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Chapter 1
Introduction

One of the fastest growing sector of the software industry is that of the Inter-
net companies, lead by the major search engines: Google, Yahoo and MSN.
The importance of this field is even more emphasized by the plans of almost
unprecedented magnitude that the European Union is pursuing to ease their
dependence on these US-based technological firms.

The scientific and technological difficulties of this field are dominated by the
mere scale: the web is estimated to contain tens to hundreds of billions of pages,
with an exponential increase for over a decade and without showing any signs
of that growth slowing down. At this scale, even the simplest mathematical
constructs, such as a set of linear equations or a matrix inversion are turning
out to be infeasible or practically unsolvable.

This thesis and the underlying publications provide solutions to certain of
these scalability problems stemming from core web search engine research. The
actual problems and their abstract solutions are not ours; they were described
in earlier works of seminal authors of the field, generating considerable interest.
Nevertheless, it was our work showing the first methods which could really scale
to the size of the web without serious limitations.

A particularly important aspect of our solutions is that they are not only
theoretically applicable to the web, but also very practical: they follow fairly
closely and naturally fit into the architecture of a web search engine; the algo-
rithms are parallelizable or distributed; the computational model we assumed
is the one that is present in all current major data centers; and the query
serving parts show characteristics very important for industrial applications,
such as fault tolerance.

An important price we pay for these benefits is that out methods give
approximate solutions to the abstract formulation. However, on one hand we
have strict bounds on the approximation quality, on the other hand we formally
prove that this is the only way to go: we give lower bounds on the resource
usage of any exact method, prohibiting their application on datasets on the
Web scale.

9



10 CHAPTER 1. INTRODUCTION

1.1 Overview

In the remaining of this chapter we define some terms, describe the architecture
and introduce some methods common for the technical chapters. We will also
cover related results that are not strictly connected to either problems of the
remaining chapters, but rather to the general methodology we use.

In Chapter 2 we consider the problem of personalized web search, also
called as personalized ranking. General web search has a static, global ranking
function that the engine uses to sort the results according to some notion of
relevance that depends on the query but not the user. However, relevance can
easily differ from user to user, e.g. a computer geek and a history teacher may
find different sites authoritative and interesting for the same query. Person-
alized web search allows users to specify their preference, and this preference
parametrizes the ranking function. As PageRank is the most successful static
ranking function, the personalized version, Personalized PageRank is of par-
ticular interest. All earlier methods for computing personalized PageRank
had severe restrictions on what personalization they allowed. In our work we
provided the first Personalized PageRank algorithm allowing arbitrary person-
alization and still scaling to the full Web. See Section 2.1 for further details
and the respective chapter for our results.

In Chapter 3 we consider the problem of similarity search in massive graphs
such as the web. Similarity search is not only motivated by advanced data
mining algorithms requiring easily computable similarity functions such as
clustering algorithms, but also by the ‘Related pages’ functionality of web
search engines, where the user can query by example: supplying the URL of
a web page of interest, the search engine replies by good quality pages on
a similar topic. Traditional similarity functions stemming in social network
analysis such as co-citation express the similarity of two nodes in a graph
by using only the neighbors of the nodes in question. However, considering
the size and depth (e.g. average diameter) of the web graph, this is just as
inadequate as using degree as a ranking function. We consider the similarity
function proposed by Jeh and Widom, SimRank, which is a recursive definition
similar to that of PageRank. Our methods discussed in Chapter 3 provided the
first algorithm that scaled beyond graphs of a few hundred thousand nodes.
For further details and our results, see Section 3.1 and the respective chapter.

In the above chapters we follow the same outline: We first give approxima-
tion algorithms for the problem, analyzing the approximation quality and con-
vergence speed. Then we claim impossibility results about non-approximation
approaches, proving prohibitive space complexity. Finally we validate the
methods using experiments on real Web datasets.

In the final chapter, Chapter 4 we pursue further impossibility results on
similarity functions of massive graphs. We consider the decision problem: is
there a pair of vertices in a graph that share a common neighborhood of a par-
ticular size? (This is equivalent to the existence of the complete bipartite graph
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K2,c as a subgraph.) We are particularly interested in the space complexity of
the problem in the data stream model: an algorithm A is allowed to read the
set of edges of the graph sequentially, and after having one or constant many
passes, it has to output the answer to the decision problem. We lower bound
the temporary storage use of any such algorithm in the randomized computa-
tion model. The relevance of this problem to web search is that an algorithm
A for the decision problem can be emulated by a search engine. During the
preprocessing phase the search engine indexer can read the input a few times,
producing an index database. Then the search engine query processor can
answer queries only the index database, and a proper sequence of queries gives
us the answer to the decision problem. Therefore any lower bound we prove on
the decision problem applies either to the temporary storage requirements of
the indexer, the query engine, or the index database size. A prohibitive (say,
quadratic in the input size) lower bound makes it impossible to build a query
engine that can feasibly serve similarity queries up to the required precision.

1.2 How to Use this Thesis?

If you are interested in a thorough introduction and motivation for the topics
covered, read Chapter 1 up to this section, and Section 1 of each chapter you
are interested in.

To get a general notion of the results, read the Abstract and Chapter 1 up
to this section, skim through the first section and read the summary at the
end of each chapter.

If you are interested in only one area, you can read any individual chapter
in itself – this has been one of the main editing concepts behind this thesis. You
will be referred back to the methodology sections of the Introduction where
required.

To get pointers to related results, read Sections 2.1.1, 3.1.1, 4.1 and 4.2.4.
Each chapter contains bibliographical notes, which detail the original pub-

lishing times and places of the results presented in that chapter, and, in ac-
cordance with the authorship declaration, indication of authorship of each
individual result presented in the chapter in case there were multiple authors.
For the sake of completeness and readability we present all results including
those that are attributed to co-authors of the original papers.

1.3 Introduction to the Datasets Used and the

World Wide Web

The main source of information that web search engines use is naturally the
World Wide Web. There are several other datasets involved for example in the
computation of quality signals such as manual ratings and collections, implicit
or explicit feedback from users such as click logs [76], etc. which are mostly
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unrelated to this thesis, except that we use data from the Open Directory
Project to evaluate the quality of our similarity scores (See Section 3.6.1).

The World Wide Web is a distributed database, where certain computers
connected to the Internet are serving requests initiated by clients for content
hosted on those servers. The servers running a software conforming to one of
the few retrieval protocols are called web servers. Clients trying to access a
particular content first determine which server is responsible for that content,
and then connect to that server directly to fetch the data. The owner of the
content is responsible for running the web servers and for registering in the
distributed database used for mapping of the resource locators to the actual
servers.

Documents on the web are identified by Universal Resource Locator strings
(in short URLs) such as http://www.ilab.sztaki.hu/~bracz/index.html. In
this string http specifies the protocol to use for retrieving the data, www.ilab.
sztaki.hu is the key using which the client computer looks up the server
address in the Domain Name System database, and /~bracz/index.html is
the identifier of the requested file on that particular server.

The vast majority of documents on the web use different versions of the
Hypertext Markup Language (HTML) format. This is a rich document for-
mat used to describe formatted text with embedded media objects and cross-
references between different portions of the web. The HTML files are viewed on
the user’s computer using a special software called web browser, which provides
the entire user experience, from fetching the URL contents, any embedded me-
dia objects, formatting them to the screen, and providing navigational features.
One of the most important navigational features are hyperlinks, which consist
of a visual element (typically a piece of text, an image or a section of an image)
that is active in the sense that the user can activate that element according
to the input method used to communicate with the browser. With the most
typical input method being a mouse or similar pointing device, the activation
action is usually a click on the visual element. When activated, the hyperlink
instructs the web browser to load and display another URL to the user. Using
these cross-referencing links the user can navigate between different pages or
different properties on the web, forming a smooth user experience of informa-
tion consumption or free-time activity. In the rest of this thesis we may refer
to these hyperlinks as links.

One of the major challenge in the usability of the web is the vastly dis-
tributed manner it is built. Server owners can decide by themselves what
content to publish, and the only way of reaching that content is to either know
the exact URL under which it is published, or to accidentally find a link to it.
Given that there are tens to hundreds of billions of pages and URLs, finding
a particular piece of information is quite hopeless without services specifically
designed to facilitate this. In the early years of the web these services were
mostly hand-edited collections of links to web pages, also called directories.
Later the significance of directories diminished in favor of web search engines,
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which allow users to find relevant content on the web by phrasing a search
query. The search engine then matches the search query against the entire
web, and returns the results to the user.

The information access method based on keyword searches in web search
engines presents a dual problem. On one hand, the user has to formulate a
query that is general enough so that the web page she is looking for matches
it, but specific enough so that there won’t be a huge amount of matches that
are unrelated and irrelevant to her. Restricting the URLs to check for the
expected content from 10 billion to one million or even a thousand is a big
step, but still does not satisfy the user, as looking through hundreds of pages
to find the relevant content is not something web users are happy to do. So the
second problem is for the search engine developers: given the current size of
the web, any general query will match millions of documents. Given this huge
amount of matches, the search engine has to present them in such an order,
that the one the user wishes to look at is among the topmost few. Of course
this is an extremely underspecified problem (what is the intention of the user
when she phrases a particular keyword query, and what webpages are the most
corresponding to those intentions), and accordingly, the most successful web
search engines have been fine-tuning their ranking algorithms for several years
or even a decade. For an introduction to search engine ranking, see Section 1.8.

1.4 The Scale of the Web

Any algorithm or service aiming to process the entire web is facing a significant
challenge stemming from the mere size of the web. In this section we try to
quantify this size.

Due to the distributed and decentralized nature of the web, it is not easy
to answer even the simplest questions about it such as

‘How many webpages are there in the World Wide Web?’

‘How many hyperlinks are there in the World Wide Web?’

To be more precise, these questions are pretty easy to answer, but the
answer quickly reveals that the questions are not formulated well enough so
that the answer would matter.

It is easy to see that the number of web pages and hyperlinks on the web is
infinite. Many web sites are exposing a human-readable form of a structured
database, where the HTML representation is generated by the serving machine
using arguments retrieved from the URL and the underlying database. Many
of these serving programs can accept arguments from an infinite domain and
thus generate an infinite number of different pages.

An easy example is a calendar application, that displays some events in a
certain time period, say a month. The page would typically have a link ‘next
month’ that will lead to a different page, containing the event list of the next
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month. Following the ’next month’ links one will find an infinite sequence of
different pages.

It is just as easy to see that such an infinite sequence does not contain an
infinite amount of useful pages, since the underlying database of information is
finite. In some other cases (for example a calculator that evaluates the formula
that the user inputs) it is the query page that is useful, not the individual
results of the individual queries.

Therefore we should rephrase the question as

‘How many useful webpages are there in the World Wide Web?’

and immediately conclude that we cannot give an exact answer due to the
mathematically uninterpretable condition useful.

Instead, we could turn to a slightly more practical matter, for example the
question

‘How many webpages does the search engine X process?’

Unfortunately there is fairly little public information that would help us
answer this question. The major search engines (Google, Yahoo, MSN) do
not publish this number. The recently launched web search startup Cuil [33]
claims to be the world’s biggest web search engine with having crawled 186
billion pages and serving 124 billion pages ([34], data as of January 2009) in its
index. Unfortunately they don’t provide any reference or proof to their claims
about the comparison to other search engines.

We can choose to rely on independent studies that try to estimate index size
of search engines while treating them as blackboxes. A highly cited such study
[61] has shown that the union of the major search engines’ index exceeds 11.5
billion pages. The study was conducted in 2004, thus this number is severely
outdated. A continuously updated study is published on [36], where (as of
January 2009) multiple total size estimates are reported (e.g. 26 billion and
63 billion).

The general problem with blackbox-based index size estimates is that they
typically need uniform sampling from within the blackbox, or relying on the
statistics reported for individual queries about the number of results. Both of
these methods usually require a collection of terms to be supplied to the search
engine. Creating such collections from web-based datasets typically introduce
some skew in the languages covered (e.g. [10] admits that the term collection
only covers English). Furthermore, the statistics about the total number of
matches for a query are approximations that can be seriously unreliable: For
example in the case of a tiered index (for an introduction see [104]) it is quite
possible that the larger but more expensive index tiers are not consulted for
searches where earlier tiers return results of proper quality.

There is a general lack of recent research in the area since the search tech-
nology has long since been focusing on the relevancy of results rather than
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increasing index size: it is meaningless to return 2 million results to the user
instead of 1 million when the user practically never looks beyond the first ten.

We can conclude, that any algorithm not able to process over 10B pages
with reasonable machine resources is not acceptable for current leading search
engines.

1.5 The Architecture of a Web Search Engine

Here we provide a bird’s eye view of how search engines having (or at least aim-
ing at having) entire web repositories work. Although the actual algorithmic
and technical details are well-guarded secrets of the major search companies
(Google, Yahoo and MSN), the outside frame of their architecture is commonly
understood to be the same.

Web search engines are centralized from the data store point of view. They
download all the content that is searchable and maintain a local copy at the
data center of the search engine. The process of downloading all available web
content is called crawling, where an automated process follows every hyperlink
on pages visited so far and downloads their target pages, thereby extracting
further hyperlinks, and so on. There are intricate details and non-trivial sci-
entific and technological issues on several parts here [15, 85] which we omit
as not being relevant to our subject matter such as the actual management
of the URLs waiting for download, parallelizing the crawling process to hun-
dreds of machines, parallelizing hundreds of download threads on each of those
machines, deciding whether and when to re-download an already seen page to
look for possible changes, etc.

The output of the crawling phase are two datasets: the first one contains
all the HTML source of the web pages downloaded, while the second one (also
obtainable from the first) is the web graph, where each web page is a vertex,
and a hyperlink on page v pointing to page w is represented by a v → w arc.

These two datasets are fundamentally different, pose different problems and
require a completely different class of algorithms to process even if the same
question has to be solved such as similarity search based on textual data vs.
similarity search in massive graphs [5]. The focus of our studies are algorithms
and problems formulated over the web graph.

As the crawler progresses by downloading newly appeared pages or refresh-
ing existing pages [26], these datasets are constantly changing. Algorithms for
efficiently incorporating these changes into the search engine’s current state
(instead of re-computing the state from scratch for every little change) are
very important and could by themselves easily fill an entire monograph. In
most of our studies here we assume to have a snapshot of these datasets, while
we consider the incremental update problem of our similarity search solutions
in Section 3.2.3.

In a search engine these datasets are preprocessed to form the index data-
base [108, 6]. This database by definition contains everything required to
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compute the results to a query. The index is typically not a database as in
the traditional RDBMS sense, but rather a set of highly optimized specialized
complex data structures to allow sub-second evaluation of user queries. Fur-
thermore, a very important property is that the index is distributed : with its
size being measured in tens of terabytes, and query load totaling thousands
of queries per second, the only feasible supercomputing architecture for this
problem is to employ a large number of parallelly operating cheap, small to
medium sized machines for storing the index database and serving the queries.

This architecture is depicted on Figure 1.1.
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Figure 1.1: Architecture of a web search engine from a bird’s eye view

1.6 The Computing Model

In this section we introduce the computing model and environment behind a
typical web search engine.

When it comes to computing problems on the scale of the Web, even the
best algorithmic solution is going to use supercomputing resources: the sim-
plest task of just reading and parsing the input dataset needs thousands of
hours of CPU and disk transfer time.

When it comes to supercomputing, there are in general two approaches:
one is to install larger and more powerful computers, the other is to install a
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large amount of computers. As typically a computer of twice the capacity costs
more than twice more, it is easy to see that scaling to very high computing
capacity is the most cost effective if we employ a large multitude of small to
medium sized computers[20]. This choice was made by Google as detailed in
[13].

Reducing the cost for a given computing capacity has always been a high
priority for the major web search engines. The exact methods used are well-
guarded trade secrets, but there is a rack of a Google datacenter from 1999
on display in the Computer History Museum in Mountain View, California.
It is a big mess: the outer frame looks like a trolley in a cafeteria that holds
the returned trays of dirty dishes, the computers in there have no case and
there are no rigid shelves: bare motherboards are bridging from side to side
in the frame. These motherboards are slightly bent from the weight the PCB
is supporting. Commodity motherboards, CPUs and disks fill the entire rack,
with two or four motherboards back-to-back on the same shelf. The only neat
element in the setup is the HP switch installed on the top of the rack.

According to this, the primary model used for designing algorithms we
intend to run on the web is high level of parallelization[21, 95, 96]. The input
dataset has to be split into chunks, and we shall be able to distribute these
chunks of work to different machines, each of the capacity of a commodity
PC. These machines are interconnected with some form of network, which is
typically also commodity Ethernet. The machines can exchange information
over this network, but this exchange is also considered to be a cost, whereas any
data available in the local machine is much better accessible. Furthermore, the
access to disk is also severely restricted: doing one disk seek (8 ms) sequentially
for every web page in a 10 billion-page crawl on a single disk would take 2.5
years (assuming the disk drive can withstand such a utilization), so we would
need about 1000 drives to complete the computation within a day. On the other
hand, the same 1000-disk farm can transfer 1.73 PetaBytes of data to the CPU
in a day when sequentially reading files at 20 MB/sec speed. Furthermore, if we
consider the 1000 machine cluster to contain 4 GB of RAM in each computer,
then we can distribute 4 TB of data among the cluster such that each computer
loads a chunk of it in memory, and is able to serve random lookup queries in
nanoseconds instead of in 8 ms from disk as in the previous example.

With these constraints originating from the underlying computing architec-
ture, and the immense scale of the Web come the following strict requirements
on the algorithms we are about to develop:

• Precomputation: The method consists of two parts: an off-line pre-
computation phase, which is allowed to run for about a day to precom-
pute an index database, and an on-line query serving part, which can
access only the index database, and needs to answer a query within a
few hundred milliseconds.

• Time: The index database is precomputed within the time of a sorting
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operation, up to a constant factor. To serve a query the index database
can only be accessed a constant number of times.

• Memory: The algorithms run in external memory : the available main
memory is constant, so it can be arbitrarily smaller than the size of
the web graph. In some cases we will consider semi-external-memory
algorithms [91] with linear memory requirement in the number of vertices
in the web graph, with a small constant factor.

• Parallelization: Both precomputation and query part can be imple-
mented to utilize the computing power and storage capacity of thousands
of servers interconnected with a fast local network.

1.7 Overview of Similarity Search Methods for

the Web

The similarity ranking functions can be grouped into three main classes:

Text-based methods treat the web as a set of plain (or formatted) text
documents, using classic methods of text database information retrieval
[108].

Hybrid methods combine the text of a document with the text of the hyper-
links pointing to that document (the so-called anchor text) or even with
the text surrounding the anchors. The intuition behind these methods is
that the anchor text is typically a very good summary of the document
pointed [3], since the reader of the linking page must decide whether to
click on the hyperlink purely based on the anchor text and its surround-
ing context. This intuition was proven by various experiments [44].

The main problem with text-based and hybrid methods is that the web
as a textual database is very heterogeneous, at the very least because of
the many languages it is written in.

Graph-based methods restrict themselves exclusively on looking at the graph
of the hyperlinks to decide the similarity of pages. These avoid the prob-
lem of heterogeneity that makes text-based methods so fragile, since the
link structure is something that is very uniform across the different parts
of the web, independently of the content or the language. The basic in-
tuition behind link-based similarity methods is that a link from page A
to page B can be considered a vote of page A for the relevance of page
B globally as well as in the context of page A.

Although we typically study these methods isolated, searching for algo-
rithms and evaluating quality, in practice we should always apply a combina-
tion of the aforementioned methods, running several of them and combining
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the scores resulting from them. This is because neither of the methods is
clearly superior to all others, and a properly weighted combination has the
potential to overcome the individual deficiencies.

In this thesis we primarily focus on graph-based methods, in particular on
advanced recursively defined similarity functions, such as SimRank. To paint a
complete picture, we quickly introduce similarity functions described in other
fields of information retrieval and text database processing.

1.7.1 Text-based methods

defining similarity functions on sets of textual documents and searching for
efficient evaluation methods for these is a long-studied part of classic informa-
tion retrieval [6, 99]. Of the many different solutions we recall a few major
approaches here.

Vector-space based document model[14, 99, 108]. Consider all the
words appearing in the set of documents, and assign integers to them 1..m.
Then we can treat each document a set (or multi-set) of integers, which can be
represented using the characteristic vector of the set over Rm. The individual
elements of this vector could be 0 or 1 as in the basic definition, or it could be
weighted by the frequency of occurrence of the word in the document, its visual
style, and potentially with the selectivity (infrequency) of the word in the entire
document set. This is called the TF-IDF weighting (term frequency, inverse
document frequency [98]). Then we can define the similarity of individual
document by the similarity of their vectors, for example with the scalar product
of the vectors. Doing efficient searches in such high dimensional spaces can be
achieved with advanced multi-dimensional search trees [57].

Singular decomposition methods [39, 59]. These methods combine the
above described vector space model with a well-known statistical method. The
main objective is to reduce the dimension of the vector space in order to gain
speed and accuracy by removing redundancy from the underlying dataset.
We will approximate the document-word incidence matrix, or the matrix of
the document vectors with a matrix of low rank. We can achieve this by
computing the singular decomposition of the incidence matrix and taking the
coordinates represented by the first k singular vectors. We can use similar
multi-dimensional search structures as in the pure vector space models. The
main advantage of these methods is that the singular decomposition removes
redundancy inherent to the language (by e.g. representing synonyms and dif-
ferent cases with vectors very close to each other). The major drawback is that
we currently have no practical methods to compute the singular decomposition
for billions of documents, therefore these methods are infeasible on the scale
of the Web.
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Fingerprint-based methods [14, 22]. Here we consider documents as sets
of words again, and define the similarity of two documents by the Jaccard-
coefficient of the representing sets:

sim(A, B) =
|A ∩ B|
|A ∪ B|

This in itself does not give a very practical method, but we can give a high-
performing approximation algorithm. We’ll assign to each document a random
fingerprint so that the similarity of a pair of fingerprints gives an unbiased
estimate of the similarity of their respective documents. The we generate
N independent sets of fingerprints, which we then query using traditional
indexing methods [108].

To generate a fingerprint let’s take a random permutation σ over the inte-
gers 1..m, which correspond to the words in our vector space model. We define
the fingerprint of a document to be the the identifier of the word that has the
smallest value under this permutation:

fp(A) = argmin
i∈A

σ(i)

it is easy to see that the fingerprint of two documents A and B will be the
same with probability sim(A, B). This method is called min-hash fingerprint-
ing. Notice that we don’t actually require a random permutation, σ can be
an arbitrary random hash function where for every set the minimum over that
set falls on a uniformly distributed element. Giving small families of functions
that satisfy this requirement is an interesting mathematical problem [29].

An interesting further application of this technique is not only to measure
the resemblance of documents, but also the containment of them [22].

1.7.2 Hybrid methods

Hybrid methods are text-based methods that treat the text of hyperlinks and
potentially the surrounding text specially.

It is typical in text-based search engines to attach the text of anchors to the
linked document. A quite remarkable incident due to this method happened
a few years ago when a popular search engine presented the home page of a
widely used (but not so unanimously popular) software company for the search
query “go to hell” as the first result. These methods try to utilize that anchor
text gives a good summary of the document the link points to [3], and such
summaries are very useful for matching a query text against.

There are many parameters and techniques that we can use to define and
refine hybrid methods:

• Do we use the text of the document or exclusively the text of the anchors?

• Do we use the text of the anchors only, or the text surrounding the
anchors as well?
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• How much of the surrounding text do we use? Shall it be a constant,
defined by syntactic boundaries (e.g. visual elements) or semantic bound-
aries (linguistic methods, sentence boundary, etc.)?

• If we use the surrounding text, how do we weight it?

In addition we have to consider the parameters of the underlying text-based
methods as well (e.g. linguistic methods such as stemming, synonyms, etc.).

To select from these multitude of options we can only rely on extensive
experimentation. Experimental results can vary highly depending on the un-
derlying dataset, therefore the experimental tuning phase has to be repeated
essentially for all applications. A very detailed and thorough experimental
evaluation over the above mentioned parameters was performed by Haveliwala
et al [65].

1.7.3 Simple graph-based methods

The first set of graph-based similarity search methods stem from sociometry,
which analyzes social networks using mathematical methods. The task of
sociometry that most resembles the Web is the analysis of scientific publication
networks, in particular the references between scientific publications. Often the
names of these methods are stemming from these early applications.

An overview of these methods and experimental evaluation is found in [35].

Co-citation [56]. The co-citation of vertices u, v is |I(u) ∩ I(v)|, i.e. the
number of vertices that are linking to both u and v. As necessary co-citation
can be normalized into the range [0, 1] by taking the Jaccard-coefficient of the

referring sets: |I(u)∩I(v)|
|I(u)∪I(v)|

.

Bibliographic coupling [80] is the dual definition of co-citation, operating
on the out-links instead of the in-links. The main drawback of applying bib-
liographic coupling (or any other out-link-based method) is that the out-links
of a page are set by the author of the page, and thus are susceptible to spam.

Amsler [4]. To fully utilize the neighborhoods in the citation graph Amsler
considered two papers related in the following conditions: (1) if there is a third
paper referring to both of them (co-citation), or (2) if they both refer to a third
paper (bibliographic coupling), or (3) if one refers to a third referring to the
other. Based on these the formal definition of Amsler similarity is

|(I(u) ∪ O(u)) ∩ (I(v) ∪ O(v))|
|(I(u) ∪ O(u)) ∪ (I(v) ∪ O(v))|

This coincides with the Jaccard-coefficient-based similarity function on the
undirected graph.
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The main problem with these purely graph-based methods is that they
operate on the neighborhood in the graph up to distance 1 or 2, which is way
too little to consider in case of the Web. This is why the advanced iteratively
defined graph-based similarity functions are so much important in the case of
the Web Search.

However, before going into details about iterative similarity functions it
will be useful to first take a look at the basic definitions of two well-known
algorithms for Web Search Ranking.

1.8 Introduction to Web Search Ranking

Following the dynamic expansion of the World Wide Web, by the end of the
nineties it became a widely believed theory that whatever you’re looking for,
it is surely available on the Internet. The only problem is how to find it. With
the development of web search technology and the accessibility of comprehen-
sive web indexes it became a solved problem to find the set of pages that
contain a set of search terms. With the scale of the web however, almost any
typical query yields ten thousand to millions of result pages, from which it is
impossible for the user to select the pages by hand that contain the searched
information. With the dynamic expansion of the Web the main concern of web
search engines became relevancy instead of comprehensiveness.

A typical user looks at most at the top five results (the above-the-fold part
of the results page) when issuing a search query. If the required information
is not found within a click or two, then it constitutes a bad user experience.
Therefore it is absolutely crucial for the search engine to sort the result pages
and present it in an order to the user that contains the sought target page in
the top five results. In order to achieve this a combination of local and global
methods are employed.

Local methods come from the text information retrieval studies and try to
determine how well the actual query matches the actual document: it looks at
where the search terms are found on the page, how far away from each other
these hits are, whether they are in highlighted text, the title or URL of the
page, or, on the other hand, maybe completely invisible (tiny text, metadata,
white text on white background, etc).

The global methods try to establish some notion of global quality or rele-
vance of pages. The global relevance does not depend on the query asked and
is typically precomputed and incorporated into the index.

One of the main source of information for the global relevance ranking is
the hyperlink structure of the Web. Since our thesis focuses on graph-based
methods for Web Information Retrieval, we’ll discuss some of them in greater
detail here.

The most simple global relevance signal one can extract from the hyperlink
graph is the (in-)degree ranking, where we rank the pages according to how
many hyperlinks point to them. If we assume that incoming hyperlinks are
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each the opinion (or vote) of an independent person or webmaster for the
quality of the pointed page, then this should be a fairly good quality and
popularity metric.

Unfortunately the above assumption is not correct. Since using web search
engines have become the primary way of accessing information on the Web,
the wide popularity of this information access method has created a tight
bound between the rank of a website on a web search engine and the visitors
it will get. If there is any commercial intent of the website (or if it is serving
ads), the visitors turn into money, thus there is a strong financial incentive for
the website to try to trick the search engine into showing the website higher
than its actual relevance and popularity. Therefore any method in web search
ranking that can be adversely influenced with little cost to show certain pages
higher (or lower) in the ranking is not very useful in practice.

Degree ranking is unfortunately pretty easy to confuse: one has nothing
else to do than publish a large number of fake web pages with no actual
content, but links pointing to the real target page. Degree ranking will take
these pages into consideration and happily boost the rank of the malicious
webmaster. Unfortunately this attack can be implemented very cheaply, and
thus degree ranking is not usable.

As the search engine spamming became a widely used technique, the devel-
opers of search engines and the scientific community turned to creating more
sophisticated algorithms, where the rank of a particular webpage depends on
a large fraction of the web and thus is not influenceable with isolated sets of
spam pages.

1.8.1 The HITS ranking algorithm

Kleinberg [82] in his famous hub-authority ranking scheme assigns two numbers
to each web page: a hub score and an authority score.

This scheme tries to grasp the typical web browsing pattern of the nineties:
in order to explore a particular topic, one first tried to find a good hub, a
link collection, from where one could get to many pages with authoritative
information in that particular topic.

From there it comes a natural definition: the more authorities pages a link
collection lists, the better that link collection is; on the other hand the more
good link collections list a page, the higher quality the information on that
page is (i.e., the more authorities that page is).

According to this, the hub score of a page will be the sum of the authority
scores of the pages it points to, whereas the authority score of a page will be
the sum of the hub scores of the pages that point to them. Of course we will
need to normalize the vectors of these scores.

Definition 1. HITS ranking is the limit of the following iteration, starting
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from the all-1 vectors:

a0(v) =
∑

u∈I(v) h(u)

a(v) = a0(v)
‖a0‖

h0(u) =
∑

v∈O(u) a(v)

h(u) = h0(u)
‖h0‖

The hub score of a page v is h(v), the authority score is a(v).

Although the original idea behind HITS is definitely plausible, the mathe-
matical formulation has several deficiencies. It is easy to see that that the hub
and authority vectors correspond to the first left and right singular vectors in
the singular value decomposition of the adjacency matrix A of the web. If we
consider the other singular vector pairs of the adjacency matrix, we’ll find a set
of orthogonal topics, each fulfilling the HITS equations and thus the original
intent. If we rank by the iteration limit, we’ll rank according to the single
dominant topic, the topic that has the highest eigenvalue in the adjacency
matrix. All other topics are ignored, and thus any search query that does not
belong to the dominant topic will not benefit from HITS, since there will be
no ranking established among the results.

By the same argument injecting a suitably large complete bipartite sub-
graph in the Web with no out-links will replace the dominant topic and thus
attract all the weight in the HITS ranking scheme.

Due to these weaknesses HITS is not used in practice for ranking.

1.8.2 The PageRank algorithm

This ranking algorithm was designed by the founders, initial developers and
current presidents of the popular Web search engine Google [60], Larry Page
and Sergey Brin [21, 95]. PageRank defines the ranking with similar recursive
equations as HITS, but assigning only a single PageRank score to each page.
We can think of it as a recursive extension (or refinement) of the in-degree
ranking by defining the PageRank of a page to be the normalized sum of the
PageRank values of the pages linking to it. This definition does not have a
unique solution if the graph is not strongly connected, thus PageRank extends
this idea with a correction factor that gives a uniform starting and base weight
to each page.

Definition 2 (PageRank vector). The PageRank vector of a directed graph
is the solution of the following linear equation system:

PR(v) = c
1

V
+ (1 − c)

∑

u∈I(v)

PR(u)

deg(u)

where V is the number of nodes of the graph, c ∈ (0, 1) is a constant, and I(v)
is the set of nodes linking to v.
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The constant c defines the mixing of the uniform starting point and is typ-
ically chosen to be around 0.1–0.2. The PageRank vector can be considered
to be the eigenvector of the (slightly changed) adjacency matrix and accord-
ingly, a straightforward computation method is by iteration. The parameter
c greatly influences the convergence speed of the iteration, also in theory, but
in practice the straightforward iteration converges in 30-50 steps, way faster
than one would expect from the chosen value of c.

As an alternative definition of PageRank we’ll introduce the random surfer
model. The random surfer starts from a uniformly selected page. Then when
visiting a page v, with probability 1−c the random browser follows a uniformly
chosen out-link of the page v. Otherwise, with probability c the random surfer
gets bored with the current browsing and continues at another uniformly se-
lected page. The PageRank value of a page v is the fraction of the time the
random browser is looking at the page v during an infinitely long browsing
session. In other words, the normalized adjacency matrix is mixed with the
normalized all-1 matrix with weights 1 − c and c, and the resulting transition
matrix is used to drive a Markov-chain on the web pages. The stationary
distribution of this Markov-chain is the PageRank vector.

1.9 Iterative Link-Based Similarity Functions

Similarly to how HITS and mainly PageRank revolutionized Web search rank-
ing quality, we have strong reasons to believe that for the complexity of the
Web the ranking power of the similarity search functions inherited from so-
cial network analysis (see Section 1.7.3) can be greatly superseded by their
counterparts that take into account the deeper structure of the graph.

Two widely studied similarity functions stem from the above discussed
ranking methods.

1.9.1 The Companion similarity search algorithm

The Companion similarity function was introduced by Jeff Dean and Monika
Henzinger in 1999 [38] based on the ideas from the HITS ranking algorithm.
Their method searches for the most similar pages to a query page v and assign
similarity scores to them:

1. Using heuristics we identify the subgraph representing the neighborhood
of page v. This includes pi in-neighbors of v; pio out-neighbors of each
of them; po out-neighbors of v and poi in-neighbors of each of them.
The four parameters are tuned manually, and wherever the neighbor set
exceeds the respective parameter value, we select a uniform random presp

element subset.

2. We take the subgraph spanned by the selected nodes. We merge the
nodes that have their out-neighborhood overlapping by 95%.
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3. We run the HITS algorithm on the derived graph. We employ a slight
modification to the original algorithm that handles multiple edges be-
tween nodes with a proper weighting.

4. Finally we use the authority scores of the nodes to rank them.

Apart from the extra cleaning steps this is in practice a local version of the
HITS ranking algorithm, computing hub- and authority-scores in the small
neighborhood of the query page v. Since the neighborhood is local to the node
in question, this method does not suffer from the topical drift of the global
HITS ranking algorithm.

Unfortunately this method cannot be applied to the entire web graph based
on our computing model (see Section 1.6). The main problem is that in order
to select the subgraph spanned by this neighborhood we need to make many
random accesses into the database storing the web graph. This is feasible
only if we have memory proportional to the size of the complete web graph,
which is often prohibitively expensive. Recent results have shown methods
that are able to store a significant portion of the web graph in memory using
sophisticated compression methods [2, 16], but performing random access on
compressed data is also costly.

1.9.2 The SimRank similarity function

The SimRank similarity function, which is one of the central subject of study
in Chapter 3, was introduced by Glen Jeh and Jennifer Widom in 2002 [74].
SimRank is the recursive refinement of the co-citation function, similarly as
PageRank is the recursive refinement of in-degree ranking.

The key idea behind SimRank is the following:

The similarity of a pair of web-pages is the average similarity of
the pages linking to them.

Definition 3 (SimRank equations).

sim(u, u) = 1
sim(u, v) = 0, if u 6= v and (I(u) = ∅ or I(v) = ∅)
sim(u, v) = c

|I(u)|·|I(v)|

∑
u′∈I(u)

∑
v′∈I(v) sim(u′, v′), otherwise,

where c ∈ (0, 1) is a constant, u, v are nodes in the graph, and I(u) is the set
of nodes linking to u.

For V nodes this means a linear equation system with V 2 equation and V 2

variables. Since c < 1 the norm of the equation matrix is less, than 1 and it is
easy to see that the equation system has a unique solution. In theory it is fairly
easy to come up with this solution, since from an arbitrary starting point an
iteration over the equation system will converge to the solution exponentially.
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In practice nevertheless, just in order to be able to do one iteration on the
equation system we would need to store the values of all the variables. With a
web graph of a mere 1 billion nodes this means 1018 values to store, which is a
completely unrealistic requirement: we would need billions of hard drives of the
highest capacity to date. Even with pruning during the iteration (rounding all
values smaller than a threshold to zero [74]) the naive iteration-based method
is only applicable to graphs of a few hundred thousand vertices.
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Chapter 2
Personalized Web Search

2.1 Introduction

The idea of topic sensitive or personalized ranking appears since the beginning
of the success story of Google’s PageRank [21, 95] and other hyperlink-based
quality measures [82, 19]. Topic sensitivity is either achieved by precomputing
modified measures over the entire Web [63] or by ranking the neighborhood
of pages containing the query word [82]. These methods however work only
for restricted cases or when the entire hyperlink structure fits into the main
memory.

In this chapter we address the computational issues [63, 75] of personalized
PageRank [95]. Just as all hyperlink based ranking methods, PageRank is
based on the assumption that the existence of a hyperlink u → v implies that
page u votes for the quality of v. Personalized PageRank (PPR) enters user
preferences by assigning more importance to edges in the neighborhood of
certain pages at the user’s selection. Unfortunately the naive computation of
PPR requires a power iteration algorithm over the entire web graph, making
the procedure infeasible for an on-line query response service.

Earlier personalized PageRank (PPR) algorithms restricted personaliza-
tion to a few topics [63], a subset of popular pages [75] or to hosts [77]; see
[66] for an analytical comparison of these methods. The state of the art Hub
Decomposition algorithm [75] can answer queries for up to some 100,000 per-
sonalization pages, an amount relatively small even compared to the number
of categories in the Open Directory Project [94].

In contrast to earlier PPR algorithms, we achieve full personalization: our
method enables on-line serving of personalization queries for any set of pages.
We introduce a novel, scalable Monte Carlo algorithm that precomputes a com-
pact database. As described in Section 2.2, the precomputation uses simulated
random walks, and stores the ending vertices of the walks in the database. PPR
is estimated on-line with a few database accesses.

The price that we pay for full personalization is that our algorithm is ran-

29
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domized and less precise than power-iteration-like methods; the formal anal-
ysis of the error probability is discussed in Section 2.3. We theoretically and
experimentally show that we give sufficient information for all possible person-
alization pages while adhering to the strong implementation requirements of a
large-scale web search engine.

According to Section 2.4, some approximation seems to be inavoidable since
the exact personalization requires a database as large as Ω(V 2) bits in worst
case over graphs with V vertices. Though no worst case theorem applies to
the webgraph or one particular graph, the theorems show the nonexistence of
a general exact algorithm that computes a linear sized database on any graph.
To achieve full personalization in future research, one must hence either exploit
special features of the webgraph or relax the exact problem to an approximate
one as in our scenario. Of independent interest is another consequence of our
lower bounds that there is indeed a large amount of information in personalized
PageRank vectors since, unlike uniform PageRank, it can hold information of
size quadratic in the number of vertices.

In Section 2.5 we experimentally analyze the precision of approximation on
the Stanford WebBase graph and conclude that our randomized approxima-
tion method provides sufficiently good approximation for the top personalized
PageRank scores.

Though our approach might give results of inadequate precision in certain
cases (for example for pages with large neighborhood), the available person-
alization algorithms can be combined to resolve these issues. For example we
can precompute personalization vectors for certain topics by topic-sensitive
PR [63], for popular pages with large neighborhoods by the hub skeleton al-
gorithm [75]), and use our method for those millions of pages not covered so
far. This combination gives adequate precision for most queries with large
flexibility for personalization.

2.1.1 Related Results

We compare our method with known personalized PageRank approaches as
listed in Table 2.1 to conclude that our algorithm is the first that can handle
on-line personalization on arbitrary pages. Earlier methods in contrast either
restrict personalization or perform non-scalable computational steps such as
power-iteration in query time or quadratic disk usage during the precomputa-
tion phase. The only drawback of our algorithm compared to previous ones is
that its approximation ratio is somewhat worse than that of the power iteration
methods.

The first known algorithm [95] (Naive in Table 2.1) simply takes the per-
sonalization vector as input and performs power iteration at query time. This
approach is clearly infeasible for on-line queries. One may precompute the
power iterations for a well selected set of personalization vectors as in the
Topic Sensitive PageRank [63]; however full personalization in this case re-
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quires t = V precomputed vectors yielding a database of size V 2 for V web
pages. The current size V ≈ 109 −1010 hence makes full personalization infea-
sible.

The third algorithm of Table 2.1, BlockRank [77] restricts personalization
to hosts. While the algorithm is attractive in that the choice of personal-
ization is fairly general, a reduced number of power iterations still need to
be performed at query time that makes the algorithm infeasible for on-line
queries.

The remarkable Hub Decomposition algorithm [75] restricts the choice of
personalization to a set H of top ranked pages. Full personalization however
requires H to be equal to the set of all pages, thus V 2 space is required again.
The algorithm can be extended by the Web Skeleton [75] to lower estimate the
personalized PageRank vector of arbitrary pages by taking into account only
the paths that goes through the set H . Unfortunately, if H does not overlap
the few-step neighborhood of a page, then the lower estimation provides poor
approximation for the personalized PageRank scores.

The Dynamic Programming approach [75] provides full personalization by
precomputing and storing sparse approximate personalized PageRank vectors.
The key idea is that in a k-step approximation only vertices within distance
k have nonzero value. However the rapid expansion of the k-neighborhoods
increases disk requirement close to V 2 after a few iterations that limits the us-
ability of this approach. Furthermore, a possible external memory implemen-
tation would require significant additional disk space. The space requirements
of Dynamic Programming for a single vertex is given by the average neighbor-
hood size Neighb(k) within distance k as seen in Fig. 2.1. The average size of
the sparse vectors exceeds 1000 after k ≥ 4 iterations, and on average 24% of
all vertices are reached within k = 15 steps1. For example the disk require-
ment for k = 10 iterations is at least Neighb(k) · V = 1, 075, 740 · 80M ≈ 344
Terabytes. Note that the best upper bound of the approximation is still
(1 − c)10 = 0.8510 ≈ 0.20 measured by the L1-norm.

1The neighborhood function was computed by combining the size estimation method
of [31] with our external memory algorithm discussed in [52].
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Method Personalization Limits of scalability Postitive aspects Negative aspects

Naive [95] any page power iteration in query-
time

infeasible to serve on-line
personalization

Topic-
Sensitive
PageRank [63]

restricted to linear combi-
nation of t topics, e.g. t =
16

t · V disk space required distributed computing

BlockRank
[77]

restricted to personalize
on hosts

power iteration in query-
time

reduced number of power
iterations, distributed
computing

infeasible to serve on-line
personalization

Hub Decom-
position [75]

restricted to personalize
on the top H ranked pages,
practically H ≤ 100K

H2 disk space required,
H partial vectors aggre-
gated in query time

compact encoding of H

personalized PR vectors

Basic Dynamic
Programming
[75]

any page V · Neighb(k) disk space
required for k iterations,
where Neighb(k) grows
fast in k

infeasible to perform more
than k = 3, 4 iterations
within reasonable disk size

Fingerprint
(this paper)

any page no limitation linear-size (N · V ) disk re-
quired, distributed compu-
tation

lower precision approxima-
tion

Table 2.1: Analytical comparison of personalized PageRank algorithms. V denotes the number of all pages.
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Figure 2.1: The neighborhood function measured on the Stanford WebBase
graph of 80M pages.

We believe that the basic Dynamic Programming could be extended with
some pruning strategy that eliminates some of the non-zero entries from the
approximation vectors. However, it seems difficult to upper bound the error
caused by the pruning steps, since the small error caused by a pruning step is
distributed to many other approximation vectors in subsequent steps. Another
drawback of the pruning strategy is that selecting the top ranks after each
iteration requires extra computational efforts such as keeping the intermediate
results in priority queues. In contrast, our fingerprint based method tends to
eliminate low ranks inherently, and the amount of error caused by the limited
storage capactity can be upper bounded formally.

Now, we briefly review some algorithms that solve the scalability issue by
fingerprinting or sampling for applications that are different from personal-
ized web search. For example, [96] applies probabilistic counting to estimate
the neighborhood function of the Internet graph, [31] estimates the size of
transitive closure for massive graphs occurring in databases, and [51, 52] ap-
proximates link-based similarity scores by fingerprints. Apart from graph algo-
rithms, [22] estimates the resemblance and containment of textual documents
with fingerprinting.

Random walks were used before to compute various web statistics, mostly
focused on sampling the web (uniformly or according to static PR) [70, 97, 11,
68], but also for calculating page decay [12] and similarity values [51, 52].

The lower bounds of Section 2.4 show that precise PPR requires signifi-
cantly larger database than Monte Carlo estimation does. Analogous results
with similar communication complexity arguments were proved in [69] for the
space complexity of several data stream graph algorithms.

2.1.2 Preliminaries

In this section we introduce notation, recall definitions and basic facts about
PageRank. Let V denote the set of web pages, and V = |V| the number of
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pages. The directed graph with vertex set V and edges corresponding to the
hyperlinks will be referred to as the web graph. Let A denote the adjacency
matrix of the webgraph with normalized rows and c ∈ (0, 1) the teleportation
probability. In addition, let ~r be the so called preference vector inducing a
probability distribution over V. PageRank vector ~p is defined as the solution
of the following equation [95]

~p = (1 − c) · ~pA + c · ~r .

If ~r is uniform over V, then ~p is referred to as the global PageRank vector.
For non-uniform ~r the solution ~p will be referred to as personalized PageRank
vector of ~r denoted by PPV(~r). The special case when for some page u the uth

coordinate of ~r is 1 and all other coordinates are 0, the PPV will be referred
to as the individual PageRank vector of u denoted by PPV(u). We will also
refer to this vector as the personalized PageRank vector of u. Furthermore the
vth coordinate of PPV(u) will be denoted by PPV(u, v).

Theorem 4 (Linearity, [63]). For any preference vectors ~r1, ~r2, and positive
constants α1, α2 with α1 + α2 = 1 the following equality holds:

PPV(α1 · ~r1 + α2 · ~r2) = α1 · PPV(~r1) + α2 · PPV(~r2).

Linearity is a fundamental tool for scalable on-line personalization, since if
PPV is available for some preference vectors, then PPV can be easily computed
for any combination of the preference vectors. Particularly, for full personaliza-
tion it suffices to compute individual PPV(u) for all u ∈ V, and the individual
PPVs can be combined on-line for any small subset of pages. Therefore in
the rest of this chapter we investigate algorithms to make all individual PPVs
available on-line.

The following statement will play a central role in our PPV estimations.
The theorem provides an alternate probabilistic characterization of individual
PageRank scores.2

Theorem 5 ( [75, 50] ). Suppose that a number L is chosen at random with
probability Pr{L = i} = c(1 − c)i for i = 0, 1, 2, . . . Consider a random walk
starting from some page u and taking L steps. Then for the vth coordinate
PPV(u, v) of vector PPV(u)

PPV(u, v) = Pr{the random walk ends at page v}.

2.2 Personalized PageRank algorithm

In this section we will present a new Monte-Carlo algorithm to compute ap-
proximate values of personalized PageRank utilizing the above probabilis-
tic characterization of PPR. We will compute approximations of each of the

2Notice that this characterization slightly differs from the random surfer formulation [95]
of PageRank.
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PageRank vectors personalized on a single page, therefore by the linearity
theorem we achieve full personalization.

Our algorithm utilizes the simulated random walk approach that has been
used recently for various web statistics and IR tasks [12, 51, 11, 70, 97].

Definition 6 (Fingerprint path). A fingerprint path of a vertex u is a random
walk starting from u; the length of the walk is of geometric distribution of
parameter c, i.e., after each step the walk takes a further step with probability
1 − c and ends with probability c.

Definition 7 (Fingerprint). A fingerprint of a vertex u is the ending vertex
of a fingerprint path of u.

By Theorem 5 the fingerprint of page u, as a random variable, has the
distribution of the personalized PageRank vector of u. For each page u we will
calculate N independent fingerprints by simulating N independent random
walks starting from u and approximate PPV(u) with the empirical distribution
of the ending vertices of these random walks. These fingerprints will constitute
the index database, thus the size of the database is N · V . The output ranking
will be computed at query time from the fingerprints of pages with positive
personalization weights using the linearity theorem.

To increase the precision of the approximation of PPV(u) we will use the
fingerprints that were generated for the neighbors of u, as described in Sec-
tion 2.2.3.

The challenging problem is how to scale the indexing, i.e., how to generate
N independent random walks for each vertex of the web graph. We assume
that the edge set can only be accessed as a data stream, sorted by the source
pages, and we will count the database scans and total I/O size as the efficiency
measure of our algorithms. Though with the latest compression techniques
[17] the entire web graph may fit into main memory, we still have a significant
computational overhead for decompression in case of random access. Under
such assumption it is infeasible to generate the random walks one-by-one, as
it would require random access to the edge-structure.

We will consider two computational environments here: a single computer
with constant random access memory in case of the external memory model,
and a distributed system with tens to thousands of medium capacity computers
[37]. Both algorithms use similar techniques to the respective I/O efficient
algorithms computing PageRank [30].

As the task is to generate N independent fingerprints, the single computer
solution can be trivially parallelized to make use of a large cluster of machines,
too. (Commercial web search engines have up to thousands of machines at
their disposal.) Also, the distributed algorithm can be emulated on a single
machine, which may be more efficient than the external memory approach
depending on the graph structure.
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Algorithm 2.2.1 Indexing (external memory method)

N is the required number of fingerprints for each vertex. The array Paths holds
pairs of vertices (u, v) for each partial fingerprint in the calculation, interpreted
as (PathStart,PathEnd). The teleportation probability of PPR is c. The array
Fingerprint[u] stores the fingerprints computed for a vertex u.

for each web page u do
for i := 1 to N do

append the pair (u, u) to array Paths /*start N fingerprint paths from
node u: initially PathStart=PathEnd= u*/

Fingerprint[u] := ∅
while Paths 6= ∅ do

sort Paths by PathEnd /*use an external memory sort*/
for all (u, v) in Paths do /*simultaneous scan of the edge set and Paths*/

w := a random out-neighbor of v
if random()< c then /*with probability c this fingerprint path ends
here*/

add w to Fingerprint[u]
delete the current element (u, v) from Paths

else /*with probability 1 − c the path continues*/
update the current element (u, v) of Paths to (u, w)

2.2.1 External memory indexing

We will incrementally generate the entire set of random walks simultaneously.
Assume that the first k vertices of all the random walks of length at least k
are already generated. At any time it is enough to store the starting and the
current vertices of the fingerprint path, as we will eventually drop all the nodes
on the path except the starting and the ending nodes. Sort these pairs by the
ending vertices. Then by simultaneously scanning through the edge set and
this sorted set we can have access to the neighborhoods of the current ending
vertices. Thus each partial fingerprint path can be extended by a next vertex
chosen from the out-neigbors of the ending vertex uniformly at random. For
each partial fingerprint path we also toss a biased coin to determine if it has
reached its final length with probability c or has to advance to the next round
with probability 1 − c. This algorithm is formalized as Algorithm 2.2.1.

The number of I/O operations the external memory sorting takes is

D logM D

where D is the database size and M is the available main memory. Thus the
expected I/O requirement of the sorting parts can be upper bounded by

∞∑

k=0

(1 − c)kNV logM((1 − c)kNV ) =
1

c
NV logM(NV ) − Θ(NV )
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using the fact that after k rounds the expected size of the Paths array is (1 −
c)kNV . Recall that V and N denote the numbers of vertices and fingerprints,
respectively.

We need a sort on the whole index database to avoid random-access writes
to the Fingerprint arrays. Also, upon updating the PathEnd variables we do
not write the unsorted Paths array to disk, but pass it directly to the next
sorting stage. Thus the total I/O is at most 1

c
NV logM NV plus the necessary

edge-scans.

Unfortunately this algorithm apparently requires as many edge-scans as the
length of the longest fingerprint path, which can be very large: Pr{the longest
fingerprint is shorter, than L} = (1 − (1 − c)L)N ·V . Thus instead of scanning
the edges in the final stages of the algorithm, we will change strategy when the
Paths array has become sufficiently small. Assume a partial fingerprint path
has its current vertex at v. Then upon this condition the distribution of the
end of this path is identical to the distribution of the end of any fingerprint
of v. Thus to finish the partial fingerprint we can retrieve an already finished
fingerprint of v. Although this decreases the number of available fingerprints
for v, this results in only a very slight loss of precision.3

Another approach to this problem is to truncate the paths at a given length
L and approximate the ending distribution with the static PageRank vector,
as described in Section 2.2.3.

2.2.2 Distributed index computing

In the distributed computing model we will invert the previous approach, and
instead of sorting the path ends to match the edge set we will partition the
edge set of the graph in such a way that each participating computer can hold
its part of the edges in main memory. So at any time if a partial fingerprint
with current ending vertex v requires a random out-edge of v, it can ask the
respective computer to generate one. This will require no disk access, only
network transfer.

More precisely, each participating computer will have several queues hold-
ing (PathStart, PathEnd) pairs: one large input queue, and for each computer
one small output queue preferably with the size of a network packet.

The computation starts with each computer filling their own input queue
with N copies of the initial partial fingerprints (u, u), for each vertex u be-
longing to the respective computer in the vertex partition.

Then in the input queue processing loop a participating computer takes the
next input pair, generates a random out-edge from PathEnd, decides whether
the fingerprint ends there, and if it does not, then places the pair in the
output queue determined by the next vertex just generated. If an output queue

3Furthermore, we can be prepared for this event: the distribution of these v vertices will
be close to the static PageRank vector, thus we can start with generating somewhat more
fingerprints for the vertices with high PR values.
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Algorithm 2.2.2 Indexing (distributed computing method)

The algorithm of one participating computer. Each computer is responsible for
a part of the vertex set, keeping the out-edges of those vertices in main memory.
For a vertex v, part(v) is the index of the computer that has the out-edges of v.
The queues hold pairs of vertices (u, v), interpreted as (PathStart, PathEnd).

for u with part(u) = current computer do
for i := 1 to N do

insert pair (u, u) into InQueue /*start N fingerprint paths from node
u: initially PathStart=PathEnd= u*/

while at least one queue is not empty do /*some of the fingerprints are still
being calculated*/

get an element (u, v) from InQueue/*if empty, wait until an element ar-
rives.*/
w := a random out-neighbor of v/*prolong the path; we have the out-
edges of v in memory*/
if random()< c then /*with probability c this fingerprint path ends
here*/

add w to the fingerprints of u
else /*with probability 1 − c the path continues*/

o := part(w) /*the index of the computer responsible for continuing the
path*/
insert pair (u, w) into the InQueue of computer o

transmit the finished fingerprints to the proper computers for collecting and
sorting.

reaches the size of a network packet’s size, then it is flushed and transferred
to the input queue of the destination computer. Notice that either we have
to store the partition index for those v vertices that have edges pointing to
in the current computer’s graph, or part(v) has to be computable from v,
for example by renumbering the vertices according to the partition. For sake
of simplicity the output queue management is omitted from the pseudo-code
shown as Algorithm 2.2.2.

The total size of all the input and output queues equals the size of the Paths
array in the previous approach after the respective number of iterations. The
expected network transfer can be upper bounded by

∑∞
n=0(1−c)nNV = 1

c
NV ,

if every fingerprint path needs to change computer in each step.

In case of the webgraph we can significantly reduce the above amount of
network transfer with a suitable partition of the vertices. The key idea is to
keep each domain on a single computer, since the majority of the links are
intra-domain links as reported in [77, 41].

We can further extend the above heuristical partition to balance the com-
putational and network load among the participating computers in the net-
work. One should use a partition of the pages such that the amount of global
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PageRank is ditributed uniformly across the computers. The reason is that the
expected value of the total InQueue hits of a computer is proportional to the
total PageRank score of vertices belonging to that computer. Thus when using
such a partition, the total switching capacity of the network is challenged, not
the capacity of the individual network links.

2.2.3 Query processing

The basic query algorithm is as follows: to calculate PPV(u) we load the
ending vertices of the fingerprints for u from the index database, calculate the
empirical distribution over the vertices, multiply it with 1−c, and add c weight
to vertex u. This requires one database access (disk seek).

To reach a precision beyond the number of fingerprints saved in the data-
base we can use the recursive property of PPV, which is also referred to as the
decomposition theorem in [75]:

PPV(u) = c1u +(1 − c)
1

|O(u)|
∑

v∈O(u)

PPV(v)

where 1u denotes the measure concentrated at vertex u (i.e., the unit vector
of u), and O(u) is the set of out-neighbors of u.

This gives us the following algorithm: upon a query u we load the fin-
gerprints for u, the set of out-neighbors O(u), and the fingerprints for the
vertices of O(u). From this set of fingerprints we use the above equation to
approximate PPV(u) using a higher amount of samples, thus achieving higher
precision. This is a tradeoff between query time (database accesses) and pre-
cision: with |O(u)| database accesses we can approximate the vector from
|O(u)| · N samples. We can iterate this recursion, if want to have even more
samples. We mention that such query time iterations are analogous to the
basic dynamic programming algorithm of [75]. The main difference is that in
our case the iterations are used to increase the number of fingerprints rather
than the maximal length of the paths taken into account as in [75].

The increased precision is essential in approximating the PPV of a page
with large neighborhood, as from N samples at most N pages will have positive
approximated PPR values. Fortunately, this set is likely to contain the pages
with highest PPR scores. Using the samples of the neighboring vertices will
give more adequate result, as it will be formally analyzed in the next section.

We could also use the expander property of the web graph: after not so
many random steps the distribution of the current vertex will be close to the
static PageRank vector. Instead of allowing very long fingerprint paths we
could combine the PR vector with coefficient (1− c)L+1 to the approximation
and drop all fingerprints longer than L. This would also solve the problem of
the approximated individual PPR vectors having many zeros (in those vertices
that have no fingerprints ending there). The indexing algorithms would benefit
from this truncation, too.
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There is a further interesting consequence of the recursive property. If it is
known in advance that we want to personalize over a fixed (maybe large) set
of pages, we can introduce an artificial node into the graph with the respective
set of neighbors to generate fingerprints for that combination.

2.3 How Many Fingerprints are Needed?

In this section we will discuss the convergence of our estimates, and analyze
the required amount of fingerprints for proper precision.

It is clear by the law of large numbers that as the number of fingerprints
N → ∞, the estimate P̂PV(u) converges to the actual personalized PageRank
vector PPV(u). To show that the rate of convergence is exponential, recall that
each fingerprint of u ends at v with probability PPV(u, v), where PPV(u, v)

denotes the vth coordinate of PPV(u). Therefore N · P̂PV(u, v), the number
of fingerprints of u that ends at v, has binomial distribution with parameters
N and PPV(u, v). Then Chernoff’s inequality yields the following bound on
the error of over-estimating PPV(u, v) and the same bound holds for under-
estimation:

Pr{P̂PV(u, v) > (1 + δ) PPV(u, v)}
= Pr{N P̂PV(u, v) > N(1 + δ) PPV(u, v)}
≤ e−N ·PPV(u,v)·δ2/4.

Actually, for applications the exact values are not necessary. We only
need that the ordering defined by the approximation match fairly closely the
ordering defined by the personalized PageRank values. In this sense we have
exponential convergence too:

Theorem 8. For any vertices u, v, w consider PPV(u) and assume that:

PPV(u, v) > PPV(u, w)

Then the probability of interchanging v and w in the approximate ranking tends
to 0 exponentially in the number of fingerprints used.

Theorem 9. For any ǫ, δ > 0 there exists an N0 such that for any N ≥
N0 number of fingerprints, for any graph and any vertices u, v, w such that
PPV(u, v) − PPV(u, w) > δ, the inequality Pr{P̂PV(u, v) < P̂PV(u, w)} < ǫ
holds.

Proof. We prove both theorems together. Consider a fingerprint of u and
let Z be the following random variable: Z = 1, if the fingerprint ends in v,
Z = −1 if the fingerprint ends in w, and Z = 0 otherwise. Then EZ =
PPV(u, v) − PPV(u, w) > 0. Estimating the PPV values from N fingerprints
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the event of interchanging v and w in the rankings is equivalent to taking
N independent Zi variables and having

∑N
i=1 Zi < 0. This can be upper

bounded using Bernstein’s inequality and the fact that Var(Z) = PPV(u, v)+
PPV(u, w) − (PPV(u, v) − PPV(u, w))2 ≤ PPV(u, v) + PPV(u, w):

Pr{ 1
N

∑N
i=1 Zi < 0} ≤ e

−N (EZ)2

2 Var(Z)+4/3EZ

≤ e−N (PPV(u,v)−PPV(u,w))2

10/3 PPV(u,v)+2/3 PPV(u,w)

≤ e−0.3N(PPV(u,v)−PPV(u,w))2

From the above inequality both theorems follow.

The first theorem shows that even a modest amount of fingerprints are
enough to distinguish between the high, medium and low ranked pages ac-
cording to the personalized PageRank scores. However, the order of the low
ranked pages will usually not follow the PPR closely. This is not surpris-
ing, and actually a significant problem of PageRank itself, as [86] showed that
PageRank is unstable around the low ranked pages, in the sense that with
small perturbation of the graph a very low ranked page can jump in the rank-
ing order somewhere to the middle.

The second statement has an important theoretical consequence. When we
investigate the asymptotic growth of database size as a function of the graph
size, the number of fingerprints remains constant for fixed ǫ and δ.

2.4 Lower Bounds for PPR Database Size

In this section we will prove several worst case lower bounds on the complex-
ity of personalized PageRank problem. The lower bounds suggest that the
exact computation and storage of all personalized PageRank vectors is infea-
sible for massive graphs. Notice that the theorems cannot be applied to one
specific input such as the webgraph. The theorems show that for achieving full
personalization the web-search community should either utilize some specific
properties of the webgraph or relax the exact problem to an approximate one
as in our scenario.

In particular, we will prove that the necessary index database size of a
fully personalized PageRank algorithm computing exact scores must be at
least Ω(V 2) bits in worst case, and if personalizing only for H nodes, the size
of the database is at least Ω(H · V ). If we allow some small error probability
and approximation, then the lower bound for full personalization is linear in
V , which is achieved by our algorithm of Section 2.2.

More precisely we will consider two-phase algorithms: in the first phase the
algorithm has access to the graph and has to compute an index database. In
the second phase the algorithm gets a query of arbitrary vertices u, v (and w),
and it has to answer based on the index database, i.e., the algorithm cannot
access the graph during query-time. An f(V ) worst case lower bound on the
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database size holds, if for any two-phase algorithm there exists a graph on
V vertices such that the algorithm builds a database of size f(V ) in the first
phase.

In the above introduced two-phase model, we will consider the following
types of queries:

(1) Exact: Calculate PPV(u, v), the vth element of the personalized PageRank
vector of u.

(2) Approximate: Estimate PPV(u, v) with a P̂PV(u, v) such, that for fixed
ǫ, δ > 0

Pr{|P̂PV(u, v) − PPV(u, v)| < δ} ≥ 1 − ǫ

(3) Positivity: Decide whether PPV(u, v) is positive with error probability at
most ǫ.

(4) Comparison: Decide in which order v and w are in the personalized rank
of u with error probability at most ǫ.

(5) ǫ–δ comparison: For fixed ǫ, δ > 0 decide the comparison problem with
error probability at most ǫ, if |PPV(u, v) − PPV(u, w)| > δ holds.

(6) φ–ǫ–δ top query : given the vertex u, with probability 1 − ǫ compute the
set of vertices W which have personalized PPR values according to vertex
u greater than φ. Precisely we require the following:

∀w ∈ V : PPV(u, w) ≥ φ ⇒ w ∈ W

∀w ∈ W : PPV(u, w) ≥ φ − δ

Our tool towards the lower bounds will be the asymmetric communication
complexity game bit-vector probing [69]: there are two players A and B. Player
A has an m-bit vector x, player B has a number y ∈ {1, 2, . . . , m}, and their
task is to compute the function f(x, y) = xy, i.e., the output is the yth bit of
the input vector. To compute the proper output they have to communicate,
and communication is restricted in the direction A → B. The one-way com-
munication complexity [84] of this function is the required bits of transfer in
the worst case for the best protocol.

Theorem 10 ([69]). Any protocol that outputs the correct answer to the bit-
vector probing problem with probability at least 1+γ

2
must transmit at least γm

bits in worst case.

Now we are ready to prove our lower bounds. In all our theorems we assume
that personalization is calculated for H vertices, and there are V vertices in
total. Notice that in the case of full personalization H = V holds.

Theorem 11. Any algorithm solving the positivity problem (3) must use an
index database of size Ω((1 − 2ǫ)HV ) bits in worst case.
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Proof. Set 1+γ
2

= 1 − ǫ. We give a communication protocol for the bit-vector
probing problem. Given an input bit-vector x we will create a graph, that
‘codes’ the bits of this vector. Player A will create a PPV database on this
graph, and transmit this database to B. Then Player B will use the positivity
query algorithm for some vertices (depending on the requested number y) such
that the answer to the positivity query will be the yth bit of the input vector
x. Thus if the algorithm solves the PPV indexing and positivity query with
error probability ǫ, then this protocol solves the bit-vector probing problem
with probability 1+γ

2
, so the transferred index database’s size is at least γm.

For the H ≤ V/2 case consider the following graph: let u1, . . . , uH denote
the vertices for whose the personalization is calculated. Add v1, v2, . . . , vn

more vertices to the graph, where n = V − H . Let the input vector’s size be
m = H · n. In our graph each vertex vj has a loop, and for each 1 ≤ i ≤ H
and 1 ≤ j ≤ n the edge (ui, vj) is in the graph iff bit (i − 1)n + j is set in the
input vector.

For any number 1 ≤ y ≤ m let y = (i−1)n+j; the personalized PageRank
value PPV(ui, vj) is positive iff (ui, vj) edge was in the graph, thus iff bit y was
set in the input vector. If H ≤ V/2 the theorem follows since n = V − H =
Ω(V ) holds implying that m = H · n = Ω(H · V ) bits are ‘coded’.

Otherwise, if H > V/2 the same construction proves the statement with
setting H = V/2.

Corollary 12. Any algorithm solving the exact PPV problem (1) must have
an index database of size Ω(H · V ) bits in worst case.

Theorem 13. Any algorithm solving the approximation problem (2) needs an
index database of Ω(1−2ǫ

δ
H) bits on a graph with V = H + Ω(1

δ
) vertices in

worst case. If V = H +O(1
δ
), then the index database requires Ω((1−2ǫ)HV ).

Proof. We will modify the construction of Theorem 11 for the approximation
problem. We have to achieve that when a bit is set in the input graph, then the
queried PPV(ui, vj) value should be at least 2δ, so that the approximation will
decide the positivity problem, too. If there are k edges incident to vertex ui

in the constructed graph, then each target vertex vj has weight PPV(ui, vj) =
1−c
k

. For this to be over 2δ we can have at most n = 1−c
2δ

possible v1, . . . , vn

vertices. With 1+γ
2

= 1 − ǫ the first statement of the theorem follows.
For the second statement the original construction suffices.

This radical drop in the storage complexity is not surprising, as our approx-
imation algorithm achieves this bound (up to a logarithmic factor): for fixed
ǫ, δ we can calculate the necessary number of fingerprints N , and then for each
vertex in the personalization we store exactly N fingerprints, independently of
the graph’s size.

Using somewhat more extra nodes in the graph we can prove an even
stronger lower bound:
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Theorem 14. Any algorithm solving the approximation problem (2) needs a
database of Ω(1

δ
log 1

ǫ
·H) bits in worst case, when the graph has at least H+ 1−c

8δǫ

nodes.

Proof. We prove the theorem by reducing the bit vector probing problem to
the ǫ–δ approximation. Given a vector x of m = Ω(1

δ
· log 1

ǫ
·H) bits, player A

will construct a graph and compute a PPR database with the indexing phase
of the ǫ–δ approximation algorithm. Then A transmits this database to B.
Player B will perform a sequence of queries such that the required bit xy will
be computed with error probability 1

4
. The above outlined protocol solves the

bit vector probing with error probability 1
4
. Thus the database size that is

equal to the number of transmitted bits is Ω(m) = Ω(1
δ
· log 1

ǫ
· H) in worst

case by Theorem 10. It remains to show the details of the graph construction
on A’s side and the query algorithm on B’s side.

Given a vector x of m = 1−c
2δ

· log 1
4ǫ
· H bits, A constructs the “bipartite”

graph with vertex set {ui : i = 1, . . . , H}∪{vj,k : j = 1, . . . , 1−c
2δ

, k = 1, . . . , 1
4ǫ
}.

For the edge set, x is partitioned into 1−c
2δ

· H blocks, where each block bi,j

contains log 1
4ǫ

bits for i = 1, . . . , H , j = 1, . . . , 1−c
2δ

. Notice that each bi,j can
be regarded as a binary encoded number with 0 ≤ bi,j < 1

4ǫ
. To encode x

into the graph, A adds an edge (ui, vj,k) iff bi,j = k, and also attaches a self-
loop to each vj,k. Thus the 1−c

2δ
edges outgoing from ui represent the blocks

bi,1, . . . , bi,(1−c)/2δ.
After constructing the graph A computes an ǫ–δ approximation PPR data-

base with personalization available on u1, . . . , uH, and sends the database to
B, who computes the yth bit xy as follows. Since B knows which of the blocks
contains xy it is enough to compute bi,j for suitably chosen i, j. The key prop-
erty of the graph construction is that PPV(ui, vj,k) = 1−c

|O(ui)|
= 2δ iff bi,j = k

otherwise PPV(ui, vj,k) = 0. Thus B computes P̂PV(ui, vj,k) for k = 1, . . . , 1
4ǫ

by the second phase of the ǫ–δ approximation algorithm. If all P̂PV(ui, vj,k) are

computed with |PPV(ui, vj,k)− P̂PV(ui, vj,k)| ≤ δ, then bi,j containing xy will
be calculated correctly. By the union bound the probability of miscalculating
any of P̂PV(ui, vj,k) is at most 1

4ǫ
· ǫ = 1

4
.

We now move on to other query types.

Theorem 15. Any algorithm solving the comparison problem (4) requires an
index database of Ω((1 − 2ǫ)HV ) bits in worst case.

Proof. We will modify the graph of Theorem 11 so that the existence of the
specific edge can be queried using the comparison problem. To achieve this
we will introduce a third set of vertices w1, . . . , wn in the graph construction,
such that wj is the complement of vj : A puts the edge (ui, wj) in the graph iff
(ui, vj) was not an edge, which means bit (i− 1)n + j was not set in the input
vector.

Then upon query for bit y = (i− 1)n + j, consider PPV(ui). In this vector
exactly one of vj , wj will have positive weight (depending on the input bit xy),



2.5. EXPERIMENTS 45

thus the comparison query PPV(ui, vj) > PPV(ui, wj) will yield the required
output for the bit-vector probing problem.

Corollary 16. Any algorithm solving the ǫ–δ comparison problem (5) needs
an index database of Ω(1−2ǫ

δ
H) bits on a graph with V = H + Ω(1

δ
) vertices in

worst case. If V = H + O(1
δ
), then the index database needs Ω((1 − 2ǫ)HV )

bits in worst case.

Proof. Modifying the proof of Theorem 15 according to the proof of Theo-
rem 13 yields the necessary results.

The strongest lower bound that we can present concerns the top-query
problem (6) and is a logarithmic factor stronger than the previous bounds.

Theorem 17. Any algorithm solving the top query problem (6) with parame-
ters ǫ ≥ 0, δ > 0 needs a database of Ω(1−2ǫ

δ
H log V ) bits in worst case, when

the graph has V ≥ H +
(

1−c
2δ

)2
nodes.

Proof. We will proceed according to the proof of Theorem 14.
Let φ = 2δ and k = ⌊1−c

2δ
⌋ and the graph have nodes {ui : i = 1, . . . , H} ∪

{vj : j = 1, . . . , n} (with n = V −H). By the assumptions on the vertex count,
n = Ω(V ) and

√
n ≥ k.

Let the size of the bit-vector probing problem’s input be m = H ·k · log n/2.
Assign each of the k · log n/2 sized blocks to a vertex ui and fix a code which
encodes these bits into k-sized subsets of the vertices {vj}. This is possible,

as the number of subsets is
(

n
k

)
> (n

k
)k ≥ √

n
k
. These mappings are known to

both parties A and B. Note that due to the constraints on n, k, H and V we
have k · log n/2 = Ω(1

δ
log V ).

Given an input bit-vector of A, for each vertex ui take its block of bits
and compute the corresponding subset of vertices {vj} according to the fixed
code. Let ui have an arc into these vertices. Let all vertices vj have a self-loop.
Now A runs the first phase of the PPR algorithm and transfers the resulting
database to B.

Given a bit index y, player B determines its block, and issues a top query
on the representative vertex, ui. As each of the out-neighbors w of ui has
PPV(ui, w) = 1−c

|O(ui)|
= 1−c

k
≥ φ, and all other nodes w′ have PPV(ui, w

′) = 0,
the resulting set will be the set of out-neighbors of ui, with probability 1 − ǫ.
Applying the inverse of the subset encoding, we get the bits of the original input
vector, thus the correct answer to the bit-vector probing problem. Setting
1+γ
2

= 1 − ǫ we get that the number of bits transmitted, thus the size of the
database was at least Ω(γH · k · log n/2) = Ω(1−2ǫ

δ
H log V ).

2.5 Experiments

In this section we present experiments that compare our approximate PPR
scores to exact PPR scores computed by the personalized PageRank algorithm
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of Jeh and Widom [75]. Our evaluation is based on the web graph of 80 million
pages crawled in 2001 by the Stanford WebBase Project [71]. We also validated
the tendencies presented on a 31 million page web graph of the .de domain
created using the Polybot crawler [103] in April 2004.

In the experiments we personalize on a single page u chosen uniformly
at random from all vertices with non-zero outdegree. The experiments were
carried out with 1000 independently chosen personalization node u, and the
results were averaged.

To compare the exact and approximate PPR scores for a given personaliza-
tion page u, we measure the difference between top score lists of exact PPV(u)

and approximate P̂PV(u) vectors. The length k of the compared top lists is
in the range 10 to 1000.

As our primary application area is query result ranking, we chose mea-
sures that compare the ordering returned by the approximate PPR method to
the ordering specified by the exact PPR scores. In Section 2.5.1 we describe
these measures that numerically evaluate the similarity of the top k lists. In
Section 2.5.2 we present our experimental results.

2.5.1 Comparison of ranking algorithms

The problem of comparing the top k lists of different ranking algorithms has
been extensively studied by the web-search community for measuring the speed
of convergence in PageRank computations [78], the distortion of PageRank
encodings [64] and the quality of rank-aggregation methods [45, 46, 43, 40].

In our scenario the exact PPR scores provide the ground truth ranking and
the following three methods evaluate the similarity of approximate scores to
the exact scores.

Let T u
k denote the set of pages having the k highest personalized PageRank

values in the vector PPV (u) personalized to a single page u. We approximate

this set by T̂ u
k , the set of pages having the k highest approximated scores in

vector P̂PV(u) computed by our Monte Carlo algorithm.
The first two measures determine the overall quality of the approximated

top-k set T̂ u
k , so they are insensitive to the ranking of the elements within

T̂ u
k . Relative aggregated goodness [101] measures how well the approximate

top-k set performs in finding a set of pages with high aggregated personalized
PageRank. Thus relative aggregated goodness calculates the sum of exact PPR
values in the approximate set compared to the maximum value achievable (by
using the exact top-k set T u

k ):

RAG(k, u) =

∑
v∈cT u

k
PPV(u, v)

∑
v∈T u

k
PPV(u, v)

We also measure the precision of returning the top-k set in the classical
information retrieval terminology (note that as the sizes of the sets are fixed,
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precision coincides with recall):

Prec(k, u) =
|T̂ u

k ∩ T u
k |

k

The third measure, Kendall’s τ compares the exact ranking with the ap-
proximate ranking in the top-k set. Note that the tail of approximate PPR
ranking contains a large number of ties (nodes with equal approximated scores)
that may have a significant effect on rank comparison. Versions of Kendall’s
τ with different tie breaking rules appear in the literature; we use the original
definition as e.g. in [79] that we review next. Consider the pairs of vertices
v, w. A pair is concordant, if both rankings strictly order this pair and agree
on the ordering; discordant, if both rankings strictly order but disagree on the
ordering of the pair; e-tie, if the exact ranking does not order the pair; a-tie, if
the approximate ranking does not order the pair. Denote the number of these
pairs by C, D, Ue and Ua respectively. The total number of possible pairs is
M = n(n−1)

2
, where n = |T u

k ∪ T̂ u
k |. Then Kendall’s τ is defined as

τ(k, u) =
C − D√

(M − Ue)(M − Ua)

The range of Kendall’s τ is [−1, 1], thus we linearly rescaled it onto [0, 1] to fit
the other measures on the diagrams. To restrict the computation to the top
k elements, the following procedure was used: we took the union of the exact
and approximated top-k sets T u

k ∪ T̂ u
k . For the exact ordering, all nodes that

were outside T u
k were considered to be tied and ranked strictly smaller than

any node in T u
k . Similarly, for the approximate ordering, all nodes that were

outside the approximate top-k set T̂ u
k were considered to be tied and ranked

strictly smaller than any node in T̂ u
k .

2.5.2 Results

We conducted experiments on a single AMD Opteron 2.0 Ghz machine with 4
GB of RAM under Linux OS. We used an elementary compression (much
simpler and faster than [17]) to store the Stanford WebBase graph in 1.6
GB of main memory. The computation of 1000 approximated personalized
PageRank vectors took 1.1 seconds (for N = 1000 fingerprints truncated at
length L = 12). The exact PPR values were calculated using the algorithm
by Jeh and Widom [75] with a precision of 10−8 in L1 norm. The default
parameters were number of fingerprints N = 1000 with one level of recursive
evaluation (see Section 2.2.3) and maximal path length L = 12.

In our first experiments depicted on Figure 2.2, we demonstrate the expo-
nential convergence of Theorems 8 and 9. We calculated Kendall’s τ restricted
to pairs that have a difference at least δ in their exact PPR scores. We dis-
played the effect of the number of fingerprints on this restricted τ for δ = 0.01
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Figure 2.2: Effect of the number of fingerprints on Kendall’s τ restricted to
pairs with a PPR difference of at least δ = 0.01 (left) and δ = 0.001 (right).
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Figure 2.3: Effect of the number of fingerprints on various measures of goodness
with (left) or without (right) recursive evaluation.

and δ = 0.001. It can be clearly seen, that a modest amount of fingerprints suf-
fices to properly order the pages with at least δ difference in their personalized
PageRank values.

Figure 2.3 demonstrates the effects of the number of fingerprints and the
recursive evaluation on the approximate ranking quality (without the previous
restriction). The recursion was carried out for a single level of neighbors, which
helped to reduce the number of fingerprints (thus the storage requirements)
for the same ranking precision by an order of magnitude.

Figure 2.4 shows the effect of truncating the fingerprints at a maximum
path length. It can be seen, that paths over length 12 have small influence
on the approximation quality, thus the computation costs can be reduced by
truncating them.

Finally, Figure 2.5 and Figure 2.6 (Figure 2.6 for N=10000 fingerprints)
indicate that as the top list size k increases, the task of approximating the
top-k set becomes more and more difficult. This is mainly due to the fact that
among lower ranked pages there is a smaller personalized PageRank difference,
which is harder to capture using approximation methods (especially Monte
Carlo methods).
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Figure 2.4: Effect of the path length/truncation on various measures of good-
ness.
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Figure 2.5: Effect of the size k of top set taken on various measures of goodness.

2.6 Conclusions and Open Problems

In this chapter we introduced a new algorithm for calculating personalized
PageRank scores. Our method is a randomized approximation algorithm based
on simulated random walks on the web graph. It can provide full personaliza-
tion with a linear space index, such that the error probability converges to 0
exponentially with increasing the index size. The index database can be com-
puted even on the scale of the entire web, thus making the algorithms feasible
for commercial web search engines.

We justified this relaxation of the personalized PageRank problem to ap-
proximate versions by proving quadratic lower bounds for the full personaliza-
tion problems. For the estimated PPR problem our algorithm is space-optimal
up to a logarithmic factor.
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Figure 2.6: Effect of the size k of top set taken on various measures of goodness.

The experiments on 80M pages showed that using no more than N = 1000
fingerprints suffices for proper precision approximation.

An important future work is to combine and evaluate the available methods
for computing personalized PageRank.
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conducted by Károly Csalogány and Tamás Sarlós and appeared first in the
Journal of Internet Mathematics as [54].



Chapter 3
Similarity Search

3.1 Introduction

The development of similarity search algorithms between web pages is moti-
vated by the “related pages” queries of web search engines and web document
classification. Both applications require efficient evaluation of an underlying
similarity function, which extracts similarities from either the textual content
of pages or the hyperlink structure. This chapter focuses on computing sim-
ilarities solely from the hyperlink structure modeled by the web graph, with
vertices corresponding to web pages and directed arcs to the hyperlinks be-
tween pages. In contrast to textual content, link structure is a more homo-
geneous and language independent source of information and it is in general
more resistant against spamming. The authors believe that complex link-based
similarity functions with scalable implementations can play such an important
role in similarity search as PageRank [95] does for query result ranking.

Several link-based similarity functions have been suggested over the web
graph. Functions introduced in social network analysis, like co-citation, bib-
liographic coupling, amsler and Jaccard coefficient of neighbors utilize only
the one-step neighborhoods of pages. To exploit the information in multi-step
neighborhoods, SimRank [74] and the Companion [38] algorithms were intro-
duced by adapting the link-based ranking schemes PageRank [95] and HITS
[82]. Further methods arise from graph theory such as similarity search based
on network flows [90]. We refer to [89] containing an exhaustive list of link-
based similarity search methods.

Unfortunately, no scalable algorithm has so far been published that allows
the computation of multi-step similarity scores in case of a graph with billions
of vertices. First, all the above algorithms require random access to the web
graph, which does not fit into main memory with standard graph representa-
tions. In addition, SimRank iterations update and store a quadratic number
of variables: [74] reports experiments on graphs with less than 300K vertices.
Finally, related page queries submitted by users need to be served in less than

51
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a second, which has not yet been achieved by any published algorithm.
In this chapter we give the first scalable algorithms that can be used to

evaluate multi-step link-based similarity functions over billions of pages on a
distributed architecture. With a single machine, we conducted experiments on
a test graph of 80M pages. Our primary focus is SimRank, which recursively
refines the cocitation measure analogously to how PageRank refines in-degree
ranking [95]. In addition we give an improved SimRank variant referred to as
PSimRank, which refines the Jaccard coefficient of the in-neighbors of pages.

All our methods are Monte Carlo approximations: we precompute inde-
pendent sets of fingerprints for the vertices, such that the similarities can be
approximated from the fingerprints at query time. We only approximate the
exact values; fortunately, the precision of approximation can be easily increased
on a distributed architecture by precomputing independent sets of fingerprints
and querying them in parallel.

Besides the algorithmic results we prove several worst case lower bounds
on the database size of exact and approximate similarity search algorithms.
The quadratic lower bound of the exact computation shows the non-existence
of a general algorithm scalable on arbitrary graphs. The results suggest that
scalability can only be achieved either by utilizing some specific property of
the webgraph or by relaxing the exact computation with approximate methods
as in our case.

We started to investigate the scalability of SimRank in [51], and we gave a
Monte Carlo algorithm with the naive representation as outlined in the begin-
ning of Section 3.2. The main contributions of this chapter are summarized as
follows:

• In Section 3.2.1 we present a scalable algorithm to compute approximate
SimRank scores by using a database of fingerprint trees, an efficient
representation of precomputed random walks.

• In Section 3.2.2 we introduce and analyze PSimRank, a novel variant of
SimRank with better theoretical properties and a scalable algorithm.

• In Section 3.3 we show that all the proposed Monte Carlo similarity
search algorithms are especially suitable for distributed computing.

• In Section 3.4 we prove that our Monte Carlo similarity search algo-
rithms approximate the similarity scores with a precision that tends to
one exponentially with the number of fingerprints.

• In Section 3.5 we prove quadratic worst case lower bounds on the data-
base size of exact similarity search algorithms and linear bounds in case
of randomized approximation computation. The quadratic bounds show
that exact algorithms are not scalable in general, while the linear bounds
show that our algorithms are almost asymptotically worst case space-
optimal.
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• In Section 3.6 we report experiments about the quality and performance
of the proposed methods evaluated on the Stanford WebBase graph of
80M vertices [71].

In the remainder of the introduction we discuss related results, define “scal-
ability,” and recall some basic facts about SimRank.

3.1.1 Related Results

Unfortunately the algorithmic details of “related pages” queries in commercial
web search engines are not publicly available. We believe that an accurate
similarity search algorithm should exploit both the hyperlink structure and
the textual content. For example, the pure link-based algorithms like SimRank
can be integrated with classical text-based information retrieval tools [6] by
simply combining the similarity scores. A very promising text-based method
is when the similarities are extracted from the anchor texts referring to pages
as proposed by [27, 65].

Recent years have witnessed a growing interest in the scalability issue of
link-analysis algorithms. Palmer et al. [96] formulated essentially the same
scalability requirements that we will present in Section 3.1.2; they give a scal-
able algorithm to estimate the neighborhood functions of vertices. Analogous
goals were achieved by the development of PageRank: Brin and Page [95]
introduced PageRank algorithm using main memory of size proportional to
the number of vertices. Then external memory extensions were published
in [30, 62]. A large amount of research was done to attain scalability for per-
sonalized PageRank [66, 54]. The scalability of SimRank was also addressed
by pruning [74], but this technique could only scale up to a graph with 300K
vertices in the experiments of [74]. In addition, no theoretical argument was
published about the error of approximating SimRank scores by pruning. In
contrast, the algorithms of Section 3.2 were used to compute SimRank scores
on a test graph of 80M vertices, and the theorems of Section 3.4 give bounds
on the error of the approximation.

The key idea of achieving scalability by Monte Carlo (MC) algorithms was
inspired by the seminal papers of Broder et al. [22] and Cohen [31] estimating
the resemblance of text documents and size of transitive closure of graphs,
respectively. Both papers utilize min-hashing, the fingerprinting technique for
the Jaccard coefficient that was also applied in [65] to scale similarity search
based on anchor text. Our framework of MC similarity search algorithms
presented and analyzed in Section 3.4 is also related to the notion of locality-
sensitive hashing (LSH) introduced in [73]. Notice the difference that LSH
aggregates 0-1 similarities by testing the equality of hash values (or finger-
prints), while our methods aggregate estimated scores from the range [0,1].
MC algorithms with simulated random walks also play an important role in
a different aspect of web algorithms, when a crawler attempts to download
a uniform sample of web pages and compute various statistics [70, 97, 11] or
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page decay [12]. A different approach to achieve scalability by forming clusters
of objects and performing lookup only in the query-related cluster appears in
[109].

Analogous results to the lower bounds of Section 3.5 are presented in [54]
about personalized PageRank problem. Our theorems are proved by the tech-
niques of Henzinger et al. [69] showing lower bounds for the space complexities
of several graph algorithms with stream access to the edges. We refer to the
PhD thesis of Bar-Yossef [9] as a comprehensive survey of this field.

3.1.2 Scalability Requirements

In our framework similarity search algorithms serve two types of queries: the
output of a sim(u, v) similarity query is the similarity score of the given pages
u and v; the output of a relatedα(u) related query is the set of pages for which
the similarity score with the queried page u is larger than the threshold α.
To serve queries efficiently we allow off-line precomputation, so the scalability
requirements are formulated in the indexing-query model : we precompute an
index database for a given web graph off-line, and later respond to queries
on-line by accessing the database.

We say that a similarity search algorithm is scalable if the following prop-
erties hold:

• Time: The index database is precomputed within the time of a sorting
operation, up to a constant factor. To serve a query the index database
can only be accessed a constant number of times.

• Memory: The algorithms run in external memory : the available main
memory is constant, so it can be arbitrarily smaller than the size of the
web graph.

• Parallelization: Both precomputation and queries can be implemented
to utilize the computing power and storage capacity of thousands of
servers interconnected with a fast local network.

Observe that the time constraint implies that the index database cannot
be too large. In fact our databases will be linear in the number V of vertices
(pages). memory requirements do not allow random access to the web graph.
We will first sort the edges by their ending vertices using external memory
sorting. Later we will read the entire set of edges sequentially as a stream, and
repeat this process a constant number of times.

3.1.3 Preliminaries about SimRank

SimRank was introduced by Jeh and Widom [74] to formalize the intuition
that

“two pages are similar if they are referenced by similar pages.”
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The recursive SimRank iteration propagates similarity scores with a constant
decay factor c ∈ (0, 1), with ℓ indexing the iteration:

simℓ+1(u, v) =
c

|I(u)| · |I(v)|
∑

u′∈I(u)

∑

v′∈I(v)

simℓ(u
′, v′) ,

for vertices u 6= v, where I(x) denotes the set of vertices linking to x; if I(u)
or I(v) is empty, then simℓ+1(u, v) = 0 by definition. For a vertex pair with
u = v we simply let simℓ+1(u, v) = 1. The SimRank iteration starts with
sim0(u, v) = 1 for u = v and sim0(u, v) = 0 otherwise. The SimRank score
is defined as the limit limℓ→∞ simℓ(u, v); see [74] for the proof of convergence.
Throughout this chapter we refer to simℓ(u, v) as a SimRank score, and regard
ℓ as a parameter.

The SimRank algorithm of [74] calculates the scores by iterating over all
pairs of web pages, thus each iteration requires Θ(V 2) time and memory, where
V denotes the number of pages. Thus the algorithm does not meet the scal-
ability requirements by its quadratic running time and random access to the
web graph.

We recall two generalizations of SimRank from [74], as we will exploit these
results frequently. SimRank framework refers to the natural generalization that
replaces the average function in SimRank iteration by an arbitrary function
of the similarity scores of pairs of in-neighbors. Obviously, the convergence
does not hold for all the algorithms in the framework, but still simℓ is a well-
defined similarity ranking. Several variants are introduced in [74] for different
purposes.

For the second generalization of SimRank, suppose that a random walk
starts from each vertex and follows the links backwards. Let τu,v denote the
first meeting time random variable of the walks starting from u and v; τu,v = ∞,
if they never meet; and τu,v = 0, if u = v. In addition, let f be an arbitrary
function that maps the meeting times 0, 1, . . . ,∞ to similarity scores.

Definition 18. The expected f -meeting distance for vertices u and v is de-
fined as E(f(τu,v)).

The above definition is adapted from [74] apart from the generalization
that we do not assume uniform, independent walks of infinite length. In our
case the walks may be pairwise independent, correlated, finite or infinite. For
example, we will introduce PSimRank as an expected f -meeting distance of
pairwise coupled random walks in Section 3.2.2.

The following theorem justifies the expected f -meeting distance as a gener-
alization of SimRank, formulating it as the expected f -meeting distance with
uniform independent walks and f(t) = ct, where c denotes the decay factor of
SimRank with 0 < c < 1. The theorem was proved for infinite ℓ and totally
independent set of walks in [74]; here we prove a stronger statement.

Theorem 19. For uniform, pairwise independent set of reversed random walks
of length ℓ, the equality E(cτu,v) = simℓ(u, v) holds, whether ℓ is finite or not.
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Proof. For a fixed graph we proceed by induction on ℓ. Then, the ℓ = ∞ case

follows from limℓ→∞ simℓ(u, v) = sim∞(u, v) and limℓ→∞E(
cτℓ

u,v

)
= E (

cτ∞

u,v
)
.

The ℓ = 0 case is trivial, and the only non-trivial part is the induction step,
when u 6= v and I(u), I(v) 6= ∅ hold. Let us denote by stepx(x

′) the event that
the reversed walk starting from x proceeds to x′. By applying the pairwise
independence and the linearity of expectations, we obtain:E(

cτℓ+1
u,v

)
=

=
∑

u′∈I(u)

∑

v′∈I(v)

Pr {stepu(u
′) and stepv(v

′)}

·E(
cτℓ+1

u,v | stepu(u
′) and stepv(v

′)
)

=
∑

u′∈I(u)

∑

v′∈I(v)

Pr {stepu(u
′)} · Pr {stepv(v

′)}

·c ·E(
c
τℓ
u′,v′

)

=
c

|I(u)| · |I(v)|
∑

u′∈I(u)

∑

v′∈I(v)

simℓ(u, v)

= simℓ+1(u, v).

3.2 Monte Carlo similarity search algorithms

In this section we give the first scalable algorithm to approximate SimRank
scores. In addition, we introduce a new similarity function PSimRank accom-
panied by a scalable algorithm.

All the algorithms fit into the framework of Monte Carlo similarity search
algorithms that will be introduced through the example of SimRank. The-
orem 19 expressed SimRank as the expected value simℓ(u, v) = E(cτu,v) for
vertices u, v. Our algorithms generate reversed random walks, calculate the
first meeting time τu,v and estimate simℓ(u, v) by cτu,v . To improve the precision
of approximation, the sampling process is repeated N times and the indepen-
dent samples are averaged. The computation is shared between indexing and
querying as shown in Algorithm 3.2.1, a naive implementation. During the
precomputation phase we generate and store N independent reversed random
walks of length ℓ for each vertex, and the first meeting time τu,v is calcu-
lated at query time by reading the random walks from the precomputed index
database.

The main concept of Monte Carlo similarity search already arises in this
example. In general fingerprint refers to a random object (a random walk in the
example of SimRank) associated with a node in such a way, that the expected
similarity of a pair of fingerprints is the similarity of their nodes. The Monte
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Algorithm 3.2.1 Indexing (naive method) and similarity query

N=number of fingerprints, ℓ=path length, c=decay factor. Indexing: Uses
random access to the graph.

1: for i := 1 to N do
2: for every vertex j of the web graph do
3: Fingerprint[i][j][]:=random reversed path of

length ℓ starting from j.

Query sim(u,v):

1: sim:=0
2: for i := 1 to N do
3: Let k be the smallest offset with

Fingerprint[i][u][k]=Fingerprint[i][v][k]
4: if such k exists then
5: sim:=sim+ck

6: return sim/N

Carlo method precomputes and stores fingerprints in an index database and
estimates similarity scores at query time by averaging. The main difficulties
of this framework are as follows:

• During indexing (generating the fingerprints) we have to meet the scala-
bility requirements of Section 3.1.2. For example, generating the random
walks with the naive indexing algorithm requires random access to the
web graph, thus we need to store all the links in main memory. To avoid
this, we will first introduce algorithms utilizing Θ(V ) main memory and
then algorithms using memory of constant size, where V denotes the
number of vertices. These computational requirements are referred to
as semi-external memory [1] and external memory models, respectively.
The parallelization techniques will be discussed in Section 3.3.

• To achieve a reasonably sized index database, we need a compact rep-
resentation of the fingerprints. In the case of the previous example, the
index database (including an inverted index for related queries) is of size
2 ·V ·N · ℓ. In practical examples we have V ≈ 109 vertices and N = 100
fingerprints of length ℓ = 10, thus the database is in total 8000 giga-
bytes. We will show a compact representation that allows us to encode
the fingerprints in 2 · V · N cells, resulting in an index database of size
800 gigabytes.

• We need efficient algorithms for evaluating queries. For queries the main
idea is that the similarity matrix is sparse, for a page u there are relatively
few other pages that have non-negligible similarity to u. Our algorithms
will enumerate these pages in time proportional to their number.
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Figure 3.1: Representing the first meeting times of coalescing reversed walks
of u1, u2, u3, u4 and u5 (top) with a fingerprint graph (bottom). To decode
the meeting time of u2 and u5: take the paths from u2 and u5 on the bottom.
They meet first at u1. The last edges before the meeting have labels 3 and 4.
Thus τu2,u5 = max{3, 4} = 4.

3.2.1 SimRank

The main idea of this section is that we do not generate totally independent
sets of reversed random walks as in Algorithm 3.2.1. Instead, we generate a
set of coalescing walks: each pair of walks will follow the same path after their
first meeting time. (This coupling is commonly used in the theory of random
walks.) More precisely, we start a reversed walk from each vertex. In each
time step, the walks at different vertices step independently to an in-neighbor
chosen uniformly. If two walks are at the same vertex, they follow the same
edge.

Notice that we can still estimate simℓ(u, v) = E(cτu,v) from the first meeting
time τu,v of coalescing walks, since any pair of walks are independent until they
first meet. We will show that the meeting times of coalescing walks can be
represented in a surprisingly compact way by storing only one integer for each
vertex instead of storing walks of length ℓ. In addition, coalescing walks can be
generated more efficiently by the algorithm discussed in Section 3.2.1.3 than
totally independent walks.

3.2.1.1 Fingerprint trees

A set of coalescing reversed random walks can be represented in a compact
and efficient way. The main idea is that we do not need to reconstruct the
actual paths as long as we can reconstruct the first meeting times for each pair
of them. To encode this, we define the fingerprint graph (FPG) for a given set
of coalescing random walks as follows.

The vertices of FPG correspond to the vertices of the web graph indexed
by 1, 2, . . . , V . For each vertex u, we add a directed edge (u, v) to the FPG for
at most one vertex v with

(1) v < u and the fingerprints of u and v first meet at time τu,v < ∞;
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(2) among vertices satisfying (1) vertex v has earliest meeting time τu,v;

(3) given (1-2), the index of v is minimal.

We label the edge (u, v) with τu,v. An example for a fingerprint graph is shown
as Fig. 3.1.

The most important property of the compact FPG representation that it
still allows us to reconstruct τu,v values with the following formula. For a pair
of nodes u and v consider the unique paths in the FPG starting from u and
v. If these paths have no vertex in common, then τu,v = ∞. Otherwise take
the paths until the first common node w; let t1 and t2 denote the labels of
the edges on the paths pointing to w; and let t1 = 0 (or t2 = 0), if u = w
(or v = w). Then τu,v = max{t1, t2}. (See the example of Fig. 3.1.) The
correctness of this formula is stated in the lemma below.

Another important property appears in the lemma: each FPG is a collec-
tion of rooted trees, which will be referred to as fingerprint trees. The main
observation for storage and query is that the partition of nodes into fingerprint
trees preserves the locality of the similarity function.

Lemma 20. Consider the fingerprint graph for a set of coalescing random
walks. This graph is a directed acyclic graph, each node has out-degree at most
1, thus it is a forest of rooted trees with edges directed towards the roots.

Consider the unique path in the fingerprint graph starting from vertex u.
The indices of nodes it visits are strictly decreasing, and the labels on the edges
are strictly increasing.

Any first meeting time τu,v can be determined by τu,v = max{t1, t2} as
detailed above.

Proof. The first two statements naturally follow from the definition of finger-
print graphs, so we focus on the last statement. Notice that τu,v < ∞ iff P (u)
and P (v) has a common vertex, where P (x) denotes the unique path in the
FPG starting from vertex x. This naturally follows from the transitivity of
relation { (u, v) : τu,v < ∞}. Thus, it remains to prove that τu,v = max{t1, t2}
holds for any vertices u, v with τu,v < ∞.

Let us denote by w the first common vertex of paths P (u) and P (v). For
x = u, v let |P (x, w)| be the number of edges in P (x) from x to w; and if
|P (x, w)| > 0, let x′ denote the first vertex of P (x) following x. We will refer
to the labels of (u, u′) and (v, v′) as t′1 and t′2. Recall that t1 and t2 denote
the labels of the edges of P (u) and P (v) with ending vertex w; furthermore
t1 = 0 (or t2 = 0) if |P (u, w)| = 0 (or |P (v, w)| = 0). We refer to Fig. 3.2
summarizing the notation.

We will proceed induction on k = |P (u, w)|+ |P (v, w)| to prove that τu,v =
max{t1, t2} holds for any vertices u, v with τu,v < ∞. The k = 1 case is trivial,
and the induction step from k to k + 1 will be proved from the following fact
referred to as the generalized transitivity :

∞ > τu,v ≥ τv,z =⇒ τu,v = τu,z.
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Figure 3.2: Notation of specific vertices and edge labels of a fingerprint graph.
In the example |P (u, w)| = 3 and |P (v, w)| = 4.

We first discuss the case when one of u, v equals w, we may assume wlog
that u = w and v 6= w. By the definition of FPG w = u < v, so τu,v ≥ t′2 =
τv,v′ . From the generalized transitivity we get τu,v = τu,v′ , which is equal to
max{t1, t2} = t2 by induction.

In case of u 6= w and v 6= w assume (wlog) that t′2 ≤ t′1. If u < v, then
τu,v ≥ t′2 = τv,v′ . If u > v, then τu,v ≥ t′1 ≥ t′2 = τv,v′ . In both subcases we
conclude that τu,v ≥ τv,v′ , so we get τu,v = τu,v′ by the generalized transitivity.
By induction τu,v = τu,v′ = max{t1, t2}, if v′ 6= w; otherwise τu,v = τu,v′ =
max{t1, 0} = max{t1, t2}, the last equality following from t1 ≥ t′1 ≥ t′2 =
t2.

3.2.1.2 Fingerprint database and query processing

The first advantage of the fingerprint graph (FPG) is that it represents all first
meeting times for a set of coalescing walks of length ℓ in compact manner. It
is compact, since every vertex has at most one out-edge in an FPG, so the
size of one graph is V , and N · V bounds the total size.1 This is a significant
improvement over the naive representation of the walks with a size of N ·V · ℓ.

The second important property of the FPG is that two vertices have non-
zero estimated similarity iff they fall into the same fingerprint tree (same com-
ponent of the FPG). Thus, when serving a related(u) query it is enough to
read and traverse from each of the N fingerprint graphs the unique tree con-
taining u. Therefore in a fingerprint database, we store the fingerprint graphs
ordered as a collection of fingerprint trees, and for each vertex u we also store
the identifiers of the N trees containing u. By adding the identifiers the total
size of the database is no more than 2 · N · V .

A related(u) query requires N + 1 accesses to the fingerprint database:
one for the tree identifiers and then N more for the fingerprint trees of u.
A sim(u, v) query accesses the fingerprint database at most N + 2 times, by
loading two lists of identifiers and then the trees containing both u and v. For
both type of queries the trees can be traversed in time linear in the size of the
tree.

Notice that the query algorithms do not meet all the scalability require-
ments: although the number of database accesses is constant (at most N+2),
the memory requirement for storing and traversing one fingerprint tree may

1To be more precise we need V (⌈log(V )⌉ + ⌈log(ℓ)⌉) bits for an FPG to store the labeled edges. Notice
that the weights require no more than ⌈log(ℓ)⌉ = 4 bits for each vertex for typical value of ℓ = 10.
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be as large as the number of pages V . Thus, theoretically the algorithm may
use as much as V memory.

Fortunately, in case of web data the algorithm performs as an external
memory algorithm. As verified by our numerical experiments on 80M pages
(see in Section 3.6.3) the average sizes of fingerprint trees are approximately
100–200 for reasonable path lengths. Even the largest trees in our database
had at most 10K–20K vertices, thus 50Kbytes of data needs to be read for
each database access in worst case.

3.2.1.3 Building the fingerprint database

It remains to present a scalable algorithm to generate coalescing sets of walks
and compute the fingerprint graphs.

As opposed to the naive algorithm generating the fingerprints one-by-one,
we generate all fingerprints together. With one iteration we extend all partially
generated fingerprints by one edge. To achieve this, we generate one uniform
in-edge ej for each vertex j independently. Then extend with edge ej each of
those fingerprints that have the same last node j. This method generates a
coalescing set of walks, since a pair of walks will be extended with the same
edge after they first meet. Furthermore, they are independent until the first
meeting time.

The pseudo-code is displayed as Algorithm 3.2.2, where NextIn[j] stores the
starting vertex of the randomly chosen edge ej, and PathEnd[j] is the ending
vertex of the partial fingerprint that started from j. To be more precise, if
a group of walks already met, then PathEnd[j]=“stopped” for every member
j of the group except for the smallest j. The SaveNewFPGEdges subroutine
detects if a group of walks meets in the current iteration, saves the fingerprint
tree edges corresponding to the meetings and sets PathEnd[j]=“stopped” for
all non-minimal members j of the group. This can be accomplished by a linear
time counting sort of the non-stopped elements of PathEnd array.

The subroutine GenRndInEdges may generate a set of random in-edges with
a simple external memory algorithm if the edges are sorted by the ending
vertices. A significant improvement can be achieved by generating all the
required random edge-sets together during a single scan over the edges of the
graph. Thus, all the N · ℓ edge-scans can be replaced by one edge-scan saving
many sets of in-edges. Then GenRndInEdges sequentially reads the N · ℓ arrays
of size V from disk.

The algorithm outlined above fits into the semi-external memory model,
since it utilizes 2·V main memory to store the PathEnd and NextIn arrays. (The
counter sort operation of SaveNewFPGEdges may reuse NextIn array, so it does
not require additional storage capacity.) The algorithm can be easily converted
into the external memory model by keeping PathEnd and NextIn arrays on the
disk and by replacing Lines 6-8 of Algorithm 3.2.2 with external sorting and
merging processes. Furthermore, at the end of the indexing the individual
fingerprint trees can be collected with ℓ sorting and merging operations, as the
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Algorithm 3.2.2 Indexing (using 2 · V main memory)

N=number of fingerprints, ℓ=length of paths. Uses subroutine GenRndInEdges

that generates a random in-edge for each vertex in the graph and stores its
source in an array.

1: for i := 1 to N do
2: for every vertex j of the web graph do
3: PathEnd[j] := j /*start a path from j*/
4: for k:=1 to ℓ do
5: NextIn[] := GenRndInEdges();
6: for every vertex j with PathEnd[j]6=“stopped” do
7: PathEnd[j]:=NextIn[PathEnd[j]] /*extend the path*/
8: SaveNewFPGEdges(PathEnd)
9: Collect edges into trees and save as FPGi.

longest possible path in each fingerprint tree is ℓ (due to Lemma 20 the labels
are strictly increasing but cannot grow over ℓ).

3.2.2 PSimRank

In this section we give a new SimRank variant with properties extending those
of Minimax SimRank [74], a non-scalable algorithm that cannot be formulated
in our framework. The new similarity function will be expressed as an expected
f -meeting distance by modifying the distribution of the set of random walks
and by keeping f(t) = ct.

A deficiency of SimRank can be best viewed by an example. Consider two
very popular web portals. Many users link to both pages on their personal
websites, but these pages are not reported to be similar by SimRank. An
extreme case is when nodes u and v have the same in-neighborhood of size k,
which have no in-edges. Though the k pages are totally dissimilar in the link-
based sense, we would still intuitively regard u and v as similar. Unfortunately
SimRank is counter-intuitive in this case, as simℓ(u, v) = c · 1

k
tends to zero as

the number k of common in-neighbors increases.

3.2.2.1 Coupled random walks

We solve the deficiency of SimRank by allowing the random walks to meet with
higher probability when they are close to each other: a pair of random walks
at vertices u′, v′ will advance to the same vertex (i.e., meet in one step) with

probability of the Jaccard coefficient |I(u′)∩I(v′)|
|I(u′)∪I(v′)|

of their in-neighborhoods I(u′)

and I(v′). Thus these walks will be coupled as opposed to the independent
walks of SimRank.

Definition 21. PSimRank is the expected f -meeting distance with f(t) = ct

(for some 0 < c < 1) of the following set of random walks. For each vertex u,
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the random walk Xu makes ℓ uniform independent steps on the transposed web
graph starting from point u. For each pair of vertices u, v and time t, assume
that the random walks are at position Xu(t) = u′ and Xv(t) = v′. Then

• with probability |I(u′)∩I(v′)|
|I(u′)∪I(v′)|

they both step to the same uniformly chosen

vertex of I(u′) ∩ I(v′);

• with probability |I(u′)\I(v′)|
|I(u′)∪I(v′)|

the walk Xu steps to a uniform vertex in I(u′)\
I(v′) and the walk Xv steps to an independently chosen uniform vertex
in I(v′);

• with probability |I(v′)\I(u′)|
|I(u′)∪I(v′)|

the walk Xv steps to a uniform vertex in I(v′)\
I(u′) and the walk Xu steps to an independently chosen uniform vertex
in I(u′).

We give a set of random walks satisfying the coupling of the definition.
For each time t ≥ 0 we choose an independent random permutation σt on the
vertices of the web graph. At time t if the random walk from vertex u is at
Xu(t) = u′, it will step to the in-neighbor with smallest index given by the
permutation σt, i.e.,

Xu(t + 1) = argmin
u′′∈I(u′)

σt(u
′′)

It is easy to see that the random walk Xu takes uniform independent steps,
since we have a new permutation for each step. The above coupling is also
satisfied, since for any pair u′, v′ the vertex argminw∈I(u′)∪I(v′) σt(w) falls into
the sets I(u′) ∩ I(v′), I(u′) \ I(v′), I(v′) \ I(u′) with probabilities

|I(u′) ∩ I(v′)|
|I(u′) ∪ I(v′)| ,

|I(u′) \ I(v′)|
|I(u′) ∪ I(v′)| and

|I(v′) \ I(u′)|
|I(u′) ∪ I(v′)| , resp.

PSimRank can be computed by the following linear equation system, plac-
ing PSimRank in the SimRank framework, which also proves that the values
do not depend on the actual choice of the coupling:

psimℓ+1(u, v) = 1, if u = v;
psimℓ+1(u, v) = 0, if I(u) = ∅ or I(v) = ∅;
psimℓ+1(u, v) = c ·

[
|I(u)∩I(v)|
|I(u)∪I(v)|

· 1+

+ |I(u)\I(v)|
|I(u)∪I(v)|

· 1
|I(u)\I(v)||I(v)|

∑
u′∈I(u)\I(v)

v′∈I(v)

psimℓ(u
′, v′)+

+ |I(v)\I(u)|
|I(u)∪I(v)|

· 1
|I(v)\I(u)||I(u)|

∑
v′∈I(v)\I(u)

u′∈I(u)

psimℓ(u
′, v′)

]
.
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3.2.2.2 Computing PSimRank

To achieve a scalable algorithm for PSimRank we modify the SimRank in-
dexing and query algorithms introduced in Section 3.2.1. The following result
allows us to use the compact representation of fingerprint graphs.

Lemma 22. Any set of random walks satisfying the PSimRank requirements
are coalescing, i.e., any pair follows the same path after their first meeting
time.

Proof. Let u and v be arbitrary nodes. By the first coupling requirement, if
at time t the random walks Xu and Xv are at the same nodes u′ = v′, then
I(u′) = I(v′), thus with probability |I(u′)∩I(v′)|

|I(u′)∪I(v′)
= 1 they proceed to the same

vertex.

To apply the indexing algorithm of SimRank, we only need to ensure the
pairwise coupling. This can be accomplished by replacing the GenRndInEdges

procedure, which generated one independent, uniform in-edge for each vertex v
in the graph for SimRank. In case of PSimRank, GenRndInEdges chooses a per-
mutation σ at random; and then for each vertex v the in-neighbor with small-
est index under the permutation σ is selected, i.e., vertex argminv′∈I(v) σ(v′) is
chosen.

As in the case of the GenRndInEdges for SimRank, all required sets of random
in-edges can be generated within a single scan over the edges of the web graph,
if the graph edges are sorted. The random permutations can be stored in
small space by random linear transformations [23], thus the external memory
implementation of SimRank can be extended to PSimRank.

3.2.3 Updating the index database

The web graph is not static, it changes over time quite rapidly. Web search
engines are required to maintain a fairly up-to-date index database and are
constantly refreshing the pages they have indexed. As a consequence, the web
graph from which we compute our similarity scores is also changing: nodes and
edges are added and removed constantly. In this section we describe possibili-
ties to maintain an up-to-date index database in this chaning environment.

Brute force updating

In general purpose web search engines it is not common to have daily updates
of the entire index database. Furthermore, there is a huge difference in work-
load between peak and off-peak periods, which means that considerable idle
resources can be assigned for reindexing. The advantage of our method is that
not all the N independent fingerprints are required to be recomputed at the
same time, it can be distributed among multiple idle periods and multiple ma-
chines. In case of specialized news or blogosphere search engines the amount
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of data is considerably less, thus less resources are required for rebuilding the
index.

Incorporating slight changes

Assume only a single node u has changed. If we don’t use the compression given
by the Fingerprint Graph representation, but build the index by the fingerprint
paths, then the respective inverted index required for the queries has the list
of the paths going through node u. These paths have to be examined for
possible change. If the original degree was k and one link was added then with
probability k

k+1
the database is not to be modified, with probability 1

k+1
the

paths have to be routed through the new link (where they coalesce with other
walks). Assuming the changes are really slight, a disk-based implementation
suffices.

In case of PSimRank we can incorporate slight changes into the FPG data-
base: Given the changed node u and the saved seeds of the random permu-
tations, follow the path from the changed point until the end. (This will be
different for each of the ℓ possible positions where u might occur on a finger-
print path.) Denote the set of these ending vertices by U . As each fingerprint
tree contains those nodes’ paths that coalesced in ℓ steps, the ending vertex
of the paths in a fingerprint tree is the same. Thus each fingerprint tree has
a unique ending vertex. Select the fingerprint trees that have ending vertex
in U (this might require an N · V sized index). Examine them for possible
change. It can be seen that at most one edge has to be changed in the FPG,
but that might attach a subtree to a different fingerprint tree. As there are at
most |U | ≤ ℓ trees to examine, this is feasible for incorporating slight changes.

Indexing based on the previous index

It is a common technique in PageRank index updates to use the solution
of the previous database as a starting point for the new iteration. We can
use this approach to gain a very interesting algorithm for index update that
works on the FPG database for both SimRank and PSimRank. Performing a
single iteration decays the current database and the expected solution’s norm-
distance by a factor of c. As we can have relatively small c (see Fig. 3.4), a
large effect of incorporating the graph changes into the index can be achieved
by a single iteration.

A single iteration of the linear system starting from the previous solution
is represented in the fingerprint model by prepending a random edge to all
fingerprints. This can be accomplished as follows: Run GenRndInEdges. Sort
the result according to the generated in-neighbors’ fingerprint trees. Then for
each fingerprint tree and the new edges which we have to prepend to it, do
the following: Decompress the fingerprint tree into coalescing reverse walks
using unlabeled points as Fig. 3.1 displays. Then prepend the new edges to
the reverse walks (attach them to the labeled points). Remove all paths that
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have no edges prepended2, then relabel the nodes according to the new starting
points. Remove the last step so that ℓ does not change due to the reindexing.
The coalesced walks might fall apart into more sets of coalesced walks at this
step. Finally each of the resulting sets of walks have to be compressed into a
fingerprint tree.

The very interesting property of this update method is that the changes
in the graph are introduced from the MSB (most significant ‘digit’) into the
index. Assuming each night one such iteration is performed, then a new edge
will be fully reflected only after ℓ = 10 days, but the most important changes
will be visible after the first night. Notice that if so desired, then more than
one steps can be prepended to the fingerprint trees with one run of the above
algorithm having more GenRndInEdges and sorts but a single iteration over the
actual database (the fingerprint trees).

3.3 Monte Carlo parallelization

In this section we discuss the parallelization possibilities of our methods. We
show that all of them exhibit features (such as fault tolerance, load balancing
and dynamic adaptation to workload) which makes them extremely applicable
in large-scale web search engines.

All similarity methods we have given in this chapter are organized around
the same concepts:

• we compute a similarity measure by averaging N independent samples
from a random variable;

• the independent samples are stored in N instances of an index database,
each capable of producing a sample of the random variable for any pair
of vertices.

The above framework allows a straightforward parallelization of both the
indexing and the query: the computation of independent index databases can
be performed on up to N different machines. Then the databases are trans-
ferred to the backend computers that serve the query requests. When a request
arrives to the frontend server, it asks all (up to N) backend servers, averages
their answers and returns the results to the user.

The Monte Carlo parallelization scheme has many advantages that make
it perfectly suitable to large-scale web search engines:

Fault tolerance. If one or more backend servers cannot respond to the
query in time, then the frontend can aggregate the results of the remaining
ones and calculate the estimate from the available answers. This will not
influence service availability, and results in a slight loss of precision.

2If no paths have edges prepended, then the entire tree has to be dropped.
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Load balancing. In case of very high query loads, more than N backend
servers (database servers) can be employed. A simple solution is to replicate
the individual index databases. Better results are achieved if one calculates an
independent index database for all the backend servers. In this case it suffices
to ask any N backend servers for a proper precision answer. This allows
seamless load balancing, i.e., you can add more backend servers one-by-one as
the demand increases.

Dynamic adaptation to workload. During times of excessive load the num-
ber of backend servers asked for each query (N) can be automatically reduced
to maintain fast response times and thus service integrity. Meanwhile, during
idle periods, this value can be increased to get higher precision for free (along
with better utilization of resources). We believe that this feature is extremely
important in the applicability of our results.

3.4 Error of approximation

As we have seen in earlier sections, a crucial parameter of our methods is
the number N of fingerprints. The index database size, indexing time, query
time and database accesses are all linear in N . In this section we formally
analyze the number of fingerprints needed for a given precision approximation.
Our theorems show that even a modest number of fingerprints (e.g., N =
100) suffices for the purposes of a web search engine. A further theoretical
consequence that N can be regarded as a constant, when the precision and
error probability are fixed.

To state our results we need a suitably general model that can accommo-
date our methods for SimRank and PSimRank. Suppose that a randomized
algorithm assigns N independent sets of fingerprints for the vertices and for
any two vertices u, v a function maps the fingerprints to a score Si(u, v) ∈ [0, 1]
for i = 1, . . . , N such that E(Si(u, v)) = sim(u, v) for some similarity function
sim(·, ·). We will refer to ŝım(u, v) = 1

N

∑N
i=1 Si(u, v) as a Monte Carlo simi-

larity function, which is a random function with E(ŝım(u, v)) = sim(u, v) by
linearity. Notice that the approximate scores of our algorithms for SimRank
and PSimRank can be regarded as Monte Carlo similarity functions ŝım(·, ·).

Theorem 23. For any Monte Carlo similarity function ŝım the absolute error
converges to zero exponentially in the number of fingerprints N and uniformly
over the pair of vertices u, v. More precisely, for any vertices u, v and any
δ > 0 we have

Pr{| ŝım(u, v) − sim(u, v)| > δ} < 2e−
6
7
Nδ2

Proof. We shall use Bernstein’s inequality in the following form. For any
independent, identically distributed random variables Zi : i = 1, 2, . . . , N that
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have a bounded range [a, b], for any δ > 0:

Pr{| 1

N

N∑

i=1

Zi −EZ| > δ} ≤ 2e
−N δ2

2 Var Z+2δ(b−a)/3

Applying this for Zi = Si(u, v) and using the bounds Zi ∈ [0, 1], Var Zi ≤ 1
4
,

and δ < 1 the statement follows.

Notice that the bound uniformly applies to all graphs and all Monte Carlo
similarity functions, such as our approximations for SimRank and PSimRank.
However, this bound concerns the convergence of the similarity score for one
pair of vertices only. In the web search scenario, we typically use related
queries, thus are interested in the relative order of pages according to their
similarity to a given query page u. The above result implies that for a query
page u the probability of interchanging two result pages v and w in the result
lists tends to zero exponentially:

Corollary 24. There exist constants β1, β2 such that for any Monte Carlo sim-
ilarity function ŝım and pages u, v and w for which δ = sim(u, v)− sim(u, w) >
0, the following holds:

Pr{ŝım(u, v) < ŝım(u, w)} < β1e
−β2Nδ2

These theorems mean that the Monte Carlo approximation can efficiently
capture the big differences among the similarity scores. But in case of small
differences, the error of approximation obscures the actual similarity ranking,
and an almost arbitrary reordering is possible. We believe, that for a web
search inspired similarity ranking it is sufficient to distinguish between very
similar, modestly similar, and dissimilar pages. We can formulate this require-
ment in terms of a slightly weakened version of classical information retrieval
measures precision and recall [6].

Consider a related query for page u with similarity threshold α, i.e., the
problem is to return the set of pages S = {v : sim(u, v) > α}. Our methods

approximate this set with R̂ = {v : ŝım(u, v) > α}. We weaken the notion
of precision and recall to exclude a small, δ sized interval of similarity scores
around the threshold α: let R+δ = {v : sim(u, v) > α + δ}, R−δ = {v :
sim(u, v) > α − δ}. Then the expected δ-recall of a Monte Carlo similarity

function is E(| bR∩R+δ|)

|R+δ|
while the expected δ-precision is E(| bR∩R−δ|)E(| bR|)

. We denote

by Rc
−δ the complement set of R−δ.

Theorem 25. For any Monte Carlo similarity function ŝım, any page u, sim-
ilarity threshold α and δ > 0 the expected δ-recall is at least 1 − e−

6
7
Nδ2

and
the expected δ-precision is at least

1 − |Rc
−δ|

|R+δ|
1

e
6
7
Nδ2 − 1

.
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Proof. We only prove the bound for the expected δ-recall, the precision can
be proved with analogous steps.E(

|R̂ ∩ R+δ|
)

=

= E( ∑

v∈R+δ

1{v ∈ R̂}
)

=
∑

v∈R+δ

Pr{v ∈ R̂}

≥
∑

v∈R+δ

(
1 − e−

6
7
Nδ2

)
= |R+δ| ·

(
1 − e−

6
7
Nδ2

)
,

where the second equation follows from the linearity of expectation; and the
inequality follows from the one-sided absolute error bound Pr{ŝım(u, v) −
sim(u, v) < −δ} < e−

6
7
Nδ2

that can be proved analogously to Theorem 23.

This theorem shows that the expected δ-recall converges to 1 exponentially
and uniformly over all possible similarity functions, graphs and queried vertices
of the graphs, while the expected δ-precision converges to 1 exponentially for
any fixed similarity function, graph and queried node.

3.5 Lower Bounds for the Similarity Database

Size

In this section we will prove several lower bounds on the space complexity of
calculating SimRank and PSimRank functions. In particular, we prove that
except for the approximate approach, the required similarity database sizes
are at least Ω(V 2) bits for some graphs with V vertices; which in turn means
that exact computation is infeasible for large-scale computation. On the other
hand, the lower bound for the approximate problem is linear in V , which is
matched by our algorithm of Section 2.2 up to a logarithmic factor. Notice,
that the worst case bounds cannot be applied to one particular input such as
the webgraph. The main consequence of the theorems about similarity search
is that the web-search community should either utilize some specific property
of the webgraph or relax the exact problem to an approximate one as in our
scenario.

More precisely we will consider two-phase algorithms: in the first phase
the algorithm has access to the edge set of the graph and has to compute
an index database; in the second phase the algorithm gets a query, and has
to answer based on the index database, i.e., the algorithm cannot access the
graph during query-time. A b(V ) worst case lower bound on the database size
holds, if for any two-phase algorithm there exists a graph on V vertices such
that the algorithm builds an index database of b(V ) bits.

In the two-phase model we will consider the below listed types of queries,
where sim(·, ·) denotes a similarity function. The input of the queries are
vertices u, v (and w), the numbers ǫ and δ are fixed before the indexing phase.
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Figure 3.3: Encoding a vector x of m = n · k bits into a graph Gx. The
existence of a dashed edge indicates that the corresponding bit xy was set to
xy = 1.

(1) Exact: given the vertices u, v, calculate sim(u, v).

(2) Approximate: Estimate sim(u, v) with a ŝım(u, v) such that for fixed ǫ, δ >
0

Pr{| ŝım(u, v) − sim(u, v)| < δ} ≥ 1 − ǫ

(3) Positivity: Decide whether sim(u, v) > 0 holds with error probability at
most ǫ.

(4) Comparison: given the vertices u, v, w, decide whether sim(u, v) > sim(u, w)
holds with error probability at most ǫ.

(5) ǫ–δ comparison: given the vertices u, v, w with | sim(u, v)− sim(u, w)| > δ,
decide whether sim(u, v) > sim(u, w) holds with error probability at most
ǫ.

Our tool towards the lower bounds will be the asymmetric communication
complexity game bit-vector probing [69]: there are two players A and B; player
A has a vector x of m bits; player B has a number y ∈ {1, 2, . . . , m}; and they
have to compute the function f(x, y) = xy, i.e., the output is the yth bit of the
input vector x. To compute the proper output they have to communicate, and
communication is restricted in the direction A → B. The one-way communi-
cation complexity [84] of this function is the number of transferred bits in the
worst case by the best protocol.

Theorem 26 ([69]). Any protocol that outputs the correct answer to the bit-
vector probing problem with probability at least 1+γ

2
must transmit at least γm

bits.

In our theorems, we will substitute the function sim(·, ·) by SimRank and
PSimRank with path length ℓ = 1 and we omit the decay factor by setting
c = 1−. So sim(u, v) = |I(u)∩I(v)|

|I(u)|·|I(v)|
for SimRank and sim(u, v) = |I(u)∩I(v)|

|I(u)∪I(v)|

for PSimRank, where I(w) denotes the in-neighbors of w. We mention that
all results can be easily extended for any constant c and ℓ. The following
construction encodes the bits of a vector into the similarity scores of a graph.
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Construction 27. Suppose that x is a vector of m bits, where m = k · n for
some k ≤ n. Let Gx denote the graph with 2k+n vertices denoted by u1, . . . , uk,
z1, . . . , zk, and v1, . . . , vn. For each 1 ≤ i ≤ k and 1 ≤ j ≤ n the edge (zi, vj)
is in the graph iff bit (j − 1)k + i is set in the vector x; furthermore, we add
an edge (zi, ui) for all 1 ≤ i ≤ k. See Fig. 3.3 for the notation.

It easily follows from the construction that sim(ui, vj) = 1
|I(vj)|

≥ 1
k
, if the

bit (j−1)k+i is 1 in the vector x, and sim(ui, vj) = 0 otherwise, where sim(·, ·)
denotes either SimRank or PSimRank. Now we are ready to prove our lower
bounds.

Theorem 28. Any algorithm solving the positivity problem (3) of SimRank
or PSimRank with probability at least 1+γ

2
must use a database of size Ω(γV 2)

bits in worst case.

Proof. The proof is the same for the three similarity functions. We give a
communication protocol for the bit-vector probing problem as follows. Given
an input x of m = n2 bits, Player A creates a graph Gx with the above
construction, where k = n. Then A computes a similarity index database from
Gx and transmits the database to Player B. As B wants to know the bit xy, he
uses the positivity query algorithm for the vertices ui, vj, where y = (j−1)k+i.
By Construction 27 the answer to the query is true iff xy = 1 holds. Thus if
the two-phase algorithm solves the positivity query with probability 1+γ

2
, then

this protocol solves the bit-vector probing problem with probability 1+γ
2

, so
the size of the transferred database is at least γm = γn2 = γ(V/3)2.

Corollary 29. Any algorithm solving the exact problem (1) for SimRank or
PSimRank must have a similarity database of size Ω(V 2) bits in worst case.

Theorem 30. Any algorithm solving the approximation problem (2) for Sim-
Rank or PSimRank needs in worst case an index database of Ω(1−2ǫ

δ
V ) bits, if

δ = Ω( 1
V

); and Ω((1 − 2ǫ)V 2) otherwise.

Proof. The proof is essentially the same as that of Theorem 28 with different
parameters in the construction. Let k = min( 1

2δ+1
, V

3
) and n = V − 2k. Player

A encodes a vector x of m = n ·k bits into a graph Gx by Construction 27 and
transmits the index database to player B. Recall that either sim(ui, vj) ≥ 1

k

or sim(ui, vj) = 0 depending on the bit y = (j − 1)k + i, so sim(ui, vj) > 2δ
iff xy = 1. Then Player B decides on xy = 1 iff ŝım(ui, vj) > δ holds for the
approximate score. The above outlined protocol solves the bit vector probing
with probability 1 − ǫ = 1+γ

2
. By Theorem 26 the database size is at least

γm = γkn ≥ (1 − 2ǫ)k · V
3
, which completes the proof.

This radical drop in the storage complexity is not surprising, as our ap-
proximation algorithm achieves this bound up to a logarithmic factor: for a
fixed ǫ, δ we can calculate the necessary number of fingerprints N by Theo-
rem 23 (or by Theorem 24 for the ǫ–δ comparison problem), and then for each
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vertex in the graph we store exactly N fingerprints, independently of the size
of the graph. This is a linear database, though the constant makes it very
impractical. In the comparison problems (4) and (5) we have the same results.

Theorem 31. Any algorithm solving the comparison problem (4) for SimRank
or PSimRank with probability 1+γ

2
requires a similarity database of Ω(γV 2) bits

in worst case.

Proof. We will modify the proof of Theorem 28 by changing the graph con-
struction. Player A encodes x into a graph Gx with k = n by Construction 27.
Then another set w1, . . . , wn is added to the vertices of Gx such that wj is
the complement of vj : Player A puts an additional arc (zi, wj) in the graph
iff (zi, vj) is not an arc, which means that bit (i − 1)n + j was not set in the
input vector.

Then upon quering bit y = (i−1)n+j, exactly one of sim(ui, vj), sim(ui, wj)
will be positive (depending on the input bit xy), thus the comparison query
sim(ui, vj) > sim(ui, wj) will yield the required output for the bit-vector prob-
ing problem.

Corollary 32. Any algorithm solving the ǫ–δ comparison problem (5) for Sim-
Rank or PSimRank needs in worst case a similarity database of Ω(1−2ǫ

δ
V ) bits

on graphs with V = Ω(1
δ
) vertices, and Ω((1 − 2ǫ)V 2) bits otherwise.

Proof. Modifying the proof of Theorem 31 along the lines of the proof of The-
orem 30 yields the necessary results.

3.6 Experiments

This section presents our experiments on the repository of 80M pages crawled
by the Stanford WebBase project in 2001. The following problems are ad-
dressed by our experiments:

• How do the parameters ℓ, N and c effect the quality of the similarity
search algorithms? The dependence on path length ℓ shows that multi-
step neighborhoods contain more valuable similarity information than
single-step neighborhoods. Quality increases in each step until ℓ = 5.

• How do the qualities of SimRank and PSimRank relate to each other and
to other link-based methods? We conclude that PSimRank outperforms
all the other methods.

• What are the average and maximal sizes of fingerprint trees for SimRank
and PSimRank? This is important, as the running time and memory
requirement of query algorithms are proportional to these sizes. We
measured sizes as small as 100 − 200 on average implying fast running
time with low memory requirement.



3.6. EXPERIMENTS 73

• What is the actual query serving performance of our methods? How does
this performance scale as we add more servers and utilize the Monte Carlo
parallelization possibilities?

3.6.1 Similarity Score Quality Measures

We briefly summarize the method of Haveliwala et al. [65] to measure the
quality of similarity search algorithms; see [65] for a more detailed description.
The most imortant property of this method is that it requires no expensive
user survey. This allows a much greater number of pages to be included in
the measurement (in our case 218,720 pages, as opposed to a typical user
survey covering ≈1000 pages). Furthermore, the experiment is reproducible,
and different parameter settings can be evaluated automatically.

The similarity search algorithms will be compared to a ground truth simi-
larity ordering extracted from the Open Directory Project (ODP, [94]) data, a
hierarchical collection of webpages managed by thousands of volunteer editors.
The ODP category tree implicitly encodes similarity information: view it as an
undirected graph and the consider the shortest-path-length function (siblings
are more similar than cousins). Given a uniformly chosen query page u, this
partial order will be compared to the order returned by the algorithm using
the Kruskal-Goodman Γ measure:

Γ = 2 · Pr{ŝım(u, v) > ŝım(u, w)|ŝım(u, v) 6= ŝım(u, w) and
sim(u, v) > sim(u, w)} − 1

where ŝım(·, ·) represents the similarity search algorithm to evaluate and sim(·, ·)
is the ODP similarity. As u, v, w are uniform random, the condition restricts
computation to pages in the ODP (218,720 in our case) and to capture the top
ranked portion of the result lists we further restrict v, w to be chosen from u’s
siblings and cousins in the ODP tree, denoted by sibling Γ [65].

3.6.2 Comparing the Quality under Various Parameter

Settings

All the quality measurements were performed on a web graph of 78,636,371
pages crawled and parsed by the Stanford WebBase project in 2001. In our
copy of the ODP tree 218,720 urls were found falling into 544 classes after
collapsing the tree at level 3. The indexing process took 4 hours for SimRank
and 14 hours for PSimRank with path length ℓ = 10 and N = 100 fingerprints.
We ran a semi-external memory implementation on a single machine with
2.8GHz Intel Pentium 4 processor, 2GB main memory and Linux OS. The
total size of the computed database would have been 68GB. Since sibling Γ is
based on similarity scores between vertices of the ODP pages, we only saved
the fingerprints of the 218,720 ODP pages. A nice property of our methods
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is that this truncation (resulting in a size of 200Mbytes) does not affect the
returned scores for the ODP pages.

We compared the qualities of (P)SimRank with that of cocitation measure
and Jaccard coefficient measure extended to the ℓ-step neighborhoods of pages
with exponentially decreasing weights. The latter measure will be referred to
as XJaccard and it is defined as follows for given distance ℓ and decay factor
0 < c < 1.

xjacℓ(u, v) =

ℓ∑

k=1

|Ik(u) ∩ Ik(v)|
|Ik(u) ∪ Ik(v)| · c

k(1 − c),

where Ik(w) denotes the set of vertices from where w can be reached using
at most k directed edges. XJaccard scores were evaluated by the min-hash
fingerprinting technique of Broder [22] with an external memory algorithm
that enabled us to collect fingerprints from the ℓ-step neighborhoods.

The results of the experiments are depicted on Fig. 3.4. Sibling Γ expresses
the average quality of similarity search algorithms with Γ values falling into
the range [−1, 1]. The extreme Γ = 1 result would show that similarity scores
completely agree with the ground truth similarities, while Γ = −1 would show
the opposite. Our Γ = 0.3 − 0.4 values imply that our algorithms agree with
the ODP familial ordering in 65 − 70% of the pairs.

The radically increasing Γ values for path length ℓ = 1, 2, 3, 4 on the first
diagram supports our basic assumption that the multi-step neighborhoods of
pages contain valuable similarity information. The quality slightly increases
for ℓ > 4 in case of PSimRank and SimRank, while sibling Γ has maximum
value for ℓ = 4 in case of XJaccard. The quality of cocitation measure defined
for the one-step neighborhoods is exceeded by all other measures for ℓ > 1.
Theoretically, cocitation could also be extended to the ℓ > 1 case, but no
scalable algorithm is known for evaluating it.

The second diagram shows the tendency that the quality of similarity search
can be increased by smaller decay factor. This phenomenon suggests that we
should give higher priority to the similarity information collected in smaller
distances and rely on long-distance similarities only if necessary. The bottom
diagram depicts the changes of Γ as a function of the number N of fingerprints.
The diagram shows slight quality increase as the estimated similarity scores
become more precise with larger values of N .

Finally, we conclude from all the three diagrams that PSimRank scores
introduced in Section 3.2.2 outperform all other similarity functions. We also
deduce from the experiments that path length ℓ has the largest impact on the
quality of the similarity search compared to parameters N and c. Notice the
difference between the scale of the first diagram and that of the other two
diagrams.
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Figure 3.4: Varying algorithm parameters independently with default settings
ℓ = 10 for SimRank and PSimRank ℓ = 4 for XJaccard, c = 0.1, and N = 100.

3.6.3 Time and memory requirement of fingerprint tree

queries

Query evaluation for SimRank and PSimRank requires N fingerprint trees to
be loaded and traversed (see Section 3.2.1.2). N can be easily increased with
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Figure 3.5: Fingerprint tree sizes for 80M pages with N = 100 samples.

Monte Carlo parallelization, but the sizes of fingerprint trees may be as large as
the number V of vertices. This would require both memory and running time
in the order of V , and thus violate the scalability requirements of Section 3.1.2.
The experiments verify that this problem does not occur in case of real web
data.

Fig. 3.5 shows the growing sizes of fingerprint trees as a function of path
length ℓ in databases containing fingerprints for all vertices of the Stanford
WebBase graph. The trees are growing when random walks meet and the
corresponding trees are joined into one tree. It is not surprising that the
tree sizes of PSimRank exceed that of SimRank, since the correlated random
walks meet each other with higher probabilities than the independent walks of
SimRank.

We conclude from the lower curves of Fig. 3.5 that the average tree sizes
read for a query vertex are approximately 100–200, thus the algorithm performs
like an external-memory algorithm on average in case of our web graph. Even
the largest fingerprint trees have no more than 10–20K vertices, which is still
very small compared to the 80M pages.

3.6.4 Run-time Performance and Monte Carlo Paral-
lelization

In the third set of our experiments we show the actual related query serving
performance of a sample implementation of our algorithms. In particular we
are interested in whether our methods can be scaled to be a backend for an
industrial strength web search engine. This focuses our experiments on the
parallelization features.

We have to show the following two properties:
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Figure 3.6: Actual query serving performance of a cluster of servers.

• The query serving response time is adequate for the requirement of on-
line query (i.e. should be approx. 0.5 seconds).

• The query throughput of a server farm is reliably calculable and scales
linearly (with a reasonable constant) in the computing resources avail-
able. This makes it possible to design and build a system for reliably
serving an arbitrary large query workload.

Our experiments were conducted on dual Opteron 2.0 GHz machines having
4 GB of RAM each and using cheap 7200rpm IDE disks. The web graph we
used for these experiments was taken from our national query engine indexing
the .hu domain and contains 19,550,391 pages. The parameters used for the
experiments were N = 100 and ℓ = 10.

We examined two scenarios: In the first scenario the index database is
stored on disks and for each of the N independent simulations a disk seek is
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required to load the fingerprint tree of the queried page. Then these trees are
traversed and the result list is returned. Parallelization is obtained by dis-
tributing the N independent simulations to more disks/servers. The minimum
required number of servers is one. In the second scenario the entire database
is stored in main memory. This way there is no need to wait for the disk seeks.
Parallelization is again obtained by distributing the independent simulations
to more servers. The minimum required number of servers is determined so
that their total available memory is at least the total database size (i.e. N · V
cells); in our case the database was 10.5 GB, thus we needed at least 3 servers
to run memory-based queries.

We measured query throughput by running a fixed sequential batch of
100 random queries in the different configurations and measuring the time
required. The resulting throughput expressed in evaluated queries/second is
depicted on Fig. 3.6. Note that the two requirements we stated above are
clearly confirmed: the total throughput increases linearly in the number of
computing nodes added, and the query serving response time is adequate from
as low as 3 computing nodes. With our 4 dual-processor PCs we can serve as
much as 6 million SimRank queries a day.

The performance difference between SimRank and PSimRank can be at-
tributed to the size difference of the typical fingerprint trees. Note that in
return we get considerably more and more precise results to a related query as
using SimRank, thus the computing time is not wasted.

It is important to note when interpreting the scalability factor, that a single
server in the farm can have more independent disks connected (in case of the
disk based query serving) or more CPU(core)s available for calculations (in
case of the memory based query serving). This makes it even more feasible to
build a large capacity cluster for serving Monte Carlo similarity functions. In
particular, connecting 8 (cheap) disks to a computing node gives approximately
the same performance in case of PSimRank as the memory based method. This
can get even more balanced as the actual query workload might utilize the disk
cache to serve frequently queried pages faster3.

We also ran performance comparison tests on existing and our methods. All
results were normalized to show throughput per node, in units of query/second/
/node. Here a node means a processor (in case of memory-based methods) or
disk (in case of disk-based methods). The contestants and results are summa-
rized in Table 3.1.

3.7 Conclusion and open problems

We introduced the framework of link-based Monte Carlo similarity search to
achieve scalable algorithms for similarity functions evaluated from the multi-
step neighborhoods of web pages. Within this framework, we presented the

3In our experiments the disk cache was emptied between the test runs.
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Method Throughput Comment
(query/sec/nd)

XJaccard (disk) 0.688 fingerprints: N = 50, path length: ℓ = 4
Co-citation (mem) 108.208 very low quality
Co-citation (disk) 3.700 very low quality
Text-based (disk) 0.193 inverted index of min-hash fingerprints

stored in Berkeley DB
SimRank (disk) 0.779 should be multiplied by # of disks/node
SimRank (mem) 9.344
PSimRank (disk) 0.606 should be multiplied by # of disks/node
PSimRank (mem) 3.872

Table 3.1: Query performance comparison of similarity search methods.

first algorithm to approximate SimRank scores with a near linear external
memory method and parallelization techniques sufficient for large scale com-
putation. We also presented the new similarity functions extended Jaccard-
coefficient and PSimRank. In addition, we showed that the index database
used for serving queries can be efficiently updated for the changing webgraph.
We proved asymptotic worst-case bounds on the required database size for
exact and approximate computation of the similarity functions. These bounds
suggest that exact computation is infeasible for large-scale computation in
general, and our algorithms are near space-optimal for the approximate com-
putation. We were the first to conduct experiments on large-scale web dataset
for SimRank. Our results on the Stanford WebBase graph of 80M pages sug-
gest that the novel PSimRank outperforms SimRank, cocitation and extended
Jaccard coefficient in terms of quality. To demonstrate scalability, we mea-
sured that the query throughput of our algorithms increases linearly with the
number of nodes in a cluster of servers. With 8 medium-sized servers, we were
able to serve 70 queries per second on a collection of 19M pages.

Finally we phrase some interesting future directions of research:

• Monte-Carlo methods have an extended literature. The convergence
speed of the straightforward application of the Monte-Carlo approxi-
mation could be improved by using more advanced methods. This could
translate in direct improvements in quality or decreasing the resource
requirements while maintaining the same quality level.

• Although we showed that the fingerprint tree-based query algorithm re-
quires a constant number of database accesses, the time and memory
requirements depend on the sizes of the individual trees. We conducted
experiments to show that this is manageable on a large scale, but it would
be nice to have a theoretical explanation on why. Assuming some graph
construction model about the web graph (or some measured parameters
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is that is enough) computing the expected size (or the size distribution)
of fingerprint trees would be interesting.

• It would be important to compare the performance (mainly quality)
of link-based similarity search methods to that of text-based similar-
ity search methods over the web. We expect that a suitable combination
of text- and link-based methods would outperform both, but finding that
suitable combination is an open problem.
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Chapter 4
The Common Neighborhood Problem

4.1 Introduction

We study the problem of finding pairs of vertices with large common neigh-
borhoods in directed graphs. We consider the space complexity of the problem
in the data stream model proposed by Henzinger, Raghavan, and Sajagopalan
[67]. In this model of computation, the input arrives as a sequence of elements
(for a graph, e.g., a sequence of arcs). Complexity is measured in terms of the
number of times an algorithm can scan the input (in order) and the amount
of space it requires to store intermediate results. Buchsbaum, Giancarlo, and
Westbrook [24] claimed results for common neighborhood problems (defined
below) in these models, but some of their lower-bound proofs are incorrect.
We present improved results that rectify these issues.

The motivation for studying such problems in data stream models was es-
tablished in the paper [24] as follows. Many large-scale systems generate mas-
sive sequences of data: records of telephone calls in a voice network [32, 72],
transactions in a credit card network [28, 102], alarms signals from network
monitors [88, 105], etc. From a practical standpoint, many applications re-
quire real-time decision making based on current information: e.g., fraud and
intrusion detection [28, 32, 102] and fault recovery [88, 105]. Data must be
analyzed as they arrive, not off-line after being stored in a central database.
From a theoretical (as well as practical) standpoint, processing and integrating
the massive amounts of data generated by a myriad of continuously operating
sources poses many problems. For example, external memory algorithms [107]
are motivated by the fact that many classical algorithms do not scale when
data sets do not fit in main memory. At some point, however, data sets become
so large as to preclude most computations that require more than one scan of
the data, as they stream by, without the ability to recall arbitrary pieces of
input previously encountered.

Common neighborhoods represent a natural, basic relationship between
pairs of vertices in a graph. In transactional data like telephone calls and

81
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credit card purchases, common neighborhoods indicate users with shared in-
terests (like whom they call or what they buy); inverted, they also represent
market-basket information [47, 58, 106] (e.g., which products tend to be pur-
chased together). In graphs representing relationships such as hyperlinks in
the World Wide Web or citations by articles in a scientific database, common
neighborhoods can yield clues about authoritative sources of information [81]
or seminal items of general interest [67].

Informally, we show that any O(1)-pass, randomized (two-sided error) data
stream algorithm that determines if any two vertices in a given directed graph
have more than c common neighbors for a given c requires Ω(

√
cn3/2) bits of

space. The definitions in Section 4.2 formalize the problems, and the results
are formally presented in Theorems 38, 39, 41, and 42. In addition to using
reductions from communication complexity, we also use results from extremal
graph theory to prove our claims.

4.2 Preliminaries

4.2.1 Data Stream Models

In the k-pass data stream model, an algorithm A accesses a one-way, read-
only input tape, a two-way, read-write work tape, and a one-way, write-only
output tape. A is allowed an arbitrary amount of internal computation (albeit
restricted to use the tapes for input, working memory, and output) as well as
an arbitrary number of the standard operations on any of the tapes: read or
write the symbol under the head, and move the head to the next position. A
is also allowed k− 1 rewind operations on the input tape, each of which resets
the head to point to the first symbol on the tape. The space required is the
length of the work tape in the worst-case over all possible inputs. A randomized
k-pass data stream algorithm A can also access a one-way, read-only random
tape, which contains an infinitely long string of random bits, and must report
the correct answer with probability 1 − ǫ for a given ǫ. The space required
is the length of the work tape in the worst-case over all possible inputs and
random tapes.

These models were formalized by Henzinger, Raghavan, and Sajagopalan
[67], who consider some neighborhood and connectivity problems in directed
graphs. Variations now underly a substantial literature in streaming algo-
rithms, aptly surveyed by Muthukrishnan [92].

4.2.2 Common Neighborhoods

Let G = (V, A) be a directed graph. In what follows, n = |V | and m = |A|. For
each vertex a, define N(a) = {b : (a, b) ∈ A}; we call each b ∈ N(a) a neighbor
of a. Also define deg(a) = |N(a)|, the out-degree of a. Given two vertices a and
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b, define N({a, b}) = N(a)∩N(b); we call N({a, b}) the common neighborhood
of a and b.

Define B(G) = {{u, v} : |N({u, v})| ≥ T ({u, v})}, where T ({u, v}) is a
given threshold function, which may depend on u and v. Given the threshold
function, we wish to find B(G). Since we are primarily interested in lower
bounds, we concentrate on variations with uniform thresholds, in particular
the following.

1. For all u, v ∈ V , T ({u, v}) = c, for some c ∈ [1, n − 1].

2. For all u, v ∈ V , T ({u, v}) = α min(|N(u)|, |N(v)|), where 0 < α ≤ 1.

Also due to our focus on lower bounds, we consider only the corresponding
decision problem of determining if |B(G)| ≥ τ , for some integer parameter τ .
When τ = 1, solving the decision problem determines whether there exists
any pair of vertices whose common neighborhood size is greater than the given
threshold function; we call this the non-emptiness query or the non-emptiness
problem.

Define f ǫ
CN

(n, c) to be the space required for a randomized data stream algo-
rithm to answer the non-emptiness query on an n-vertex graph, for T ({u, v}) =
c, with probability 1 − ǫ of being correct. We assume that the input graph
G is given as an adjacency list; i.e., as a sequence of the form {(a1, N(a1));
(a2, N(a2)); . . . ; (an, N(an))}, for some arbitrary ordering of the vertices in V .
Because any adjacency list corresponds to an edge list, but edge lists must be
sorted to obtain adjacency lists, this assumption provides more powerful lower
bounds than those assuming edge-list inputs.

4.2.3 Communication Complexity

We use reductions from two basic problems in communication complexity.
Henzinger, Raghavan, and Rajagopalan [67] also used these problems to lower
bound several data stream problems on graph algorithms. See Nisan and
Kushilevitz [93] for a general introduction to communication complexity.

In the following problems there are two players, A and B; their goal is
to compute a function value f(x, y) with A having parameter x and B having
parameter y. Thus they need to communicate. In a one-round protocol, A sends
B a single message (sequence of bits), after which B must compute f(x, y). In
a multi-round protocol, A and B alternate the transmission of messages, and
the protocol ends when one of them computes f(x, y). The cost of a protocol
is the total number of bits transmitted over all rounds in the worst case over
all possible input pairs (x, y).

• In the bit-vector index problem, denoted IND, player A has an n-bit
vector x, player B has an index y ∈ {1, 2, . . . , n}, and the function to
compute is f(x, y) = xy; i.e., B must output the yth bit of the input
vector x.
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• In the bit-vector disjointness problem, denoted DISJ, each player A and
B has an n-bit vector, x and y respectively, under the assumption that
there is at most one index i such that xi = yi = 1; f(x, y) = 1 if there
exists such an index i, and f(x, y) = 0 otherwise.1

We are particularly interested in randomized protocols for these problems.
We assume the private-coin, two-sided model, in which both A and B have
access to private sources of random bits and for a given error parameter ǫ, the
reported answer must be correct with probability 1− ǫ. The cost in this model
is the worst-case number of bits transmitted in all rounds over all possible
inputs and random choices of A and B.

Denote by f ǫ
IND

(n) and f ǫ
DISJ

(n) the respective complexities of the IND and
DISJ functions for some arbitrary by fixed protocol in this model. Kremer,
Nisan, and Ron [83, Theorem 3.7] show that for any one-round protocol and
constant ǫ < 1/3, f ǫ

IND
(n) = Ω(n). Bar-Yossef et al. [8, Theorem 6.6] show

that for any multi-round protocol, f ǫ
DISJ

(n) ≥ n
4

(1 − 2
√

ǫ).

4.2.4 Previous Results on Streaming Graph Problems

While plentiful results on streaming algorithms for many types of problems now
grace the literature [92], such results for graph problems are still relatively few.

Henzinger, Raghavan, and Sajagopalan [67] give upper and lower bounds
for solving various neighbor and path queries on graphs. Bar-Yossef, Kumar,
and Sivakumar [7] give a general reduction tool for a class of “list-efficient”
primitives and use it to devise a streaming algorithm for counting triangles
in undirected graphs. Feigenbaum et al. [48, 49] give streaming results for
various distance problems on undirected graphs, including the construction of
spanners, which was also discussed by Elkin and Zhang [42]. Feigenbaum et
al. also give streaming results for computing matchings [48] as well as Ω(n)
results for a general class of “balanced” graph problems [49].

For computing non-emptiness in directed graphs, Buchsbaum, Giancarlo,
and Westbrook [24] claimed results similar to ours, albeit in the deterministic
model only. Their results for single-pass algorithms relied on [24, Lemma 2.1],
the proof of which is incorrect. Specifically, they assume that a particular
association from a graph to a memory image is onto, but this assumption is
unjustified and potentially false. For O(1)-pass algorithms, they use a different
proof technique to show an Ω(n)-bit lower bound, which we strictly improve.

Our results show that finding common neighborhoods does not even fit into
the “semi-streaming” model of Feigenbaum et al. [48], which allows O(n logO(1) n)
bits of space to process an n-vertex input graph.

1The assumption that x and y share at most one 1-bit is typical in the literature but not
strictly necessary for our reduction.
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4.3 Single-pass data stream algorithms

Lemma 33. Assume that for a given s, m, and integer c ∈ [2, s], there exists
an undirected graph Gu with s vertices and m edges that does not contain
undirected K2,c as a subgraph. Then there exists a family of 2m directed graphs,
each of which has 3s + c − 1 vertices, for which any randomized, single-pass
data stream algorithm A that with probability 1− ǫ correctly answers the non-
emptiness query for T ({u, v}) = c must use at least f ǫ

IND
(m) bits of space.

Proof. Form a directed graph G by arbitrarily directing the edges of Gu. Now
augment G so that each original vertex has out-degree at least c and has a
unique neighbor not shared by any other vertex, as follows.

Assign an arbitrary labeling 1, . . . , m to the original arcs. For each original
vertex u, add two new vertices, fu and hu, and add arc (u, fu); this is the only
arc to fu. Each original vertex now has out-degree at least one. We call hu

the shadow vertex of u and will use it below. Finally add c − 1 new vertices
g1, . . . , gc−1, and for each original vertex u′ with fewer than c neighbors, add
arcs (u′, gi) for 1 ≤ i ≤ c − deg(u′).

Note that only original vertices have positive out-degree, each original ver-

tex now has out-degree at least c, and the augmented graph still has no
−−→
K2,c.

The latter claim follows because:

1. Only original vertices have non-zero out-degree.

2. Any original vertex u has fu as a neighbor not shared by any other vertex
and thus requires degree exceeding c to have c neighbors in common with
another vertex.

3. Any vertex u with degree exceeding c has only fu in addition to its

original neighbors, no other vertex is adjacent to fu, and no
−−→
K2,c existed

before the augmentation.

Now we reduce IND to the non-emptiness problem. Players A and B both
start with knowledge of the augmented graph.

Player A has an m-bit vector x. For each 1 ≤ i ≤ m, if xi = 1, he maintains
the original ith arc, say (a, b), in the augmented graph; otherwise, he changes
this arc to (a, hb). He then runs A on the modified graph and transmits the
final memory image (contents of the work tape), which represents the entire
state of A, to Player B.

Player B has a query index i ∈ [1, m], which he will use to create a new
vertex v and an appropriate neighborhood. He will finish running algorithm
A, starting from the received memory image, by feeding (v, N(v)) to it, so that
the answer to the non-emptiness query will be identical to bit i in A’s input
vector x.

Let (a, b) be the ith original arc. First set the neighbors of v to be the
following: b, fa, and any c − 2 additional neighbors of a. Then add to the
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neighbor set of v the shadow vertex for each original vertex in N(v) except
that for b. Notice that:

1. Based on the random choices of player A, for each pair x, y of original
vertices, at most one of (x, y) and (x, hy) appears as an arc in the modified
graph on which player A runs A. Thus any v′ 6= v may have at most c
common neighbors with v.

2. Because only a and v have arcs to fa, only a may have c common neigh-
bors with v.

3. If bit i was zero in the input x of player A, then b is not a common
neighbor of a and v, and thus B = ∅; if bit i was one, then B ⊇ {{a, v}}.

Thus the output of A after B’s additional input reports an answer to orig-
inal instance of IND with the same correctness criteria. Because the only
message transmitted from A to B was the memory image of A after the mod-
ified graph was input to it, the lemma follows.

Remark 34. If the directed graph G in the preceding proof has only vertices
of degree r and 0, then any graph on which A is run has only vertices of
degree r + 1 and 0 (except v). Thus we can change the threshold function to
be T ({u, v}) = α min(|N(u)|, |N(v)|) so long as c ≤ α(r+1), and the proof will
still work if we ensure that v has at least r+1 neighbors: b, fa, and ⌈α(r+1)⌉−2
neighbors of the respective vertex a along with any shadow vertices of such,
and possibly some new vertices. The number of extra vertices needed is linearly
bounded, so the lower bound applies asymptotically to any algorithm solving
the non-emptiness problem for T ({u, v}) = α min(|N(u)|, |N(v)|).

For s and c denote by ex (s, K2,c) the maximum number of edges a graph
vith s vertices may have without containing a subgraph isomorphic to K2,c.
Lemma 33 implies that f ǫ

CN
(n, c) = Ω(ex (n, K2,c)). Bounding ex(n, K2,c) in

terms of n and c is a problem in extremal graph theory, related to an open
problem posed by Zarankiewicz [110]. Füredi [55] has given an algebraic graph
construction to gain exact asymptotics for this problem. The following the-
orem and proof closely match Füredi’s result. We specify them to make the
constructed graphs regular, which will benefit the sequel.

Theorem 35 (Füredi [55]). For any prime power q and c such that q−1
c−1

is
an integer, there exists a bipartite q-regular undirected graph on two classes of
q2−1
c−1

vertices that has no K2,c as a subgraph.

Proof. For simplicity, let t = c−1. Let F be the q-element field, and let h ∈ F
be an element of order t. Let H = {hα : α = 0, 1, . . . , t − 1} be the set of
powers of h.

Consider the set F×F \ {(0, 0)} and the following equivalence relation ∼:
for any pairs (x, y) and (x′, y′), let (x, y) ∼ (x′, y′) if and only if there exists an
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α such that x′ = xhα and y′ = yhα. Each equivalence class contains t pairs;
thus the number of equivalence classes is q2−1

t
= q2−1

c−1
.

Consider a bipartite graph on vertex sets A and B, each vertex set corre-
sponding to the set of equivalence classes of F×F\{(0, 0)}. For each (x, y) ∈ A
and (x′, y′) ∈ B, connect them with an edge if and only if xx′ + yy′ ∈ H . This
is clearly compatible with the relation ∼.

Let (x, y) ∈ A be a vertex. Assume without loss of generality that x 6= 0.
Then for any y′ ∈ F and α ∈ {0, 1, . . . , t − 1} there is a unique solution for
x′ to the equation xx′ + yy′ = hα. There are thus tq solutions (x′, y′) to
xx′ + yy′ ∈ H , which form equivalence classes of size t each. Therefore (x, y)
in A has q neighbors in B.

Consider a pair (x, y) and (x′, y′) of distinct vertices in A. For any common
neighbor (u, v) ∈ B of them, the following equations hold for some α, β ∈
{0, 1, . . . , t − 1}:

xu + yv = hα

x′u + y′v = hβ.

Considering this as a linear system of equations in variables u, v it follows that:

• If the determinant ∣∣∣∣
x y
x′ y′

∣∣∣∣
is non-zero, then for each α, β the equation has a unique solution for
(u, v). There are t2 choices for the pair α, β. As the solutions come in
equivalence classes of size t, the vertices (x, y) and (x′, y′) have exactly t
common neighbors.

• If the above determinant is zero, then there is an element g ∈ F \ {0}
such that x′ = xg and y′ = yg. (Recall that neither (x, y) nor (x′, y′) can
be (0, 0).) Then the system of equations has no solution unless hβ = hαg,
from which g ∈ H , and thus (x, y) ∼ (x′, y′), which is a contradiction.

We formalize the end of the preceding proof for later use.

Lemma 36. For the bipartite graph for parameters q and c constructed by
Theorem 35, the following holds: The vertices of A can be partitioned into
q +1 classes, each having q−1

c−1
elements, such that any two vertices in the same

class have no common neighbors and any two vertices in different classes have
exactly c − 1 common neighbors.

Proof. Recall the construction in the proof of Theorem 35. For any (x, y) ∈ A,
consider the vertices (x′, y′) = (xg, yg) ∈ A for g ∈ F \ {0}. As g traverses
the cosets of H , we get a class of q−1

t
vertices in A, no pair of which has a

common neighbor. Thus we can classify the vertices of A into q2−1
t

· t
q−1

= q+1
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classes, each having q−1
t

elements, such that any two vertices in the same class
have disjoint neighborhoods, and any two vertices from different classes share
exactly t common neighbors.

The following upper bound will be essential in giving near-optimal algo-
rithms for the common neighborhood problem.

Claim 37. For directed graphs ex (n,
−−→
K2,c) ≤

√
cn3/2.

Proof. Theorem 2.3 of Bollobás [18, p. 310] states that

ex (n,
−−→
Ks,t) ≤

1

2
(s − 1)1/t(n − t − 1)n1−1/t +

1

2
(t − 1)n.

The claim follows by setting s = c and t = 2.

We are now ready to state the main theorems of this section.

Theorem 38. For any constant ǫ < 1/3, there exist infinitely many values
of n and c such that for n-node graphs and c common neighbors f ǫ

CN
(n, c) =

Ω(
√

cn3/2) for one-pass data stream algorithms. There exists a deterministic,
one-pass data stream algorithm that solves the non-emptiness problem with
T ({u, v}) = c using O(

√
cn3/2) cells (O(

√
cn3/2 log n) bits) of space.

Proof. By Theorem 35, for infinitely many values of s and c there exists a
graph with s vertices and Ω(

√
cs3/2) arcs that does not contain K2,c. The

lower bound follows from Lemma 33 by setting n = 3s + c − 1 ≤ 4n and
using the result from Kremer, Nisan, and Ron [83, Theorem 3.7] that for any
one-round protocol and constant ǫ < 1/3, f ǫ

IND
(k) = Ω(k).

For the upper bound consider the following algorithm. Store the entire
graph and process it off-line if the number of arcs does not exceed

√
cn3/2.

Otherwise by Claim 37 the proper answer to the non-emptiness query is “yes.”

To get a similar lower bound for the non-emptiness problem with T ({u, v}) =
α min(|N(u)|, |N(v)|) we use Remark 34 with the graphs of Theorem 35.

Theorem 39. For any α ∈ (0, 1], there exist infinitely many values of n such
that for n-node graphs f ǫ

CN
(n, α min(|N(u)|, |N(v)|)) = Ω(αn2).

Proof. For any fixed 0 < α, we can fix a α/2 < β < α such that there are
infinitely many prime powers q and c dividing q − 1 with c

q−1
∈ [β, α]. Thus

there are graphs for infinitely many n having n = 2 q2−1
c

= Θ(q/α) vertices

and Θ(nq) = Θ( q2

α
) = Θ(α q2

α2 ) = Θ(αn2) arcs. The theorem follows from
Remark 34.
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4.4 O(1)-pass data stream algorithms

In this section we will derive bounds similar to those of the previous section.
As the algorithms are allowed a constant number of passes over the input, the
players can exchange messages in both directions, so we can no longer use a
small and isolated augmentation of the graph depending only on the input of
one player. This makes the reduction more complex, and our main tool will
be the DISJ problem, for which multi-round protocols have been bounded.

Lemma 40. Assume that for some m and d > 0 there exists a bipartite graph
G0(X, Y, E) with m edges such that:

1. X is partitioned into known classes X1, . . . , Xk;

2. no pair of vertices in any one class of X has more than one common
neighbor;

3. no pair of vertices in two distinct classes of X has more than d common
neighbors.

Then for any c > d there exists a family of directed graphs with 3|X|+|Y |+k(c−
2) vertices each for which any randomized, O(1)-pass data stream algorithm
A that with probability 1 − ǫ correctly answers the non-emptiness query for
T ({u, v}) = c must use Ω(f ǫ

DISJ
(m)) bits of space.

Proof. We will give a reduction from DISJ, using a similar framework to the
reduction used in the proof of Lemma 33. Using G0 we will define a family of
directed graphs G with three classes X ′, Y ′, and Z ′ of vertices. Neighborhoods
of vertices in X ′ (rsp., Y ′) will depend on the input vector x of player A (rsp., y
of player B); vertices in Z ′ will have out-degree zero. Then player A will run A
on the adjacency lists of vertices in X ′, after which he will transmit the memory
image of A to player B. Player B will then continue the run of A by inputting
the adjacency lists of vertices in Y ′ and transmit the resulting memory image
back to player A. A and B will iterate this procedure, always starting from
the most current memory image received, until one declares the answer to the
non-emptiness query. By construction, this answer will be identical to that
for the instance of DISJ, and hence the lower bound for the latter will apply
to the total number of bits transmitted in the protocol for A. By assumption
only O(1) passes are used, so the bound applies asymptotically to at least one
pass.

Assign an arbitrary labeling 1, . . . , m to the edges of graph G0. Let the
vertices of graph G be the following:

• for each vertex u ∈ X in G0, three vertices µ0(u), µ1(u), µ2(u);

• for each vertex v ∈ Y in G0, one vertex ν(v);

• for 1 ≤ i ≤ k, c − 2 vertices γi
1, . . . , γ

i
c−2.
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Define the arcs of G as follows.

• For each u ∈ X in G0, let i be such that u ∈ Xi, and create arcs
(µ1(u), µ0(u)), (µ2(u), µ0(u)), and for 1 ≤ j ≤ c − 2, (µ1(u), γi

j) and
(µ2(u), γi

j). Thus µ0(u), γi
1, γ

i
2, . . . , γ

i
c−2 are common neighbors of µ1(u)

and µ2(u) in G.

• For each i such that bit xi = 1, create arc (µ1(u), ν(v)) corresponding to
the ith edge (u, v) of G0.

• For each i such that bit yi = 1, create arc (µ2(u), ν(v)) corresponding to
the ith edge (u, v) of G0.

Define vertex classes X ′ = {µ1(u) : u ∈ X}, Y ′ = {µ2(u) : u ∈ X}, and
Z ′ = {µ0(u) : u ∈ X}∪{ν(v) : v ∈ B}∪{γi

j : 1 ≤ i ≤ k, 1 ≤ j ≤ c−2}. Then
based upon G0 and their respective input vectors, players A and B each know
the vertex set of G; player A knows the neighbors of vertices in X ′; and player
B knows the neighbors of vertices in Y ′. Vertices in Z ′ have out-degree zero.

For any a 6= b ∈ X, we claim µ1(a) and µ1(b) in G have at most c − 1
common neighbors. If a and b are in the same class Xi, then µ1(a) and µ1(b)
have c − 2 common neighbors γi

1, . . . , γ
i
c−2 plus a common neighbor ν(z) for

any z that is a common neighbor of a and b in G0; by assumption there is
at most one such z. If, on the other hand, a and b are in distinct classes of
X, then µ1(a) and µ2(b) only have common neighbors ν(z) for all z that are
common neighbors of a and b in G0; by assumption there are at most d < c
such z’s. Similarly the pairs µ1(a), µ2(b); µ2(a), µ1(b); and µ2(a), µ2(b) have at
most c − 1 common neighbors in G.

Thus the only pairs of vertices in G with at least c common neighbors are
of the form µ1(u), µ2(u) for some u ∈ X. Such a pair has c common neighbors
if and only if there is some v ∈ Y such that (µ1(u), ν(v)) and (µ2(u), ν(v)) are
arcs in G, which occurs if and only if the ith bit is 1 in both input vectors,
where (u, v) is the ith edge in G0.

The answer to the non-emptiness query is therefore identical to that for
the instance of DISJ. Note that it does not matter whether the specification
of DISJ assumes that the input vectors have at most one common bit set.

We can use Füredi’s constructions to bound the space requirement in terms
of the number n of vertices for a fixed c.

Theorem 41. For any fixed c, there exist infinitely many values of n such that
for n-node graphs and c common neighbors f ǫ

CN
(n, c) = Ω(n3/2(1 − 2

√
ǫ)) for

O(1)-pass data stream algorithms.

Proof. Theorem 35 posits the existence of K2,2-free bipartite graphs on s + s
vertices with Θ(s3/2) edges for infinitely many s. To any such graph, apply
Lemma 40 with just one K2,2-free class of vertices, and set n = 4s + c − 2.
Bar-Yossef et al.’s result [8, Theorem 6.6] that for any multi-round protocol,
f ǫ
DISJ

(k) ≥ k
4
(1 − 2

√
ǫ), completes the proof.



4.5. CONCLUSION AND OPEN PROBLEMS 91

To gain asymptotics similar to Theorem 38 for the space needed in the
O(1)-pass model, we exploit the more detailed view given by Lemma 36.

Theorem 42. There exist infinitely many values of n and c with c = O(n1/3)
such that for n-node graphs f ǫ

CN
(n, c) = Ω(

√
cn3/2(1−2

√
ǫ)) for O(1)-pass data

stream algorithms. This is sharp up to a logarithmic factor; i.e., there exists
an algorithm that solves the non-emptiness query with O(

√
cn3/2 log n) bits of

space.

Proof. For infinitely many values of q and c, Lemma 36 posits the existence
of bipartite graphs G0(X, Y, E) such that |X| = |Y | = q2−1

c−1
; |E| = q q2−1

c−1
; and

X can be partitioned into q + 1 classes of q−1
c−1

vertices each, such that any two
vertices in identical classes have disjoint neighborhoods, and any two vertices
in different classes have c − 1 common neighbors. To any such graph, apply
Lemma 40 with d = c − 1—the partition of X is given by Lemma 36—and
set n = 4 q2−1

c−1
+ (q + 1)(c − 2). To keep n = Θ( q2

c
), we must further bound

qc = O( q2

c
), yielding the requirement c = O(

√
q). Thus q2

c
= Ω(q3/2), so it

suffices to assume c = O(n1/3).

Now, |E| = q q2−1
c−1

= Θ( q3

c
) = Θ(

√
c q3

c3/2 ) = Θ(
√

cn3/2). Again, Bar-Yossef
et al.’s result [8, Theorem 6.6] completes the proof of the lower bound. The
upper bound was presented in the proof of Theorem 38.

4.5 Conclusion and open problems

We have provided lower bounds on the space needed for O(1)-pass, randomized
data stream algorithms to determine if a given directed graph has a pair of
vertices with a common neighborhood of a given size. An open problem is to
remove the restriction “c = O(n1/3)” from the result of Theorem 42, or provide
an appropriate algorithm if the bound is sharp.

Bibliographical notes

This chapter focuses on the problems studied in [24]. In that paper the proofs
given by the original authors were incorrect. This chapter provides correct
proofs and generalizations of the theorems that are the work of Balázs Rácz,
and were first published in the journal Theoretical Computer Science as [25].
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