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Abstract

This thesis is a systematic presentation of our results in the field of stabilization of sampled
data nonlinear systems by receding horizon control. The results presented in the thesis
were published in [17], [18], [19], [20], [21], [22], [23], [41] and [42]. The research reported
in this thesis was carried out at the Budapest University of Technology and Economics,
Mathematical Institute, Department of Differential Equations.
The stabilization problem of nonlinear systems has received considerable attention in

recent decades. The use of digital computers in the implementation of the controllers
necessitated the investigation of sampled-data systems. However, the research activity
has only turned to the systematic study of the stabilization of continuous-time system
with piecewise constant controllers on the basis of approximate discrete-time models in
the last few years. In our work, the receding horizon (or model predictive) control method
is applied for the construction of stabilizing feedback. It is shown that the use of small
sampling parameters alone doesn’t guarantee the stability of a closed-loop exact system.
A necessary and sufficient condition for the existence of stabilizing state-feedback con-
troller is presented. A suitable version of the receding horizon control is presented on the
basis of the solution of Bolza-type optimal control problems for the parametrized family
of approximate discrete-time models. We investigate both situations when the sampling
period T is fixed and the integration parameter h can be chosen to be arbitrarily small,
and when these two parameters coincide but can be adjusted arbitrarily. Sufficient con-
ditions are established which guarantee that the controller that renders the origin to be
asymptotically stable for the approximate model also stabilizes the exact discrete-time
model for sufficiently small integration and/or sampling parameters. These conditions
concern directly the data of the problem and the design parameters of the method, but
not the results of the design procedure. From practical point of view, it is important to
know whether the basin of attraction is sufficiently large when some stabilizing controller
is applied. In the case of fixed sampling periods we can only prove local result. However,
in the case of an adjustable sampling parameter, we show that the basin of attraction con-
tains any compact subset of the set of initial points which are practically asymptotically
controllable to the origin with piecewise constant controllers. (Thus, if the controllability
property is semiglobal, then semiglobal practical asymptotic stability is achieved, as well.)
The effectiveness of the method is illustrated by simulation examples.
A multirate version of the receding horizon algorithm for the stabilization of sampled-

data nonlinear systems is presented. The computations are based on discrete-time ap-
proximate models. ”Low measurement rate” is assumed, and the presence of measurement
and computational delays are taken into account. In this approach, we investigate the
case when the sampling period T is fixed and h can be chosen to be arbitrarily small. It
is shown that, if the occurring delays are not taken into account, then instability of the
closed-loop may occur, but under reasonable assumptions, the proposed algorithm gives
a closed-loop system which is semiglobally practically asymptotically stable about the
origin. In the second part of the work, the proposed methods are applied to recently de-
veloped models of the interaction of the HIV virus and the immune system of the human
body. Two kinds of four-dimensional models are considered, in which the drug dose is
considered as a control input and the goal is to stabilize the system around the uninfected
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steady state. Both the one-step and the `−step versions of the receding horizon control
method are used to determine the treatment schedules. Simulation results are discussed.

Ahmed Elaiw

Budapest, 2004, November
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Notation and abbreviation

R, N, Z The sets of real, natural and integer numbers
Rn The sets of all n-tuples (vectors) of real numbers
∀ Universal quantifier
a ∈ A a is an element of set A
A ⊂ B A is a subset of B
ẋ The first derivative of x w.r.t. time t
kxk Euclidean norm of x
B∆ Closed ball with radius ∆ and center 0
A0 Transpose of matrix or vector A
A−1 Inverse of matrix A
a ◦ b Composite operation of a and b
a ≡ b a is equivalent to b
A/D Analog to digital
D/A Digital to analog
RHC Receding horizon control
MPC Model predictive control
PAC Practical asymptotic controllability
AC Asymptotic controllability
PAS Practical asymptotic stability
AS Asymptotic stability
HIV Human Immunodeficiency Virus
AIDS Acquired Immune Deficiency Syndrome
RTI Reverse transcriptase inhibitors
PI Protease inhibitors
HAART Highly active antiretroviral therapies
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Chapter 1

Introduction

This thesis explores important issues in receding horizon control design of nonlinear sam-
pled data systems. While sampled-data nonlinear control systems are commonly found
in real applications, the design tools for such systems are still limited. The research cov-
ered in this thesis contributes theoretical results for the receding horizon control design
of sampled-data nonlinear systems. The thesis also present applications of the results
obtained.

1.1 Sampled-data systems

The stabilization problem of nonlinear systems has received considerable attention in
the last decades. The use of digital computers in the implementation of the controllers
necessitated the investigation of sampled-data systems. In this problem, a continuous-
time plant is typically controlled by a discrete-time feedback algorithm. By controlling a
continuous-time plant using a digital controller that operates in a discrete-time environ-
ment, we form a sampled-data system. A sampled-data control system therefore consists
of a continuous-time plant/process controlled by a digital controller, as a digital com-
puter providing the control action. Consequently, a sampled-data control system is often
referred to as computer-controlled system. A general configuration of a sampled-data
control system is given schematically in Figure 1 [4].

                               )}({ kty                                    )}({ ktu                           )(tu                                )(ty
A/D Algorithm D/A Process

ClockComputer

Fig. 1. General sampled-data control system configuration.
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In Figure 1, the output from the process y(t) is a continuous-time signal. The output
is converted into digital form by the analog-to-digital (A/D) converter. The conversion
is done at the sampling time, tk. The control algorithm interprets the converted signal,
{y(tk)}, to calculate the required control sequence, {u(tk)}. This sequence is converted to
an analog signal by a digital-to-analog (D/A) converter. All these events are synchronized
by a real-time clock in the computer. The digital computer operates sequentially in
time, and each operation takes some time. The D/A converter must, however, produce a
continuous-time signal. The simplest way to do this is to keep the control signal constant
between each conversion time. In this case the system runs open-loop in the time between
the sampling instants because the control signal is constant, irrespective of the value of
the plant output y(t). In practice, the A/D and D/A converters can be parts of the
computer or may be built as separate units.

1.1.1 Emulation design

One way to design a digital controller is to design a continuous-time controller based
on the continuous-time plant model and then discretize it using fast sampling for digital
implementation (see e.g., [7], [59], [84], [90], [102]). Also, this approach is proposed in
connection with the receding horizon method among the others in [9], [10], [29], [30], [31],
[33], [47]. However, some difficulty may arise during the application of this method:
1) because of hardware limitations, it may be impossible to reduce the sampling period

to a sufficiently small value that ensures the desired performance of the system. A set
of comparative examples in [49] illustrate this point. These examples present comparison
of various methods of discretizing a continuous-time controller with the variation of the
sampling periods. It is shown that stabilization is in general achieved only when very fast
sampling (i.e. very small sampling periods) is used. Moreover, the system may lose the
stability when a large sampling period is used;
2) the exact solution of the nonlinear continuous-time model is typically unknown,

therefore an approximation procedure is unavoidable;
3) it may be difficult to implement an arbitrarily time-varying control function.
In this method, the sampling is completely ignored at the controller design step, there-

fore we expect that if the sampling is taken into account in the design, better performance
can be achieved. In such cases, a better alternative is a direct discrete-time design which
is based on the discrete-time model of the plant.

1.1.2 Direct discrete-time design

The second way to design a digital controller is to discretize the continuous-time plant
model and design a controller on the basis of the discrete-time model. In [60] it is shown
that the discrete-time controller obtained by direct discrete-time design outperforms the
emulation controller. An example presented in [77] has exhibited similar phenomenon,
where the direct discrete-time controller consistently shows a larger domain of attraction
than the emulation controller. Also in [98], a direct discrete-time controller guarantees
asymptotic stability of the closed-loop system that is not achieved by the emulation
controller for a two-link manipulator system with Slotine and Lie controller. Therefore, if
the sampling is considered from the beginning of the design process, better performance
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can be achieved. Moreover, larger sampling periods may be applied to the controller
obtained using a direct discrete-time design.
While for linear systems we can in principle compute the exact discrete-time model

of the plant, this is not the case for nonlinear systems. Computing the exact model
involves solving an initial value problem. In the case of nonlinear systems, this involves
solving analytically a nonlinear differential equation over one sampling interval, which is
impossible in general. Instead, various numerical algorithms are used to approximate the
solutions. As a result, the controller design can be carried out by means of an approximate
discrete-time model. This has motivated research on controller design via approximate
discrete-time models for sampled-data nonlinear systems ([16], [34], [67]). A drawback
of these early results was their limited applicability: the studies investigated a particular
class of plant models, a particular approximate discrete-time model (usually Euler) and
a particular controller.
The issue in direct discrete-time design does not stop as we use an approximate model

to design a controller that will be implemented to control the original continuous-time
plant. Numerical approximation we use to obtain the approximate model of the plant will
certainly cause discrepancy between the exact and the approximate models of the plant.
This inaccuracy of modeling can lead the design to fail. It can happen that the controller
obtained using the approximation-based design stabilizes the approximate model of the
closed-loop system, but destabilizes the exact model of the system for all sampling periods.
Therefore, there is a strong concern to build a framework of direct discrete-time design
that provide conditions which guarantee that the final design objectives are still achieved
even though an approximate model is used for the design.
A more general framework for stabilization of sampled-data nonlinear systems via their

approximate discrete-time models that is applicable to general plant models, controllers
and approximate discrete-time models was presented in the recent papers, ([74], [75],
[78], [79], [80]). In [78] and [80] a systematic investigation of the connection between the
exact and approximate discrete-time models is carried out. Moreover, results in [78] and
[80] present a set of general sufficient conditions on the continuous-time plant model, the
approximate discrete-time plant model, and the designed controller that guarantee that
the same family of controllers that stabilizes the approximate discrete-time model also
practically stabilizes the exact discrete-time model of the plant both for the cases of fixed
sampling period T and varying integration parameter h [78] and for the case when these
two parameters coincide [78] and [80].
The approximation-based direct discrete-time design procedure is to:
1) develop a parametrized family of approximate discrete-time models, where the fam-

ily of approximate models approaches the exact model as the parameter (e.g., integration
and/or sampling period) converges to zero;
2) design a corresponding family of discrete-time controllers (e.g., by receding horizon

control method);
3) pick the modeling parameter small enough to guarantee stability of the exact non-

linear sampled-data system.
Results in [78] and [80] provide a framework for controller design via approximate

discrete-time models, but they did not explain how the actual controller design can be
carried out within this framework. Indeed, we can say that the results in [78] and [80] are
prescriptive since they can be used to guide one when designing a controller based on an
approximate discrete-time plant model. These results were further generalized in [74] and
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[75] to deal respectively with integral versions of input-to-state stabilization and input-
to-state stabilization of sampled-data nonlinear systems with disturbances. Controller
design within this framework is also addressed in ([58], [76], [77] and [79]).
There are several ways to design controllers satisfying the conditions given in [78] and

[80]. In [36], optimization-based methods are studied; the design is carried out either
via an infinite horizon optimization problem or via an optimization problem over a finite
horizon with varying length. To relax the computational burden needed in the case of
infinite horizon optimization and in the case of optimization over a varying time interval,
the application of the receding horizon method offers good vistas. In [36], it was pointed
out that the results presented in that paper were not directly applicable for receding
horizon control.

1.1.3 Multirate samplings

Both of the emulation and direct discrete-time approaches mentioned above are essentially
single rate, i.e., the sampling rates of the control function and the state measurement
coincide. Moreover, it is assumed that the measurement result and the corresponding
controller are available instantaneously. The latter assumption is of course unrealistic and
may be considered as one of the reasons why different rates of control and measurement
samplings have to be taken into account: it is meaningless or impossible to perform a
new measurement until the results of the previous one become available and worked up.
Besides the measurement and computational delay, the nature of the problem may involve
different measurement and control sampling rates (see e.g. [21]).
The notion of multirate sampled-data feedback (which was introduced to the best of

our knowledge by [89]) is used in this thesis in this sense. Polushin and Marquez address
the design of multirate controllers based on the knowledge of a continuous-time stabilizing
feedback for the continuous-time model as well as on that of a discrete-time stabilizing
feedback for the approximate model under the assumption of ”low measurement rate”
and in the presence of measurement delay. However, they did not explain how the actual
controller design can be carried out.

1.2 Receding horizon control method

Receding horizon control (RHC), also known as model predictive control (MPC) has re-
ceived much interest in the academic community in recent years, due to its capacity for
handling constraints and obtaining a stabilizing state feedback controller. In addition,
receding horizon control has several advantages: 1) it requires simpler computation al-
gorithms than the more widely-known optimal control on an infinite horizon; 2) when a
finite future command is available it presents good tracking performance, which is an im-
portant issue in industrial applications; 3) the receding horizon control presents a proper
control strategy for time-varying systems. While the optimal control on the infinite hori-
zon requires all future system parameters, which are unavailable in actual problems, the
receding horizon control needs only finite future system parameters.
The receding horizon method obtains the feedback control by solving a finite horizon

optimal control problem at each time instant using the current state of the plant (i.e.,
x(t)) as the initial state for the optimization and applying ”the first part” of the optimal
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control.
Although receding horizon controllers of the first generation did not guarantee closed-

loop stability even in the linear case [5] by, now there are several RHC schemes with
guaranteed stability.
One way to enforce stability is to solve a Lagrange-type optimization problem subject

to zero terminal equality constraint x(t +N) = 0, where N is the optimization horizon.
This method has been established in ( [54] and [55]), for time-varying linear systems. The
method has been generalized for nonlinear systems in ([11], [70] and [71]), for continuous-
time systems and in ([1] and [50]) for discrete-time systems. In [11] and [50], it is shown
that, the value function (of a finite horizon optimal control problem) could be used as Lya-
punov function to establish stability of the receding horizon control of nonlinear systems;
thereafter, the value function was almost universally employed as a Lyapunov function for
stability analysis of receding horizon control. In [70], a strong assumption is necessary to
guarantee that the optimal value function is continuously differentiable, which is relaxed
in [71] only for local Lipschitz continuity of the optimal value. The main advantages of
a zero equality terminal constraint are straightforward application and conceptual sim-
plicity. One disadvantage of a zero terminal constraint is that the predicted system state
is forced to reach the origin in a finite time. This leads to feasibility problems for short
horizon length, i.e., to small regions of attraction. From a computational point of view,
solving nonlinear dynamic optimization problems with equality constraints is highly com-
putationally intensive, and in many cases it is impossible to perform within a limited
time.
As seen above, the zero terminal equality constraint may be unsatisfactory for per-

formance and implementation issues. Hence, the idea of replacing the equality constraint
with an inequality one, which is much easier to handle computationally, is proposed in
([12], [39], [72], [93]). The purpose of this approach is to force the state into a termi-
nal constraint set Xf in a finite time i.e., x(t + N) ∈ Xf . To guarantee stability, they
suggested a dual-mode receding horizon control scheme with a local linear state feedback
controller inside the terminal region and a receding horizon controller outside the terminal
region. Closed-loop control with this scheme is implemented by switching between the two
controllers, depending on the states being inside or outside the terminal region. The main
disadvantage of this scheme is that the switching from nonlinear control law to linear state
feedback control is somewhat artificial and introduces certain discontinuities. Moreover,
this approach cannot be used if the linearization of the system is not stabilizable.
Another important scheme which was developed in [5] used a terminal cost g(.) to

ensure closed-loop stability of unconstrained linear systems. There was no need to impose
terminal constraints in this approach and the controller was computed off-line. In addition
to these results, a very important result [91] was developed in the context of linear stable
systems with input constraints. In this paper, the terminal cost is proposed to be an
infinite horizon value function associated with zero control.
A different approach employs both a terminal constraint set Xf as well as a terminal

cost g(.). This variant of receding horizon control is the version attracting most attention
in current research literature. In this method the terminal constraint x(t + N) ∈ Xf is
imposed in the optimization problem implicitly (see e.g., [14], [37], [38], [43], [47], [56],
[66] and [85]) or explicitly (see e.g., [9], [10], [29], [30], [31] and [33]). The main difficulty
in [37], and [56] is that the final state penalty function g(.) has to satisfy a Hamilton-
Jaccobi-Bellman-type inequality in the whole state space. In ([38], [43], [47] and [85]),



6 CHAPTER 1. INTRODUCTION

the terminal constraint is omitted from the optimization problem and the horizon N is
chosen to ensure automatic satisfaction of the terminal constraint. In these papers it
is shown that the essential requirement for stability is that g(.) be a control Lyapunov
function in the neighborhood of the origin. The terminal constraint set is chosen as a
level set of the terminal cost function i.e. Xf = {x : g(x) ≤ η}. It is shown in ( [38],
[47], [85]) that, the domain of attraction contains a level set of the optimal value function
VN(.). In [43], the nonlinear receding horizon control closed-loop system is shown to be
infinite-horizon with the new definition of the terminal cost, provided that the terminal
cost exactly captures the infinite-horizon optimal value in a neighborhood of the origin.
Moreover, stability and optimality are proven for a set of initial states, which is invariant
and approaches the set of all controllable states, as the prediction horizon N increases.
In ([14], [66] and [86]), stability of the receding horizon control scheme is guaranteed by
using a finite horizon optimization problem with a (possibly non-quadratic) terminal state
penalty. The penalty is equal to the cost incurred over an infinite horizon by applying a
(locally stabilizing) linear control law to the nonlinear system. However, the linear control
law is never implemented but it is just used to compute the terminal state penalty. In
these papers, a state inequality constraint is implicitly imposed.
Quasi-infinite horizon RHC is established in [8], [9], [27]. In this approach, the terminal

cost and the terminal constraint set are obtained on the basis of a locally stabilizing linear
control law considering a quadratic cost function. The terminal cost and the terminal
constraint set are chosen as g(x) = x0Px and Xf = {x : x0Px ≤ η}, respectively. If the
linearized system is stabilizable, then P and Xf can be computed off-line. However, the
linear control law is never actually applied but it is just used to compute Xf and g(.). If
g(.) and Xf are determined accordingly, the open-loop optimal trajectories found at each
time instant approximate the optimal solution for the infinite horizon problem.
The disadvantage of the approaches proposed in [8], [9], [14], [27] and [66]) is that, if the

linearization of the system around the origin cannot be stabilized then these approaches
cannot be used.
When there are no constraints on the state, then the terminal constraint can be omitted

from the optimization problem to reduce the computational burden in case of explicit
terminal constraint. Moreover, a larger domain of attraction can be achieved by increasing
the optimization horizon or by weighting the terminal cost (see [63]).
Results in [101] present a RHC scheme that deviates from conventional RHC schemes

in that the control horizon is also a minimizer and the whole input sequence is imple-
mented. In this scheme inequality contractive constraints are added so that the norm
of the state vector is reduced by a prespecified factor before a new optimization begins.
The stability is guaranteed by assuming the existence of the solution of the optimization
problem at each time. However this is a very strong assumption and cannot be guaranteed
in general (see [68]).
In nonlinear receding horizon control, several schemes exist that guarantee closed-loop

stability but, the necessary on-line computation time is typically not taken into account.
Even though recent developments in dynamic optimization have led to efficient numerical
solution methods for the open-loop optimal control problem (see e.g., [28]), the solution
time is often significant. Few works take the computational delay into account (see [10]
and [29]). In these papers the proposed approaches are based on the continuous-time
model (emulation design). In some applications, the necessary time to measure the state
is significant and this causes measurement delay. Taking into account the resulting delays
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are thus of paramount interest. Otherwise the performance might degrade significantly
or even instability of the closed-loop may occur.
A great majority of stabilization of nonlinear systems by the RHCmethod deal; 1) with

continuous-time systems with sampling (see e.g., [9], [10], [29], [30], [31], [33], [47], [72]).
In these papers, emulation designs are used which suffer from the drawbacks mentioned
above; 2) with continuous-time systems without taking into account any sampling (see
e.g., [11], [37], [38], [66], [70]). Although rigorous stability results for nonlinear RHC have
been established in these papers, they are not applicable in practical implementations; 3)
with discrete-time systems assuming that the exact discrete-time model of the plant is
known (see e.g. [1], [14], [40], [43], [50], [64], [85]). However, as we have already pointed
out, this is typically not true even if the continuous-time plant model is known exactly.
We refer the reader to the excellent overview papers ([2], [15], [32], [57], [69]) and to
the references therein. To the best of our knowledge, the only exceptions are the very
recent works of [46], where the effect of the sampling and zero-order hold is considered
assuming the existence of a global control Lyapunov function and of [65], where a sampled-
data control is applied to the continuous-time system without taking into account any
approximation in the plant model.

1.3 RHC for HIV/AIDS

One of the very important applications of the optimal control theory is to determine
optimal treatment schedules of Acquired Immune Deficiency Syndrome (AIDS). The in-
teraction of Human Immunodeficiency Virus (HIV) (which causes AIDS) with the immune
system of the human body can be described by mathematical models. One way to de-
sign optimal treatment is to design an open-loop optimal controller by using Pontryagin’s
Maximum Principle (see [6], [13], [26] and [52]). However, some drawbacks may arise
during the application of this method: 1) the optimization is performed over a finite time
horizon, and no care is taken over the evolution of the process behind this time horizon; 2)
the optimal controller is obtained as a continuous-time controller, in spite of the fact that
continuous variation of the dose seems hard to apply in the real treatment of patients; 3)
the optimal controller is given in an open-loop form and it does not deal with the changes
that may happen in the system during the treatment.
To overcome the above-mentioned problems, the application of the receding horizon

control method (RHC) based on the approximate discrete-time model seems to be obvious.
Last year, some papers [17], [19], [21], [23], [94], [100] appeared simultaneously (and

independently of each other) with the application of receding horizon control method to
stabilize AIDS models. In [94] and [100], the effect of the discretization of the continuous-
time model on the stability analysis is completely ignored. Moreover, the sampling is
completely ignored at the controller design step.

1.4 Basic definitions and background results

In this section we formulate some definitions and various important results from the
literature that are required to prove results in this thesis.
Standard notation will be used throughout the thesis. The sets of real and natural

numbers (including zero) are respectively denoted as R and N. A function σ : R≥0 → R≥0
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is of class-K if it is continuous and strictly increasing with σ(0) = 0. It is of class-
K∞ if it is of class-K and unbounded. A function σ : R≥0 → R≥0 is of class-L if it is
continuous and strictly decreasing to zero. A continuous function β : R≥0 × R≥0 → R≥0
is of class-KL if β(., τ) is of class-K for each τ ≥ 0 and β(s, .) is of class-L for each
s > 0. The Euclidean norm of a vector x is denoted as kxk. In what follows, the notation
B∆ = {z ∈ Rp : kzk ≤ ∆} will be used both in Rn and Rm.
The following Lemma states some important properties of class K and KL functions.
Lemma A [51] Let σ1(.) and σ2(.) be class-K functions on R≥0, σ3(.) and σ4(.) be

class-K∞ functions, and β(., .) be a class-KL function. Then
• σ−11 (.) is defined on R≥0 and belongs to class-K
• σ−13 (.) is defined on R≥0 and belongs to class-K∞
• σ1 ◦ σ2 belongs to class-K
• σ3 ◦ σ4 belongs to class-K∞
• σ(r, s) = σ−11 (β(σ2(r), s)) belongs to class-KL. ¤
Consider a continuous-time nonlinear plant

ẋ(t) = f (x(t), u(t)) , (1.1)

where x(t) ∈ Rn, u(t) ∈ U ⊂ Rm, f : Rn × U → Rn, with f(0, 0) = 0, U is closed and
0 ∈ U . The system is to be controlled digitally using piecewise constant control functions
u(t) = u(kT ) =: u(k), if t ∈ [kT, (k + 1)T ), k ∈ N, where T > 0 is the sampling period.
There are two approaches to perform discretization with respect to discretizing space:

time discretization and state discretization. In this thesis, only time discretization will be
used.
The exact discrete-time model of system (1.1) which describes the behavior of the

system at the sampling instants kT, k ∈ N, is obtained by integrating the initial value
problem

ẋ(t) = f (x(t), u(k)) , (1.2)

with given u(k) and x0 = x(k), over the sampling interval [kT, (k + 1)T ]. If we denote
φE(t, x0, u) the solution of the initial value problem (1.2) at time t with given u = u(k)
and x(k) = x0, then the exact discrete-time model of (1.1) can be written as

xk+1 = xk +

Z (k+1)T

kT

f(x(s), u(k))ds

= : FET (xk, uk), (1.3)

where FET (x, u) := φE(T, x, u). This model is well-defined when the continuous-time
model (1.1) does not exhibit finite escape time within [kT, (k + 1)T ]. The case of finite
escape time will be discussed later.
We note that, since f is typically nonlinear, FET in (1.3) is not known in most cases,

therefore, the controller design can be carried out by means of an approximate discrete-
time model. Techniques available for the time discretization are divided into one step and
multi step approximations, while we limit our description only to the techniques belonging
to the former. The approximate discrete-time model can be defined as

xk+1 = F
A
T,h (xk, uk) , (1.4)
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where T ∈ (0, T ∗] is the sampling period with some upper bound T ∗ > 0 and h ∈ (0, T ]
is a parameter for the accuracy of the approximate model, e.g., the integration step for
some underlying numerical one-step approximation.
Concerning the parameters T and h, two cases are distinguished in the literature:
(i) T = h and T can be adjusted (see e.g., [3], [36], [78] and [80]). The main motivation

for using this approach is a reduced computational burden obtaining the approximate
model. All of these results require fast sampling and in general they produce semiglobally
practically stabilizing control feedback.
(ii) T 6= h. In this case T is fixed and the family of approximate discrete-time models

is generated by a numerical integration method with adjustable integration step h. This
approach is more realistic and usually produces better results, but the required numerical
computations are more intensive, and moreover, semiglobal stabilization is not possible
in general due to possible finite escape times between sampling instants (see e.g., [3], [36],
[78] and [89]).
The map FAT,h defining the approximate model is typically interpreted as a numerical

approximation of FET using some suitable numerical scheme. For instance FAT,h may be
constructed using multiple steps of a one-step Runge-Kutta scheme, Φhi with integration
step sizes hi, i = 1, ...,m, satisfying hi ≤ h and

Pm
i=1 hi = T ; i.e.,

x0 = x, xi+1 = Φhi(xi, u), FAT,h(x, u) = xm.

Note that, for constant control function u, system (1.1) is an autonomous ODE, and hence
all numerical schemes for autonomous ODEs are applicable; see e.g., [96] and [97] for a
description of suitable numerical methods.
In the simplest case, Φhi can be chosen as the Euler method Φhi(x, u) = x+hif(x, u).

For linear system

ẋ = Ax+Bu,

Φh(x, u) = (I + hA)x+ hBu

where h = T/m, then

FAT,h = (I + hA)
T/h x+A−1

³
(I + hA)T/h − I

´
Bu.

As h→ 0, this FAT,h converges to their exact model

FET = e
ATx+A−1

¡
eAT − I

¢
Bu.

If h = T then we obtain FAT,h = (I + TA)x+TBu. Note that, for any T, h, the numerical
scheme FAT,h is normally well-defined for all x, u because the computation of F

A
T,h is usually

based on finitely many evaluations of f only.
The problem is to define a state-feedback

uk = u
A
T,h(xk) (1.5)

using the approximate model (1.4) which stabilizes the origin for the exact model (1.3) in
an appropriate sense.
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Definition 1 Let strictly positive real numbers (T,∆0,∆00) be given. If there exists
h∗ > 0 such that

sup
{x∈B∆0 , h∈(0,h∗]}

°°uAT,h(x)°° ≤ ∆00,

then the family of controllers (1.5) is said to be (T,∆0,∆00)-uniformly bounded.
In what follows, a stabilizing feedback will be constructed for the approximate model

and conclusion about the stability of the closed-loop exact model is drawn on the basis
of the closeness of solutions of the two models. This closeness will be characterized by
the following definition. It guarantees that the error between solutions starting from the
same initial state is small, over one step, relative to the size of the step.
Definition 2 Let a triplet of strictly positive real numbers (T,∆0,∆00) be given and

suppose that there exist γ ∈ K and h∗ > 0 such that

(x, u) ∈ B∆0 ×B∆00 , h ∈ (0, h∗] =⇒
°°FAT,h(x, u)− FET (x, u)°° ≤ Tγ(h), (1.6)

then we say that the family FAT,h is (T,∆
0,∆00)-consistent with FET . Moreover, if T = h

and, for any pair of strictly positive numbers (∆0,∆00) there exist γ ∈ K and T ∗ > 0 such
that (1.6) holds true, then FAT is said to be semiglobally consistent with F

E
T .

The ”consistency” property described in Definition 2 is an adaptation of the consis-
tency property used in the numerical analysis literature (see e.g. [96] and [97]). We have
to emphasize that this property can be checked without explicit knowledge of the exact
discrete-time model. Sufficient checkable conditions for one-step consistency are given in
the following lemma:
Lemma B [80]. If

1. (uT , FAT ) is one-step consistent with (uT , F
Euler
T ) where FEulerT (x, u) := x+ Tf(x, u),

2. for each of the positive numbers (∆0,∆00) there exist ρ ∈ K, M > 0, T ∗ > 0 such that
for all T ∈ (0, T ∗], all x, y ∈ B∆0 and all uT ∈ B∆00

a) kf(y, uT (x))k ≤M ,
b) kf(y, uT (x))− f(x, uT (x))k ≤ ρ (ky − xk),
then (uT , FAT ) is one-step consistent with (uT , F

E
T ). ¤

A special case where condition 2(b) of the lemma holds is when f(., u) is locally
Lipschitz uniformly in u. Note that the function uT (x) does not need to be continuous
for (uT , FAT ) to be one-step consistent with (uT , F

E
T ).

The stability property for the approximate discrete-time model can be characterized
using the well known criterion of Lyapunov for asymptotic stability.
Definition 3 Let a pair of strictly positive real numbers (T,D), a family of functions

VT,h : Rn → R≥0, functions σ1, σ2 ∈ K∞ and a positive definite function σ3 : R≥0 → R≥0
be given. Suppose that for any pair of strictly positive real numbers (δ1, δ2) with δ2 < D
there exist h∗ > 0 and c > 0 such that for all x ∈ BD, h ∈ (0, h∗], we have

σ1(kxk) ≤ VT,h(x) ≤ σ2(kxk), (1.7)

VT,h(F
A
T,h(x, u

A
T,h(x)))− VT,h(x) ≤ −Tσ3(kxk), (1.8)

and, for all x1, x2 ∈ BD − Bδ2, with kx1 − x2k ≤ c we have

|VT,h(x1)− VT,h(x2)| ≤ δ1, (1.9)
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then we say that the family (1.4), (1.5) is (T,D)-stable with a continuous Lyapunov
function.
Lemma C [80]. The following statements are equivalent:
1. There exist β ∈ KL and T ∗ > 0 such that for each T ∈ (0, T ∗] the solution of the

system

x(k + 1) = FT (x(k), uT (x(k))) , (1.10)

satisfy:

kφT (k, x0)k ≤ β(kx0k , kT ), ∀x0 ∈ Rn, k ≥ 0.

2. There exists T ∗ > 0, σ1, σ2 ∈ K∞, σ3 ∈ K and VT and such that the family (uT , FT )
satisfy

σ1(kxk) ≤ VT (x) ≤ σ2(kxk),

VT,h(FT (x, uT (x)))− VT (x) ≤ −Tσ3(kxk),

for all T ∈ (0, T ∗] and all x ∈ Rn.
Theorem A ([36] and [78]) Suppose that there exists a triplet of strictly positive

numbers (T,D,M) such that
(i) the family of the closed-loop systems (FAT,h, u

A
T,h) is (T,D)-stable with a continuous

Lyapunov function;
(ii) the family of controllers uAT,h is (T,D,M)-uniformly bounded;
(iii) the family FAT,h is (T,D,M)-consistent with F

E
T .

Then, there exists β ∈ KL, D1 ∈ (0, D) and for any δ > 0 there exists h∗ > 0 such
that for all x0 ∈ BD1 and h ∈ (0, h∗], the solutions of the family (FET , uAT,h) satisfy:

kφET (k, x0)k ≤ β(kx0k , kT ) + δ, k ∈ N0. (1.11)

1.5 The aim of the thesis

Results in ([78] and [80]) give sufficient conditions for a controller designed by means of the
approximate model to stabilize the exact model, as well. As is emphasized by the title
of [78], these results provide a framework for controller design relying on approximate
discrete-time models, but they did not explain how to find controllers that satisfy the
given conditions. The purpose of the present work is to construct a receding horizon
controller within this framework (with a slight modification in the case T = h). We
study the conditions under which the stabilizing receding horizon control computed for
the approximate discrete-time model also stabilizes the exact discrete-time system both
in the cases when the sampling period T is fixed, but the integration parameter h used in
obtaining the approximate model can be chosen to be arbitrarily small and when these two
parameters coincide, but can be adjusted. It should be emphasized that these conditions
concern directly the data of the problem and the design parameters of the method, but
not the results of the design procedure. From a practical point of view, it is important to
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know whether the basin of attraction is sufficiently large when some stabilizing controller
is applied.
In this thesis we drive a multirate version of the receding horizon algorithm based on

discrete-time approximate models of the plant, and establish sufficient conditions which
guarantee that the proposed control stabilizes the original exact model in the case of ”low
measurement rate” in the presence of measurement and computational delays. In this
approach the sampling period T is considered as fixed and the integration period h is
allowed to vary.
In the second part of the work, we apply the theoretical results for two different

HIV/AIDS models. The drug dose is considered as a control input and the goal is to
stabilize the system around the uninfected steady state. We use both the one-step and
the `−step versions of the receding horizon control method to determine the treatment
schedules.



Chapter 2

Stabilization of sampled-data
systems

Results on stabilizing receding horizon control of sampled-data nonlinear systems via their
approximate discrete-time models are presented. The proposed receding horizon control is
based on the solution of Bolza-type optimal control problems for the parametrized family
of approximate discrete-time models. We investigate both situations when the sampling
period T is fixed and the integration parameter h can be chosen to be arbitrarily small,
and when these two parameters coincide but can be adjusted arbitrarily. Both single-
rate and multirate versions of the receding horizon algorithm for the stabilization of
sampled-data nonlinear systems are investigated. In the latter case ”low measurement
rate” is assumed, and the presence of measurement and computational delays are taken
into account. Sufficient conditions are established which guarantee that the controller that
renders the origin to be asymptotically stable for the approximate model also stabilizes the
exact discrete-time model for sufficiently small integration and/or sampling parameters.
The results presented in this chapter were published in ([18], [20], [22], [41] and [42]).

2.1 Problem statement

Consider the nonlinear control system described by

ẋ(t) = f (x(t), u(t)) , x(0) = x0 (2.1)

where x(t) ∈ Rn, u(t) ∈ U ⊂ Rm, f : Rn × U → Rn, with f(0, 0) = 0, U is closed and
0 ∈ U . Assumption f(0, 0) = 0 is not very restrictive, since if f(xs, us) = 0, one can
always shift the origin of the system to (xs, us).
Assumption A1 (i) The function f is continuous.
(ii) For any pair of positive numbers (∆0,∆00) there exists an Lf = Lf(∆

0,∆00) such
that

kf(x, u)− f(y, u)k ≤ Lfkx− yk,

for all x, y ∈ B∆0 and u ∈ B∆00. ¤
Let Γ⊂ Rn be a given compact set containing the origin and consisting of all initial

states to be taken into account. The system is to be controlled digitally using piecewise

13
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constant control functions

u(t) = u(kT ) =: uk, if t ∈ [kT, (k + 1)T ), k ∈ N,

where T > 0 is the sampling period. First, we assume that all state measurements are
available at the sampling instants kT , k ∈ N and the sampling rates of the control function
and the state measurement coincide, i.e. y(k) = x(kT ).
Under the conditions on f, for any x ∈ B∆0 and u ∈ B∆00 there exists an ω = ω(x, u) > 0

such that equation (2.1) with u(t) ≡ u, (t ∈ [0,ω)) and initial condition x(0) = x has a
unique solution on [0,ω) denoted by φE(., x, u).
The exact discrete-time model of system (2.1), can be defined as

xk+1 = F
E
T (xk, uk), (2.2)

where FET (x, u) := φE(T, x, u), if T < ω(x, u) otherwise FET (x, u) is defined to be an
arbitrary element of Rn with a sufficiently large norm.
Remark 1 If Assumption A1 is valid, then FET is continuous in x and u and it satisfies

a local Lipschitz condition of the following type: for any pair of positive numbers (∆0,∆00)
there exist T ∗ > 0 and Lf > 0 such that

kFET (x, u)− FET (y, u)k ≤ eLfTkx− yk, (2.3)

holds for all u ∈ B∆00, all T ∈ (0, T ∗], and all x, y ∈ B∆0 . ¤
We emphasize that FET in (2.2) is not known in most cases, therefore the controller

design can be carried out by means of an approximate discrete-time model

xk+1 = F
A
T,h (xk, uk) , (2.4)

where T ∈ (0, T ∗] is again the sampling parameter, while parameter h is a modelling
parameter, which is typically the step size of the underlying numerical method. We define
the control sequence u = {u0, u1, ...} where ui, i = 0, 1, ... are piecewise constant control
functions. For the solutions of (2.2) and (2.4) with the control sequence u = {u0, u1, ...}
satisfying the initial conditions xE0 = x and xA0 = x we shall use the notation φEk (x,u)
and φAk (x,u), respectively.
When T = h we use the short-hand notation FAT (x, u) := FAT,T (x, u). We use this

notation for other functions in the sequel; that is, whenever we drop the h subscript, we
refer to the situation when h = T .
Assumption A2 (i) FAT,h (0, 0) = 0, FAT,h is continuous in both variables uniformly

in small h, and it satisfies a local Lipschitz condition: for any pair of positive numbers
(∆0,∆00) there exist h∗ > 0 and LFA > 0 such that

kFAT,h(x, u)− FAT,h(y, u)k ≤ eLFATkx− yk,

holds for all u ∈ B∆00, all h ∈ (0, h∗], and all x, y ∈ B∆0.
(ii) In the case of T = h there exist r0 > 0, T ∗ > 0 and LAr0 > 0 such that for any

T ∈ (0, T ∗] we have°°FAT (x, u)− x°° ≤ TLAr0(kxk+ kuk), kxk+ kuk ≤ r0. ¤ (2.5)
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Remark 2 Observe that, if Assumption A1 holds true, then for many one-step numerical
methods, the assertions of Assumption A2 can be proven.
Let eΓ be a suitable set containing at least Γ.
The problem is to define a state-feedback controller

vAT,h : eΓ→ U (2.6)

using the approximate model (2.4) which stabilizes the origin for the exact model (2.2) in
an appropriate sense.
One may think that if a controller is designed for an approximate discrete-time model

(obtained by a convergent numerical method) of the plant with a sufficiently small model-
ing parameter then the same controller will stabilize the exact discrete-time model. Note
that if this was true then one could directly apply the existing theory that assumes that
the exact discrete-time model is known. However, this reasoning is wrong since no matter
how small the modeling parameter is, we may find a controller that stabilizes the approx-
imate model for that modeling parameter but destabilizes the exact model for the same
modeling parameter as illustrated by the following examples.

2.2 Motivating examples

In this section, we present three examples for which a family of receding horizon control
law is designed to stabilize the family of approximate models, but the exact discrete-
time model is destabilized by the same family of controllers. These examples are parallel
to those in ([36], [78] and [80]). In fact, the systems of Example 2 and Example 3
were also investigated in [36], [78] and [80], respectively, but the controllers are derived
here by the receding horizon method, while the controllers of the cited papers come
from different considerations. In these examples the exact discrete-time models of the
corresponding systems can be computed, but we base our control algorithm on the family
of approximate discrete-time models in order to illustrate possible wrong situation that
may arise in receding horizon control design based on approximate discrete-time models.
Example 1 We consider the sampled-data control of the double integrator

ẋ1 = x2, ẋ2 = u,

for which the family of exact discrete-time models can be given as

x1(k + 1) = x1(k) + Tx2(k) +
T 2

2
u(k),

x2(k + 1) = x2(k) + Tu(k). (2.7)

The family of Euler approximate models is

x1(k + 1) = x1(k) + Tx2(k),

x2(k + 1) = x2(k) + Tu(k). (2.8)

Since the Euler method is convergent, the trajectory of the approximate model (2.8)
converges to the trajectory of the exact model (2.7) as T → 0.
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The receding horizon control for (2.8) with a standard quadratic cost function

JT (x0,u) =
N−1X
k=0

(x0kQTxk + u
0
kRTuk) + x

0
NGxN , (2.9)

with the choice of N = 2, G = 0, RT = T
2, QT =

µ
17/T 2 4/T
4/T 1

¶
can be computed:

vAT (x(k)) = −
2

T 2
x1(k)−

2.5

T
x2(k). (2.10)

This gives the family of approximate closed-loop models

x1(k + 1) = x1(k) + Tx2(k),

x2(k + 1) = − 2
T
x1(k)−

3

2
x2(k).

The eigenvalues of the coefficient matrix are |λ1| = |λ2| =
√
2/2, thus the approximate

closed-loop model is asymptotically stable.
The family of exact closed-loop models is

x1(k + 1) = −T
4
x2(k),

x2(k + 1) = − 2
T
x1(k)−

3

2
x2(k),

which has a pole at −1.78078 for all T > 0, hence the receding horizon controller desta-
bilizes the exact model for any sampling period.
Note that the receding horizon controller (2.10) is not uniformly bounded in T : in

fact, vAT (x)→∞ as T → 0 for any x 6= 0. Similar observation can also be made regarding
the trajectories of the approximate model: e.g. let x0 = (1, 0)0, we have |x2(1)| = 2

T
→∞

as T → 0.
Example 2We consider the sampled-data control of the triple integrator

ẋ1 = x2, ẋ2 = x3, ẋ3 = u

for which the family of exact discrete-time models can be given as

x1(k + 1) = x1(k) + Tx2(k) +
1

2
T 2x3(k) +

1

6
T 3u(k),

x2(k + 1) = x2(k) + Tx3(k) +
1

2
T 2u(k),

x3(k + 1) = x3(k) + Tu(k).

The family of Euler approximate models is

x1(k + 1) = x1(k) + Tx2(k),

x2(k + 1) = x2(k) + Tx3(k),

x3(k + 1) = x3(k) + Tu(k). (2.11)
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Let us choose the following N = 2, G = 0, RT = T
2,

QT =

 a2/T 5 ab/(2T 4) a/T 2

ab/(2T 4) b2/(T 4) b/T
a/T 2 b/T 1

 > 0, 0 < T < 4/5,

where a = 1− 3
√
2 + 3
√
4 and b = 5 + 3

√
4. The receding horizon control for (2.11) with a

cost function of type (2.9) can be computed:

vAT (x(k)) = −
1

2

µ
a

T 3
x1(k) +

a+ b

T 2
x2(k) +

b+ 1

T
x3(k)

¶
.

This gives the family of approximate closed-loop models

x1(k + 1) = x1(k) + Tx2(k),

x2(k + 1) = x2(k) + Tx3(k),

x3(k + 1) = −1
2

µ
a

T 2
x1(k) +

a+ b

T
x2(k) + (b− 1)x3(k)

¶
.

The eigenvalues of the coefficient matrix are |λ1| = |λ2| = |λ2| = 1/ 3
√
2, thus the approx-

imate closed-loop model is asymptotic stable. The family of exact closed-loop models
is

x1(k + 1) =
³
1− a

12

´
x1(k) + T

µ
1− a+ b

12

¶
x2(k) +

T 2(5− b)
12

x3(k),

x2(k + 1) = − a

4T
x1(k) +

µ
4− a− b

4

¶
x2(k) +

T (3− b)
4

x3(k),

x3(k + 1) = −1
2

µ
a

T 2
x1(k) +

a+ b

T
x2(k) + (b− 1)x3(k)

¶
,

which has a pole at −3.98226, hence the receding horizon controller destabilizes the exact
model for all 0 < T < 4/5.
We note that similarly to Example 1 both the controller and the trajectories of the

approximate closed-loop model are not uniformly bounded in T . It may appear that these
are the only reasons why instability of the exact model occurs. To show that there are
other reasons we shall show the following example.
Example 3 Consider the scalar linear system

ẋ = x+ u.

The family of exact discrete-time models is

x(k + 1) = eTx(k) + (eT − 1)u(k), (2.12)

while the family of ”partial Euler” approximate discrete-time models is

x(k + 1) = (1 + T )x(k) + (eT − 1)u(k). (2.13)

We note that the ”partial Euler” method is convergent, so the trajectory of the approxi-
mate model (2.13) converges to the trajectory of the exact model (2.12) as T → 0.
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The receding horizon control for (2.13) with a cost function of type (2.9) and with
N = 2, G = 0, RT = (e

T − 1)2, QT = T + 1
2
T 2 can be given by

vAT (x(k)) = −
(1 + T )(T + 1

2
T 2)

(eT − 1)(1 + T + 1
2
T 2)

x(k)

which yields the stable approximate closed-loop model

x(k + 1) =

µ
1−

1
2
T 2

1 + T + 1
2
T 2

¶
x(k),

and the solution of the approximate closed-loop model is given by

x(k) =

µ
1− 1

2
T 2

1

1 + T + 1
2
T 2

¶k
x0.

However, the same family of controllers yields the unstable exact closed loop model

x(k + 1) =

µ
1 +

2

3
T 3 +O(T 4)

¶
x(k).

In this example, both the controller and the trajectories of the approximate closed-loop
model are uniformly bounded in T over any compact set, but the rate of convergence is
not uniform in T . The reason for these problems in the three examples is the bad choice
of cost function. Similar phenomena may arise in the case of discontinuous Lyapunov
function (see [78]).
Remark 3 The interpretation of the above results is as follows. One cannot first

find a sufficiently ”good” approximate plant model with a sufficiently small sampling
and/or integration period and then assume that the receding horizon controller for the
approximate model with respect to a given cost would stabilize the exact model. Indeed,
because of the fact that we are considering parametrized systems and costs, the examples
illustrate that, given an arbitrarily small sampling period (and hence an arbitrarily ”good”
plant model), there still exists a cost function for which the receding horizon controller
obtained by the approximate model would destabilize the exact model. Hence, a careful
investigation of stability is needed to avoid situations like those presented in the examples.

2.3 Practical asymptotic controllability and stabiliz-
ability

Since we want to find a state-feedback controller, it seems to be reasonable to investigate
when it does exist. In this section, we present a necessary and sufficient condition for the
existence of such a controller.
Let Γ ⊂ Rn be a given compact set, containing a neighborhood of the origin and let

∆ > 0 be such that Γ ⊂ B∆. Consider the family of discrete-time systems

xk+1 = FT (xk, uk) , (2.14)

parametrized by T > 0 together with a parametrized family of admissible control se-
quences Uh, h > 0, Uh =

©
uh = (uh0 , u

h
1 , ... ), uhk ∈ U

ª
, where the two parameters may

be different or may coincide.
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System (2.14) can be obtained by discretizing the continuous-time model (2.1). The
discrete-time model FT is called an exact discrete-time model if it is obtained as the exact
solution of the initial value problem of the continuous-time model over the sampling
interval and it is called an approximate discrete-time model if it is obtained via numerical
approximation.
For continuous-time systems, asymptotic stability can be achieved, but this is in gen-

eral not the case for sampled-data systems. We show in an example (see Appendix) that,
if we have a stabilizing controller for a continuous-time system and discretize this sys-
tem, then practical stability can only be achieved even if the exact discrete-time model is
known.
Definition 4 System (2.14) is practically asymptotically controllable (PAC) from Γ to

the origin with the parametrized family Uh, if there exist a β(., .) ∈ KL and a continuous,
positive and nondecreasing function σ(.) which are independent of T and h, and such that
for any r > 0 there exists a h∗ > 0 so that for all x ∈ Γ and for all h ∈ (0, h∗] there
exists a control sequence uh(x) ∈ Uh, such that

°°uhk(x)°° ≤ σ(kxk), and the corresponding
solution φ of (2.14) satisfies the inequality°°φk(x,uh(x))°° ≤ max {β(kxk , kT ), r} , k ∈ N. (2.15)

Definition 5 System (2.14) is practically asymptotically stabilizable (PAS) in Γ about
the origin with the parametrized family Uh, if there exist a β(., .) ∈ KL and a continuous,
positive and nondecreasing function σ(.) which are independent of T and h, and such
that for any r > 0 there exists a h∗ > 0 so that for all h ∈ (0, h∗] there exists a feedback
κh : Γ→ U with the property

°°κh(x)°° ≤ σ(kxk) such that for any x ∈ Γ the solution φc

of xk+1 = FT
¡
xk,κ

h(xk)
¢
, x0 = x satisfies the inequality

kφck(x)k ≤ max {β(kxk , kT ), r} , k ∈ N. (2.16)

Note that practical asymptotic controllability (PAC) and stabilizability (PAS) specialize
to asymptotic controllability (AC) and asymptotic stabilizability (AS), respectively, in
the limit, when r = 0.
Theorem 1 System (2.14) is practically asymptotically stabilizable in Γ about the

origin if and only if it is practically asymptotically controllable from Γ to the origin.
Proof. The necessity: Let the control sequence uh(x) be defined by

uh(x) =
©
κh(φck(x)), k = 0, 1, ...

ª
,

then we obtain that system (2.14) is PAC.
The sufficiency can be shown as follows. Let r > 0 be arbitrary, fixed. Let β ∈ KL and

σ be the functions given in Definition 4 and let eϕ ∈ K be such thatP∞
k=0 eϕ(β(∆, kT )) <

∞. Let γ0 : [0,∆)→ R≥0 be defined by

γ0(r) =
∞X
k=0

eϕ(β(r, kT )). (2.17)

Now we show that γ0 ∈ K. Because of the theorem of Weierstrass, γ0 is continuous. Let
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r1 < r2, since β ∈ KL then β(r1, kT ) < β(r2, kT ), ∀k,

γ0(r1) =
∞X
k=0

eϕ(β(r1, kT )) = lim
m→∞

mX
k=0

eϕ(β(r1, kT ))
= eϕ(β(r1, 0)) + lim

m→∞

mX
k=1

eϕ(β(r1, kT ))
≤ eϕ(β(r1, 0)) + lim

m→∞

mX
k=1

eϕ(β(r2, kT ))
= eϕ(β(r1, 0)) + lim

m→∞

mX
k=0

eϕ(β(r2, kT ))− eϕ(β(r2, 0))
= eϕ(β(r1, 0))− eϕ(β(r2, 0)) + γ0(r2) < γ0(r2).

Since β(0, kT ) = 0, ∀k we have γ0(0) = 0, thus γ0 ∈ K.
Let r0 = min

©
γ−10 (eϕ(r)), rª and let r00 ≤ r0 be such that

kFT (x, 0)k ≤ r0, if kxk ≤ r00. (2.18)

Then we take r = 1
2
r00 and define function l : Rn → R≥0 by

l(x) =

½ eϕ(kxk), kxk ≥ r00,
0, kxk < r00.

Let system (2.14) be subject to cost function

J(x,uh) =
∞X
k=0

l(φk(x,u
h(x))).

For any x ∈ Rn, we consider the minimization problem of this cost function with respect
to the control constraint set U(x) = U ∩ Beσ(kxk), where eσ(kxk) = σ(kxk) if kxk ≤ ∆ andeσ(kxk) = σ(∆) otherwise. Let

V (x) := inf
©
J(x,uh) : uh = {u0, u1, ...} ∈ Uh, ui ∈ U(x)

ª
.

Then for any x ∈ Γ, V (.) has finite value and V (x) ≤ J(x,uh(x)), where uh(x) is the
control sequence given in Definition 4. Because of (2.15), there is an N1 ∈ N such that°°φk(x,uh(x))°° ≤ r00 for all x ∈ Γ, if k ≥ N1, therefore l(φk(x,uh(x))) = 0, if k ≥ N1 and

V (x) ≤
N1X
k=0

eϕ(°°φk(x,uh(x))°°) ≤ N1X
k=0

eϕ(β(kxk , kT ))
≤

∞X
k=0

eϕ(β(kxk , kT )) = γ0(kxk).

Let us consider the set M∗ ⊂ Rn, for which V (.) is finite and let us take its level set

Γ∆ = {x ∈M∗ : V (x) ≤ γ0(∆)} .
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Clearly Γ ⊂ Γ∆, and for any x ∈ Γ∆, V satisfies the dynamic programming equation

V (x) = inf
u∈U(x)

{l(x) + V (FT (x, u))} .

It follows then, that for any ε > 0, and for any x ∈ Γ∆ there exists a u = κhε (x) ∈ U(x)
such that

V (x) ≥ l(x) + V (FT (x,κhε (x)))− ε.

If x /∈ Br00 , then l(x) = eϕ(kxk), so if we take ε∗ = eϕ(r00)
2
, then

V (FT (x,κ
h
ε∗(x)))− V (x) ≤ −l(x) +

eϕ(kxk)
2

= −eϕ(kxk)
2

=: −γ∗(kxk). (2.19)

On the other hand,

J(x,uh) ≥ l(x) =
½ eϕ(kxk), if x ∈ Γ∆\Br00 ,
0, if x ∈ Br00 .

Since this is valid for any uh with uhi ∈ U(x), we have that

V (x) = inf J(x,uh) ≥ eϕ(kxk), if x ∈ Γ∆\Br00 . (2.20)

Let the required feedback be defined by

κh(x) =

½
κhε∗(x), if x ∈ Γ∆\Br00 ,
0, if x ∈ Br00 .

Then κh(x) ∈ U(x) for any x ∈ Γ. Moreover, Br00 ⊂ Br0 ⊂ Ωr = {x : V (x) ≤ eϕ(r)} ⊂ Br.
Because of (2.18) and (2.19), Ωr is positively invariant.
The remaining part of the proof is the construction of a class KL function β. The

proof given below is similar to the proofs of Theorem 8 in [81] and Theorem 2 in [80].
Let d = eϕ(r). If x ∈ Γ∆\ Br00, then from (2.19) we have V

¡
FT
¡
x,κhε∗(x)

¢¢
≤ V (x). If

x ∈ Br00 then from (2.18) V (FT (x, 0)) ≤ d, therefore, for all x ∈ Γ∆, V (FT (x,κh(x))) ≤
max {V (x), d} . Then by induction we obtain

V (φck(x)) ≤ max {V (x), d} .

If φck(x) ∈ Γ∆\ Br00 , then

V (φck+1(x))− V (φck(x)) ≤ −γ∗ (kφck(x)k)
≤ −γ∗

¡
γ−10 (V (φck (x)))

¢
= −α (V (φck(x))) ,

where α = γ∗ ◦ γ−10 ∈ K.
In the rest of the proof we will use the notation V (k) in place of V (φck(x)), then

V (k + 1)− V (k) ≤ −α(V (k)). (2.21)

We introduce a variable t ∈ R and define

y(t) := V (k) + (t− kT ) (V (k + 1)− V (k)) t ∈ [kT, (k + 1)T ), k ∈ N.
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Then y(t) is a continuous function of “time” t. Moreover, it is absolutely continuous in t
(in fact, piecewise linear) and we can write for almost all t:

ẏ(t) = V (k + 1)− V (k).

Since V (k + 1) ≤ V (k) for all φck(x) ∈ Γ∆\Br00 then, y(t) ≤ V (k), t ∈ [kT, (k + 1)T ) and

ẏ(t) ≤ −α(y(t)), t ∈ [kT, (k + 1)T ).

It follows from the arguments in ([95], Section VI) that there exists β1 ∈ KL that is
determined by α such that

y(t) ≤ β1(y(0), t), y(0) ∈ Γ∆\Br00 .

This implies, using y(k) = V (k), with t = kT , y(0) = V (0), that

V (k) ≤ β1(V (0), kT ), k ∈ N,

for all x ∈ Γ∆\Br00 .
From (2.20) it follows that if φck(x) ∈ Γ∆\Br00 then

eϕ(kφck(x)k) ≤ V (φck(x))

≤ β1(V (0), kT ) ≤ β1(γ0(kxk), kT ).

and

kφck(x)k ≤ eϕ−1 (β1(γ0(kxk)) , kT )
If for some i = 0, 1, ..., k − 1, φci(x) ∈ Br00 then kφck(x)k ≤ r for k = 0, 1, ... . Let
β(s, τ) = eϕ−1 (β1(γ0(s), τ)) ∈ KL, then, for each x ∈ Γ∆ we have

kφck(x)k ≤ max {β(kxk , kT ), r} . ¤

Remark 4 From a practical point of view, it may be desirable to achieve stabilization
over as ”large” sets as possible. The realization of this aim may be limited by different
factors: the trajectories of (2.1) may have finite escape times within a given sampling
interval [0, T ], or ”small” neighborhoods of the origin may be unreachable from initial
points with a ”large” norm because of control constraints, etc. In view of Theorem 1, it
is reasonable to consider the problem of PAS for system (2.14) over a compact set Γ from
which it is PAC. If this latter property is valid for each compact Γ, then the same will
also be true for the stabilization. In keeping with the usage of ([44], p. 439), we shall
speak in this case about semiglobal (practical) stability.
Remark 5 Theorem 1 remains valid if, similarly to [53] the properties PAC and PAS

are required with vanishing controllers, i.e. the left-hand sides of (2.15) and (2.16) are
substituted by

°°φk(x,uh(x))°°+ °°uhk(x)°° and kφck(x)k+ °°κh(φck(x))°°, respectively.
Assumption A3 There exists a T ∗ > 0 such that the exact discrete-time model (2.2)

is PAC from Γ to the origin for all T ∈ (0, T ∗]. ¤
Remark 6 Observe that Assumption A3 implies that for any x ∈ Γ there exists a

control function uh(x) ∈ Uh for which no finite escape time occurs.
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Let β(., .) and σ(.) be functions generated by Assumption A3 and let ∆1 be such that
∆1 ≥ 1 + β(∆, 0). Moreover, for 0 < ρ ≤ ∆1, we introduce the notation Uρ = U ∩ Bσ(ρ).
The question is, how to find an approximate model, a family of controllers and a

suitable Lyapunov function so that conditions (i), (ii) and (iii) of Theorem A should be
satisfied. We shall show that, in the case of T 6= h, a suitable version of the receding
horizon method gives such a controller and Lyapunov function. In the case of T = h, we
shall prove analogous stability results, though the conditions of Theorem 2 in [80] (which
is the counterpart of Theorem A) cannot be entirely satisfied.

2.4 The receding horizon control method

The aim of this section is to describe a version of the RHC method suitable in connec-
tion with the stabilization problem of exact discrete-time systems via their approximate
discrete-time model. In order to define a receding horizon feedback controller, let (2.4)
be subject to the cost function

JT,h(N,x,u) =
N−1X
k=0

T lh(x
A
k , uk) + g(x

A
N), (2.22)

where 0 < N ∈ N and u = {u0, u1, ..., uN−1} and xAk = φAk (x,u), k = 0, 1, ..., N , denote
the solution of (2.4), lh and g are given functions, satisfying assumptions to be formulated
later.
Consider the optimization problem

PAT,h(N, x) : min {JT,h(N, x,u) : uk ∈ U∆1} . (2.23)

If this optimization problem has a solution denoted by u∗(x)=
©
u∗0(x), u

∗
1(x), ..., u

∗
N−1(x)

ª
then its first element, i.e. u∗0(x), is applied at the state x. Since the optimal solution of
PAT,h(N, x) naturally depends on x, in this way a feedback has been defined on the basis
of the approximate discrete-time model i.e.

vAT,h(x) := u
∗
0(x).

We pause to clarify the notation adopted in the sequel. The variable t represents the
real time, while tk = kT , k = 0, 1, ..., denote the sampling instants. The vector xEk will
denote the actual (exact discrete-time) state of the plant measured at tk. The optimal
trajectory for the approximate model is denoted by φAj (x

E
k ,u

∗), j = 0, 1, ..., N where u∗ is
the optimal controller. We define the control sequence uv produced by vAT,h and F

E
T . The

process (φEi (x0,uv),uv), i = 0, 1, ..., k is the closed-loop exact discrete-time trajectory and
control resulting from the RHC strategy.
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Fig. 2. The RHC strategy.

The RHC conceptual algorithm consists of performing the following steps at certain
instants tk (see Figure 2):
(1) Measure the current state of the plant xEk .
(2) Compute the open-loop optimal control u∗ to the problem PAT,h(N, x

E
k ).

(3) The control vAT,h(x
E
k ) := u∗0 is applied to the plant in the interval [kT, (k + 1)T )

(the remaining
©
u∗1, ..., u

∗
N−1

ª
is discarded).

(4) The procedure is repeated from (1) for the next sampling instants tk+1 = (k+1)T .
Conditions, under which vAT,h asymptotically stabilizes the origin for a fixed discrete-

time system of type (2.4) are well-established: here we only refer the reader to the review
papers ([2], [15] and [69]) and to the references therein. In our work we establish sufficient
conditions which guarantee that the receding horizon controller vAT,h that renders the origin
to be asymptotically stable for the approximate discrete-time model also stabilizes the
exact discrete-time model for sufficiently small integration and/or sampling parameters.
The running and the terminal cost functions have to be chosen according to the fol-

lowing assumption.
Assumption A4 (i) g is continuous, positive definite, there exists a class-K∞ function

γ1 such that γ1(kxk) ≤ g(x), and, for any ∆0 there exists a constant Lg = Lg(∆
0) > 0

such that |g(x)− g(y)| ≤ Lgkx− yk for all x ∈ B∆0 .
(ii) lh is continuous with respect to x and u, uniformly in small h, and for any ∆0 > 0,

∆00 > 0 there exist h∗ > 0 and Ll = Ll(∆0,∆00) > 0 such that

|lh(x, u)− lh(y, u)| ≤ Llkx− yk

for all h ∈ (0, h∗], x, y ∈ B∆0 and u ∈ B∆00 .
(iii) There exist a h∗ > 0 and two class-K∞ functions ϕ1 and ϕ2 such that the inequality

ϕ1(kxk+ kuk) ≤ lh(x, u) ≤ ϕ2(kxk) + ϕ2(kuk),

holds for all x ∈ Rn, u ∈ U and h ∈ (0, h∗]. ¤
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Remark 7 In the case of T = h, logically, the existence of a T ∗ > 0 is required in
Assumption A4 in place of h∗ and the conditions have to be satisfied for T ∈ (0, T ∗]. The
same comment should be added to the Assumption A5 below.
The terminal cost function g and/or a terminal constraint set given explicitly or im-

plicitly play crucial role in establishing the desired stabilizing property. We shall assume
that g is chosen according to the following assumption.
Assumption A5 There exist h∗ > 0 and η > 0 such that for all x ∈ Gη =

{x : g(x) ≤ η} there exists a κ(x) ∈ Uρ0 (which may depend on parameters h and/or
T ) such that inequality

T lh(x,κ(x)) + g
¡
FAT,h(x,κ(x))

¢
≤ g(x) (2.24)

holds true for all h ∈ (0, h∗], where ρ0 is such that Gη ⊂ Bρ0 . ¤
In what follows, we shall refer to the set Gη as the terminal set.
We note that there is a ρ1 > 0 such that Bρ1 ⊂ Gη. All over this thesis, ρ0 and ρ1

denote these constants. Without loss of generality we may assume that ρ0 ≤ ∆1.
Remark 8 Assumptions like A5 emerge in almost all works which define the RHC

on the basis of Bolza-type optimization problems (one exception is e.g. [35]). It is not
accidental, because such a condition is necessary (and sufficient) for the monotonicity of
the value function with respect to the horizon length, which is important in proving that
the value function is a suitable Lyapunov function (see [38]) for continuous-time problems,
but the same is true for a discrete-time system, as well. (We emphasize that this doesn’t
involve the necessity of A5 for the stabilizing property of the RHC method (see [35]). It
can be observed that a function g satisfying Assumption A5 is a local control Lyapunov
function. To find a suitable g, several approaches have been proposed in the literature:
in the case when the system has stabilizable linearization and a quadratic cost function is
applied, one can find g in quadratic form by solving an algebraic Riccati equation (though
the corresponding level set may be unacceptably small). More sophisticated methods are
e.g. the quasi-infinite horizon method of [9], the method of infinite horizon costing of [14].
(More detailed analysis can be found in the review papers cited above.)
For any x ∈ Rn, let

VN(x) = inf {JT,h(N, x,u) : uk ∈ U∆1} ,

if the right-hand side is finite, and let VN(x) = ∞ otherwise. (Evidently, function VN
depends also on the parameters T, h, but, for simplicity, this dependence is not reflected
in the notation.)
Assume that parameters h and/or T are chosen sufficiently small so that the conditions

of A2-A4 are satisfied. Then, from these Assumptions, it follows immediately that for any
x ∈ Γ, PAT,h(N, x) has a solution u

∗(x), function VN(.) is positive definite and continuous
on Γ uniformly in small h.
We shall use the optimal value function VN(.) as a Lyapunov function to establish the

stability of receding horizon control of an approximate discrete-time model.
Lemma 1 Suppose that Assumptions A2, A4 and A5 hold true. Then for any N ≥ 1,

and any η > 0 the following statements are valid:
(i) For any x0 ∈ Gη, VN(x0) ≤ g(x0) and φAN(x0,u

∗(x0)) ∈ Gη.
(ii) If φAN(x0,u

∗(x0)) ∈ Gη for some x0 ∈ Rn, then

VN(F
A
T,h(x0, u

∗
0(x0)))− VN(x0) ≤ −Tlh(x0, u∗0(x0)).
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(iii) If for some x0 ∈ Rn and for some k ∈ N , 0 ≤ k < N , φAk (x0,u∗(x0)) ∈ Gη, then
φAN(x0,u

∗(x0)) ∈ Gη.
Proof. We shall prove this lemma by a technique similar to [47] and [69]. Let x0 ∈ Gη,

and let κ(x0) = {κ0, ...,κN−1} where κi = κ(xi) and xi+1 = FAT,h (xi,κi(xi)), i = 0, 1, ...,
and κ is given by Assumption A5. By repeated use of Assumption A5 we obtain

g
¡
φAN (x0,κ(x0))

¢
− g(x0) ≤ −

N−1X
k=0

T lh
¡
φAk (x0,κ(x0)) ,κk

¢
.

Therefore,

VN(x0) ≤ JT,h(N,x0,κ(x0))

=
N−1X
k=0

Tlh
¡
φAk (x0,κ(x0)) ,κk

¢
+ g

¡
φAN (x0,κ(x0))

¢
≤ g(x0).

Since VN(x0) = JT,h(N, x0,u∗(x0)) ≤ g(x0), we get

g
¡
φAN (x0,u

∗(x0))
¢
+
N−1X
k=0

Tlh
¡
φAk (x0,u

∗(x0)) , u
∗
k(x0)

¢
≤ g(x0),

g
¡
φAN (x0,u

∗(x0))
¢
≤ g(x0) ≤ η.

This yields φAN (x0,u
∗(x0)) ∈ Gη.

Now we prove (ii). Suppose that x0 ∈ Rn and that the control sequence u∗(x0) that
solves PAT,h(N, x0) has been determined. The receding horizon control u

∗
0(x0) steers the

initial state x0 to the successor state x+ = FAT,h(x0, u
∗
0(x0)). We wish to determine an

admissible control sequence u for x+ and hence an upper bound for VN(x+). Since the
optimal control sequence

©
u∗0, ..., u

∗
N−1

ª
steers x0 to xAN = φAN(x0,u

∗(x0)) ∈ Gη then the
control sequence

©
u∗1, ..., u

∗
N−1

ª
steers x+ to xAN . Therefore, by using Assumption A5,

we can define a control sequence u(x+) =
©
u∗1(x), ..., u

∗
N−1(x),κ(x

A
N)
ª
which is suitable

for PAT,h(N, x
+). The state trajectory resulting from initial state x+ and control sequence

u(x+) is
©
x+, ..., xAN , F

A
T,h

¡
xAN ,κ(x

A
N)
¢ª
. The associated cost is

JT,h(x
+,u(x+)) =

N−1X
k=0

T lh
¡
φAk
¡
x+,u(x+)

¢
, uk(x

+)
¢
+ g

¡
φAN
¡
x+,u(x+)

¢¢
=

N−2X
k=0

T lh
¡
φAk
¡
x+,u(x+)

¢
, uk(x

+)
¢

+T lh
¡
φAN−1

¡
x+,u(x+)

¢
, uN−1(x

+)
¢
+ g

¡
φAN
¡
x+,u(x+)

¢¢
+T lh (x0, u

∗
0(x0))− T lh (x0, u∗0(x0)) + g

¡
xAN
¢
− g

¡
xAN
¢

=
N−1X
k=0

T lh
¡
φAk (x0,u

∗(x0)) , u
∗
k(x0)

¢
+ g

¡
xAN
¢

−T lh (x0, u∗0(x0))− g
¡
xAN
¢
+ Tlh

¡
φAN−1

¡
x+,u(x+)

¢
, uN−1(x

+)
¢

+g
¡
φAN
¡
x+,u(x+)

¢¢
.
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Since φAN−1 (x
+,u(x+)) = xAN and φAN (x

+,u(x+)) = FAT,h
¡
xAN ,κ(x

A
N)
¢
then we obtain

JT,h(x
+,u(x+)) ≤ VN(x0)− Tlh(x0, u∗0(x0))− g(xAN) + Tlh

¡
xAN ,κ(x

A
N)
¢

+g
¡
FAT,h

¡
xAN ,κ(x

A
N)
¢¢
. (2.25)

By using A5, the sum of the last three terms in (2.25) is less than or equal to zero. Since
VN(x

+) ≤ JT,h(x+,u(x+)), then we obtain

VN(F
A
T,h(x0, u

∗
0(x0)))− VN(x0) ≤ −Tlh(x0, u∗0(x0)).

Now we prove (iii). Let xAk = φAk (x0,u
∗(x0)) ∈ Gη, then by optimality principle we have

VN(x0) =
k−1X
i=0

Tlh
¡
φAi (x0,u

∗(x0)) , u
∗
i (x0)

¢
+ VN−k(x

A
k ).

Since xAk ∈ Gη then from (i) we obtain VN−k(xAk ) ≤ g(xAk )

VN−k(x
A
k ) =

N−1X
i=k

Tlh
¡
φAi (x0,u

∗(x0)) , u
∗
i (x0)

¢
+ g

¡
φAN (x0,u

∗(x0))
¢
≤ g(xAk )

and g
¡
φAN (x0,u

∗(x0))
¢
≤ g(xAk ) ≤ η. ¤

In the remaining part of this section we shall formulate some properties of the RHC
method which depend on the connection between the exact and the approximate model:
as an auxiliary result we shall show a control sequence that steers the trajectory of the
approximate system to the terminal set, while this trajectory remains uniformly bounded.
As a consequence, we obtain that the approximate model is asymptotically controllable
from Γ to the origin. Moreover, we shall derive a uniform upper bound for VN and a
criterion for the horizon length (in terms of the real continuous-time t) ensuring that
the optimal trajectory ends in the terminal set. With this end in view, we need an
assumption describing the ”closeness” of the exact and the approximate models in the
sense of Definition 2.
Assumption A6 In the case of T 6= h, the family FAT,h is (T,∆1,σ(∆1))-consistent

with FET . In the case of T = h, the family F
A
T,h is semiglobally consistent with F

E
T . ¤

In what follows, let h∗0 denote the minimum of the values h
∗ generated by A2-A6 with

∆0 = ∆1, ∆
00 = σ(∆1) (in the case of T = h, T ∗0 is used instead of h

∗
0).

Lemma 2 If Assumptions A3, A5 and A6 hold true, then there exists a h∗1 > 0,
(T ∗1 > 0, if T = h), and for any h ∈ (0, h∗1] and for any x ∈ Γ, there exists a control
sequence euh(x) with euhk(x) ∈ U∆1 such that°°φAk (x, euh(x))°° ≤ ∆1, k = 0, 1, ... .

Moreover, there is a T ∗1 such that, if T ∗1 ≤ N1T ≤ T ∗1 + 1, then φAk (x, euh(x)) ∈ Gη for all
k ≥ N1.
Proof. For the sake of definiteness, consider the case of T = h (the case of T 6= h can

be treated analogously). Consider an arbitrary T ∈ (0, T ∗0 ] and x ∈ Γ and let r = ρ1/2
where ρ1 > 0 is such that Bρ1 ⊂ Gη and let uT (x) be the sequence given in Definition
4. Then

°°uTk (x)°° ≤ σ (kxk) ≤ σ (∆1). Because of Assumption A6, there exists a T 0,
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(0 < T 0 ≤ T ∗0 ) such that as long as
°°φAk−1(x,uT (x))°° ≤ ∆1, then for all T ∈ (0, T 0] we

have°°φAk (x,uT (x)) − φEk (x,u
T (x))

°° =°°FAT ¡φAk−1(x,uT (x)), uTk−1(x)¢− FET ¡φEk−1(x,uT (x)), uTk−1(x)¢°°
≤

°°FAT ¡φAk−1(x,uT (x)), uTk−1(x)¢− FET ¡φAk−1(x,uT (x)), uTk−1(x)¢°°
+
°°FET ¡φAk−1(x,uT (x)), uTk−1(x)¢− FET ¡φEk−1(x,uT (x)), uTk−1(x)¢°°

≤ Tγ(T ) + eLfT
°°φAk−1(x,uT (x))− φEk−1(x,u

T (x))
°°

It follows by induction that°°φAk (x,uT (x))− φEk (x,u
T (x))

°° ≤ Tγ(T )eLfkT − 1
eLfT − 1 .

Let T ∗1 denote such a number that β(∆1, kT ) < ρ1/2, if kT ≥ T ∗1 , and let N1 be taken so
that T ∗1 ≤ N1T ≤ T ∗1 + 1. Let K = T 0(eLf (T

∗
1 +1) − 1)/(eLfT 0 − 1), then there exists a T ∗1

such that γ(T ∗1 )K < min
©
1, ρ1

2

ª
. Therefore,

°°φAk (x,uT (x))°° ≤ ∆1, if k = 0, 1, ..., N1 and°°φAN1(x,uT (x))°° ≤ ρ1. Let euT (x) be a control sequence defined by
euTk (x) = ½ uTk (x), if 0 ≤ k ≤ N1,

κ(exk), if k ≥ N1,
(2.26)

where

exk+1 = FAT (exk, euk) , exN1 = φAN1(x,u
T (x)), (2.27)

k = N1, N1 + 1, ... and κ is given by Assumption A5. By construction
°°euTk (x)°° ≤ σ(∆1).

It follows from Assumption A5 that φAk (x, euT (x)) ∈ Gη for all k ≥ N1. ¤
Proposition 1 If Assumptions A3-A6 hold true, then there exists h∗ > 0 (i.e. T ∗ > 0)

such that, for any h ∈ (0, h∗] system (2.4) is asymptotically controllable from Γ to the
origin.

Proof. From Assumptions A4(i) and A5 it follows that φAk (x, euT (x)) −→ 0 as
k −→∞, where euT (x) is given by (2.26) and (2.27). A suitable function β can be derived
by considerations like those in the proofs of Theorem 8 in [81] and Theorem 2 in [80]. ¤
Lemma 3 If Assumptions A1-A6 hold true, then there exists a constant V Amax such

that VN(x) ≤ V Amax for all x ∈ Γ and h ∈ (0, h∗1] (i.e. T ∈ (0, T ∗1 ]) and N ∈ N, where h∗1
(i.e. T ∗1 ) is given by Lemma 2.
Proof. Let T ∗1 and N1 be defined by Lemma 2, and let x ∈ Γ be arbitrary. Consider

the control sequence given by (2.26) and (2.27). (For simplicity we omit the notation of
parameter dependence.) If N < N1, then

VN(x) ≤ JT,h(N,x, eu(x)) = N−1X
k=0

Tlh(φ
A
k (x, eu(x)), euk(x)) + g(φAN(x, eu(x)))

≤
N−1X
k=0

T
£
ϕ2
¡°°φAk (x, eu(x)°°¢+ ϕ2 (keuk(x)k)¤+ g(φAN(x, eu(x)))

≤ NT [ϕ2(∆1) + ϕ2(σ(∆1))] + max
kxk≤∆1

g(x)

≤ (T ∗1 + 1)[ϕ2(∆1) + ϕ2(σ(∆1))] + max
kxk≤∆1

g(x) =: V (1).
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If N ≥ N1, then

VN(x) ≤
N−1X
k=0

Tlh(φ
A
k (x, eu(x)), euk(x)) + g(φAN(x, eu(x)))

=
N1−1X
k=0

Tlh(φ
A
k (x, eu(x)), euk(x)) + N−1X

k=N1

T lh(φ
A
k (x, eu(x)), euk(x)) + g(φAN(x, eu(x))).

By repeated use of A5 we have

N−1X
k=N1

Tlh(φ
A
k (x, eu(x)), euk(x)) + g(φAN(x, eu(x))) ≤ g(φAN1(x, eu(x))).

Then

VN(x) ≤
N1−1X
k=0

T lh(φ
A
k (x, eu(x)), euk(x)) + g(φAN1(x, eu(x)))

≤ (T ∗1 + 1)[ϕ2(∆1) + ϕ2(σ(∆1))] + η =: V (2).

Therefore V Amax = max{V (1), V (2)} is a suitable upper bound. ¤
Let T ∗2 be defined by

T ∗2 =
V Amax − η

c
, (2.28)

where c > 0 is such a positive constant that ϕ1(kxk) ≥ c for all x /∈ Gη.
Lemma 4 Suppose that Assumptions A1-A6 hold true. In the case of T 6= h, if

h ∈ (0, h∗1], and N ∈ N are chosen so that

TN > T ∗2 , (2.29)

or, in the case of T = h, if T ∈ (0, T ∗1 ], and T and N ∈ N are chosen according to (2.29),
then φAN(x,u

∗(x)) ∈ Gη for all x ∈ B∆.
Proof. Assume that, in contrary, φAN(x0,u∗(x0)) /∈ Gη for some x0 ∈ B∆. Then, from

Lemma 1, it follows that φAk (x0,u
∗(x0)) /∈ Gη, k = 0, 1, ..., N . Therefore

VN(x0) =
N−1X
k=0

Tlh(φ
A
k (x0,u

∗(x0)), u
∗
k(x0)) + g(φ

A
N(x0,u

∗(x0)))

≥
N−1X
k=0

Tϕ1
¡°°φAk (x0,u∗(x0))°°¢+ η ≥ NTc+ η.

Since VN(x0) ≤ V Amax, this contradicts to (2.29). ¤

2.5 Stabilization with fixed sampling parameter T

In this section we discuss the case when the sampling parameter T ∈ (0, T ∗0 ] is fixed and
the discretization parameter h can be assigned arbitrarily and independently of T. On
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the basis of Theorem A we shall show that the family (FET , v
A
T,h) is locally practically

asymptotically stable about the origin.
Theorem 2 Suppose that Assumptions A1-A6 are valid and N is chosen according to

(2.28), (2.29). Then, there exist β ∈ KL and D1 ∈ (0,∆) , and for any δ > 0 there exists
h∗ > 0 such that for all x0 ∈ BD1 and h ∈ (0, h∗], the solutions of the family (FET , vAT,h)
satisfy the inequality°°φEk (x0,uv(x0))°° ≤ β(kx0k , kT ) + δ, k ∈ N,

where uv is the control sequence produced by vAT,h and F
E
T .

Proof. We have to show that Assumptions A1-A6 imply the conditions (i)-(iii) of
Theorem A. In fact, condition (ii) is satisfied with D = ∆ and M = σ(∆1) by the
construction of vAT,h, and condition (iii) is identical with A6 if we take again D = ∆ and
M = σ(∆1). It remains only to prove that the family (FAT,h, v

A
T,h) is (T,∆)-stable with a

continuous Lyapunov function. Let h∗1 be defined by Lemma 2. The lower estimation in
(1.7) is given by using assumption A4(iii)

VN(x0) =
N−1X
k=0

T lh(φ
A
k (x0,u

∗(x0)), u
∗
k(x0)) + g(φ

A
N(x0,u

∗(x0)))

≥ T lh(x0, u
∗
0(x0)) ≥ Tϕ1 (kx0k+ ku∗0(x0)k)

≥ Tϕ1 (kx0k) =: σ1 (kx0k) .

To verify the upper estimation in (1.7) with a class-K∞ function, let us introduce the
function ϑ : R≥0→R≥0 as

ϑ(s) = max
kxk≤s

g(x) + s2/2 (2.30)

and let

σ2(s) = max

½
ϑ(s),ϑ(

ρ1
2
) +

2

ρ1
V Amax

³
s− ρ1

2

´¾
. (2.31)

Obviously, σ2 ∈ K∞. According to Lemma 1 (i), VN(x) ≤ g(x) if x ∈ Gη, thus VN(x) ≤
ϑ(kxk) ≤ σ2(kxk). Since σ2(kxk) ≥ V Amax, if kxk ≥ ρ1, therefore VN(x) ≤ σ2(kxk) for all
x ∈ B∆. Because of the choice of N , the optimal trajectories starting from any x0 ∈ B∆
terminate in Gη, therefore inequality (1.8) follows from Lemma 1 (ii). Since lh, g, FAT,h
and JT,h are continuous and the infimum of continuous functions is continuous, therefore,
VN(.) is continuous in B∆ uniformly in small h, it is also uniformly continuous in B∆,
because B∆ is compact. Thus the statement of the theorem is an immediate consequence
of Theorem A. ¤
Remark 9 Observe that V Amax and T ∗2 (i.e. the criterion for the choice of the horizon

length) remain the same, if problem PAT,h(N,x) is modified so that the minimization with
respect to u is performed over U instead of U∆1. Since Tϕ1(ku∗0(x)k) ≤ VN(x) ≤ V Amax,
vAT,h is (T,∆,M)-uniformly bounded with M = MT = ϕ−11

¡
V Amax/T

¢
. If the family FAT,h

is (T,∆1,MT )-consistent with FET , then Theorem 2 remains valid, if the receding horizon
controller vAT,h is based on this modified version of the problem PAT,h(N,x).
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2.5.1 Illustrative Example

Consider the continuous-time system (this example is taken from [70] cf. Section V)

ẋ1 = −x2 + (µ+ (1− µ)x1)u,
ẋ2 = x1 + (µ− 4(1− µ)x2)u.

Let the approximate discrete-time model be defined by the Euler method as follows: let
x = xA(k), u = u(k). With x0 = x let

x1,i+1 = x1,i + h [−x2,i + (µ+ (1− µ)x1,i)u] ,
x2,i+1 = x2,i + h [x1,i + (µ− 4(1− µ)x2,i)u] ,

i = 0, 1, ...,m − 1, and let xA(k + 1) = xm, where h = T/m. The running and the ter-
minal costs are given by lh(x, u) = 1

2
kxk4 + u2, g(x) = x

0
Px, where P is given below.

All computations were carried out using MATLAB. Especially, the optimal control se-
quence was computed by the constr code of the Optimization toolbox. Simulations for
the continuous-time system were carried out using ode45 program in MATLAB when
T = 0.1, µ = 0.5 and

P =

µ
2.8438 −0.1589
−0.1589 4.1541

¶
,

and m was chosen subsequently as m = 1, m = 10, m = 15. The trajectories and the
norms of the state of the continuous-time system are shown in Figures 3 and 4. It can be
seen that the radius of the ball around the origin to which the trajectory tends is decreasing
asm is increasing (or h is decreasing), though the convergence of this radius to zero (which
is proven theoretically) can’t be shown ”experimentally” because for ”sufficiently large”
m, the computational errors will dominate. The control sequence uv produced by the
receding horizon controller vAT,h is shown in Figure 5.
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Fig. 3. Trajectories of continuous-time system for different values of parameter h.
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Fig. 4. Norm of trajectories of continuous-time system for different values of parameter
h.
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Fig. 5. Receding horizon controller when T = 0.1 and m = 10.
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2.6 Stabilization with varying sampling rate T = h

The case of T = h is of special interest because several approximations of this type (such
as the Euler approximation) preserve the structure and types of nonlinearities of the
continuous-time system and, hence may be preferable to the designer.
In this section we state conditions that guarantee that the receding horizon controller

defined for the approximate discrete-time model with T = h results in a sampled-data
system which is practically asymptotically stable about the origin with the prescribed
basin of attraction Γ. The main difficulty in this case is to derive a class-K∞ lower bound
for VN which is independent of T . In [36], the lower bound for VN is not proven under
checkable conditions, instead, they are simply assumed. In fact, we can only determine
a uniform lower bound outside an arbitrary small ball around the origin. Basically, this
is why the results of ([80] Theorem 2) cannot directly be applied. In order to derive the
necessary estimation, we need the following assumption on the relation between f and lT .
Assumption A7 There exist two positive constants c1, c2 such that kf(x, u)k ≤

c1 + c2lT (x, u), for all x ∈ Rn and u ∈ U. ¤
Let Γmax =

©
x ∈ Rn : VN(x) ≤ V Amax

ª
. Clearly, Γ ⊂ Γmax.

We summarize the basic properties of VN in the following theorem.
Theorem 3 Suppose that Assumptions A1-A7 are valid. Then there exist such posi-

tive numbers T ∗ and T ∗ that for any T ∈ (0, T ∗] and N ∈ N with T ∗ ≤ NT ≤ T ∗ + 1
1.) there exists a function ψ2 ∈ K∞ such that

VN(x) ≤ ψ2(kxk)

for any x ∈ Γmax;
2.) for any r > 0 there exists a function ψr1 ∈ K∞ such that

ψr1(kxk) ≤ VN(x), (2.32)

for any x ∈ Γmax\Br. Moreover VN(0) = 0 and VN(x) > 0 for any x ∈ Br\{0};
3.) for any x ∈ Γmax,

VN(F
A
T (x, v

A
T (x)))− VN(x) ≤ −TlT (x, vAT (x)); (2.33)

4.) VN(.) is locally Lipschitz continuous in Γmax uniformly in small T .
Proof. The assertions of the theorem follow from Lemmas 1-4 and Lemmas 5-7 below

by taking T ∗ = T ∗3 and T ∗ = T ∗2 . ¤
In what follows, we shall assume that

T ∗2 ≤ NT ≤ T ∗2 + 1. (2.34)

Lemma 5 Suppose that Assumptions A1, A4, A6 and A7 hold true. For any δ > 0 let

Kδ = 2

µ
c1

ϕ1(δ)
+ c2

¶
+ 1,

and let Rδ : R≥0 → R≥0 be defined as

Rδ(s) = min

½
γ1

³s
2

´
,
s

4Kδ

¾
. (2.35)
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Then there exists a T ∗2 > 0 such that°°FAT (x, u)− x°° ≤ KδT lT (x, u)

for all x ∈ Rn and u ∈ U∆1 with δ ≤ kxk+ kuk and kxk ≤ ∆δ, where ∆δ = R−1δ
¡
V Amax

¢
.

Proof. Let δ > 0 be arbitrary but fixed and let M1 > 0.
If kxk+ kuk ≥ δ, then from Assumption A4 we obtain lT (x, u) ≥ ϕ1(δ) and

kf(x, u)k ≤
µ

c1
ϕ1(δ)

+ c2

¶
lT (x, u) = K1lT (x, u).

On the other hand, for any ∆δ there exists M1 > 0 such that for all (x, u) ∈ B∆δ ×Bσ(∆1)

we have kf(x, u)k ≤M1.
Let x0 ∈ Γ (we may assume that ∆δ À ∆), we obtain

kx(t)− x0k ≤
Z t

0

kf(x(s), u(s))k ds ≤M1t,

as long as kx(s)k ≤ ∆δ. Let T 01 be such that T
0
1 ≤ 1

M1
, then kx(t)k ≤ ∆+ 1.

Let Lf be the Lipschitz constant of f on B∆δ+1 × Bσ(∆1). Then for any 0 < T ≤ T 01,
we have

kx(T )− x0k ≤
Z T

0

(kf(x(s), u)− f(x0, u)k+ kf(x0, u)k) ds

≤ TK1lT (x0, u) + Lf

Z T

0

kx(s)− x0)k ds,

thus by Gronwall lemma we obtain

kx(T )− x0k ≤ eTLfK1TlT (x0, u).

If 0 < T ≤ T 001 := ln 2
Lf
, then°°FET (x0, u)− x0°° = kx(T )− x0k ≤ 2K1T lT (x0, u).

From Assumption A6 with ∆0 = ∆δ + 1, ∆00 = σ(∆1) we have°°FAT (x, u)− x°° ≤ °°FAT (x, u)− FET (x, u)°°+ °°FET (x, u)− x°°
≤ Tγ(T ) + 2K1TlT (x, u).

Let T 0001 be such that T 0001 = γ−1(ϕ1(δ)), and T
∗
2 = min{T ∗0 , T 01, T 001 , T 0001 } then for any

0 < T ≤ T ∗2 we obtain°°FAT (x, u)− x°° ≤ Tϕ1(δ) + 2K1TlT (x, u).

≤ T lT (x, u) + 2K1T lT (x, u) = KδT lT (x, u). ¤

Up to this point ∆δ can be given arbitrarily, but ∆δ > ∆+ 1.
Lemma 6 Suppose that Assumptions A1-A7 hold true. Then there exist a T ∗3 > 0

and a class-K∞ function ψ2 such that

VN(x) ≤ ψ2(kxk) (2.36)
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for all x ∈ Γmax and all T ∈ (0, T ∗3 ]. Moreover, for any r > 0 there exist a class-K∞
function ψr1 such that

VN(x) ≥ ψr1(kxk) (2.37)

for all x ∈ Γmax\Br and all T ∈ (0, T ∗3 ].
Proof. Let NT satisfy (2.34). We observe that function ψ2 = σ2, where σ2 is given

by (2.30) and (2.31), is a suitable upper bound.
To find a lower estimation, let r0, T be defined as in assumption A2 (ii). Let us choose

a positive δ so that

0 < δ ≤ min
©
r0, r/

¡
4LAr0(T

∗
2 + 1)

¢ª
(2.38)

and let T ∗3 = min
©
T , T ∗1 , T

∗
2

ª
where T ∗2 is generated by Lemma 5. Let x0 ∈ B∆ be arbi-

trary with kx0k ≥ r and let the corresponding optimal trajectory be ξ∗k = φAk (x0,u
∗(x0)).

Then there are two possibilities: a.) If kξ∗N − x0k ≤ 1
2
kx0k, then kξ∗Nk ≥ 1

2
kx0k, therefore

VN(x0) =
N−1X
k=0

TlT (ξ
∗
k, u

∗
k(x0)) + g(ξ

∗
N)

≥ g(ξ∗N) ≥ γ1(ξ
∗
N) ≥ γ1(

1

2
kx0k).

b.) If kξ∗N − x0k > 1
2
kx0k, then we shall introduce the set of integers

ι1 := {k : 0 ≤ k ≤ N − 1, kξ∗kk+ ku∗k(x0)k > δ} ,

ι2 = {0, 1, ..., N − 1} \ι1.

With this definition we have that

1

2
kx0k ≤ kξ∗N − x0k ≤

°°ξ∗N − ξ∗N−1
°°+ °°ξ∗N−1 − ξ∗N−2

°°+ ...+ kξ∗1 − x0k
=

N−1X
k=0

°°FAT (ξ∗k, u∗k(x0))− ξ∗k
°°

≤
X
k∈ι1

TKδlT (ξ
∗
k, u

∗
k(x0)) +

X
k∈ι2

TLAr0(kξ
∗
kk+ ku∗k(x0)k)

≤ KδVN(x0) + δNTLAr0 ≤ KδVN(x0) + δ(T ∗2 + 1)LAr0.

By the choice of δ, δ(T ∗2 +1)LAr0 ≤
1
4
kx0k, thus VN(x0) ≥ 1

4Kδ
kx0k. Let ψr1 : [0,∞)→ R≥0

be defined as

ψr1(s) = min

½
γ1(
s

2
),

s

4Kδ

¾
.

Then ψr1 ∈ K∞ and (2.37) is valid. ¤
Corollary 1 Under the assumptions of Lemma 6, there exists a ∆(r0, ρ1) such that

Γmax =
©
x ∈ Rn : VN(x) ≤ V Amax

ª
⊂ B∆(r0,ρ1).
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Proof. The proof is given by taking δ0 = min
©
r0, ρ1/(4L

A
r0
(T ∗2 + 1))

ª
, and ∆(r0, ρ1) =

R−1δ0 (V
A
max), where Rδ0 is defined by (2.35). ¤

Lemma 7 Suppose that Assumptions A1-A7 hold true. Then VN(.) is locally Lipschitz
continuous in Γmax, uniformly in small T , i.e. there exist LV > 0 and δV > 0 such that
for all T ∈ (0, T ∗3 ] and N ∈ N with TN ≤ (T ∗2 + 1), inequality

|VN(x)− VN(y)| ≤ LV kx− yk (2.39)

holds true for all x, y ∈ Γmax with kx− yk ≤ δV .
Proof. We have seen that Γmax ⊂ B∆(r0,ρ1). Let LFA, Lg and Ll denote the Lipschitz

constants of functions FAT , g and lT , respectively, corresponding to ∆0 = 2∆(r0, ρ1) and
∆00 = σ(∆1). Let y ∈ Γmax and let u∗(y) denote the corresponding optimal control se-
quence. Let LV = [(T ∗2 + 1)Ll + Lg] e(T

∗
2 +1)LFA and δV = ∆(r0, ρ1)e

−(T ∗2 +1)LFA . Consider
an x ∈ Γmax with kx− yk ≤ δV . Assume that for some k ∈ N, k ≥ 1 we know that°°φAk−1(x,u∗(y))− φAk−1(y,u

∗(y))
°° ≤ e(k−1)TLFA kx− yk .

(According to Assumption A2 this is true for k = 1). From Theorem 3 it follows that
φAk−1(y,u

∗(y)) ∈ Γmax ⊂ B∆(r0,ρ1) for all k = 1, 2, ..., N + 1. Because of the choice of δV it
follows that φAk−1(x,u

∗(y)) ∈ B2∆(r0,ρ1). Then°°φAk (x,u∗(y))− φAk (y,u
∗(y))

°° ≤ eTLFA
°°φAk−1(x,u∗(y))− φAk−1(y,u

∗(y))
°°

≤ ekTLFA kx− yk .

According to the choice of δV we have that φ
A
k (x,u

∗(y)) ∈ B2∆(r0,ρ1), since φ
A
k (y,u

∗(y)) ∈
Γmax. Thus °°φAk (x,u∗(y))− φAk (y,u

∗(y))
°° ≤ ekTLFA kx− yk .

is valid for all k = 0, 1, ...N . Therefore

VN(x)− VN(y) ≤
N−1X
k=0

T
£
lT
¡
φAk (x,u

∗(y)), u∗k(y)
¢
− lT

¡
φAk (y,u

∗(y)), u∗k(y)
¢¤

+g(φAN(x,u
∗(y)))− g(φAN(y,u∗(y)))

≤
"
TLl

N−1X
k=0

ekTLFA + Lge
NTL

FA

#
kx− yk ≤ LV kx− yk.

Changing the role of x and y completes the proof. ¤
Theorem 4 Suppose that Assumptions A1-A7 hold true. Then there exist such

positive numbers T ∗ and T ∗ that for any T ∈ (0, T ∗] and N ∈ N with T ∗ ≤ NT ≤ T ∗+1,
the exact discrete-time model with the receding horizon controller

xk+1 = F
E
T (xk, v

A
T (xk)) (2.40)

is practically asymptotically stable about the origin with basin of attraction containing
Γmax.
Proof. First we need the following claim.
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Claim For any d > 0 with d < V Amax, there exists T
∗ > 0 such that, for all T ∈ (0, T ∗]

and x ∈ Γmax, max
©
VN
¡
FET (x, v

A
T (x))

¢
, VN(x)

ª
≥ d, implies

VN
¡
FET (x, v

A
T (x))

¢
− VN(x) ≤ −

1

2
Tϕ1(kxk).

Proof of the Claim. Let T ∗a , T ∗a and ψ2 be generated by Theorem 3. By the assumptions
of Theorem 4 and by the choice of T ∗a and T ∗a , the (∆1,σ(∆1))-consistency is valid for
0 < T ≤ T ∗a with a function γ, and (2.39) holds true with LV and δV given in Lemma 7.
Suppose VN

¡
FET (x, v

A
T (x))

¢
≥ d/2. Because of (2.36) this implies

°°FET (x, vAT (x))°° ≥ ψ−12

µ
d

2

¶
. (2.41)

From the choice of T ∗a , we have¯̄
VN(F

E
T (x, v

A
T (x)))− VN(FAT (x, vAT (x)))

¯̄
≤ LV

°°FET (x, vAT (x))− FAT (x, vAT (x))°°
≤ LV Tγ(T ). (2.42)

Let T ∗b be such that LV Tγ(T ) ≤ d/4 for all T ∈ (0, T ∗b ], then we obtain

VN(F
A
T (x, v

A
T (x))) ≥ VN(FET (x, vAT (x)))− LV Tγ(T ) ≥

d

4
. (2.43)

From (2.33) and (2.36) we obtain

ψ2(kxk) ≥ VN(x) ≥ VN(FAT (x, vAT (x))) ≥
d

4
,

kxk ≥ ψ−12 (
d

4
) = r1. (2.44)

Let T ∗c be such that LV γ(T ) ≤ min {δV ,ϕ1(r1)/2} for all T ∈ (0, T ∗c ]. Then we take
T ∗ = min {T ∗a , T ∗b , T ∗c }. From (2.41)-(2.44) we deduce that for any T ∈ (0, T ∗] and
VN
¡
FET (x, v

A
T (x))

¢
≥ d/2 this implies

VN(F
E
T (x, v

A
T (x)))− VN(x) = VN(F

A
T (x, v

A
T (x)))− VN(x) +

VN(F
E
T (x, v

A
T (x)))− VN(FAT (x, vAT (x)))

≤ −Tϕ1(kxk) + LV
°°FET (x, vAT (x))− FAT (x, vAT (x))°°

≤ −Tϕ1(kxk) + LV Tγ(T )

≤ T

µ
ϕ1(r1)

2
− ϕ1(kxk)

¶
≤ −T

2
ϕ1(kxk).

Next suppose that VN(FET (x, v
A
T (x))) ≤ d/2 and VN(x) ≥ d.

We know also from (2.33) that VN(x) ≥ Tϕ1(kxk). So, it follows that

VN(F
E
T (x, v

A
T (x)))− VN(x) ≤

1

2
(d− VN(x)− VN(x))

≤ −T
2
lT (x, v

A
T (x)) ≤ −

T

2
ϕ1(kxk).
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This completes the proof of the claim.
It follows from the claim that Γmax is positively invariant for (2.40). On the other

hand, if for some x both VN(x) ≤ d and VN(FET (x, v
A
T (x))) ≤ d/2 hold true, then it

follows from the consideration above that for the trajectory of

ξk+1 = F
E
T

¡
ξk, v

A
T (ξk)

¢
, ξ0 = x, k = 0, 1, ...

we have that VN(ξk) ≤ d/2, if k = 1, 2, ... .
To complete the proof let r > 0 be an arbitrary number and let d = 1

2
ψr1(r). Let uv

be the control sequence produced by vAT and F
E
T . From the above considerations, there

exists β1 ∈ KL (see the Appendix) such that

VN(φ
E
k (x,uv(x))) ≤ max{β1(VN(x), kT ), d}, k ≥ 0

for all x ∈ Γmax.
From (2.32) it follows that if φEk (x,uv(x)) ∈ Γmax\Br

ψr1(
°°φEk (x,uv(x))°°) ≤ VN(φ

E
k (x,uv(x)))

≤ β1(VN(x), kT ) ≤ β1(ψ2(kxk), kT )

and °°φEk (x,uv(x)))°° ≤ (ψr1)−1 ◦ β1(ψ2(kxk), kT ) = β(kxk , kT )

where, β(s, τ) = (ψr1)
−1 ◦ (β1(ψ2(s), τ)) ∈ KL. On the other hand from the choice of r if

the trajectory enters the ball Br it will remain there. Therefore°°φEk (x,uv(x))°° ≤ max {β(kxk , kT ), r} . ¤
2.6.1 Illustrative Example

Consider the continuous-time system (this example is taken from [9])

ẋ1 = x2 + 0.5(1 + x1)u,

ẋ2 = x1 + 0.5(1− 4x2)u.

This system is a modification of the system used in subsection 2.5.1 in that it is unstable.
Let the approximate discrete-time model be defined by Euler method as follows:

x1(k + 1) = x1(k) + T [x2(k) + 0.5(1 + x1(k))u(k)] ,

x2(k + 1) = x2(k) + T [x1(k) + 0.5(1− 4x2(k))u(k)] .

The running and the terminal costs are given by lh(x, u) = 1
2
kxk4 + u2, g(x) = x

0
Px,

where P is given below. All computations were carried out by MATLAB. Especially, the
optimal control sequence was computed by the constr code of the Optimization toolbox.
Simulations for the continuous-time system were carried out using ode45 program in
MATLAB when

P =

µ
2.7778 2.2223
2.2223 2.7778

¶
.

The trajectories and the norms of the state of the continuous-time system are shown in
Figures 6-8. The control sequence uv produced by the receding horizon controller vAT is
shown in Figure 9.
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Fig. 6. The evolution of x1 when T = 0.1.
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Fig. 7. The evolution of x2 when T = 0.1.



40 CHAPTER 2. STABILIZATION OF SAMPLED-DATA SYSTEMS

0 5 10 15 20 25 3010-5

10-4

10-3

10-2

10-1

100

101

time

no
rm

 o
f t

he
 st

at
e

T=0.2  
T=0.1  
T=0.05 

Fig. 8. Norm of trajectories for different values of parameter T .
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Fig. 9. Receding horizon controller when T = 0.1.
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2.7 The Cost-to-go

The receding horizon controller redefines the performance criterion at every sampling-
time instant, thus it is not optimal with respect to the given criterion. Nevertheless, a
function lET (x, u) can be accepted as a measure of running cost, and seek a bound for the
”cost-to-go” for the real process. If lET (x, u) ≥ ϕ1 (kxk) with some positive definite ϕ1,
then this bound cannot be finite. A reasonable cost function can be defined as

Jδ(xk0 , k0) =
∞X
k=k0

TlET,δ(exk, euk) + Cδ,

where (exk, euk) is defined by the recursion exk+1 = FET (exk, euk) , exk0 = xk0, euk = vAT (exk),
k = k0, k0 + 1, ...,

lET,δ(x, u) =

½
lT (x, u), kxk ≥ δ,
0, kxk < δ,

and term Cδ gives the cost of keeping the state inside the ball Bδ.
Corollary 2 Under the conditions of Theorem 4, the above-defined cost-to-go Jr has

the following bound:

Jr(xk0 , k0) ≤ 2VN(xk0) + Cr. (2.45)

Proof. Let d be given in the proof of Theorem 4. In the proof of Theorem 4, we have
seen that

VN(F
E
T (exk, euk))− VN(exk) ≤ −T2 lT (exk, euk)

as long as max
©
VN(F

E
T (exk, euk)), VN(exk)ª ≥ d.

Summing up this inequality from k0 to M and rearranging it, we have that

1

2

MX
k=k0

T lT (exk, euk) ≤ VN(xk0)− VN(FET (exM , euM)) ≤ VN(xk0).
Let M be the first time instant k = M such that max

©
VN(F

E
T (exk, euk)), VN(exk)ª < d

(then the same holds true for k ≥ M , as well). It has been proven that exk ∈ Br holds
true for all k ≥M. By the definition of lET,δ, it follows that

∞X
k=k0

TlET,r(exk, euk) ≤ MX
k=k0

TlT (exk, euk) ≤ 2VN(xk0).
Thus estimation (2.45) follows by adding the fixed cost Cr to both sides of the above
inequality. ¤

2.8 Multirate sampled-data systems with delays

A preliminary version of the results presented in this section is published in [18].
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In this section we address the problem of state-feedback stabilization of (2.2) under a
”low measurement rate” in the presence of measurement and computational delays. Let
Γ0 ⊂ Γ be a given compact set containing the origin and consisting of all initial states to
be taken into account. The system is to be controlled digitally using piecewise constant
control functions u(t) = u(iT ) =: ui, if t ∈ [iT, (i + 1)T ), i ∈ N, where T > 0 is the
control sampling period. Here we consider fixed sampling period T and the integration
period h used in obtaining the approximate discrete-time plant model which is allowed to
vary.
We shall assume that state measurements can be performed at the time instants jTm,

j = 0, 1, ... :

yj := x(jT
m), j = 0, 1, ... ,

where Tm is the measurement sampling period. In this case, different measurement and
control sampling rates are used.
The result of the measurement yj becomes available for the computation of the con-

troller at jTm+ τ 1(> jT
m), while the computation requires τ 2 > 0 length of time i.e. the

(re)computed controller is available at T ∗j := jT
m+ τ 1+ τ 2, j = 0, 1, ... . We assume that

τ 1 = `1T, τ 2 = `2T and Tm = `T for some integers `1 ≥ 0, `2 ≥ 0 and ` ≥ `1 + `2 =: `.
Because of the measurement and computational delays, on the time interval [0, τ 1+τ 2)

a precomputed control function uc can only be used. It is reasonable to assume that initial
states can be kept within the PAC domain of the exact system with such a precomputed
controller. More precisely:
Assumption A8 (feasibility of the initial phase) There exists a ∆0 > 0 and a control

sequence uc = {uc0, ..., uc`−1} with u
c
i ∈ U can be given so that φEk (x,u

c) ∈ Γ ∩ B∆0,

φAk (x,u
c) ∈ Γ ∩ B∆0 , k = 0, 1, ..., ` for all x ∈ Γ0 and h ∈ (0, h∗0].

Furthermore, a ”new” controller computed according to the measurement yj = x(jTm)
will only be available from jTm+`T , while in the time interval [jTm, jTm+`T ), the ”old”
controller has to be applied. Since the corresponding exact trajectory is unknown, only
an approximation ζAj to the exact state x

¡
jTm + `T

¢
can be used which can be defined

as follows. Assume that a control sequence
©
u0
¡
ζAj−1

¢
, ..., u`−1

¡
ζAj−1

¢ª
has been defined

for j ≥ 1. Let

vp
¡
ζAj−1

¢
=
©
u`−`

¡
ζAj−1

¢
, ..., u`−1

¡
ζAj−1

¢ª
,

and define ζAj by

ζAj = FA`
¡
yj,v

p
¡
ζAj−1

¢¢
, ζA0 = φA

`
(x,uc),

where FA
`

¡
y, {u0, ..., u`−1}

¢
= FAT,h

¡
...FAT,h

¡
FAT,h (y, u0) , u1

¢
..., u`−1

¢
.

In the stability analysis of the exact discrete-time model in the case of multirate
sampling with delays outlined above, the following `-step exact discrete-time model plays
an important role: let v(j) =

n
u
(j)
0 , ..., u

(j)
`−1

o
and let

ξEj+1 = FE` (ξEj ,v(j)), ξE0 = φE
`
(x,uc),

where FE` (ξEj ,v) = φE` (ξ
E
j ,v).
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Our aim is to solve the following problem: for given T , Tm, τ 1 and τ 2 find a control
strategy

v`,h : eΓ→ U × U × ...× U| {z }
` times

,

v`,h(x) = {u0(x), ..., u`−1(x)} ,

using the approximate model (2.4) which stabilizes the origin for the exact system (2.2)
in an appropriate sense, where eΓ is a suitable set containing at least Γ ∩ B∆0 .
Next, we shall show that if we don’t take into account the occurring delays, then

instability of the closed-loop may occur.

2.8.1 Motivating examples

In this subsection, we present two examples for which a family of control laws which
stabilizes the family of exact discrete-time models when no delays are presented, may
destabilize the same family of exact models when the occurring delays are not taken into
account.
Example 1
Consider the scalar linear system

ẋ = x+ u.

The family of the exact discrete-time models is

x(k + 1) = eTx(k) + (eT − 1)u(k). (2.46)

The exact system can be stabilized by u(k) = −Kx(k) with

1 ≤ K ≤ K∗(T ) =
eT + 1

eT − 1
for all T > 0.
We assume that the controller comes with a one-sampling delay i.e. u(k) = −Kx(k−

1). The closed-loop exact discrete-time system with delay becomes:

x(k + 1) = eTx(k)− (eT − 1)Kx(k − 1).

Let z(k) = x(k − 1) then the closed-loop exact system is given byµ
x(k + 1)
z(k + 1)

¶
=

µ
eT −(eT − 1)K
1 0

¶µ
x(k)
z(k)

¶
.

The eigenvalues of the coefficient matrix are

λ1 =
1

2

³
eT +

p
e2T − 4K(eT − 1)

´
,

λ2 =
1

2

³
eT −

p
e2T − 4K(eT − 1)

´
,
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which are inside the unit circle for all T < ln(2) and

1 ≤ K ≤ K∗
d(T ) =

1

eT − 1 .

It is clear that K∗
d(T ) < K∗(T ), for all T > 0. Therefore if we choose T > ln(2) or

K∗
d(T ) < K ≤ K∗(T ), then the controller which stabilize the exact closed-loop system

without delay will destabilize the delayed one.
In the next example we construct the state-feedback by RHC method based on the

approximate discrete-time model. We show that if one does not take into account the
occurring delay, then the designed receding horizon controller will destabilize the closed-
loop system.
Example 2 We consider the sampled-data control of the double integrator

ẋ1 = x2, ẋ2 = u,

for which the family of exact discrete-time models can be given as

x1(k + 1) = x1(k) + Tx2(k) +
T 2

2
u(k),

x2(k + 1) = x2(k) + Tu(k).

The family of Euler approximate models is

x1(k + 1) = x1(k) + Tx2(k),

x2(k + 1) = x2(k) + Tu(k). (2.47)

The receding horizon controller for (2.47) with a cost function of type (2.9) and with the

choice of N = 2, G = 0, RT = T
2, QT =

µ
6/T 2 2.4/T
2.4/T 1

¶
can be computed:

vAT (x(k)) = −
1.2

T 2
x1(k)−

1.7

T
x2(k).

This gives the family of approximate closed-loop models

x1(k + 1) = x1(k) + Tx2(k),

x2(k + 1) = −1.2
T
x1(k)− 0.7x2(k).

The eigenvalues of the coefficient matrix are |λ1| = |λ2| =
√
2/2, thus the approximate

closed-loop model is asymptotically stable for all T > 0.
The family of exact closed-loop models is

x1(k + 1) = 0.4x1(k)− 0.15Tx2(k),

x2(k + 1) = −1.2
T
x1(k)− 0.7x2(k).

The eigenvalues of the coefficient matrix are {−0.5, 0.2}, thus the exact closed-loop model
is asymptotically stable for all T > 0.
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We assume that the controller comes with a one-sampling delay i.e. u(k) = vAT (x(k −
1)), thus the closed-loop delayed approximate and exact discrete-time models are given
respectively by:

x1(k + 1) = x1(k) + Tx2(k),

x2(k + 1) = x2(k)− TK1x1(k − 1)− TK2x2(k − 1).

x1(k + 1) = x1(k) + Tx2(k)−
T 2

2
K1x1(k − 1)−

T 2

2
K2x2(k − 1),

x2(k + 1) = x2(k)− TK1x1(k − 1)− TK2x2(k − 1).

where K1 =
1.2
T 2
, K2 =

1.7
T
.

Let z1(k) = x1(k − 1) and z2(k) = x2(k − 1) then
x1(k + 1)
x2(k + 1)
z1(k + 1)
z2(k + 1)


A

=


1 T 0 0
0 1 −TK1 −TK2

1 0 0 0
0 1 0 0



x1(k)
x2(k)
z1(k)
z2(k)


A

,


x1(k + 1)
x2(k + 1)
z1(k + 1)
z2(k + 1)


E

=


1 T −T 2

2
K1 −T

2

2
K2

0 1 −TK1 −TK2

1 0 0 0
0 1 0 0



x1(k)
x2(k)
z1(k)
z2(k)


E

.

The eigenvalues of the coefficient matrix for the approximate and exact models are
{1.52139, 1.52139, 0.216017, 0} and {1.6249, 1.6249, 0.4166, 0}, respectively. Therefore,
the closed-loop for both the approximate and exact discrete-time models with delay are
unstable for all T > 0.
In order to find a suitable controller v, we shall apply a multistep version of the

receding horizon method. To do so, we shall consider the following optimization problem:
for any N > ` let

PAT,h(N,x) : min {JT,h(N, x,u) : uk ∈ U} . (2.48)

If this optimization problem has a solution denoted by u∗ =
©
u∗0, ..., u

∗
N−1

ª
, then the first

` elements of u∗ are applied at the state x i.e.,

v`,h(x) =
©
u∗0(x), ..., u

∗
`−1(x)

ª
.

For any N > ` and x ∈ Rn, let

VN(x) = inf {JT,h(N, x,u) : uk ∈ U} . (2.49)

In this section we use the same optimization problem given in the previous sections,
therefore the properties of the value function remain valid. The only difference is given
in the following lemma. We shall use the same notation as before.
Lemma 8 If Assumptions A1-A6 hold true, then
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(i) There exists a constant M > 0 which is independent of N and h such that

ku∗k(x)k ≤M, k = 0, 1, ..., N − 1 (2.50)

for all x ∈ Γmax and h ∈ (0, h∗1], where h∗1 is given in Lemma 2.
(ii) If h ∈ (0, h∗1], and N ∈ N is chosen according to (2.29) then for any x ∈ Γmax,

φAN(x,u
∗(x)) ∈ Gη, and

VN
¡
φAk (x,u

∗(x))
¢
− VN(x) ≤ −Tϕ1(kxk). (2.51)

for all k = 1, ..., `. Moreover, there exists e∆ > 0 such that°°φAk (x,u∗(x))°° ≤ e∆, k = 0, 1, ..., N. (2.52)

Proof. The proof of (2.51) is similar to Lemma 1. To show (2.50) and (2.52), we observe
that

VN(x) = JT,h(N,x,u
∗) ≥ Tϕ1

¡
ku∗k(x)k+

°°φAk (x,u∗(x))°°¢ . (2.53)

k = 0, 1, ..., N − 1, therefore,

ku∗k(x))k ≤ ϕ−11
¡
V Amax/T

¢
=M, k = 0, 1, ..., N − 1.

Since for any x ∈ Γmax, φ
A
N(x,u

∗(x)) ∈ Gη ⊂ Γmax then from (2.53) we obtain°°φAk (x,u∗(x))°° ≤ ϕ−11
¡
V Amax/T

¢
= e∆, k = 0, 1, ..., N. ¤

2.8.2 Multistep receding horizon control in the presence of de-
lays

In this subsection we outline an approach to the problem how the occurring measurement
and computational delays can be taken into account in the stabilization of multirate
sampled-data system by a receding horizon controller.
Suppose that a precomputed control sequence uc satisfying Assumption A8 is given.

Then the following Algorithm can be proposed.
Algorithm Let N be chosen according to (2.29), let j = 0, T ∗−1 = 0 and let u

(0) =
u(p,0) = uc = {uc0, ..., uc`−1}. Measure the initial state y(0) = x0.
Step j. (i) Apply the controller u(j) to the exact system over the time interval [T ∗j−1, T

∗
j ].

ii) Predict the state of the system by using the approximate model and let ζAj =

φA
`
(y(j),u(p,j)).

iii) Find the solution u∗ = {u∗0, , ..., u∗N−1} to the problem PAT,h(N, ζ
A
j ), let u

(j+1) =

{u∗0, , ..., u∗`−1} and u(p,j+1) = {u∗`−`, , ..., u
∗
`−1}.

(iv) j = j + 1.
A schematic illustration of the Algorithm is sketched in Figure 10.
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Fig. 10. Sketch of the Algorithm.

Lemma 9 Let d > 0 and k ∈ {1, 2, ..., `} be arbitrary. Suppose that Assumptions
A1-A6 and A8 are valid, N is chosen according to (2.29), and the following condition is
satisfied:
(C) ξEj−1 ∈ Γmax, ζAj−1 ∈ Γmax, and there exists a ε1(h) ∈ K such that

°°ξEj−1 − ζAj−1
°° ≤

ε1(h), if h ∈ (0, h∗1] (j ∈ N, j ≥ 1) with some 0 < h∗1 ≤ h∗0.
Then there exists a h

∗
> 0 (independent of k) such that for any h ∈ (0, h∗], inequality

max
©
VN
¡
φEk (ξ

E
j−1,u

(j))
¢
, VN(ξ

E
j−1)

ª
≥ d (2.54)

implies that

VN
¡
φEk (ξ

E
j−1,u

(j))
¢
− VN(ξEj−1) ≤ −

T

2
ϕ1(

1

2

°°ξEj−1°°),
where u(j) is the optimal solution of problem PAT,h(N, ζ

A
j−1).

Proof. Let Assumptions A2-A6 are satisfied with ∆0 = e∆+2 and ∆00 =M . Let ε2(h)
be defined as

ε2(h) = Tγ(h)
eLf `T − 1
eLfT − 1 + e

Lf `Tε1(h).

Using condition (C) we can show by induction with respect to k = 1, ..., ` that°°φEk ¡ξEj−1,u(j)¢− φAk
¡
ζAj−1,u

(j)
¢°° ≤ Tγ(h)

eLfkT − 1
eLfT − 1 + e

LfkT
°°ξEj−1 − ζAj−1

°°
≤ Tγ(h)

eLf `T − 1
eLfT − 1 + e

Lf `Tε1(h) =: ε2(h).



48 CHAPTER 2. STABILIZATION OF SAMPLED-DATA SYSTEMS

Let h∗2 be such that h
∗
2 = min

©
ε−11

¡
1
2
e−Lf `T

¢
, h∗1
ª
and let h∗3 ≤ h∗2 be such that

Tγ(h∗3)
eLf `T − 1
eLfT − 1 ≤

1

2
,

then for any h ∈ (0, h∗3] we obtain°°φEk ¡ξEj−1,u(j)¢− φAk
¡
ζAj−1,u

(j)
¢°° ≤ 1.

Since ζAj−1 ∈ Γmax it follows from (2.52) that
°°φAk ¡ζAj−1,u(j)¢°° ≤ e∆ and°°φEk ¡ξEj−1,u(j)¢°° ≤ e∆+ 1. (2.55)

Suppose that VN
¡
φEk (ξ

E
j−1,u

(j))
¢
≥ d/2. Since VN

¡
φEk (ξ

E
j−1,u

(j))
¢
≤ σ2

¡°°φEk (ξEj−1,u(j))°°¢
then °°φEk (ξEj−1,u(j))°° ≥ σ−12

µ
d

2

¶
. (2.56)

If 0 < h ≤ h∗4 = ε−12
¡
1
2
σ−12

¡
d
2

¢¢
then°°φAk ¡ζAj−1,u(j)¢°° ≥ °°φEk ¡ξEj−1,u(j)¢°°− °°φEk ¡ξEj−1,u(j)¢− φAk

¡
ζAj−1,u

(j)
¢°°

≥ σ−12

µ
d

2

¶
− ε2(h) ≥

1

2
σ−12

µ
d

2

¶
. (2.57)

On the other hand from inequality (2.51) it follows that

VN
¡
ζAj−1

¢
≥ VN

¡
φAk (ζ

A
j−1,u

(j))
¢
≥ σ1

µ
1

2
σ−12

µ
d

2

¶¶
,

°°ζAj−1°° ≥ σ−12

µ
σ1

µ
1

2
σ−12

µ
d

2

¶¶¶
=: δ1, (2.58)

and let h∗5 be such that h
∗
5 = ε−11 (δ1) then for any h ∈ (0, h∗5] we have°°ξEj−1°° ≤ °°ζAj−1°°+ °°ξEj−1 − ζAj−1

°°
≤

°°ζAj−1°°+ ε1(h)

≤
°°ζAj−1°°+ δ1 ≤ 2

°°ζAj−1°° . (2.59)

Let h∗6 be such that LV (ε1(h
∗
6) + ε2(h

∗
6)) ≤ T

2
ϕ1 (δ1) and let h

∗
= min {h∗0, ..., h∗6}. From

(2.55)-(2.59) and the choice of h
∗
we deduce that VN

¡
φEk (ξ

E
j−1,u

(j))
¢
≥ d/2 implies

VN
¡
φEk
¡
ξEj−1,u

(j)
¢¢
− VN

¡
ξEj−1

¢
= VN

¡
φEk
¡
ξEj−1,u

(j)
¢¢
− VN

¡
φAk
¡
ζAj−1,u

(j)
¢¢

+VN
¡
φAk
¡
ζAj−1,u

(j)
¢¢
− VN

¡
ζAj−1

¢
+ VN

¡
ζAj−1

¢
− VN

¡
ξEj−1

¢
≤ LV

°°φEk ¡ξEj−1,u(j)¢− φAk
¡
ζAj−1,u

(j)
¢°°− Tϕ1 ¡kζAj−1k¢

+LV
°°ξEj−1 − ζAj−1

°°
≤ LV (ε1(h) + ε2(h))− Tϕ1

¡
kζAj−1k

¢
= −T

2
ϕ1
¡
kζAj−1k

¢
+ LV (ε1(h) + ε2(h))−

T

2
ϕ1
¡
kζAj−1k

¢
≤ −T

2
ϕ1

µ
1

2
kξEj−1k

¶
+ LV (ε1(h) + ε2(h))−

T

2
ϕ1 (δ1)

≤ −T
2
ϕ1

µ
1

2
kξEj−1k

¶
.
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Next suppose that VN
¡
φEk (ξ

E
j−1,u

(j))
¢
< d/2, but VN

¡
ξEj−1

¢
> d. We know from (2.51)

that VN
¡
ξEj−1

¢
≥ Tϕ1

¡°°ξEj−1°°¢
VN
¡
φEk (ξ

E
j−1,u

(j))
¢
− VN

¡
ξEj−1

¢
≤ d

2
− 1
2
VN
¡
ξEj−1

¢
− 1
2
VN
¡
ξEj−1

¢
≤ −T

2
ϕ1
¡°°ξEj−1°°¢ ≤ −T2 ϕ1

µ
1

2

°°ξEj−1°°¶ . ¤
Corollary 3 Under the conditions of Lemma 9 inequality

max
©
VN
¡
φEk (ξ

E
j−1,u

(j))
¢
, VN(ξ

E
j−1)

ª
≥ d

implies that φEk (ξ
E
j−1,u

(j)) ∈ Γmax.
Theorem 5 Suppose that Assumptions A1-A6 and A8 hold true. Then there exist

a T ∗ > 0 and a β ∈ KL, and for any r0 > 0 there exists a h∗ > 0 such that for any
fixed N ∈ N with NT ≥ T ∗, h ∈ (0, h∗] and x0 ∈ Γ0, the trajectory of the `-step exact
discrete-time system

ξEj+1 = FE` (ξEj ,v`,h(ζAj )), ξE0 = φE
`
(x0,u

c) (2.60)

with the `-step receding horizon controller v`,h obtained by the prediction

ζAj+1 = FA`
¡
yj+1,v

p
¡
ζAj
¢¢
, ζA0 = φA

`
(x0,u

c) (2.61)

satisfies that ξEj ∈ Γmax and°°ξEj °° ≤ max©β ¡°°ξE0 °° , jTm¢ , r0ª
for all j ≥ 0. Moreover, ζAj ∈ Γmax, as well, and°°ζAj °° ≤ max©β ¡°°ζA0 °° , jTm¢+ δ1, r0

ª
where δ1 can be made arbitrarily small by suitable choice of h.
Proof. To prove the theorem, we have to show that for any j = 1, 2, ..., lemma 9 is

applicable. As in the proof of lemma 9, we take ∆0 = e∆+2 and ∆00 =M in Assumptions
A2-A6. Because of Assumption A8 and the choice of u(p,0) as u(p,0) = uc, for j = 1 we
have °°φEk ¡yj−1,u(p,j−1)¢− φAk

¡
yj−1,u

(p,j−1)¢°° ≤ Tγ(h)eLfkT − 1
eLfT − 1 , (2.62)

if k = 1, ..., ` and h ∈ (0, h∗1].
Let us define ε1 by

ε1(h) = Tγ(h)
eLf `T − 1
eLfT − 1 .

Then, from (2.62) it follows that ξE0 and ζA0 satisfy condition (C) of lemma 9.
Let r0 > 0 be arbitrary, let d = σ1

¡
1
2
σ−12 (σ1 (r0))

¢
and let δ = σ−12 (d). Suppose that

for some j ≥ 1 condition (C) is satisfied.
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If VN
¡
ξEj−1

¢
≥ d, then

°°ξEj−1°° ≥ σ−12 (d) = δ, and for k = 1, ..., `

VN
¡
φEk (ξ

E
j−1,u

(j))
¢
− VN

¡
ξEj−1

¢
≤ −T

2
ϕ1

µ
1

2

°°ξEj−1°°¶ ≤ −T2 ϕ1
µ
δ

2

¶
holds true. Thus ξEj ∈ Γmax and

VN
¡
ξEj
¢
− VN

¡
ξEj−1

¢
≤ −T

2
ϕ1

µ
1

2

°°ξEj−1°°¶ ≤ −T2 ϕ1
µ
δ

2

¶
, (2.63)

furthermore, yj ∈ Γmax as well.
Now we show that ζAj ∈ Γmax. From (2.55) we have

°°φEk ¡yj,u(p,j)¢°° ≤ e∆+ 1 and by
applying (2.62) for k = 1, ..., ` with j + 1 instead of j, we get

°°φEk ¡yj,u(p,j)¢− φAk
¡
yj,u

(p,j)
¢°° ≤ Tγ(h)eLf `T − 1

eLfT − 1 = ε1(h).

From the choice of h∗2 inequality
°°φEk ¡yj,u(p,j)¢°° ≤ e∆+ 3/2 holds true, as well.

Let us choose h0 = ε−11

³
Tϕ1(δ/2)
2LV

´
. Then

VN
¡
ζAj
¢
= VN

¡
ζAj
¢
− VN

¡
ξEj
¢
+ VN

¡
ξEj
¢

≤ LV
°°ζAj − ξEj

°°+ VN ¡ξEj−1¢− T2 ϕ1
µ
δ

2

¶
≤ VN

¡
ξEj−1

¢
+ LV ε1(h)−

T

2
ϕ1

µ
δ

2

¶
≤ VN

¡
ξEj−1

¢
≤ V Amax,

therefore ζAj ∈ Γmax. Thus condition (C) is valid for j + 1 as long as VN
¡
ξEj−1

¢
≥ d holds

true. From (2.63) it follows that after a finite number of steps VN
¡
ξEj−1

¢
< d will occur.

Then, by lemma 9, we know that VN
¡
φEk (ξ

E
j−1,u

(j))
¢
< d must also be valid for k =

1, ..., `. Define the level set Vq = {x : VN(x) ≤ q}, and let d1 = σ1(r0), r1 = σ−12 (σ1(r0)),
r2 = r1/2. Obviously Vd ⊂ Br2 ⊂ Br1 ⊂ Vd1 ⊂ Br0. Then°°φEk (ξEj−1,u(j))°° ≤ σ−11 (d) =

1

2
σ−12 (σ1(r0)) =

r1
2

especially
°°ξEj−1°° ≤ σ−11 (d) =

r1
2
and

°°ξEj °° ≤ r1
2
. On the other hand, choose h00 =

ε−11
¡
1
2
σ−12 (σ1(r0))

¢
and take h∗ = min

n
h
∗
, h0, h00

o
then°°ζAj−1 − ξEj−1

°° ≤ ε1(h) =
r1
2

and
°°ζAj−1°° ≤ r1.

Furthermore, since yj = φE
`−`(ξ

E
j−1,u

(j)) therefore kyjk ≤ r1
2
. Since,

°°ξEj °° ≤ r1
2
and from

the choice of h00 it follows that°°ζAj − ξEj
°° ≤ ε1(h) =

r1
2

and
°°ζAj °° ≤ r1.

Since

VN
¡
φAk (ζ

A
j ,u

(j+1))
¢
≤ VN

¡
ζAj
¢
≤ σ2(r1) < σ2(r0)
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then °°φAk (ζAj ,u(j+1))°° ≤ r0,°°φEk (ξEj ,u(j+1))°° ≤ r1/2.

Thus the ball Br0 is positively invariant with respect to the exact and the approximate
trajectories that appear in connection with the proposed algorithm. The existence of the
function β ∈ KL is shown in Appendix. ¤
Remark 10 From Theorem 5 and lemma 9 it follows that φEk (ξ

E
j−1,u

(j)) converges to
the ball Br0 as j →∞ for all k.
Remark 11 We note that the statement of Theorem 5 is similar to the practical

asymptotic stability of the closed-loop system (2.60)-(2.61) with respect to the initial
state ξE0 , ζ

A
0 . This is not true for the original initial state x0, because - due to the initial

phase - the ball Br0 is not invariant over the time interval [0, `T ).

2.9 Illustrative Example

Consider the continuous-time system (this example is taken from [9])

ẋ1 = x2 + 0.5(1 + x1)u,

ẋ2 = x1 + 0.5(1− 4x2)u.

Let the approximate discrete-time model be defined by the Euler method as follows: let
z0 = x

A
k , u = uk, h = T/m and let

z1,i+1 = z1,i + h [z2,i + 0.5(1 + z1,i)u] ,

z2,i+1 = z2,i + h [z1,i + 0.5(1− 4z2,i)u] .

i = 0, 1, ...,m − 1. Take xAk+1 = zm. The running and the terminal costs are given by
lh(x, u) =

1
2
kxk4 + u2, g(x) = 2.7778x21 + 2.2223x22. All computations were carried out by

MATLAB. Especially, the optimal control sequence was computed by the constr code of
the Optimization toolbox. Simulations for the continuous-time system were carried out
using ode45 program in MATLAB when T = 0.05, m = 10, `1 = `2 = 1, ` = 3.
The trajectories of the continuous-time system are shown in Figures 11-12. In these

figures, three cases are shown; 1) The ideal instantaneous `-step receding horizon con-
troller is applied under the condition that no delays are presented (ideal RHC); 2) The
ideal instantaneous receding horizon controller is applied without taking into account the
occurring delays (RHC delay neglected); 3) The receding horizon controller obtained by
the proposed Algorithm applied to the system when the delays are present (RHC delay
considered).
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Chapter 3

HIV/AIDS Model

Using recently-developed models of the interaction of the HIV virus and the immune
system of the human body, we developed both one step and `−step receding horizon
control (RHC) based methods for determining treatment schedules. Two kinds of four-
dimensional models are considered. Reverse transcriptase inhibitors (RTI) and protease
inhibitors (PI) are used. The drug dose is considered as a control input and the goal is to
stabilize the system around the uninfected steady state. Simulation results are discussed.

3.1 Introduction

Over the last decade much collaborative effort involving biologists and mathematicians
has been devoted towards designing mathematical models of HIV pathogenesis and an-
tiretroviral therapies (see e.g. [45], [62], [82], [83], [87], [88], [99]). Anti-retroviral drug
therapy has successfully been used to significantly suppress viral replication and to delay
disease progression in many patients. These drugs act by two mechanisms: reverse tran-
scriptase inhibitors (RTI) and protease inhibitors (PI). Reverse transcriptase inhibitors
prevent the infection of new host immune cells by blocking reverse transcription of the
HIV RNA into host-cell DNA. Protease inhibitors prevent already infected host cells
from producing infectious virus particles. Recently, highly active antiretroviral therapies
(HAART) containing a combination of RTI and PI drugs, can rapidly suppress HIV in
plasma below detectable levels.
Very recent papers ([94], [100]) used a receding horizon control (RHC) method for

determining treatment schedules. In these papers, the effect of the discretization of the
continuous-time model on the stability analysis is completely ignored. Also, the sampling
is completely ignored at the controller design step.
The aim of this chapter is to apply the theoretical results obtained in Chapter 2 to two

kinds of HIV/AIDS models. Since the sampling period T can’t be adjusted arbitrarily
in the treatment schedule, therefore we shall only deal with the case T 6= h. In the first
model we apply a one-step RHC method assuming the measurements are available at the
sampling instants kT , k ∈ N.
Sometimes, one-step RHC method is not suitable for small sampling period due to

the difficulty of blood measurements. One way to overcome this problem is to increase
the sampling period (see [94] and [100]). The sampling period was chosen to equal seven
days i.e (T = 7). However, the authors did not consider the intersampling behavior. To

53
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avoid this problem we use a version of multiple step RHC, which requires the availability
of blood measurements at the measurement sampling instants i.e. (kTm, k ∈ N).

3.1.1 The basic model of virus dynamics

The basic model of virus dynamics has three variables: the concentrations of uninfected
CD4+ T cells, x, infected CD4+ T cells, y, and free infectious virus particles, v, respec-
tively. Here, concentration refers to the population number per unit volume, mm−3. The
interaction between these cells and virus particles is given by the following nonlinear
differential equations:

ẋ = %(x, y)− kxv, (3.1)

ẏ = kxv − δy, (3.2)

v̇ = nδy − cv, (3.3)

where the functional form % is defined differently by different authors:
1. Perelson, Kirschner and Boer [87]:

%(x, y) = s− µx+ px
µ
1− x+ y

Tmax

¶
,

2. Perelson and Nelson [88]:

%(x, y) = s− µx+ px
µ
1− x

Tmax

¶
.

We note that all of the mentioned parameters are positive. Here, s represents the rate
at which new T-cells are generated from sources within the body, such as the thymus; p
represents the growth rate of T-cells, which is presented as a logistic-type term; Tmax is
the T-cell population density at which proliferation shuts off; µ and δ are the (average per
capita) rate of death for uninfected and for infected cells, respectively; k is the infection
rate; c is the clearance rate of free virions; n is the number of virions produced from
infected cell during its life-time.
Before infection the system has only one steady state E0(x0, 0, 0) which we call unin-

fected steady state, where x0 is the positive solution of %(x0, 0) = 0.
The basic reproductive ratio of model (3.1)-(3.3) is given by

R0 =
nkx0

c
,

which is defined as the number of newly infected cells that arise from any one infected
cell when almost all cells are uninfected (see [45] and [62]). It is shown in [62] that if
R0 < 1 then E0 is asymptotically stable. Therefore at the beginning of the infection
each virus-infected cell produces on average less than one newly infected cell. Thus,
the infection cannot spread and the system returns to the steady state E0. If R0 > 1,
then E0 is unstable and initially each virus-infected cell produces on the average more
than one newly-infected cell. In the real situation and when there is no treatment, E0

is usually unstable for most AIDS patients. Our aim is to determine a control strategy
which stabilizes this unstable equilibrium.
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Here we will present two HIV/AIDS models. The first one takes into account the
latently infected cells (such cells contain the virus but are not producing it) and the
actively infected cells (such cells are producing the virus). The second model considers
both infectious and non-infectious virions.

3.2 HIV/AIDS model 1

The results presented in this section are published in [23].

3.2.1 The model

We shall study the model proposed by [87] incorporating the effect of an antiviral therapy.

ẋ = s− µx+ px
µ
1− x+ y + y

∗

Tmax

¶
− e−α1m(t)kxv, (3.4)

ẏ = e−α1m(t)kxv − µy − k1y, (3.5)

ẏ∗ = k1y − δy∗, (3.6)

v̇ = nδy∗ − kxv − cv, (3.7)

where y and y∗ are the concentrations of latently infected CD4+ T-cells and actively
infected CD4+ T-cells, respectively. In this model only RTI drugs are considered. The
effect of treatment is represented by a chemotherapy function e−α1m(t) where m(t) is the
drug dose at time t and α1 is the efficiency of drugs for reverse transcriptase inhibitors
(see [6] and [25]). We shall define the control input as:

u(t) = α1m(t).

Equation (3.5) and (3.6) model the latently and actively infected CD4+ T populations,
respectively. At rate k1, the latently infected cells become actively infected. The loss of
free virus due to infection of a cell is represented by the term −kxv in (3.7).
It is reasonable to assume that the death by viral cytopathicity occurs faster than

death by natural means (see [45] and [87]), i.e.

δ > µ. (3.8)

We note that the system (3.4)-(3.7) is biologically acceptable because

ẋ |(x=0) = s ≥ 0,
ẏ |(y=0) = e−u(t)kxv ≥ 0, (v, x ≥ 0),

ẏ∗ |(y∗=0) = k1y ≥ 0, (y ≥ 0),
v̇ |(v=0) = nδy∗ ≥ 0, (y∗ ≥ 0).

This means that the non-negative orthantR4+ is positively invariant, namely, if a trajectory
starts in the non-negative orthant, it remains there.
One of the properties of the logistic equation for T-cells is that if 0 ≤ x(0) < Tmax,

then x(t) < Tmax for all t (see [24]). If we consider the case y = y∗ = v = 0, the equation
(3.4) is given in the following form:

ẋ = s− µx+ px
µ
1− x

Tmax

¶
.
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The property mentioned above remains true if

s− µTmax < 0. (3.9)

Since HIV infection only reduces the T-cell population, this property has to remain true
for the total T-cell population Ttot = x + y + y∗, namely Ṫtot |(Ttot=Tmax)< 0 if (3.8) and
(3.9) hold. (This corresponds to [45] and [87].)
Thus, in the case of HIV infection, Ttot(t), and hence x(t), y(t) and y∗(t) are all

bounded by Tmax. On the other hand,

v̇ ≤ nδy∗ − cv ≤ nδTmax − cv,

therefore v(t) ≤ nδTmax
c

=: M∗ for all t > 0, if this inequality holds true for t = 0 and
y∗(0) ≤ Tmax.
We introduce the notation for the set of biologically relevant states

Ω = {(x, y, y∗, v) : 0 ≤ x, y, y∗ ≤ Tmax, 0 ≤ v ≤M∗} .

3.2.2 Steady state analysis

Let us compute the equilibrium points of system (3.4)-(3.7) under constant controller i.e.
for u(t) = bu, t ≥ 0. We get that, if

n ≤ nth(bu) = µ+ k1
e−buk1 ,

then there is only one biologically acceptable equilibrium point, namely the uninfected
steady state E0 = (x = x0, y = 0, y∗ = 0, v = 0) ,

x0 =
1

2q2

µ
q1 +

q
q21 + 4sq2

¶
(3.10)

with q1 = p − µ, q2 = p/Tmax, which is identical with the steady state of the untreated
case i.e when bu = 0.We note that if n ≤ nth(bu) there is another equilibrium point, but it
has no biological meaning because its first coordinate is negative (x < 0).
If n satisfies inequality

n > bncrit(bu) = (k1 + µ)(c+ kx
0)

x0kk1e−bu = nth(bu)³1 + c

kx0

´
, (3.11)

then this negative equilibrium point becomes positive with the following coordinates:
E+ = (x0, y0, y

∗
0, v0) , where

x0 =
c

ne
−bukk1
k1+µ

− k
=

c

k (n/nth(bu)− 1) = c

α
,

y0 =
e−bukv0x0
k1 + µ

=
kv0x0
k1nth(bu) ,

y∗0 =
e−bukk1v0x0
δ (k1 + µ)

=
kv0x0
δnth(bu) ,

v0 =
sα2 + q1αc− q2c2
kce−bu (βc+ α)

,
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where

α = k

µ
n

nth(bu) − 1
¶
, β =

q2
k1 + µ

µ
1 +

k1
δ

¶
.

If nth(bu) < n < bncrit(bu), then x0 is positive but it is easy to see that v0, y0 and y∗0 are
negative.
If n = bncrit(bu), then v0 = 0, because sα2 + q1αc− q2c2 = 0. In fact,

α |(n=bncrit(bu))= k
µbncrit(bu)
nth(bu) − 1

¶
=
c

x0
,

and

s
c2

(x0)2
+ q1

c2

x0
− q2c2 = 0 iff q2

¡
x0
¢2 − q1x0 − s = 0,

which can be verified by substituting x0 from (3.10).
In sum we get

v0 < 0, if n < bncrit(bu),
v0 = 0, if n = bncrit(bu),
v0 > 0, if n > bncrit(bu).

It means v0 is an increasing function of n and x0 is a decreasing function of n, when
n > nth(bu). In case of n = bncrit(bu), x0 = x0 and v0 = 0. (y0 and y

∗
0 are negative if

nth(bu) < n < bncrit(bu).)
3.2.3 Stability of uninfected steady state

In order to consider the local stability behavior of the equilibrium point let us linearize
the system (3.4)-(3.7) in case of constant control i.e. u(t) = bu, around E0. The coefficient
matrix is:

A =


a11 −q2x0 −q2x0 −e−bukx0
0 − (k1 + µ) 0 e−bukx0
0 k1 −δ 0
0 0 nδ −kx0 − c

 (3.12)

where a11 = −µ + p − 2px0

Tmax
. Obviously, a11 < 0 iff Tmax

2

³
1− µ

p

´
< x0 and this is true

according to (3.10). (We note that if bu → ∞ then A is signstable (see [48]), thus E0 is
asymptotically stable for any given parameters. Of course this has no practical relevance,
because we cannot increase the drugs infinitely.)
Let us consider the characteristic polynomial

D(λ) = λ4 − r1λ3 + r2λ2 − r3λ+ r4

of the matrix A, where r1 = Trace(A) and r2 =
P3

i=1 aii
P

i<j ajj, r2 > 0. After straight-
forward calculations we get that r4 > 0 iff n < bncrit(bu). In this case r3 < 0 too, moreover
the Routh-Hurwitz criteria holds.
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The following theorem summarizes our results.
Theorem 6 If n < bncrit(bu), then the uninfected equilibrium point E0 = (x0, 0, 0, 0) is

locally asymptotically stable.
We note that the steady state and stability analysis are similar to those in [87] when

there is no treatment i.e. bu = 0.
Theorem 7 If n < nth(bu), then the uninfected equilibrium point E0 = (x0, 0, 0, 0) is

asymptotically stable in the whole set of biologically relevant states Ω.
Proof. The proof is based on LaSalle’s invariance principle (see e.g. Theorem 2.2 in

[92] or Theorem 5.4.1 in [73]). Let us define a function H : R4+ −→ R (analogously to
function L in [87]) by

H(x, y, y∗, v) = y + ne−buy∗ + e−buv.
The derivative of H along the solution of (3.4)-(3.7) with u(t) ≡ bu is

Ḣ(3.4)−(3.7)(x, y, y
∗, v) =

£
nk1e

−bu − k1 − µ¤ y − ce−buv.
Hence Ḣ(3.4)−(3.7)(x, y, y∗, v) ≤ 0 in R4+, if n < nth(bu). From the invariance principle it
follows that the trajectories of (3.4)-(3.7) with u(t) ≡ bu converge to the largest invariant
set D0 in the subset where Ḣ(3.4)−(3.7)(x, y, y∗, v) = 0. This set is nothing else as

D0 = {(x, y, y∗, v) : 0 ≤ x ≤ Tmax, y = y∗ = v = 0} .

To finish the proof we have to show that the trajectories do not have any accumulation
point different from E0. Assume that, in contrary, E ∈ D0 is an accumulation point and
E 6= E0. Since nth(bu) < bncrit(bu), for n < nth(bu), E0 is locally asymptotically stable,
thus E is outside a ball Bρ(E

0) with radius ρ around E0. Since the right hand side of
(3.4) is strictly positive and strictly negative along the x-axis for x < x0 and x > x0,
respectively, therefore for continuity reasons there exist two positive numbers bδ and c1
such that ẋ(t) ≥ c1 (i.e. ẋ(t) ≤ −c1) if 0 ≤ x(t) ≤ x0 − ρ

2
(i.e. x0 + ρ

2
≤ x(t) ≤ Tmax) and

y(t) < bδ, y∗(t) < bδ and v(t) < bδ. It follows then that E is a limit point and ẋ(t) should
tend to zero as t→∞, which is a contradiction. ¤
For a given value of n there exists a non-negative value of the drug dose u, namely

uth(n) = max

½
0, ln

µ
nk1
k1 + µ

¶¾
such that for bu > uth(n) inequality n ≤ nth(bu) ≤ bncrit(bu) holds true.
Thus the following corollary can be formulated.
Corollary 4 The uninfected equilibrium point E0 is asymptotically stable in Ω if

u(t) ≡ u > uth, and the control sequence u = {u, u, ... } satisfies Assumption A3.
This implies that for any initial points belonging to Ω there exists a control function

u for which no finite escape time occurs.
Remark 12 If the initial points are close enough to E0 then one can apply a control

sequence u = {bu, bu, ... } with bu > uc, where
uc = max

½
0, ln

µ
nkk1x

0

(k1 + µ)(c+ kx0)

¶¾
to stabilize the system around E0.
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3.2.4 Infected steady state

We shall examine the stability behavior of the infected steady state E+ only for the given
parameters in Table 1. We found that if 0 ≤ u(t) < uc = 0.518117, then the infected
steady state E+ is stable. If u(t) > uc, the virus will eventually be eradicated and the
infected steady state does not lie in R4+.
In Figures 13 and 14, the steady state values of x and v are plotted versus u. Stable

steady states are indicated by dark solid lines, unstable steady states by light lines.
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Fig. 13. Transcritical bifurcation. The steady state values of x are plotted versus bu.
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Fig. 14. Transcritical bifurcation. The steady state values of v are plotted versus bu.
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3.2.5 Application of RHC method

Our aim is to stabilize the system near E0 using the receding horizon control method
proposed in Chapter 2. We transform the point (x0, 0, 0, 0) into the origin with ex = x−x0,ey = y, ey∗ = y∗, ev = v, and the controller u into eu = u− uc, then (3.4)-(3.7) become

ėx = s− µ(ex+ x0) + p(ex+ x0)µ1− ex+ x0 + ey + ey∗
Tmax

¶
−e−(eu(t)+uc)k(ex+ x0)ev, (3.13)ėy = e−(eu(t)+uc)k(ex+ x0)ev − µey − k1ey, (3.14)ėy∗ = k1ey − δey∗, (3.15)ėv = nδey∗ − k(ex+ x0)ev − cev. (3.16)

Let f( eX, eu) be the right hand side of (3.13)-(3.16) where eX = (ex, ey, ey∗, ev)0. We can see
that f is continuous and Lipshitz continuous and f(0, 0) = 0, thus Assumption A1 is
satisfied. Let FAT,h be constructed using multiple steps of a one-step second order Rung-
Kutta scheme, then Assumptions A2 and A6 are satisfied. From Corollary 4 it follows
that Assumption A3 holds true, as well.
The sampling period was chosen to be T = 1. To verify Assumptions A4 and A5,

let AC be the coefficient matrix of the linearized system (3.13)-(3.16) in case of constant
control i.e. eu(t) = eu > euth, where euth = uth − uc. The discrete-time model for the
linearized continuous-time model is given by:

eX(k + 1) = eACT eX(k). (3.17)

The running cost and the terminal cost can be chosen as:

lh( eX, eu) = 0.1 eX 0Q eX + 0.001eu2, (3.18)

g( eX) = eX 0P eX, (3.19)

where P is a positive definite diagonal matrix given by

P = diag(100, 100, 100, 0.002)

and Q is a positive definite symmetric matrix

Q =


5.8235 1.8933 2.1203 0.0022
1.8933 4.4559 −0.7156 −0.0022
2.1203 −0.7156 18.1818 −0.0177
0.0022 −0.0022 −0.0177 0.0020

 .
This P and Q satisfy the Lyapunov equation for the discrete-time system (3.17)

Q = −(A0TPAT − P ), AT = e
ACT .

From (3.18)-(3.19), Assumption A4 is satisfied. It has been verified numerically by solving
a constrained minimization problem with several starting points that Assumption A5 is
satisfied over the whole set Ω.
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All computations were carried out by MATLAB. Especially, the optimal control se-
quence was computed by the constr code of the Optimization toolbox. Simulations for
the continuous-time system were carried out using ode45 program in MATLAB.

Remark 13 We note that, when applying the receding horizon algorithm, the cost
function JT,h is redefined at each sampling instant, thus the applied control doesn’t mini-
mize it over any interval. The optimization of this cost is not the aim of the computations
but it serves only as an aid for finding the desired stabilizing controller. Therefore the
biological content doesn’t play any role in its choice. Nevertheless, it is important to
investigate the performance of the proposed control function by means of a biologically
substantial cost function. Of course, the proposed controller may only be suboptimal
with respect to the latter criterion. Caetano and Yoneyama [6] proposed a running and
terminal costs which have a biological meaning as follows:

lr(X, u) = ω

µ
1− e−ε

³
u
α1

´2¶
+

γ1
x2
+ γ2v

2, (3.20)

gr(X) =
γ1
x2
+ γ2v

2, (3.21)

with γ1 = γ2 = 25 × 104, ω = 1, ε = 10−6. The function gr represents the target of
maximizing uninfected CD4+ T-cell and minimizing the viral load. The coefficient ω is
the weight that reflects the dose-related side effects of the drug m(t). The two last terms
in (3.20) are included to force x (uninfected CD4+ T-cell) to increase and v (viral load) to
decrease with treatment. Here, ε is the sensibility of the patient with respect to reverse
transcriptase inhibitors. We note that the value of lr and gr is important from a practical
point of view, but can’t be used to construct the receding horizon control because they
don’t satisfy Assumption A4. Therefore we use lh and g to stabilize the system. Consider
lr and gr as the costs of the real system. We define the following cumulative performance
index

Jr(0,M,X0,uv) =
M−1X
k=0

Tlr(XE
k , uk) + g

r(XE
M), M = 1, ...,M∗

where XE
k+1 = F

E
T

¡
XE
k , uk

¢
, uk = v

A
T,h(X

E
k ) and uv is the control sequence produced by

FET and vAT,h. We shall compute the cumulative performance index J
r(0,M,X0,uv) as

a function of the elapsed time M along the receding horizon trajectory at the sampling
instants tM =MT .

3.2.6 Numerical results

Definitions and numerical information for the parameters presented in Table 1 are obtained
from [87].
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Parameters and constants Values
µ = death rate of uninfected and latently

infected CD4+ T-cells population 0.02 day−1

δ = death rate of actively infected CD4+ T-cells 0.24 day−1

c = death rate of free virus 2.4 day−1

k = rate CD4+ T-cells becomes infected 2.4×10−5 mm3 day−1
k1 = rate y cells convert to actively infected 3×10−3 day−1
p = rate of growth for the CD4+ T-cell population 0.03 day−1

n = number of free viruses produced by y∗ cells 1300
Tmax = maximum CD4+ T-cell population level 1500 mm−3

s = source term for uninfected CD4+ T. 10 mm−3 day−1

Table 1.

For the parameters given in Table 1, we can see that n > ncrit |(bu=0)= 774, so E0 is
unstable for untreated case i.e. bu = 0.
We assume that the infection occurs with a certain amount of virus particles v = 0.001.

Thus the initial conditions are x(0) = x0, y(0) = y∗(0) = 0 and v(0) = 0.001. Figures 15-
18 show the case when there is no treatment (u = 0). It can be seen that the concentration
of uninfected CD4+ T cells is decaying while the concentrations of latently and actively
infected cells and free viruses are increasing. Also, we note that the trajectory tends
to the stable infected steady state E+ = (593.242, 254.01, 3.17513, 410.332). In Figures
19-24 the time measured after 1100 days from the onset of infection i.e. the treatment is
initiated at the state (25.706, 19.5871, 0.2326, 29.7937).
In Figure 19, the concentration of uninfected CD4+ T cell is seen to increase and tends

to the normal value x0 when the receding horizon control is used. Figures 20-22 show that
the concentrations of latently and actively infected cells and free viruses are decreasing
under the application of the receding horizon control.
In this model, the efficiency of drugs for reverse transcriptase inhibitors is given by

α1 = 0.005 (see [6]). The drug doses obtained by the RHC method as a function of the
time is shown in Figure 23. It is observed that the system can be kept at the stationary
point (x0, 0, 0, 0) by small drug doses i.e. m(t) ≥ mc =

uc
α1
. The cumulative performance

index Jr(0,M,X0,uv) with M∗ = 600 is shown in Figure 24.
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Fig. 15. The evolution of CD4 T cells for the untreated case.
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Fig. 16. The evolution of latently infected cells for the untreated case.
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Fig. 17. The evolution of actively infected cells for the untreated case.
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Fig. 18. The evolution of free viruses for the untreated case.
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Fig. 19. The evolution of CD4 T cells under RHC drug doses.
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Fig. 20. The evolution of latently infected cells under RHC drug doses.
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Fig. 21. The evolution of actively infected cells under RHC drug doses.
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Fig. 22. The evolution of free viruses under RHC drug doses.
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Fig. 23. Reverse transcriptase inhibitor under RHC.
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Fig. 24. Cumulative performance index under RHC drug doses.
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3.3 HIV/AIDS model 2

The results presented in this section are published in [21].

3.3.1 The model

To develop a method for the scheduling of antiviral therapy which consists of RTI and PI
drugs, we consider a model described in ([83] and [88]) and exhaustively investigated by
([45] and [62]). This model can be written as

ẋ = s− µx+ px
µ
1− x

Tmax

¶
− e−u1(t)kxvI , (3.22)

ẏ = e−u1(t)kxvI − δy, (3.23)

v̇I = (1− η0)e
−u2(t)nδy − cvI , (3.24)

v̇NI =
©
1− (1− η0)e

−u2(t)
ª
nδy − cvNI , (3.25)

where, vI and vNI are the concentrations of infectious and non-infectious virions, respec-
tively. Here the control input is u1(t) = α1m1(t) and u2(t) = α2m2(t) where m1(t) and
m2(t) are the drug doses at time t of RTI and PI, respectively, and α1 and α2 are the
efficiency of drugs for RTI and PI, respectively; η0 is the proportion of non-infectious
virus in the total virus pool before the intervention of antiviral drugs. The model (3.22)-
(3.25) leads to the model proposed by [45] if we replace e−u1(t) and e−u2(t) with (1− γ(t))
and (1 − η(t)), respectively, where, γ(t) and η(t) are the drug efficacies of RTI and PI,
respectively.
We note that the system (3.22)-(3.25) is biologically acceptable because

ẋ |(x=0) = s ≥ 0,
ẏ |(y=0) = e−u1(t)kvIx ≥ 0, (vI , x ≥ 0),
v̇I |(vI=0) = (1− η0)e

−u2(t)nδy ≥ 0, (y ≥ 0),
v̇NI |(vNI=0) =

©
1− (1− η0)e

−u2(t)
ª
nδy ≥ 0, (y ≥ 0).

It has been shown in [62] that all solutions of (3.22)-(3.24) are ultimately bounded (which
also involves the ultimate boundedness of the solutions of (3.22)-(3.25)). Here we need a
slightly stronger statement.
Proposition 2 If s − µTmax < 0 then there exists such a positive number M∗ that

the compact set

Ω = {(x, y, vI , vNI) : 0 ≤ x, y ≤ Tmax, 0 ≤ vI , vNI ≤M∗} ,

is positively invariant.
Proof. Assume that (x, y, vI , vNI)0 ∈ R4+ and let %(x) = s− µx+ px

³
1− x

Tmax

´
. We

can see that for x0 defined by (3.10), inequalities

%(x) > 0 if 0 ≤ x < x0,
%(x) < 0 if x > x0,

%(x0) = 0, %0(x0) < 0,
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hold true. Since ẋ ≤ %(x) and ẋ + ẏ ≤ %(x) in R4+, and x0 < Tmax if s − µTmax < 0,
therefore x(t) ≤ Tmax, y(t) ≤ Tmax for all t ≥ 0, if x(0) ≤ Tmax and y(0) ≤ Tmax. On the
other hand, v̇I + v̇NI = nδy − c(vI + vNI), therefore vI(t) + vNI(t) ≤ nδTmax

c
=:M∗ for all

t > 0, if this inequality holds true for t = 0 and y(0) ≤ Tmax.
Remark 14 Note that Ω contains all of the biologically relevant states. Moreover,

there is no finite escape time.
Let us compute the equilibrium points of system (3.22)-(3.25) under constant controller

i.e. for ui(t) = bui, i = 1, 2, t ≥ 0. There are two possible steady states, which we call
uninfected and infected. The uninfected steady state is E0 = (x0, 0, 0, 0) and the infected
steady state is E+ = (x, y, vI , vNI) where

x =
cebu1+bu2

(1− η0)kn
, y =

cebu2
(1− η0)δn

vI ,

vI =
ebu1
k

h s
x
+ q1 − q2x

i
, vNI =

ebu2 − 1 + η0
1− η0

vI .

The crucial quantity is the basic reproduction ratio, Rc0, given by

Rc0(bu1, bu2) = nkx0(1− η0)e
−bu1−bu2

c
,

(see [45] and [62]).
It is easy to see that

x > x0, vI < 0, if Rc0(bu1, bu2) < 1,
x = x0, vI = 0, if Rc0(bu1, bu2) = 1,
x < x0, vI > 0, if Rc0(bu1, bu2) > 1.

Therefore, if Rc0(bu1, bu2) < 1, then E0 is the only biologically acceptable equilibrium point.
It has been proven in [62] that if Rc0(bu1, bu2) < 1, then E0 is asymptotically stable. If

Rc0(bu1, bu2) > 1, then E0 becomes unstable and the infected steady state E+arises.
Our aim is to determine a control strategy which steers the system near the uninfected

steady state.
Proposition 3 Any initial point is asymptotically controllable from the set Ω to E0

with piecewise constant controllers.
Proof. Let u1(t) = bu1 and u2(t) = bu2 with bu1 + bu2 > uc, where

uc =

½
0, ln

µ
nkx0(1− η0)

c

¶¾
,

then Rc0(bu1+ bu2) < 1, therefore the corresponding trajectory will tend to E0 as t→∞.¤
This implies that for any initial points which belonging to Ω, no finite escape time

occurs.
This proposition shows that the stabilization of E0 can be achieved by piecewise con-

stant controllers, but the speed of convergence may be unacceptably low, if the controllers
are applied with bu1 + bu2 > uc, bu1 + bu2 ∼ uc.
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3.3.2 Application of `-step RHC method

In this subsection we apply the `-step receding horizon control method proposed in Chap-
ter 2. The computations were carried out when the state is measured at the instants
Tmj = j`T, j = 0, 1, ... . Simulations for the continuous-time system were carried out
when ` and T were chosen to be ` = 4 and T = 1. We transform the point (x0, 0, 0, 0)
into the origin with ex = x − x0, ey = y, evI = vI , evNI = vNI and the control inputeu1 = u1 − u(1)c , eu2 = u2 − u(2)c with u(1)c + u

(2)
c = uc. We can see that Assumption A1 is

satisfied. Let FAT,h be constructed using multiple steps of a one-step second-order Rung-
Kutta scheme, then Assumptions A2 and A6 are also satisfied. From Proposition 3 it
follows that Assumption A3 holds true, as well.
To verify Assumptions A4 and A5, let AC be the coefficient matrix of the linearized

system (3.22)-(3.25) in case of constant control i.e. eu1(t) = eu1 > 0, and eu2(t) = eu2 > 0.
Similarly to the previous section we choose the running and the terminal costs as

lh( eX, eu) = 0.1 eX 0Q eX + 5eu21 + 2eu22, (3.26)

g( eX) = eX 0P eX, (3.27)

where eX = (ex, ey,evI ,evNI)0, P is a positive definite diagonal matrix given by
P = diag(1, 20, 3, 0.0002)

and Q is a positive definite symmetric matrix

Q =


0.1943 0.1140 0.1056 0
0.1140 6.1242 −1.7775 −0.0012
0.1056 −1.7775 2.7558 −0.0001
0 −0.0012 −0.0001 0.0002

 .
This P and Q satisfy the Lyapunov equation for the discrete-time model of the linearized
system (3.22)-(3.25)

Q = −(A0TPAT − P ), AT = e
ACT .

From (3.26)-(3.27), Assumption A4 is satisfied. It has been verified numerically by solving
a constrained minimization problem with several starting points that Assumption A5 is
satisfied over the whole set Ω.

3.3.3 Numerical results

We conduct simulation studies using the parameter values taken from [45]. These values
are listed in Table 2.
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Parameters Description Values
s Rate at which new T-cells are generated 36 day−1mm−3

p Rate of growth for the T-cell population 0.108 day−1

Tmax Maximum T-cell population level 1500 mm−3

µ Death rate of uninfected cells 0.072 day−1

δ Death rate of infected cells 0.5 day−1

k Rate at which T-cells become
infected by virus 0.001 mm3day−1

η0 Proportion of non-infectious virions 0.99
n Number of new virions produced

per infected cell 1000
c Clearance rate of free virions 3.0 day −1

Table 2

For the parameters given in Table 2, we can see that Rc0(bu1, bu2) |(bu1=bu2=0)> 1 so E0 is
unstable when there is no treatment.
We assume that the infection started near the uninfected steady state with the values

x = x0, y = vNI = 0 and vI = 0.0001. Figures 25 and 26, show the case when there is
no treatment (u1 = u2 = 0). It can be seen that the concentration of uninfected CD4+

T cells is decaying, and the concentrations of infected cells, infectious and non-infectious
virions are increasing. We assume that the system is in the infected steady state before
initiating the treatment i.e at E+ |(bu1=bu2=0)= (300, 80.64, 134.4, 13305.6).
Figure 27 shows that when the RHC strategy is applied, the concentrations of the

uninfected and infected T cells tend rapidly to the normal value x0 and zero, respectively.
In Figure 28, we can see that the concentrations of infectious and non-infectious virions
are decaying when the RHC strategy is applied.
The efficiencies of drugs for RTI and PI are given by α1 = α2 = 0.005 (see [6]). The

drug doses m1 and m2 as functions of the time under `-step receding horizon controller
are shown in Figure 29. It is observed that the system can be kept near the stationary
point E0 = (x0, 0, 0, 0) by small drug doses.
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Fig. 25. The evolution of uninfected and infected cells for the untreated case.
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Fig. 27. The evolution of uninfected and infected cells under RHC.
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The Appendix

1- Example. Control of a Harmonic Oscillator
Consider the following system

ẋ = y,

ẏ = −x+ u(t), |u(t)| ≤ 1.

We want to determine the time-optimal controller which steers the initial state x0, y0 to
the origin in a minimal time. The complete solution is given in [61] where the optimal
control u∗(t) is a relay control with values +1 and −1. We consider the solution-curve
families in the phase plane of the extremal differential systems:½

ẋ = y
ẏ = −x+ 1 , (S+)

and ½
ẋ = y

ẏ = −x− 1 . (S−)

The corresponding extremal response traces out the solutions curves of S+ and S− through
the origin that are

Γ+ : (x− 1)2 + y2 = 1, y < 0
Γ− : (x+ 1)2 + y2 = 1, y > 0.

The exact discrete-time model is:½
x(k + 1) = x(k) cos(T ) + y(k) sin(T )− cos(T ) + 1
y(k + 1) = −x(k) sin(T ) + y(k) cos(T ) + sin(T ) , (L+)

and ½
x(k + 1) = x(k) cos(T ) + y(k) sin(T ) + cos(T )− 1
y(k + 1) = −x(k) sin(T ) + y(k) cos(T )− sin(T ) . (L−)

The solutions of continuous and discrete-time systems are shown in Figures 30 and 31-33,
respectively.
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Fig. 31. Trajectory of the exact discrete-time system when T = 0.1.
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Fig. 32. Trajectory of the exact discrete-time system when T = 0.2.
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Fig. 33. Trajectory of the exact discrete-time system when T = 0.3.

This example shows that if we have a stabilizing controller for continuous-time system
and discretize this system, we observe that the trajectory of the discrete-time system
tends to a ball around the origin and remains there (i.e., the exact discrete-time system
is PAS about the origin). The radius of this ball increases with increasing the sampling
period T .
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2- The existence of a class-KL function
We shall use the notation VN(k) in place of VN(φEk (x,uv(x))),where uv is the control se-

quence produced by vAT and F
E
T . Using the pair (d, V

A
max) in the claim, it follows that there

exists T ∗ > 0 such that, for all T ∈ (0, T ∗] and all x ∈ Γmax, max {VN (k + 1) , VN(k)} ≥ d
implies

VN (k + 1))− VN(k) ≤ −T
2
ϕ1(ψ

−1
2 (VN(k)))

= −Tα(VN(k)).

We introduce a variable t ∈ R and define

yT (t) := VN(k) + (t− kT )
VN(k + 1)− VN(k)

T
t ∈ [kT, (k + 1)T ), k ≥ 0.

Then yT (t) is a continuous function of “time” t. Moreover, it is absolutely continuous in
t (in fact, piecewise linear) and we can write for almost all t:

ẏT (t) =
VN(k + 1)− VN(k)

T
, t ∈ [kT, (k + 1)T ).

From the definition of yT (t) we have that if

{yT (t) ≥ d, t ∈ [kT, (k + 1)T )}
=⇒ max {VN (k + 1) , VN(k)} ≥ d
=⇒ VN (k + 1))− VN(k) ≤ −Tα(VN(k))
=⇒ yT (t) ≤ VN(k)

and so we can write for almost all t that: yT (t) ≥ d, implies

ẏT (t) ≤ −α(VN(k)), k : t ∈ [kT, (k + 1)T ).
≤ −α(yT (t)).

It follows from the arguments in ([95], Section VI) that there exists β1 ∈ KL that is
determined by α = 1

2
ϕ1 ◦ ψ−12 such that

yT (t) ≤ β1(yT (0), t), yT (0) ∈ Γmax.

This implies, using yT (k) = VN(k), with t = kT , yT (0) = VN(0), that

VN(k) ≤ β1(VN(0), kT ), k ≥ 0

for all x ∈ Γmax.
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