showed that it determines the size of the biggest independent subset of

94 CHAPTER 6. CONCLUSION AND FUTURE WORK

Original measure function Complemented measure function

problem result problem result

Minimum Leaf

Spanning Tree

∄ constant
approx. [53]

Maximum

Internal

Spanning Tree

2-approx.
(Theorem 5.2.2)

7/4-approx. for
graphs with no
pendant vertices
(Theorem 5.5.2)

Maximum

Forwarding

Spanning Tree

open
Minimum Non-

Forwarding

Spanning Tree

∄ constant
approx.

Minimum

Branching

Spanning Tree

∄ constant
approx.

(Theorem 3.2.2)

Maximum Non-

Branching

Spanning Tree

2-approx.
(Claim 2.1.3)

Table 6.1: Summary of results on degree based spanning tree approximation

spanning tree leaves (Theorem 4.3.10). The connection between these parameters
directly implies that an independence tree is always a 2-approximation for both the
Maximum Internal Spanning Tree problem and the Minimum Connected

Dominating Set problem (Corollary 4.3.25). Moreover, using the notion of cut-
asymmetry, we provided a new sufficient condition for traceability (Theorem 4.3.6).
Further research can be focused on this new vulnerability parameter and its further
connection to hamiltonicity.

Acknowledgement

I would like to express my gratitude to everyone who helped me, in one way or
another, preparing this thesis. First of all, I thank my family for their long last-
ing patience, support and inspiration. I am particularly grateful to my supervisor,
András Recski for teaching me many interesting topics in graph theory, for giving
me the possibility to become a member of Department of Computer Science and
Information Theory, for introducing me to the research topic of Steiner- and span-
ning trees, and last but not least, for supporting my research with his indispensable
pieces of idea and advice. My special thanks to my co-author, Gábor Wiener for
working with me on some topics discussed in this thesis, and for giving me his pro-
fessional support. I wish he could play Carcassonne much better in the future :) .
I thank Katalin Friedl, Jácint Szabó, and Ferenc Wettl for improving the quality
of this thesis by reading it through and making several valuable comments on it. I
am grateful to András Sebő for his help and indications in the field of linear pro-
gramming and approximation algorithms, and also for welcoming me as a visitor of
the Graph Theory and Combinatorial Optimization Group of IMAG, in the beau-
tiful city of Grenoble, France. I also express my thanks to András Frank whose
classes on linear programming, combinatorial optimization and graph theory gave
a solid foundation for my research work. At last, let me mention that the research
leading to the results discussed in this thesis was supported by Grant Nos. 042559,
044733, and 67651 of the Hungarian National Science Foundation (OTKA), and by
the Grant No. 2003-5044438 of the European MCRTN Adonet Contract.

95

Appendix A
Tables of Experimental Results

96

97

Input

graph:

Hamiltonian path + random edges Hamiltonian path + internet graph model

Initial

spanning

tree:

Random DFS FIFO-DFS RDFS Random DFS FIFO-DFS RDFS

p E(davg) |L|1 |L|2 |L|1 |L|2 |L|1 |L|2 |L|1 |L|2 |L|1 |L|2 |L|1 |L|2 |L|1 |L|2 |L|1 |L|2

0.0001 1.990 2.41 2 2.16 2 2.14 2 2.1 2 3.31 2.04 2.84 2.16 2.3 2 2.6 2
0.0005 2.029 5.39 2.14 3.72 2.34 2.87 2.12 2.87 2.05 5.74 2.13 3.73 2.34 3.01 2.11 2.98 2.19
0.0010 2.077 9.82 2.76 5.41 3.58 4.23 2.71 3.6 2.41 9.64 2.42 5.35 3.45 4.11 2.7 3.95 2.78
0.0030 2.271 20.1 5.32 9.16 6.45 7.89 4.9 4.43 3.38 18.78 5.02 8.59 6.02 6.95 4.71 4.93 4.13
0.0050 2.465 24.64 7.17 10.93 7.96 10.37 6.57 5.37 4.64 24.68 6.88 11.46 8.36 10.31 6.55 5.07 4.19
0.0080 2.756 29.4 8.59 12.7 9.57 12.29 8.3 5.72 5.14 28.21 8.51 12.76 9.45 12.51 8.21 5.68 5.07
0.0100 2.950 30.72 8.91 14.07 10.31 13.46 9.01 6.15 5.51 32.09 9.41 13.83 10.7 13.5 8.89 6.72 6.06
0.0300 4.891 40.92 9.56 16.76 12.67 15.73 10.18 3.24 3.05 39.47 9.38 16.18 12.14 15.6 10.59 3.84 3.53
0.0500 6.831 41.9 8.24 15.5 11.38 14.89 9.57 2.43 2.31 42.19 7.97 15.84 11.65 14.98 9.68 2.48 2.34
0.0800 9.742 42.16 5.83 12.47 8.87 12.18 7.82 2 2 43.24 6.31 13.64 9.29 12.59 7.94 2.3 2.23
0.1000 11.682 43.08 5.28 11.74 8.16 10.93 7.09 2.32 2.2 42.68 5.18 11.74 8.19 10.84 7.15 2.2 2.1
0.2000 21.384 42.74 2.78 7.55 4.76 6.81 4.37 2 2 42.97 2.74 7.31 4.91 6.78 4.49 2.1 2.04
0.2500 26.235 41.89 2.33 5.91 3.78 5.16 3.39 2.1 2.03 42.18 2.45 6.47 4.07 5.69 3.65 2.1 2.05
0.3000 31.086 41.94 2.23 5.22 3.33 4.47 2.8 2 2 42.08 2.11 5.48 3.24 4.52 2.88 2.02 2
0.3500 35.937 41.79 2.09 4.64 2.84 3.93 2.67 2.03 2 42.01 2.05 4.53 2.89 3.94 2.79 2 2
0.4000 40.788 40.97 2.03 4.02 2.53 3.45 2.38 2 2 41.18 2.01 3.92 2.5 3.36 2.29 2 2
0.4500 45.639 41.29 2.01 3.53 2.27 2.81 2.25 2 2 41.43 2.03 3.87 2.36 3.22 2.31 2.1 2
0.5000 50.490 41.48 2 3.19 2.17 2.5 2.1 2 2 40.83 2 3.12 2.17 2.8 2.14 2 2
0.5500 55.341 41.07 2 3.31 2.14 2.54 2.09 2.1 2.01 40.68 2.01 3.02 2.16 2.5 2.1 2 2
0.6000 60.192 41.64 2 2.8 2.05 2.52 2.05 2 2 40.47 2.01 2.79 2.05 2.4 2.02 2 2
0.7000 69.894 40.71 2 2.55 2.03 2.2 2 2 2 40.68 2 2.47 2 2.13 2 2 2
0.8000 79.596 41.14 2 2.24 2 2.09 2.01 2 2 40.86 2 2.29 2.01 2.05 2 2 2
0.9000 89.298 40.66 2 2.1 2 2.01 2 2 2 41.4 2 2.09 2 2.02 2 2 2
0.9500 94.149 41.49 2 2.04 2 2 2 2 2 41.06 2 2.04 2 2 2 2 2
0.9900 98.030 40.77 2 2.05 2 2 2 2 2 40.94 2 2.02 2 2 2 2 2

Table A.1: Experimental results, the n = 100 case

98
A

P
P

E
N

D
IX

A
.

T
A

B
L
E

S
O

F
E

X
P

E
R

IM
E

N
T
A

L
R

E
S
U

L
T

S
Input

graph:

Hamiltonian path + random edges Hamiltonian path + internet graph model

Initial

spanning

tree:

Random DFS FIFO-DFS RDFS Random DFS FIFO-DFS RDFS

p E(davg) |L|1 |L|2 |L|1 |L|2 |L|1 |L|2 |L|1 |L|2 |L|1 |L|2 |L|1 |L|2 |L|1 |L|2 |L|1 |L|2

0.0001 2.023 8.54 2.24 4.92 3.2 3.78 2.61 3.4 2.42 10.39 2.47 5.53 3.14 4.12 2.51 3.94 2.64
0.0005 2.142 33.36 5.31 13.44 9.83 12.16 7.37 5.86 4.54 34.31 6.22 12.84 9.64 11.88 7.27 5.6 4.48
0.0010 2.290 56.3 11.75 21.55 16.95 21.13 12.84 8.49 7.31 54.25 10.91 20.44 16.1 19.37 12.27 8.1 7.05
0.0030 2.884 91.4 24.61 37.83 30.71 36.68 23.4 12.77 11.92 90.98 23.26 36.25 29.41 36.92 23.41 13.07 12.2
0.0050 3.478 104.27 27.06 43.88 35.51 43.61 28.28 12.55 11.89 105.34 28.22 43.73 35.58 44.11 28.83 12.98 12.38
0.0080 4.369 117.36 28.47 47.19 38.3 47.07 30.11 9.26 8.79 115.89 27.91 47.31 38.09 46.39 29.94 9.2 8.66
0.0100 4.963 118.63 26.37 46.89 37.33 46.56 29.96 6.48 6.2 117.84 25.9 46.6 36.87 44.32 28.9 6.64 6.27
0.0300 10.903 127.87 15.74 35.59 26.96 34.6 21.47 2.12 2.1 127.84 15.4 35.22 26.75 33.97 21.04 2.25 2.19
0.0500 16.843 129.25 9.51 26.87 19.88 26.04 16.38 2.1 2.08 128.97 9.42 26.25 19.6 25.06 15.89 2 2
0.0800 25.754 128.46 5.29 18.09 13.28 17.02 10.45 2 2 128 5.5 17.92 12.86 17.37 10.57 2.16 2.15
0.1000 31.694 127.99 4.32 15.07 10.38 14.34 8.97 2 2 127.95 4.34 15.44 10.62 14.6 9 2 2
0.2000 61.394 125.46 2.42 8.23 5.31 7.1 4.56 2 2 124.44 2.58 8.11 5.12 7.07 4.46 2.01 2.01
0.2500 76.245 124.05 2.19 6.22 3.87 5.31 3.44 2 2 124.48 2.19 6.38 4.11 5.47 3.49 2 2
0.3000 91.095 124.42 2.14 5.52 3.46 4.73 3.05 2.07 2.05 123.59 2.12 5.23 3.3 4.4 3.04 2 2
0.3500 105.945 123.47 2.02 4.65 2.89 3.86 2.58 2.09 2.05 123.09 2.04 4.63 2.83 3.85 2.63 2 2
0.4000 120.796 123.09 2.02 3.92 2.44 3.37 2.43 2 2 124.09 2 3.97 2.46 3.2 2.32 2 2
0.4500 135.646 121.84 2 3.34 2.22 2.86 2.27 2 2 122.75 2.02 3.47 2.34 2.78 2.17 2 2
0.5000 150.497 122.09 2 3.27 2.24 2.79 2.12 2 2 122.72 2 3.08 2.15 2.81 2.16 2 2
0.5500 165.347 123.16 2.01 3.12 2.18 2.51 2.07 2 2 122.54 2 2.93 2.12 2.39 2.04 2 2
0.6000 180.197 122.46 2 2.61 2.06 2.32 2.03 2 2 122.37 2 2.69 2.05 2.3 2.02 2 2
0.7000 209.898 123 2 2.45 2.02 2.22 2.02 2 2 122.22 2 2.37 2 2.14 2 2 2
0.8000 239.599 123.2 2 2.32 2 2.05 2 2 2 122.12 2 2.31 2 2.09 2 2 2
0.9000 269.299 124.14 2 2.15 2 2.01 2 2 2 124.63 2 2.12 2 2.01 2 2 2
0.9500 284.150 123.82 2 2.08 2 2 2 2 2 124.5 2 2.08 2 2 2 2 2
0.9900 296.030 123.64 2 2.01 2 2 2 2 2 124.16 2 2 2 2 2 2 2

Table A.2: Experimental results, the n = 300 case

99

Input

graph:

Hamiltonian path + random edges Hamiltonian path + internet graph model

Initial

spanning

tree:

Random DFS FIFO-DFS RDFS Random DFS FIFO-DFS RDFS

p E(davg) |L|1 |L|2 |L|1 |L|2 |L|1 |L|2 |L|1 |L|2 |L|1 |L|2 |L|1 |L|2 |L|1 |L|2 |L|1 |L|2

0.0001 2.046 23.53 3.1 9.79 6.91 8.51 5.01 4.52 3.15 20.2 2.65 9.26 6.1 7.86 4.6 4.61 3.19
0.0005 2.245 76.59 13.28 26.3 20.75 25.72 15.53 8.76 7.45 80.03 14.05 27.03 21.76 27.2 16.78 9.47 8.26
0.0010 2.493 118.82 27.18 43.77 35.29 43.5 27 14.52 13.48 117.7 27.53 45.06 37.06 44.65 28.05 15.16 14.2
0.0030 3.487 171.94 43.94 70.07 57.81 71.3 45.98 19.75 18.99 174.65 44.83 71.47 58.9 71.57 46.89 19.82 19.11
0.0050 4.481 191.62 44.67 76.41 62.45 75.75 48.75 12.68 12.38 191.49 44.15 77.19 62.51 76.2 49.02 13.17 12.68
0.0080 5.972 203.17 39.51 75.13 60.42 74.43 47.54 6.35 6.05 203.33 39.44 74.23 59.58 73.73 47.28 5.7 5.53
0.0100 6.966 208.31 35.41 69.9 55.45 70.48 44.22 3.94 3.83 207.54 35.76 70.11 55.51 69.98 44.2 3.77 3.64
0.0300 16.906 215.64 15 43.25 32.85 42.21 26.07 2.1 2.08 214.85 14.83 42.65 32.17 41.99 26.09 2 2
0.0500 26.846 212.95 8.59 30.11 21.99 28.42 17.37 2.1 2.1 213.47 8.41 28.63 20.95 27.89 16.72 2 2
0.0800 41.756 212.52 5.19 19.1 13.39 18.14 11.29 2.09 2.07 211.63 5.32 19.05 13.68 18.8 11.3 2.1 2.09
0.1000 51.696 211.02 4.22 15.7 11.14 14.43 8.95 2 2 211.51 4.39 15.68 10.98 14.53 8.86 2.1 2.1
0.2000 101.397 207.71 2.43 7.49 4.95 6.59 4.19 2 2 207.73 2.41 7.25 4.74 6.79 4.41 2 2
0.2500 126.247 207.98 2.21 5.92 3.65 5.34 3.56 2 2 206.86 2.1 5.99 3.62 5.39 3.48 2 2
0.3000 151.097 207.07 2.09 5.02 3.14 4.37 2.99 2 2 205.88 2.1 5.22 3.18 4.28 2.81 2.1 2.03
0.3500 175.947 209.18 2.03 4.48 2.75 3.58 2.41 2 2 207.9 2.03 4.49 2.88 3.61 2.46 2 2
0.4000 200.798 207.71 2.01 3.95 2.6 2.92 2.22 2 2 207.58 2.02 3.76 2.53 3.2 2.32 2 2
0.4500 225.648 210.54 2.01 3.42 2.2 2.9 2.19 2 2 210.43 2 3.38 2.23 2.8 2.16 2 2
0.5000 250.498 212.43 2 3.24 2.11 2.57 2.14 2 2 212.17 2 3.23 2.22 2.63 2.08 2 2
0.5500 275.348 212.14 2 2.89 2.07 2.37 2.09 2 2 211.37 2 2.97 2.07 2.46 2.09 2 2
0.6000 300.198 220.4 2 2.7 2.02 2.29 2.01 2 2 219.62 2 2.7 2.03 2.3 2.01 2 2
0.7000 349.899 228.58 2 2.44 2.02 2.08 2 2 2 226.89 2 2.46 2 2.12 2 2 2
0.8000 399.599 224.65 2 2.19 2 2.05 2 2 2 225.94 2 2.2 2.02 2.05 2 2 2
0.9000 449.300 239.42 2 2.11 2 2.01 2 2 2 238.72 2 2.1 2 2.01 2 2 2
0.9500 474.150 217.36 2 2.07 2 2 2 2 2 217.89 2 2.1 2 2 2 2 2
0.9900 494.030 220.93 2 2.02 2 2 2 2 2 217.78 2 2 2 2 2 2 2

Table A.3: Experimental results, the n = 500 case

Appendix B
Summary of Notation

α(G) size of a maximum cardinality independent set of
graph G, p. 13

bT (l) (or b(l)) branching vertex being closest to leaf l in tree T , p.
13

b−T (l) (or b−(l)) T -neighbor of b(l) being in branch of l, an abbrevia-
tion for b(l)�l, p. 13

brT (l) (or br(l)) branch of leaf l in tree T , p. 13
Cn cycle on n vertices, p. 13
ca(G) cut-asymmetry of G, p. 37
compG(X) (or comp(X)) number of components of G[X], p. 13
dG(v) (or d(v)) degree of vertex v in graph G (number of G-neighbors

of v), p. 12
dG(X) total degree of vertices of the vertex set X in graph

G, p. 12
dT (v) number of T -neighbors of v, p. 12
δG(v) (or δ(v)) set of edges incident to vertex v in G, p. 12
∆(G) (or ∆) maximum vertex degree in graph G, p. 12
E(G) (or E) edge set of graph G, p. 12
eH(X) number of edges in H [X], for some subgraph H , p.

13
eH(X, Y) number of H-edges between disjoint subsets X and

Y of V (H), for some subgraph H , p. 13
eH(v, X) number of H-edges between v ∈ V (H) \ X and X,

for some subgraph H , p. 13
FG,T (l) (or F (l)) set of l-leafish vertices of spanning tree T of graph G,

p. 48
G a simple undirected connected graph
G[X] subgraph of G induced by its vertex set X, p. 13
I(T) set of internal vertices of tree T , p. 13
Kn complete graph on n vertices, p. 13
Kn1,n2 complete bipartite graph with color classes of size n1

and n2, p. 13

101

li(G) leaf independence of G, p. 41
L(T) set of leaves of tree T , p. 13
Lg(T) set of long leaves of tree T , p. 48
Lp(G, T) (or Lp(T)) set of long leaves of T having no leafish vertex in their

branch, for some spanning tree T of G, p. 48
Ls(T) set of short leaves of tree T , p. 48
m number of edges, p. 12
ml(G) number of leaves of a minimum leaf spanning tree of

G, p. 8
n number of vertices, p. 12
NG(v) (or N(v)) set of G-neighbors of vertex v , p. 12
NT (v) set of T -neighbors of vertex v , p. 12
PT (u, v) unique path between vertices u and v of tree T , p. 13
sc(G) scattering number of G, p. 32
u�v successor of vertex u along path PT (u, v), p. 13
V (G) (or V) vertex set of graph G, p. 12
Vi(G) set of i-degree vertices in graph G, p. 13
V≥i(G) set of (at least i)-degree vertices in graph G, p. 13
|X| number of elements in set X
X − x abbreviation for X \ {x}
X + x abbreviation for X ∪ {x}

List of Algorithms

1 Algorithm Greedy Traversal . 16
2 Algorithm DFS (Depth First Search) 16
3 Algorithm FIFO-DFS (First In First Out DFS) 17
4 Algorithm MinBST (Minimum Branching Spanning Tree) 26
5 Second phase of Algorithm MinBST: connecting components 27
6 Algorithm ILST (Independent Leaves Spanning Tree) 50
7 Algorithm RDFS (Refined Depth First Search) 57
8 Algorithm LOST (Locally Optimal Spanning Tree) 64
9 Algorithm WLOST (Weighted Locally Optimal Spanning Tree) . . . 76
10 Algorithm RWLOST (Refined Weighted Locally Optimal Spanning

Tree) . 78

102

Cited Publications of the Author

[1] T. Cinkler, S. Győri, J. Harmatos, and G. Salamon. Dimensioning WDM-based
multi-layer transport networks with grooming by genetic algorithm. In Proc.
of the 7th European Conference on Networks and Optical Communication (NOC
2002), pages 44–51, June 2002.

[2] G. Salamon. Spanning tree optimization problems with degree-based objective
functions. In Proc. of the 4th Japanese-Hungarian Symposium on Discrete Math-
ematics and Its Applications (JH 2005), pages 309–315, June 2005.

[3] G. Salamon. Approximation algorithms for the Maximum Internal Spanning
Tree problem. In Proc. of the 32nd International Symposium on Mathematical
Foundations of Computer Science (MFCS 2007), volume 4708 of LNCS, pages
90–102, August 2007.

[4] G. Salamon. Fesźıtőfa optimalizálási problémák a Hamilton utak
általánośıtására, (Spanning tree optimization problems for generalizing Hamil-
tonian paths, in Hungarian). In XIII. Fiatal Műszakiak Tudományos Ülésszaka,
Erdélyi Múzeum-Egyesület, (Proc.), pages 203–206, March 2008.

[5] G. Salamon. Approximating the Maximum Internal Spanning Tree problem.
Theoretical Computer Science, MFCS 2007 special issue, 410:5273–5284, 2009.

[6] G. Salamon. Vulnerability bounds on the number of spanning tree leaves. Ars
Mathematica Contemporanea, 2:77–92, 2009.

[7] G. Salamon and G. Wiener. Leaves of spanning trees and vulnerability. In
Proc. of the 5th Hungarian-Japanese Symposium on Discrete Mathematics and
Its Applications (HJ 2007), pages 225–235, April 2007.

[8] G. Salamon and G. Wiener. On finding spanning trees with few leaves. Infor-
mation Processing Letters, 105:164–169, 2008.

103

Further References

[9] N. Alon, D. Moshkovitz, and S. Safra. Algorithmic construction of sets for
k-restrictions. ACM Transactions on Algorithms, 2(2):153–177, 2006.

[10] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi. Complexity and Approximation. Springer-Verlag, 1999.

[11] C. A. Barefoot, R. Entringer, and H. Swart. Vulnerability in graphs — a
comparative survey. Journal of Combinatorial Mathematics and Combinatorial
Computing, 1:13–22, 1987.

[12] D. Bauer, H. Broersma, and E. Schmeichel. Toughness in graphs — a survey.
Graphs and Combinatorics, 22:1–35, 2006.

[13] D. Bauer, H. Broersma, and H. J. Veldman. Not every 2-tough graph is Hamil-
tonian. Discrete Applied Mathematics, 99:317–321, 2000.

[14] D. Bauer, G. Fan, and H. J. Veldman. Hamiltonian properties of graphs with
large neighborhood unions. Discrete Mathematics, 96:33–49, 1991.

[15] J-C. Bermond. On Hamiltonian walks. In Proc. of the 5th British Combinatorial
Conference, pages 41–51, 1975.

[16] T. Böhme, H. J. Broersma, F. Göbel, A. V. Kostochka, and M. Stiebitz.
Spanning trees with pairwise nonadjacent endvertices. Discrete Mathematics,
170:219–222, 1997.

[17] O. Bor̊uvka. O jistém problému minimálńım (About a certain minimal problem,
in Czech). Práca Moravské Pr̆irodovĕdecké Spolec̆nosti, 3:37–58, 1926.

[18] S. Bregni, G. Guerra, and A. Pattavina. Optical packet switching of IP traf-
fic. In Proc. of the 6th Working Conference on Optical Network Design and
Modelling (ONDM 2002), pages 135–149, February 2002.

[19] H. Broersma and H. Tuinstra. Independence trees and Hamilton cycles. Journal
of Graph Theory, 29:227–237, 1998.

104

FURTHER REFERENCES 105

[20] M. Brunato and R. Battiti. A multistart randomized greedy algorithm for traffic
grooming on mesh logical topologies. In Proc. of the 6th Working Conference on
Optical Network Design and Modelling (ONDM 2002), pages 417–430, February
2002.

[21] Y. Caro, D. B. West, and R. Yuster. Connected domination and spanning trees
with many leaves. SIAM Journal on Discrete Mathematics, 13(2):202–211,
2000.

[22] J. Cheriyan, A. Sebő, and Z. Szigeti. An improved approximation algorithm for
the minimum size 2-edge connected spanning subgraph. In Integer Programming
and Combinatorial Optimization, volume 1412 of LNCS, pages 126–136, 1998.

[23] V. Chvátal. Tough graphs and on Hamiltonian circuits. Discrete Mathematics,
5:215–228, 1973.

[24] R. J. Faudree, R. J. Gould, M. S. Jacobson, and R. H. Schelp. Neighborhood
unions and Hamiltonian properties in graphs. Journal of Combinatorial Theory
Ser. B, 47:1–9, 1989.

[25] H. Fernau, S. Gaspers, and D. Raible. Exact and parameterized algorithms for
Max Internal Spanning Tree. In Proc. of the 35th International Workshop on
Graph-Theoretic Concepts in Computer Science (WG 2009), volume 5911 of
LNCS, pages 100–111, December 2009.

[26] H. Fernau, S. Gaspers, D. Raible, and A. A. Stepanov. Exact exponential time
algorithms for Max Internal Spanning Tree. Arxiv preprint arXiv:0811.1875,
2008.

[27] E. Flandrin, T. Kaiser, R. Kužel, H. Li, and Z. Ryjáček. Neighborhood unions
and extremal spanning trees. Discrete Mathematics, 308:2343–2350, 2008.

[28] T. Fujie. The Maximum-Leaf Spanning Tree problem: Formulations and facets.
Networks, 43(4):212–223, 2004.

[29] M. Fürer and B. Raghavachari. Approximating the minimum degree span-
ning tree to within one from the optimal degree. In Proc. of the 3rd Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 1992), pages 317–324,
January 1992.

[30] M. R. Garey and D. S. Johnson. Computers and Intractability: a Guide to the
Theory of NP-Completeness. Freeman, 1979.

[31] L. Gargano and M. Hammar. There are spanning spiders in dense graphs (and
we know how to find them). In Proc. of the 30th International Colloquium on
Automata, Languages and Programming (ICALP 2003), volume 2719 of LNCS,
pages 802–816, July 2003.

106 FURTHER REFERENCES

[32] L. Gargano, M. Hammar, P. Hell, L. Stacho, and U. Vaccaro. Spanning spiders
and light-splitting switches. Discrete Mathematics, 285:83–95, 2004.

[33] L. Gargano, P. Hell, L. Stacho, and U. Vaccaro. Spanning trees with bounded
number of branch vertices. In Proc. of the 29th International Colloquium on
Automata, Languages and Programming (ICALP 2002), volume 2380 of LNCS,
pages 355–365, July 2002.

[34] W. Goddard. Measures of vulnerability — the integrity family. Networks,
24(4):207–213, 1994.

[35] W. Goddard and H. C. Swart. Integrity in graphs: bounds and basics. Journal
of Combinatorial Mathematics and Combinatorial Computing, 7:139–151, 1990.

[36] M. X. Goemans and D. P. Williamson. A general approximation technique for
constrained forest problems. In Proc. of the 3rd Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 1992), pages 307–316, January 1992.

[37] S. Guha and S. Khuller. Approximation algorithms for connected dominating
sets. In Proc. of the 4th European Symposium on Algorithms (ESA 1996),
volume 1136 of LNCS, pages 179–193, September 1996.

[38] S. Guha and S. Khuller. Improved methods for approximating node weighted
Steiner trees and connected dominating sets. In Proc. of the 18th Foundations
of Software Technology and Theoretical Computer Science (FSTTCS 1998),
volume 1530 of LNCS, pages 54–65, December 1998.

[39] R. Hassin and A. Tamir. On the Minimum Diameter Spanning Tree problem.
Information Processing Letters, 53:109–111, 1995.

[40] J.-M. Ho, D.T. Lee, C.-H. Chang, and C.K. Wong. Minimum diameter spanning
trees and related problems. SIAM Journal of Computing, 20:987–997, 1991.

[41] W. T. Huh. Finding 2-edge connected spanning subgraphs. Operations Research
Letters, 32:212–216, 2004.

[42] K. Jain and V. V. Vazirani. Primal-dual approximation algorithms for metric
facility location and k-median problems. In Proc. of the 40th Symposium on
Foundations of Computer Science (FOCS 1999), pages 2–13, October 1999.

[43] D. S. Johnson. Approximation algorithms for combinatorial problems. Journal
of Computer System Science, 9:256–278, 1974.

[44] H. A. Jung. On a class of posets and the corresponding comparability graphs.
Journal of Combinatorial Theory Ser. B, 24:125–133, 1978.

FURTHER REFERENCES 107

[45] D. Karger, R. Motwani, and G. D. S. Ramkumar. On approximating the longest
path in a graph. In Proc. of the 3rd Workshop on Algorithms and Data Struc-
tures (WADS 1993), volume 709 of LNCS, pages 421–432, August 1993.

[46] G. Y. Katona, A. Recski, and R. Szabó. A számı́tástudomány alapjai, (Intro-
duction to computer science, in Hungarian). Typotex, 2002.

[47] A. Kirlangiç. Scattering number in graphs. International Journal of Mathe-
matics and Mathematical Sciences, 30(1):1–8, 2002.

[48] M. Knauer and J. Spoerhase. Better approximation algorithms for the max-
imum internal spanning tree problem. In Proc. of the 11th Workshop on Al-
gorithms and Data Structures (WADS 2009), volume 5664 of LNCS, pages
459–470, July 2009.

[49] D. Kratsch, T. Kloks, and H. Müller. Computing the toughness and the scat-
tering number for interval and other graphs. Technical Report 2237, Institut
National de Recherche en Informatique et Automatique (INRIA), March 1994.

[50] J. B. Kruskal. On the shortest spanning subtree of a graph and the Travelling
Salesman problem. Proc. of American Mathematical Society, 7:48–50, 1956.

[51] P. Krysta and V. S. A. Kumar. Approximation algorithms for the minimum
size 2-connectivity problems. In Proc. of the 18th Symposium on Theoretical
Aspects of Computer Science (STACS 2001), volume 2010 of LNCS, pages 431–
442, February 2001.

[52] V. E. Levit and E. Mandrescu. The intersection of all maximum stable sets of
a tree and its pendant vertices. Discrete Mathematics, 308:5809–5814, 2008.

[53] H.-I. Lu and R. Ravi. The power of local optimization: approximation al-
gorithms for maximum-leaf spanning tree. In Proc. of 30th Annual Allerton
Conference on Communication, Control and Computing, pages 533–542, Octo-
ber 1992.

[54] H.-I. Lu and R. Ravi. The power of local optimization: Approximation al-
gorithms for maximum-leaf spanning tree (draft). Technical Report CS-96-05,
Department of Computer Science, Brown University, Providence, Rhode Island,
1996.

[55] H.-I. Lu and R. Ravi. Approximation for maximum leaf spanning trees in almost
linear time. Journal of Algorithms, 29(1):132–141, 1998.

[56] O. Ore. Note on Hamiltonian circuits. American Mathematical Monthly, 67:55,
1960.

108 FURTHER REFERENCES

[57] E. Prieto. Kernelization in FPT Algorithm Design. PhD thesis, The University
of Newcastle, Australia, 2005.

[58] E. Prieto and C. Sloper. Either/or: Using vertex cover structure in designing
FPT-algorithms — the case of k-internal spanning tree. In Proc. of the 8th

Workshop on Algorithms and Data Structures (WADS 2003), volume 2748 of
LNCS, pages 465–483, July 2003.

[59] R. C. Prim. Shortest connection networks and some generalizations. Bell System
Technical Journal, 36:1389–1401, 1957.

[60] C. Savage. Depth-first search and the Vertex Cover problem. Information
Processing Letters, 14:233–235, 1982.

[61] A. Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons,
1998.

[62] A. Schrijver. Combinatorial Optimization, Polyhedra and Efficiency. Vol. B,
chapter 50: Shortest spanning trees, pages 855–876. Springer-Verlag, 2003.

[63] K. M. Sivalingam and S. Subramaniam. Optical WDM Networks: Principles
and Practice. Kluwer Academic Publishers, London, 2000.

[64] R. Solis-Oba. 2-approximation algorithm for finding a spanning tree with max-
imum number of leaves. In Proc. of the 6th European Symposium on Algorithms
(ESA 1998), volume 1461 of LNCS, pages 441–452, August 1998.

[65] C. Swamy and A. Kumar. Primal-dual algorithms for connected facility loca-
tion problems. In Proc. of the 5th International Workshop on Approximation
Algorithms for Combinatorial Optimization (APPROX 2002), volume 2462 of
LNCS, pages 256–270, September 2002.

[66] M Tsugaki and T. Yamashita. Spanning trees with few leaves. Graphs and
Combinatorics, 23:585–598, 2007.

[67] J. van Leeuwen, editor. Handbook of Theoretical Computer Science, volume A:
Algorithms and Complexity, chapter 10: Graph Algorithms. Elsevier, 1990.

[68] V. V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.

[69] S. Vempala and A. Vetta. Factor 4/3 approximations for minimum 2-connected
subgraphs. In Proc. of the 3rd International Workshop on Approximation Al-
gorithms for Combinatorial Optimization (APPROX 2000), volume 1913 of
LNCS, pages 262–273, September 2000.

[70] H. Whitney. Nonseparable and planar graphs. Transactions of the American
Mathematical Society, 34:339–362, 1934.

FURTHER REFERENCES 109

[71] S. Win. On a conjecture of Las Vergnas concerning certain spanning trees in
graphs. Resultate Math., 2:215–224, 1979.

[72] B. Y. Wu and K.-M. Chao. Spanning Trees and Optimization Problems. Chap-
man & Hall / CRC, 2004.

[73] S. Zhang, X. Li, and X. Han. Computing the scattering number of graphs.
International Journal of Computer Mathematics, 79(2):179–187, 2002.

[74] S. Zhang and Z. Wang. Scattering number in graphs. Networks, 37:102–106,
2001.

